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Ctrl-Shift: How Privacy Sentiment Changed
from 2019 to 2021
Abstract: People’s privacy sentiments influence changes
in legislation as well as technology design and use. While
single-point-in-time investigations of privacy sentiment
offer useful insight, study of people’s privacy sentiments
over time is also necessary to better understand and
anticipate evolving privacy attitudes. In this work, we
build off of a 2019 Pew Research study and use repeated
cross-sectional surveys (n=6,676) from 2019, 2020, and
2021 to model the sentiments of people in the U.S. to-
ward collection and use of data for government- and
health-related purposes. After the onset of COVID-19,
we observe significant decreases in respondent accep-
tance of government data use and significant increases in
acceptance of health-related data uses. While differences
in privacy attitudes between sociodemographic groups
largely decreased over this time period, following the
2020 U.S. national elections, we observe some of the first
evidence that privacy sentiments may change based on
the alignment between a user’s politics and the political
party in power. Our results offer insight into how pri-
vacy attitudes may have been impacted by recent events
and allow us to identify potential predictors of changes
in privacy attitudes during times of geopolitical or na-
tional change.
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1 Introduction
Privacy, as defined by Westin [150], is an individual’s
right to determine what personal information should be
known or used by others. While the meaning and impor-
tance of privacy can vary by context [43, 150], national

Angelica Goetzen: Max Planck Institute for Software Sys-
tems, E-mail: agoetzen@mpi-sws.org
Samuel Dooley: University of Maryland & Max Planck Insti-
tute for Software Systems, E-mail: sdooley1@cs.umd.edu
Elissa M. Redmiles: Max Planck Institute for Software Sys-
tems, E-mail: eredmiles@mpi-sws.org

polls taken across 15 years show that a majority of peo-
ple in the U.S. view privacy as an important right [19].
Polls over the years have captured shifts in sentiments
towards different areas of privacy [19, 79, 150], with re-
cent data showing those in the U.S. expressing concern
over the way their information has been used by private
companies and the government [16].

Shifts in privacy sentiment have been observed in
tangent with impactful geopolitical or national events
that have privacy implications [150]. Recently, the
COVID-19 pandemic created a global crisis. Govern-
ments around the world responded to this crisis by de-
ploying new collection of personal data and new tech-
nologies. While intended to mitigate the spread of the
COVID-19 virus, these new data uses have also been
perceived as infringing on the privacy of citizens’ per-
sonal data [8]. This raises the question of whether peo-
ple’s sentiments toward related use of their data – i.e.,
for governmental or health purposes outside the context
of the pandemic – have changed.

People’s privacy concerns and opinions influence
digital privacy-related legislation, as well as their adop-
tion of technologies and willingness to share their per-
sonal information [17, 31]. Thus, it is critical for tech-
nologists to understand people’s sentiments toward var-
ious uses of their personal data to ensure that tech-
nology is built in ethical alignment with the broader
population, and that these technologies will ultimately
be used [8, 121]. It is important for us to understand
such sentiments in general, as well as during and in re-
sponse to times of crisis or urgency, where rushed de-
ployment of potentially privacy-infringing technologies
may be pushed to mitigate harms in the short-term but
may cause long-term impacts to both privacy rights and
sentiments [8, 11, 150].

Understanding privacy sentiments and digital
norms, as well as threats that certain technologies may
pose, can inform the creation of technologies and poli-
cies with appropriate privacy considerations that pave
the way for higher adoption rates and less privacy
threats from the beginning [99]. Most studies examine
privacy sentiment at single points in time; however, it
is also necessary to study privacy sentiment across time
to gain a deeper, anticipatory understanding of how and
why sentiment changes and evolves, which can in turn
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allow us to design for rather than react to people’s pri-
vacy preferences.

In this work, we use repeated cross-sectional surveys
conducted using a composition of panels to measure pri-
vacy sentiment over time, ultimately to understand how
people in the U.S. have changed their views on privacy
during the COVID-19 pandemic. Following contextual
integrity (CI) theory [101], which suggests that people’s
data privacy sentiments relate to the use of their data
in specific contexts composed of attributes such as the
entities accessing data and the purposes for which data
are used, we focus on changes in privacy sentiment re-
lated to two data use contexts that are closely related
to the data uses introduced during the COVID-19 pan-
demic: use of data by the government for public safety
and use of data for individual health. In so doing, we
seek to answer the following research questions:

RQ1: Did people’s attitudes toward governments’ data
uses and/or health-related data uses change after
the onset of the COVID-19 pandemic, from 2019
to 2020?

RQ2: Were any observed changes from 2019 to 2020
also present from 2020 to 2021?

RQ3: Do changes observed in RQ1 and RQ2 differ
across sociodemographics, particularly gender,
age, race, ethnicity, education level, and/or po-
litical leaning?

To answer these questions, we statistically analyze sur-
vey data at three time periods: one collected in June
2019 by Pew Research; one collected from May through
June 2020 by us using panel provider Cint; and one col-
lected in June 2021 by us using Cint (total n = 6, 676).

After the onset of the COVID-19 pandemic (RQ1),
from 2019 to 2020, we observe a significant decrease in
people’s odds of accepting the use of their data for gov-
ernment assessment of terrorism threats, and significant
increases in both the acceptance of fitness tracker data
for medical research and the acceptance in use of so-
cial media data for detecting and intervening in mental
health. A year later (RQ2), in 2021, these changes were
sustained (i.e., no further significant changes among
these items was recorded), and additionally, people were
less accepting of law enforcement use of genetic data for
crime solving when compared to their 2019 acceptance
levels.

We also find that sentiment changed within de-
mographic groups primarily between 2019 and 2020
(RQ3). Broadly, we observe increased consensus within
different socio-demographic groups who previously had

divergent attitudes regarding privacy. A notable excep-
tion is in the attitudes of Republicans vs. Democrats,
which remained divergent but changed in direction in
2021 following the November 2020 presidential election.

Drawing on our data and analysis, we discuss im-
plications for research and design, including identifying
potential predictors of future privacy sentiment shifts.

2 Background and Related Work
Here we provide an overview of the findings and impact
of prior work examining privacy sentiment over time.
Additionally, we review prior work on people’s senti-
ments regarding data privacy in the contexts relevant
to our work: the COVID-19 pandemic, government use,
and health.

2.1 Privacy Sentiment Over Time

In the United States, views towards privacy have been
known to shift over time. In the first nationally repre-
sentative survey on different dimensions of privacy in
the U.S., Westin [150] reported that in 1978 most re-
spondents never felt like their privacy had been invaded,
though 64% also said that they were “concerned” over
privacy threats, an increase from prior, smaller privacy-
sentiment measurements, which he attributed to reve-
lations of privacy invasion such as the Watergate scan-
dal. The proportion of those in the U.S. with privacy
concerns grew to 84% by 1995 [150]. Katz and Tas-
sone [79] also found that privacy concern rose in the
1980s through the 90s, and that those in the U.S. spec-
ulated that privacy would become a larger problem in
the future. Best et al. [19] identified further growth in
privacy concern from the 1990s to 2000, with growth
in concern accelerating in tandem with growth in on-
line privacy invasions beginning in the mid-1990’s in the
wake of increasing popularity of the internet.

Making sense of these changes over time can be
aided by situating public opinion in the context of im-
portant social or political changes [150]. While they may
not fully explain changes in public sentiment around
privacy, impactful events, especially those with privacy
implications, provide possible rationale for large scale
public opinion shifts. One salient example is the terrorist
attacks in New York City on September 11, 2001. Prior
to September 11, U.S. polling data showed an increasing
percentage of respondents who viewed government data
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gathering as a serious threat to privacy between 1985
through 1996 [15], as well as an increasing percentage
who were concerned about threats to their personal pri-
vacy in general between 1990 and 2000 [19]. Surveys
taken after September 11 show a sharp increase in pub-
lic support for giving up civil liberties and privacy pro-
tections for security against terrorism [19]; a substan-
tial increase in trust in government was also seen [28].
Following the immediate aftermath of September 11,
a “rebound” effect was observed as support for giving
up civil liberties and concern over government surveil-
lance returned to similar levels as before the terrorist
attacks [19].

Some prior work indicates that the approval of shar-
ing data with the government has continued to decrease
post-9/11. Possibly exacerbated by Edward Snowden’s
leaking of classified National Security Agency informa-
tion in 2013, over half of those surveyed disapproved of
the U.S. government’s collection of phone and internet
data for anti-terrorism purposes in the months following
the leaks [53]. During this time, data also showed that
U.S. respondents believed that the government was us-
ing their data for uses beyond combating terrorism, with
more people expressing concern over protecting civil lib-
erties than national security [107]. People in the U.S.
continued to disapprove of the monitoring of American
citizens in the years that followed [117, 147].

Prior literature [17, 31, 150] suggests that public
privacy sentiments play a substantive role in the en-
actment of privacy legislation and the governance of
data use by both corporations and the government. In
turn, such legislation informs the design of new tech-
nologies [112]. Further, prior work suggests that pri-
vacy sentiments influence people’s willingness to use
such newly created technologies [92]. Thus, gaining a
large-scale and cultural-, time-specific understanding of
privacy attitudes helps to anticipate shifts in technology
policy, design, and use.

2.2 Data Privacy and COVID-19

In early 2020, the COVID-19 virus spread throughout
the world, causing mass casualties and disruptions to
daily life at an unprecedented scale [1]. Measures to con-
trol the spread of the virus were quickly implemented
by governments across the globe, and for many of these
solutions, the use and sharing of personal data was cen-
tral. For instance, location and/or Bluetooth data was
utilized for digital contact tracing, which helped health
authorities trace the spread of COVID-19 and notify

participating users when they came into contact with
an infected person [9, 120], and in some cases for map-
ping risk areas [23, 42]. Health data like body temper-
atures and negative COVID-19 test results were pro-
vided in exchange for permission to enter buildings or
travel [18, 124, 130]. Non-health related data like online
shopping information and credit card transactions were
utilized to track possible virus exposures [8]. Some coun-
tries even deployed public surveillance measures to en-
force stay-at-home policies via location-tracking wear-
ables and drones [34].

Research has found that these data uses have vary-
ing levels of public approval, with participants voicing
privacy concerns across studies (e.g., [77, 84, 120, 134,
152, 154]). For instance, Altmann et al. [12] find that
COVID-19 contact tracing apps garnered high approval
across multiple countries, yet identified concerns about
privacy and a lack of trust in government being two key
variables that hinder adoption. In contrast, Utz et al.
[146] find that acceptance of contact tracing apps and
data sharing differed by country and were dependent
on the country’s data sharing norms; moreover, Trang
et al. [141] explored sentiments in Germany and found
that social benefits and convenience are more important
factors than privacy for citizens who were undecided or
against contact tracing apps. Seberger and Patil [131]
find that with contact tracing, participants identify a
trade-off between adopting technology that would help
society for the “greater good,” while also infringing on
their privacy and sharing their data with third parties
– importantly, the idea of the greater good also seemed
to have a “shelf life,” and was most important to par-
ticipants in the context of a pandemic.

Most related to our work, Biddle et al. [20] finds that
over the course of the pandemic, respondents in Aus-
tralia grew less concerned about the use of their personal
data by organizations broadly, compared to their senti-
ments before the pandemic. We take a similar approach
and work within the context of the United States to in-
vestigate whether the extended use of personal data dur-
ing the pandemic may have impacted attitudes beyond
those directly relating to COVID-19 mitigation technol-
ogy. Namely, as the pandemic is a widespread medical
phenomena which governments around the globe played
key roles in sharing information about and deploying
mitigation technologies for, we hypothesize that broader
attitudes outside specific pandemic contexts, regarding
1) sharing data with governments and authorities for
public safety purposes, and 2) sharing health-related
data and/or data for health-related purposes, may have
changed since the onset of the pandemic. We explore
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how the views of those in the U.S. on data privacy have
changed in these contexts.

2.3 Government Data Use

Our research builds on the body of work documenting
shifts in public opinion on government use of personal
information, with a focus on how attitudes may have
changed throughout the COVID-19 pandemic. Gov-
ernment surveillance involves federal entities collecting
data on civilians, often to exert social control [46]. As
aforementioned, Westin [150] contends that public trust
in government and willingness to accept their use of
civilian data has risen and fallen throughout history in
response to political happenings such as 9/11 or privacy
scandals like Watergate.

In the context of the pandemic, Zhang et al. [154]
find modest to low levels of support for government
surveillance measures to combat the spread of COVID-
19 in the U.S., like encouraging use of contact tracing
apps or implementing immunity pass systems. Addition-
ally, Simko et al. [134] find that while participants ac-
knowledge that the benefits of data sharing with the
government during the pandemic outweigh the risks, a
majority of participants doubted that the government
would delete their data or use it solely for COVID-19
related purposes. Our research expands this work and
investigates how views on government uses of data that
are not directly related to COVID-19 relief efforts may
have changed during the pandemic.

More broadly, in recent decades, Western soci-
eties have increasingly used and relied on “surveillance-
oriented security technologies” to proactively combat
terrorism and other crimes [106]; and, as mentioned,
measures to prevent the spread of COVID-19 like con-
tact tracing apps have made government use of civilian
data all the more salient. Turow et al. [144] captures
the complexity in attitudes towards “everyday surveil-
lance practices,” finding that government and law en-
forcement surveillance practices evoked the most emo-
tional division in participants, with similar percentages
of those in the U.S. saying they feel happy vs. sad, and
pleased vs. angry, that they take place. Such complex-
ity may explain divergence in existing measurements
of sentiment toward government data collection. Some
recent measurements suggest that a majority of those
in the U.S. disapprove of government surveillance for
terrorism and other public safety purposes [16]. Other
work suggests that the government’s use of big data
and digital surveillance technologies is becoming nor-

malized in modern society, largely through its necessity
for various administrative functions and perceived ben-
efits like crime control [70]. Rather than directly op-
posing surveillance, citizens may resign themselves to
acceptance based on their own perceived lack of knowl-
edge and control [40].

We examine how opinions on governments’ and au-
thorities’ use of personal data for the purposes of se-
curity and safety have changed across time in tangent
with social and political circumstance, and use two spe-
cific scenarios to explore this question as described in
Section 3.

2.4 Privacy and Health-Related Data

Broadly, prior work finds that personal health informa-
tion is “very sensitive” for most people in the U.S. [90].
When asked about concerns towards health data shar-
ing, studies with international populations identify con-
cerns around a lack of control over their data, such
as misuse or overuse of their data beyond the use to
which they consented, and concerns related to a lack
of anonymity [10, 30, 67, 69, 76, 125, 138]. Yet, despite
these concerns, Howe et al. [69] find that across health-
data-sharing research studies, participants are willing
to share their data for medical benefits at the individ-
ual and societal level. For instance, people in the U.S.
are accepting of online or electronic health systems that
improve the patient care experience [49, 116]. Addition-
ally, data from international populations also show the
concept of “the greater good,” referring to advances in
the medical field that would benefit the general pub-
lic, motivates people to allow use and sharing of their
data [10, 136, 138].

Research from Europe shows people generally ap-
prove of sharing their data with healthcare profes-
sionals [36, 62], while research from the U.S. shows
that university researchers within the U.S. and relevant
non-profit organizations are also generally acceptable
sources [56, 91]. However, work from the U.S. and be-
yond also finds that people are least willing to share
their health data with private companies or other profit-
seeking ventures [10, 56, 67]. Among those who are will-
ing to consider sharing their data with for-profit entities,
Trinidad, Platt and Kardia [142] find that respondents
are more comfortable with companies accessing their
health data for purposes related to their care as a pa-
tient, compared to business purposes.

The variation and nuance in opinions on sharing
general health-related data are also present in COVID-
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19 specific literature, where themes of privacy, consent,
medical benefits and social good tend to be at odds with
pandemic mitigation technology [50, 84, 148, 152]. The
nature of the COVID-19 pandemic as a public health
crisis, the importance of health-related data to COVID-
19 relief efforts, and the increased digitization of health-
care during the pandemic [87], lead us to ask in our work
whether the onset of the pandemic impacted sentiments
toward health-related data privacy.

3 Methodology
We use repeated cross-sectional surveys to investigate
changes in privacy sentiment among people in the U.S.
We build on existing work examining privacy views
across time, particularly in the context of significant
events, and explore how data privacy sentiments of
those in the U.S. have changed from 2019 to 2021,
a period filled with salient geopolitical and national
changes; chiefly, the COVID-19 pandemic, but also na-
tional events like the 2020 Presidential election. We fo-
cus our investigation on changes in privacy sentiment in
two contexts [101] that are closely related to the con-
text of data uses in the COVID-19 pandemic: the use
of data by the government (or sub-entities) for public
safety and health-related data and data use.

3.1 Scenarios to Measure Privacy
Sentiment

Wemeasure changes in privacy sentiment related to gov-
ernment and health contexts using four specific scenar-
ios. The use of specific scenarios to extrapolate senti-
ments toward more general constructs is in line with
epistemological studies (e.g. [85]) showing that concrete
scenarios produce more accurate measurements of senti-
ment, particularly for hard-to-measure constructs such
as privacy sentiments [115]. For each specific scenario,
we ask respondents: “In your opinion, do you think the
following uses of data or information by the government
or private companies are acceptable or unacceptable?”
with the answer choices “Acceptable,” “Unacceptable,”
or “Unsure” to choose from. Below, we enumerate our
four specific scenarios and explain their relevance in
both the context of the COVID-19 pandemic and data
privacy literature more broadly.

Item 1: “The government collecting data about all
Americans to assess who might be a potential terrorist
threat.”

Our first government data use scenario focuses on
broad collections of data by the government for com-
bating terrorism. As summarized in Section 2.1, prior
work finds that people’s privacy sentiments toward gov-
ernment data use in the U.S. have often shifted in re-
sponse to national or international safety-related events
such as 9/11 or changes in awareness of government data
use. Prior research finds contradicting results regarding
whether government data use is becoming more or less
acceptable, underscoring the complexities of sentiments
toward this topic in the U.S.

In urgent situations or crises, such as the COVID-
19 pandemic, citizens may be more willing to share
their data with necessary government organizations and
authorities. For instance, in 2016, when the FBI or-
dered technology company Apple to bypass their en-
cryption systems to unlock the iPhone of a mass shooter,
Pew Research [108] found that just over half of respon-
dents sided with the FBI in this case. Additionally, the
propensity to share data with authorities, doctors and
scientists for the “greater good” has been found to be
more salient during the COVID-19 pandemic than out-
side of that context [131].

Thus, to update our understanding of sentiment to-
ward government data use for public safety and well-
being purposes, we explore whether the attitudes of
those in the U.S. towards this particular form of govern-
ment data use changed over the course of the COVID-19
pandemic.

Item 2: “DNA testing companies sharing their cus-
tomers’ genetic data with law enforcement agencies in
order to help solve crimes.”

Along with exploring sentiments related to “the gov-
ernment” using generalized “data” from those in the
U.S., we explore changes in sentiment related to the use
of specific types of health data (i.e., genetic data) for
public safety by specific entities (i.e., law enforcement).
This approach aligns with CI theory [35], which suggests
that people’s data privacy sentiments also relate to the
use of specific data by specific entities.

Recent advances in genetic science have unlocked
many uses for DNA data in fields like ancestry tracing,
disease research, and criminal justice [58, 145]. These
uses have inspired conversations around the ethics of
collecting and sharing genetic data. People perceive
risks to sharing biometric data like genetic data –
such as privacy breaches and unauthorized uses – along
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with benefits, like aiding research and societal wel-
fare [88, 132]. Prior work in the U.S. and Canada
show that people are generally willing to share genetic
data with researchers or with research databases and
biobanks [73, 80, 126, 128]. Kaufman et al. find differ-
ences in acceptability of various stakeholders accessing
personal genetic data, with academic researchers being
most acceptable [80].

Genetic data is increasingly being used by law en-
forcement as genealogy companies become more popular
with consumers and accessible online genetic databases
grow [135]. For example, in 2018 police used the geneal-
ogy website GEDMatch to identify and arrest a 72 year-
old man on suspicion of being the “Golden State Killer,”
a criminal accused of committing high-profile murders
throughout the 1970s and 80s, due to his matching
DNA [86]. Since then law enforcement have been able
to revisit over 50 cold cases with new leads acquired
from genealogy databases [82]. This method of crime
solving is new, leaving it largely unregulated [66]. One
study suggests that a majority of those in the U.S. sup-
port law enforcement use of genealogy websites [61]. Our
work hopes to gauge current public opinion on the prac-
tice, particularly in the wake of expanded government
use of health data for public safety and well-being, and
the growing discourse surrounding the role of law en-
forcement in communities [21, 74, 104, 105].

Item 3: “Makers of a fitness tracking app sharing their
users’ data with medical researchers seeking to better
understand the link between exercise and heart disease.”

In addition to government-related uses of data, we
investigate sentiments towards health-related data uses,
including both use of health-related data (as addressed
in this item) and use of non-health data for health-
related purposes (as addressed in Item 4, below). As
detailed in Section 2.4, people consider the benefits of
sharing their health-related data when making their de-
cision to do so. Our first health-related scenario asks
specifically about sharing of data from wearable fitness
tracking technology, an increasingly popular technol-
ogy [113, 140]. Data generated by these technologies
can include anything from users’ heart rates, to sleep
patterns, to number of steps [44]. A number of privacy-
related factors including trust in the device [111] and the
reputation of the company producing it [7], as well as
perceived privacy risks [48, 89] are all highly influential
in user adoption of such trackers.

Relevant to our study, Wiesner et al. [151] find that
while most of the German fitness tracker users they sur-
veyed were unconcerned with their data being shared

without their consent, only one in seven were willing to
actively share their data for research purposes. In light
of the COVID-19 pandemic, when the use and sharing of
health-related data for research has become increasingly
necessary and urgent, we investigate whether views on
sharing fitness data for research have shifted.

Item 4: “A social media company monitoring its users’
posts for signs of depression, so they can identify peo-
ple who are at risk of self-harm and connect them to
counseling services.”

Finally, we ask respondents in our survey how ac-
cepting they are of using social media data for the pur-
pose of identifying mental health crises and providing
services. Increasingly, technologies that can recognize
emotions and moods using various data like biomet-
rics and online behavior are being developed and de-
ployed [13]. In the context of social media, researchers
have analyzed data from users’ posts, online activities,
and profile characteristics on platforms like Twitter,
Facebook, and Reddit to predict mental health issues
in users [38, 39, 72, 78, 122, 133, 139, 143]. Insights
can be derived at the population level [37, 129] or at
the individual level [33, 102]. Social media platform
Facebook has disclosed their active use of both human
and artificial intelligence to identify users who may be
in mental health crises based on their posts, in order to
get first responders and resources to them [96, 127].

Analyzing social media content for mental health
information has benefits, the most prominent being the
opportunity to provide mental health care to at-risk in-
dividuals. But prior work has also noted concerns re-
lated to privacy and ethics – for instance, the difficul-
ties of gaining fully informed consent from users whose
social media data are monitored for mental health pur-
poses [100], or the unresolved question of whether social
media posts are public or private McKee [93]. Chancel-
lor et al. [26], in their taxonomy of existing methods for
deriving mental health information from users’ social
media posts, acknowledge the benefits of early detec-
tion of mental disorders while also noting the risks to
users such as inaccurate mental health predictions and
a lack of proper data protections.

The limited body of research on how users feel about
this practice has produced, like other studies relating to
opinions on health data uses, complex results. Andalibi
and Buss find that the concept of emotion detection and
prediction on social media evoked feelings of discomfort
in social media users [13]. Meanwhile, a U.S. focus group
study revealed that there were mostly favorable views
towards using Twitter data to monitor mental health at
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a population level [95], while a survey of people in the
UK found that most social media users supported data
analysis on Facebook content for the purpose of tar-
geting mental health resources, but less than half were
willing to give consent for their own Facebook data to
be analyzed this way [45]. Our research builds on this
body of research and investigates changes in sentiment
during the COVID-19 pandemic, during which mental
health challenges have been an increasingly important
public health topic [24, 103].

3.2 Survey Methodology

We use the aforementioned items to assess sentiment
toward government and health data privacy in 2019,
2020, and 2021. We use a repeated cross-sectional sur-
vey methodology. That is, we collect responses from dif-
ferent respondents in the same population (the U.S.)
each year via online surveys. Repeated cross-sectional
surveys may be conducted using the same panel in ev-
ery year or using a composition of panels across years.
Multiple prior works use a composition of panels; some
statistically compare data across different panels owned
by different companies (e.g., [123]) while others (e.g.,
[63]) compare data collected by a single company such
as Nielsen, one of the largest consumer polling compa-
nies in the U.S., which leverages a combination of dif-
ferent panels with different sampling methodologies in
each year. We use the latter approach in our work: we
draw our data from one survey panel in 2019 and from
another in 2020 and 2021.

Specifically, the 2019 privacy sentiment dataset that
we use in our analysis was collected by Pew Research
Center (Pew) in June 2019 via their American Trends
Panel [16]. Pew showed the two government data items
to a subset of their panelists (n = 2, 012) and the two
health data items to a different subset of their panelists
(n = 1, 989).

The 2020 (n = 1, 138) and 2021 (n = 1, 537) datasets
we use were sampled from the Cint survey panel. In May
through June 2020, and in June 2021, we administered
the same four items using the exact same phrasing, as
well as a series of demographic questions assessing the
respondents’ age, gender identity, race, ethnicity, level
of educational attainment, and political leaning. We ad-
ministered both surveys online, as was done in the orig-
inal Pew survey.

Sampling. Recruitment for the Pew survey panel oc-
curs in a two step process: first they recruit a popu-

lation of roughly 10,000 individuals who agree to take
their surveys, and then for individual surveys, they sam-
ple from that population. Recruitment for the 10,000
panelists is done via mailers and then individual sur-
veys are (primarily) taken online. 1 The dataset we use
is the Wave 49 American Trends Panel, which focuses
on privacy and surveillance. Since these data were col-
lected as a sub-sample of the overall Pew panel, we see
deviance from the 2020 Census demographics in this
panel. Specifically, while Pew aims to provide very rep-
resentative data, and their data have become an in-
dustry standard that are heavily leveraged in academia
and legislation, we note that in the 2019 Pew survey
there was an over-representation of white individuals.
We discuss how our analysis procedure addresses this
over-representation in Section 3.3, below.

Cint recruits for their survey panel in a similar man-
ner to Pew. They recruit a large group of panelists via
mailers, frequent flyer programs, online advertisements,
and other approaches. For each survey, they sample a
subpopulation of the larger panel. Respondents to the
surveys we sampled via Cint’s panel took these surveys
online, like the Pew participants, and we ensured that
those who took the survey in 2020 did not take it again
in 2021. We also requested that the demographics of
our respondents be representative of the U.S. popula-
tion in terms of age, gender, education, race, and eth-
nicity; specifically, we set quotas that the proportion of
respondents in each category would be within ±10% of
the U.S. Census. In one instance, this quota was not
met: our 2020 Cint panel was under-representative of
white individuals. However, as discussed further in Sec-
tion 3.3, we still had sufficient statistical power for white
individuals and used specific analysis methodologies to
account for demographic variance between the samples
collected in each year and ensure that these variances
and do not compromise the integrity of our results and
interpretation.

Demographics. Demographic variables are given by
self-report data from individual respondents in each sur-
vey panel. In 2019, Pew captured and reported: race and
ethnicity, education level, age, and political leaning. We
captured the same variables in the surveys we ran in
2020 and 2021. Pew also captures a variable they term
‘sex’ for which they have only binary responses. In our

1 For more detail on the panel methodology, see
https://www.pewresearch.org/our-methods/u-s-surveys/the-
american-trends-panel/.

https://www.pewresearch.org/our-methods/u-s-surveys/the-american-trends-panel/
https://www.pewresearch.org/our-methods/u-s-surveys/the-american-trends-panel/
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Metric (%) 2019 [Q1,Q2] 2019 [Q3,Q4] 2020 2021 2020 U.S. Census

G
en
de
r∗ Man 44 45 56 47 47

Woman 56 55 44 53 50
Non-binary – – 0.4 1 3

Ra
ce
/E

th
n.

White 78 78 48 65 62
Hispanic 14 13 19 10 19

Black/African American 12 11 22 16 14
Asian/Asian American 3 3 12 10 7

Other 8 8 19 10 10

Ed
uc
at
. H.S. or Less 34 34 30 25 38

Some college 28 28 30 35 26
B.A./B.S. or above 39 38 40 40 35

A
ge

18-29 years 15 15 21 24 16
30-49 years 31 30 39 40 26
50-64 years 30 31 23 18 19
65+ years 23 23 17 18 16

Po
l Dem/Lean Dem 56 55 64 63 –

Rep/Lean Rep 45 45 36 37 –

Table 1. Demographics for our four samples as compared to the demographics of the U.S. [3, 4, 75]. ∗As noted in Section 3.2 Pew
uses a binary gender question, while our survey measures a broader range of gender identity in line with best practice [137].

surveys, we asked about gender in an inclusive manner
following [137].

Our analysis uses the following demographic vari-
ables: gender (women vs. men2), age (as a categorical
variable), race (as a categorical variable), whether the
participant was Hispanic, education (as a categorical
variable), and political leaning (as a binary variable).
The categories for each variable can be found in Ta-
ble 1.

Ethics. The methods for our data collection (2020 and
2021 datasets) were approved by our institution’s review
board. The 2019 data were collected by Pew. We use
only the de-identified data that Pew publicly released
on their website in our analysis.3

2 We received 5 non-binary responses in 2020 and 15 in 2021. As
we lack statistical power to draw meaningful conclusions about
the privacy sentiments of the non-binary community in specific,
we do not include these data in our analysis on privacy sentiment
shifts within gender groups. However, this in no way diminishes
the importance of understanding the unique and valuable in-
sights of this population, which should be explored with either
larger samples (yielding statistical power) or targeted research
specific to their viewpoints and perspectives [51, 52].
3 The full Pew data report can be found in [16] and an
overview of their ethical principals can be found at: https:
//www.pewresearch.org/about/our-mission/.

3.3 Analysis

Our primary outcome of interest (dependent variable)
was whether a respondent found the data use presented
in each of the four items acceptable. We built three sets
of logistic regression models to understand sentiment
toward these data uses and particularly changes in that
sentiment.

We use regression as our primary method for analy-
sis because it accommodates for demographic differences
between our three datasets. We test for significance of
odds ratios of learned parameters in logistic regression
models. These tests do not assume equal counts of dif-
ferent demographic groups [94]. The use of this analysis
technique allows us to rigorously and appropriately an-
alyze our data, despite a lack of consistent demographic
apportionment between the Census, Pew, and Cint.

To address RQ1 and RQ2, we report on overall
changes between each pair of years (2019-2020, 2020-
2021, and 2019-2021) by using regressions which include
the year as a linear predictor and control for demo-
graphic effects; these results can be found in Table 2. In
these regressions, an odds ratio below 1 would indicate
a decrease of acceptability in the second year compared
to the first, and an odds ratio above 1 would indicate
an increase.

In addressing RQ3, we first report on baseline ef-
fects using our regression data rather than using raw
numbers in order to control for demographic variance

https://www.pewresearch.org/about/our-mission/
https://www.pewresearch.org/about/our-mission/
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between our various samples. As such, we construct a
separate logistic regression model for each item and for
each year that predicts the dependent variable from the
demographic information collected in the surveys. Fur-
ther information on the categories for each variable can
be found in Table 1. This second set of regressions tells
us which sociodemographics were significant for a given
question in a given year, but do not allow us to rea-
son about changes in sociodemographics between years.
Therefore, we construct models for each pair of years
(2019-2020, 2020-2021, and 2019-2021) to evaluate the
demographic changes between the years. In these mod-
els, we treat the year as an interaction term with the de-
mographic variables, which allows us to statistically test
whether an observed demographic change from one year
to another was significant or just occurred by chance.
The relevant results of these regressions are shown in
Figure 1.

The regression models provide significance values
for odds ratios found from the regression’s fitted values.
Significance values for our conclusions were set with α =
0.05. See [94] for a deeper explanation of odds ratios and
logistic regressions.

Finally, we note that, consistent with the literature
[54], because our data are organized from three similar,
non-identical populations and the comparisons we make
are purely complementary, we do not make any multiple
comparison corrections in our regressions.

3.4 Limitations

The data used in our work comes from respondents who
were sampled from two different panels. While this ap-
proach of comparing across multiple panels or drawing
from data composed from multiple panels is extant in
prior work (see e.g., [63, 123]), we acknowledge that the
difference in Pew’s sampling methodology vs. our own
may be confounding when determining attitude changes
across time. However, both samples used the same mode
– online survey – as well as identically phrased questions
of interest. Further, as described in Section 3.3, to mit-
igate the effects of demographic variance between our
samples we report all baseline and change effects in the
context of logistic regression models that control for de-
mographics.

Additionally, while our interest is in how privacy
sentiment changed over the course of the COVID-19
pandemic, our analysis is not causal. We report on
changes observed between 2019, 2020, and 2021 but can-

not definitively conclude that particular events (like the
onset of the pandemic) caused these changes.

Finally, our work is subject to limitations typical
to most survey work: respondents may have been vul-
nerable to social-desirability bias or the privacy-specific
“privacy paradox,” and as a result may have reported
stronger or different opinions than those they actually
held. To mitigate the former, Pew engages in extensive
pre-testing and multiple rounds of question drafting,
editing, and piloting.4 Regarding the latter, we note
that we study privacy sentiments rather than privacy
behavior; the latter is the chiefly effected variable of
the privacy paradox. While privacy sentiment does not
always accurately predict digital behavior, these senti-
ments still influence policy makers and have been shown
to be among multiple behavioral factors related to peo-
ple’s technology use [6, 17, 31]; thus, they still merit
study, especially over time.

4 Results
We analyze the results from each item individually. Re-
sults5 are summarized in Figure 1. Regressions support-
ing RQ1 can be found in Table 2. Regressions supporting
RQ2 can be found in Table 3. Regressions supporting
RQ3 can be found in Table 4.

4.1 Government Data Collection
to Assess Terrorism Threats

Overall, we see that respondents acceptance of the gov-
ernment collecting data to assess a terrorism threat
waned from 2019 into 2020 and stayed at a lower level
in 2021 compared to 2019, even when controlling for
demographic changes.

Considering 2019 as our baseline, we observe the
following statistically significant effects. Men have sig-
nificantly lower odds6 than women of finding terrorist

4 For more detail on Pew’s survey methodology see: https:
//www.pewresearch.org/our-methods/u-s-surveys/writing-
survey-questions/.
5 For reference, analysis code and all regression tables
can be found here: https://osf.io/ya2rn/?view_only=
2e06898a539945b09f3d6f1be6e4c2e3
6 In all cases where we describe a change throughout the paper,
we refer to a change in the odds of acceptability, even if, for
brevity, this phrase is not specifically used.

https://www.pewresearch.org/our-methods/u-s-surveys/writing-survey-questions/
https://www.pewresearch.org/our-methods/u-s-surveys/writing-survey-questions/
https://www.pewresearch.org/our-methods/u-s-surveys/writing-survey-questions/
https://osf.io/ya2rn/?view_only=2e06898a539945b09f3d6f1be6e4c2e3
https://osf.io/ya2rn/?view_only=2e06898a539945b09f3d6f1be6e4c2e3
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Fig. 1. Summary figure reporting odds ratios from regressions for each survey item and each year. Bars depict odds ratios from intra-
year regressions, e.g., comparing “Man” to “not Man” in 2019. At the top of each chart, we use stars to summarize significant inter -
year differences for the different demographic groups. Table 3 details the results of the intra-year models and Table 4 the inter-year
models.
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Table 2. Overall changes between in perceived acceptability between each pair of years with odds ratios, confidence intervals, and p-
values even when controlling for demographic effects. An odds ratio below 1 indicates a decrease of acceptability in the second year
compared to the first, and an odds ratio above 1 indicates an increase.

Item 1 Item 2 Item 3 Item 4
Government/Terrorism Law Enforcement/Genetic Medical Research/Fitness Corporate/Mental Health

2019-2020 0.782 0.942 1.264 2.180
(0.668, 0.915) (0.805, 1.102) (1.080, 1.479) (1.846, 2.574)
p = 0.003∗∗ p = 0.456 p = 0.004∗∗ p < 0.001∗∗

2020-2021 0.908 0.897 0.987 0.948
(0.773, 1.066) (0.765, 1.052) (0.841, 1.159) (0.806, 1.114)

p = 0.239 p = 0.183 p = 0.874 p = 0.514

2019-2021 0.680 0.814 1.246 2.039
(0.591, 0.782) (0.709, 0.936) (1.083, 1.434) (1.757, 2.365)
p < 0.001∗∗ p = 0.004∗∗ p = 0.003∗∗ p < 0.001∗∗

Note: ∗p < 0.05; ∗∗p < 0.01

assessments by the government acceptable. We also ob-
serve an increasing trend in acceptability by age, with
the oldest two age groups rising to the level of statis-
tical significance. We see that those who have a Bach-
elor’s degree or higher have significantly lower odds of
finding terrorist assessments by the government accept-
able when compared to those with a high school degree
or less. Finally, Republican or Republican-leaning indi-
viduals have significantly higher odds of accepting gov-
ernment terrorist assessments compared to their Demo-
cratic counterparts.

In 2020, however, we observe only one demographic
variable that has significant differences when compared
to its reference group, political party: Republicans have
higher odds of finding government data use for terrorist
assessment acceptable than Democrats.

The lack of other demographic differences in 2020
is due in part to statistically significant increases in ac-
ceptability among those with at least a Bachelor’s de-
gree and men. When we examine whether these changes
persisted into 2021, we see that men’s decreased accep-
tance of this data use held in 2021. The Bachelors de-
gree difference between 2019 and 2021 is just barely no
longer significant, although the 2021 level is also not
significantly different from the decreased 2020 level.

As for changes that were brought about in 2021, we
see two significant differences: Hispanic ethnicity and
political party. We observe that Hispanics became sig-
nificantly more likely to find terrorist assessments by the
government acceptable. Acceptability of terrorist assess-
ments by the government is significantly moderated by

a participant’s political party affiliation both between
2019 and 2021 and between 2020 and 2021; specifically,
Republicans, who were more likely than Democrats to
accept government data use for terrorist assessments in
2019 and 2020 were less likely to accept it in 2021.

4.2 Sharing Genetic Data with Law
Enforcement

When controlling for demographic changes, we see that
acceptability of genetic data sharing with law enforce-
ment did not change significantly from 2019 to 2020 or
2020 to 2021. However the overall effect was a steady de-
cline from 2019 to 2021 such that the difference between
these two years shows a significant decrease.

Before the onset of the pandemic, we observe the
following demographic effects: men are significantly less
likely to find sharing genetic data with law enforcement
acceptable; age positively correlates with acceptance —
O.R. for 50-64 is 1.77 and O.R. for 65+ is 2.16; and
education negatively correlates with acceptance — O.R.
for some college is 0.78 and O.R. for a Bachelor’s degree
or more is 0.73.

After the pandemic’s onset in 2020, we see signifi-
cant demographic shifts in responses, again leading to
fewer within-group differences. Specifically, older indi-
viduals, who were generally more likely to agree with
the statement became just as likely as younger indi-
viduals to find it acceptable to share genetic data with
law enforcement. Further, men, who in 2019 were less
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Table 3. Intra-year logistic regression models for the relationship between acceptance of a particular data use scenario and sociode-
mographics. Odds ratios are shown and * depict significance of relationship. For example, the first column depicts the Govern-
ment/Terrorism question in 2019 where men were less likely than women (odds ratio less than one) to agree with the data use in 2019,
people who were 50-64 and 65+ were more likely than those 18-29, etc.

Item 1: Item 2: Item 3: Item 4:
Government/Terrorism Law Enforcement/Genetic Medical Research/Fitness Corporate/Mental Health

2019 2020 2021 2019 2020 2021 2019 2020 2021 2019 2020 2021

Gender: Man 0.717∗∗ 0.977 1.369∗∗ 0.633∗∗ 1.087 0.900 0.971 1.228 1.377∗∗ 0.848 1.326∗ 1.369∗∗

Age: 30-49 1.045 1.257 1.007 1.191 0.969 1.124 0.697∗ 1.023 0.831 0.473∗∗ 1.002 1.007

Age: 50-64 1.353∗ 1.062 0.480∗∗ 1.765∗∗ 0.721 1.147 0.442∗∗ 0.809 1.134 0.297∗∗ 0.490∗∗ 0.480∗∗

Age: 65+ 1.437∗ 0.998 0.576∗∗ 2.157∗∗ 0.876 1.337 0.513∗∗ 0.969 1.477∗ 0.304∗∗ 0.652∗∗ 0.576∗∗

Race: Black 0.986 0.823 0.871 0.843 0.928 1.149 1.127 0.882 0.833 1.264 0.987 0.871

Race: Asian 1.640 1.195 1.026 0.847 0.897 0.962 1.461 0.982 1.463∗ 1.280 1.114 1.026

Race: Other 0.667∗ 1.017 0.870 0.805 0.917 1.049 0.912 0.975 0.884 0.774 0.831 0.870

Ethn.: Hispanic 1.124 0.941 1.413 1.012 0.829 1.211 1.361∗ 0.713 1.029 1.085 0.992 1.413

Ed. Att.: Some college 0.801 1.131 1.006 0.784∗ 0.788 0.951 1.023 1.360 1.302 0.884 1.303 1.006

Ed. Att.: Bachelor’s+ 0.735∗∗ 1.166 1.023 0.730∗∗ 0.919 0.984 0.952 1.738∗∗ 1.481∗∗ 0.772∗ 1.317 1.023

Political Id.: Rep./Lean Rep. 1.518∗∗ 1.427∗ 0.779∗ 1.164 1.314∗ 0.844 0.848 1.050 0.522∗∗ 0.748∗ 0.880 0.779∗

Intercept 1.014 0.571∗∗ 0.942 1.006 1.006 0.754 1.191 0.687 0.778 1.099 0.802 0.942

Note: ∗p < 0.05; ∗∗p < 0.01

likely than women to think genetic data sharing with
law enforcement was acceptable, became just as likely
as women in 2020. The two demographic shifts that oc-
curred in 2020, age and gender, both held firm into 2021
when compared to their 2019 levels.

Finally, we again observe a change between respon-
dents with differing political affiliations. In 2020, all de-
mographics do not show disparities between their dif-
ferent levels, except for political party – Republican-
leaning individuals were more likely to find sharing ge-
netic data with law enforcement acceptable. However,
in 2021, this trend reversed and Republican-leaning in-
dividuals were no longer more likely than Democratic-
leaning individuals to find it acceptable to share genetic
data with law enforcement.

4.3 Fitness Data Sharing with Medical
Researchers

Overall, we see that the acceptability of sharing fitness
data with medical researchers increased from 2019 into
2020 and remained at a higher level in 2021.

In 2019, age negatively correlated with acceptance
of data sharing with medical researchers. Further, His-
panic individuals were slightly more likely to find this
practice acceptable. No other demographic groups ex-
hibited internal disparities in acceptance for this item
in 2019.

However, after the onset of the pandemic, we saw
significant changes in acceptability between different de-
mographic groups, again leading to fewer overall within-
group differences. First, we see that older individuals be-
came as accepting as younger individuals. An increase
also occurred for those who have a Bachelor’s degree.
Acceptability for those who identify as Hispanic de-
creased to the level of non-Hispanics.

The demographic changes brought on by the pan-
demic lasted into 2021 for both age and education. Being
over 65, which in 2019 negatively correlated with accept-
ability, in 2021 was positively correlated with acceptabil-
ity of sharing data with medical researchers. We hypoth-
esize this change is due to sustained higher COVID-19
risk and concern – even with vaccines that came out
in 2021 – among those 65+. Concerns about the pan-
demic may have generalized to general increases in ac-
ceptability of medical research for other conditions at
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Table 4. Inter-year logistic regression models for the relationship between acceptance of a particular data use scenario and sociodemo-
graphics. Odds ratios are shown and * depict significance of relationship. Interaction between years shown; fixed effects are omitted for
brevity. For example, the first column depicts the comparison between 2019 and 2020 for the Government/Terrorism question, and a
significant value reported indicates that there was a significant change for that sociodemographic variable in 2020 when compared to
2019 — in this case, men and those with a Bachelor’s degree or more were significantly more likely to report acceptance of this data
use in 2020 compared to 2019.

Item 1: Item 2: Item 3: Item 4:
Government/Terrorism Law Enforcement/Genetic Medical Research/Fitness Corporate/Mental Health

2019-20 2020-21 2019-21 2019-20 2020-21 2019-21 2019-20 2020-21 2019-21 2019-20 2020-21 2019-21

Gender:Man * YEAR 1.362∗ 0.974 1.326∗ 1.717∗∗ 0.828 1.422∗ 1.265 1.121 1.418∗ 1.563∗∗ 1.032 1.614∗∗

Age: 30-49 * YEAR 1.203 0.979 1.178 0.813 1.16 0.944 1.468 0.812 1.191 2.119∗∗ 1.006 2.131∗∗

Age: 50-64 * YEAR 0.785 1.126 0.884 0.408∗∗ 1.592 0.650∗ 1.829∗ 1.401 2.562∗∗ 1.650∗ 0.98 1.616∗

Age: 65+ * YEAR 0.695 0.975 0.677 0.406∗∗ 1.526 0.620∗ 1.890∗ 1.524 2.880∗∗ 2.141∗∗ 0.883 1.891∗∗

Race: Black * YEAR 0.835 1.397 1.166 1.101 1.238 1.363 0.783 0.944 0.739 0.781 0.882 0.689

Race: Asian * YEAR 0.729 0.898 0.655 1.059 1.072 1.135 0.672 1.49 1.001 0.871 0.921 0.802

Race: Other * YEAR 1.524 0.808 1.232 1.14 1.144 1.304 1.07 0.907 0.97 1.074 1.047 1.124

Ethn.: Hispanic * YEAR 0.837 1.844∗ 1.543 0.82 1.46 1.197 0.524∗ 1.443 0.756 0.914 1.425 1.303

Ed. Att.: Some college * YEAR 1.412 0.825 1.165 1.005 1.207 1.214 1.329 0.958 1.273 1.475 0.773 1.139

Ed. Att.: Bachelor’s+ * YEAR 1.586∗ 0.888 1.409 1.259 1.071 1.348 1.824∗∗ 0.852 1.554∗ 1.706∗∗ 0.777 1.327

Political Id.: Rep/Lean Rep * YEAR 0.94 0.522∗∗ 0.490∗∗ 1.129 0.642∗ 0.725∗ 1.239 0.497∗∗ 0.615∗∗ 1.176 0.886 1.041

Intercept 1.014 0.571∗∗ 1.014 1.006 1.006 1.006 1.191 0.687 1.191 1.099 0.802 1.099

Note: ∗p < 0.05; ∗∗p < 0.01

which they are high risk (i.e., heart disease) among older
respondents [25, 98]. The change in sentiment among
Bachelor’s degree holders also holds in 2021: there was
no education effect in 2019, but those a Bachelor’s de-
gree viewed this data use as more acceptable in 2021
as well as 2020 than their less-educated peers, who may
have become more informed about the role of medical
research in fighting various conditions as a result of the
pandemic [118].

Gender, which saw no difference in acceptability in
2019, saw increases for men in 2020, and in 2021 that
increase rose to the level of statistical significance from
2019.

Like the previous two items, we also saw a marked
change in the political party disparity in 2021. Whereas
there was no significant difference in acceptability views
for 2019 and 2020, Republican-leaning identified indi-
viduals became significantly less likely to accept shar-
ing fitness data than Democratic-leaning individuals in
2021 both when compared to 2019 and 2020.

4.4 Monitoring for Mental Health Crises
by Social Media Companies

Finally, we see that, overall, the acceptability of a so-
cial media company monitoring posts for mental health
crises increased significantly and with large magnitude
between 2019 and 2020 and remained at a higher level
in 2021.

In 2019, we found all individuals over 30 were less
accepting of the idea of social media companies mon-
itoring data for mental health crises compared to the
youngest group. Additionally, we see that Bachelor’s de-
gree holders and Republican-leaning individuals are less
likely to find this behavior acceptable in 2019.

After the onset of the pandemic, we see meaningful
changes amongst demographic groups. First, those in
the 30-49 group became as likely as the youngest group
to find this acceptable, a statistically significant change.
Older individuals in the 50-64 and 65+ groups also saw
a relative increase in their thoughts on acceptability,
though older people still found social media monitor-
ing for mental health crises to be less acceptable than
younger people; this difference between years was sig-
nificant. Further, men, who in 2019 had similar levels
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of acceptance of this data use to women, became more
likely than women in 2020 to find this practice accept-
able, another significant change in sentiment. This is
also the case for those with a Bachelor’s degree, who
in 2019 were less likely to find social media companies
monitoring for mental health crises acceptable but in
2020 were more likely to find it acceptable.

The demographic changes for age and gender both
held into 2021. When compared to 2019, older individ-
uals became more accepting of this practice. Men also
continued to find social media monitoring for mental
health crises was acceptable at higher rates than women
in 2021, a significant change from 2019. However, the
significant change from 2019 to 2020 we saw for those
with a Bachelor’s degree receded in 2021; in 2021, like
2019, a person with a Bachelor’s degree was no more
likely than those with less education to find social me-
dia monitoring for mental health crises acceptable.

5 Discussion
This work seeks to understand changes in U.S. public
sentiment toward government and health-related data
use after the onset (RQ1) and continuation (RQ2) of the
COVID-19 pandemic, as well as how sociodemographics
relate to these changes (RQ3). To answer these ques-
tions, we measure acceptance of four concrete privacy-
related data use scenarios in 2019, 2020, and 2021.

In line with findings from prior work [19, 20, 150]
that data privacy sentiments in contexts closely related
to major events shift in tandem with those events, we
observe significant shifts in acceptability in all four data
use scenarios we investigate. Answering RQ1, between
the years 2019 and 2020, we observe a decrease in ac-
ceptability in government collection of data on Ameri-
cans to assess terrorism threats and an increase in ac-
ceptability of both health scenarios: sharing user data
from a fitness tracking app with medical researchers
studying the link between exercise and heart disease;
and a social media company monitoring its users’ posts
for signs of depression to identify people who are at risk
of self-harm and connect them to counseling services.

Answering RQ2, we find that these changes sus-
tained from 2020 to 2021 and that by 2021, there was
also a decrease in acceptability of the other government-
related data use scenario: DNA testing companies shar-
ing their customers’ genetic data with law enforcement
agencies in order to help solve crimes.

Finally, in answer to RQ3, we find differences in sen-
timent between the observed sociodemographic groups:
respondents’ political identity, and the alignment be-
tween that identity and the political party in power,
played an increasingly significant role in the privacy sen-
timents we measured.

Here, we discuss hypotheses for the causes of these
shifts, which serve as directions for future work seeking
to understand why people feel the way they do about
data privacy and how their feelings change. We acknowl-
edge that our analysis is correlational in nature rather
than causal; similarly, we acknowledge that factors such
as our sampling methods or individual differences may
have contributed to patterns we observe in our data.
Thus, such future work is necessary to confirm or refute
the causes we hypothesize.

We hypothesize that the decrease in acceptance of
government data uses may relate to decreased trust
in both the government and law enforcement between
2019 and 2021. Prior work finds that trust is related to
how much an individual views the government or secu-
rity technologies as threatening [15, 106]. Further, prior
examinations of privacy sentiment over time [19, 150]
found that erosion of trust due to events such as the
Watergate scandal, Snowden leaks, and corporate vio-
lations with the growth of the internet in the mid-1990s,
all led to increases in concerns about digital surveillance.
Similar to these prior events, trust in the U.S. federal
government declined significantly over the course of the
pandemic [109] as did reduced perceptions of the U.S.
government as organized, clear, and knowledgeable in
response to COVID-19 [64, 83]. As a result, respondents
may have lowered their trust in the government, conse-
quently lowering their acceptance of government use of
personal data for public safety purposes.

Similarly, perceptions of law enforcement shifted
during our data collection period [22, 68, 104], with
trust in law enforcement decreasing by 2× compared to
any previous yearly decreases by June 2020 [32]. This
came after the rise in visibility of the Black Lives Mat-
ter movement, which first started in 2013 in response
to police brutality and other systemic issues impact-
ing Black individuals but gained widespread visibility
with international protests occurring in the summer of
2020 [68, 104]. In line with prior work finding that this
disapproval has led to reduced citizen engagement in
public safety and reporting of crimes [14], it is possible
that by 2021 reduced trust in law enforcement led many
respondents to no longer accept the sharing of genetic
data with these entities.
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Together, these findings support both CI theory
and prior empirical work (including in the context of
COVID-19) suggesting that trust in the entity providing
a technology [65] or using data [91] strongly influences
people’s willingness to share their data or adopt tech-
nologies. Importantly, we highlight that such trust is dy-
namic: changes in entity trust may potentially lead users
to stop using a technology they previously adopted,
or make them unwilling to share data they once read-
ily contributed. Our results suggest that such changes,
which can have significant impact on technology adop-
tion and thus design, may be predictable by tracking
trust metrics.

We acknowledge that while these hypotheses focus
on the data stakeholders, participants may have judged
our chosen scenarios based on the data uses or data
types instead of, or in addition to, the data stakehold-
ers. For example, when assessing the scenario regarding
government data use, it is possible that respondents put
more focus on the purpose of data collection – in this
case, assessing terrorist threats – than on the govern-
ment as a stakeholder in the data collection process.
Once the spread of infectious diseases grew to be the
top threat for people in the U.S. in 2020 and surpassed
the concern for terrorism [114], this re-prioritization of
threats may have led fewer people in the U.S. to find
this data use acceptable, thus providing an alternative
explanation for our results. We encourage future work
to discern participants’ attitudes towards different data
types vs. data uses vs. stakeholders; doing so would
further our understanding of triggers associated with
changes in data privacy sentiment.

Regarding respondents’ increased approval toward
fitness tracker data use for medical research, we hypoth-
esize that the focus on COVID-19 increased the appar-
ent relevance of medical research, even on other diseases.
Indeed, the “spread of infectious diseases” became the
top perceived national threat by people in 2020 [114]; it
is possible that the medical and social benefits of sharing
data became more important than privacy to respon-
dents during this time. This concern regarding medical
issues may have also increased people’s acceptance of
the use of their social media data for detecting and in-
tervening in mental health issues. Further, contextual
factors such as the increase in mental health issues [110]
and social media use [81], respectively, as well as men-
tal health issues caused by social media use [155] during
the pandemic, may have further increased people in the
U.S.’s willingness to allow their social media data to be
used for mental health purposes.

These shifts suggest that people may be more will-
ing to adopt health technologies and contribute their
digital data for a variety of health purposes than ever
before. While this offers exciting directions for the devel-
opment of new health technologies, future work and de-
sign must also carefully consider how to ensure informed
consent and appropriate data transparency for these
technologies that people may be inclined to quickly
adopt without consideration of potential consequences.

On the whole, many of the strong differences in data
privacy sentiment within demographic groups that we
observed in 2019 are not present in 2020 or 2021. This
point is especially true for government and law enforce-
ment data uses: When controlling for other variables, we
note that women, older people, and less educated people
were all more likely to find these data uses acceptable
compared to their counterparts in 2019. Confirming the
direction of the sentiment changes with the raw data, we
see that these groups decrease their acceptance of gov-
ernment and law enforcement data uses, so that in 2020
differences between in-group members disappeared.

In the wake of an increasingly politically polarized
landscape in the U.S. [2], there is a growing body of
literature investigating political partisanship’s relation-
ship with attitudes, behaviors and self-identification [57,
71, 149]. Party membership is one of the most impor-
tant predictor variables for political attitudes and be-
haviors [55], and, increasingly, attitudes and behaviors
that are not directly connected to political processes.
Partisanship is among the strongest predictors of atti-
tudes toward topics ranging from public health-related
attitudes and behaviors during the early stages of the
COVID-19 pandemic [47, 60] to perceptions of fairness
in algorithmic decision-making [59]. People’s behaviors
are also known to cycle in tangent with presidential
terms at a partisan level [29]; for instance, gun sales
increase during Democratic presidential terms [41] and
donations to women’s health and progressive law orga-
nizations increase during Republican presidential terms
[27, 153].

In line with these findings, we find significant dif-
ferences in Republican and Democrat data privacy sen-
timents throughout our data collection period. In 2019
and 2020, we find that Republicans had significantly
higher acceptance of government data collection for ter-
rorism assessment compared to Democrats; however, by
2021, their acceptance dropped to be significantly lower
than Democrats. We also observe Republicans becom-
ing less accepting of sharing their genetic data with law
enforcement between 2019 and 2021.
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There are few surveys that explore partisan differ-
ences in data privacy attitudes in detail; sentiment is
usually assessed by capturing Democrat and Republi-
can views on privacy-related topics at singular points
in time (e.g., [16, 108, 119]). Recent work finds conser-
vative Republicans to be associated with warmer atti-
tudes towards surveillance, and liberalism to be asso-
ciated with less acceptance of government surveillance
compared to conservatism [97, 144]. Our work alludes
to this possibly being a condition of the current Presi-
dential administration, rather than an inherent trait of
either political affiliation.

While our work cannot draw causal conclusions, we
note the presidential election – in which Republican can-
didate Donald Trump finished his term and was suc-
ceeded by Democratic candidate Joe Biden [5] – that
occurred before our third round of data collection as
a possible reason for the stark decrease in acceptance
in government and law enforcement data uses among
Republicans. We hypothesize that – like gun sales and
donations to particular causes – views on data uses by
governments may relate not to sentiments toward “the
government” at large, but rather to fear of what the op-
posing party [29] may do with their data. If so, changes
in privacy sentiment – which significantly influence leg-
islation such as that around government data uses like
end-to-end encryption [31, 108] – may be easily pre-
dictable. We encourage future work to confirm the rela-
tionship between an individual’s sentiment toward gov-
ernment data uses and the alignment between their po-
litical identity and the political party in power.

6 Conclusion
We examined the data privacy sentiments of those in
the U.S. between 2019 and 2021 using repeated cross-
sectional surveys that measured their acceptance of four
concrete data use scenarios. We find that following the
onset of the COVID-19 pandemic, respondent accep-
tance of government collection of data on Americans
to assess terrorism threats decreased, while their accep-
tance of health-related data use increased for both 1)
use of fitness tracker data by medical researchers study-
ing the link between exercise and heart disease, and 2)
use of social media data by a social media company to
detect and intervene in users’ mental health issues. In
2021, we observe that the 2020 changes in sentiment
are sustained, and that respondent acceptance of law
enforcement use of genetic data for crime detection de-

creased when compared to 2019. Together, these find-
ings suggest that data privacy sentiments may in fact
change in tandem with major geopolitical and national
events, and the effects may have broad impacts to mul-
tiple privacy contexts.

While we find that sentiments became more cohe-
sive across demographic groups during the pandemic,
one notable exception to this finding is sentiment within
political affiliation groups, which appear to change in
tandem with the changing of the political party in
power, for example, after the 2020 national election.

At the time of this writing the COVID-19 pandemic
continues to progress. We encourage future research on
data privacy sentiments as they may continue to change
throughout and after the pandemic, offering insight into
the changing landscape of public opinion into which new
privacy-sensitive technologies and policies may be intro-
duced.
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https://www.insidephilanthropy.com/home/2021/9/9/its-been-a-windfall-for-us-foundations-corporations-and-individuals-rush-funding-to-support-texans-access-to-abortion-care/
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A Tables
The tables to support Figure 1 can be found in regression Tables 5- 11.

Table 5. Question 1 (government data collection for terrorism threat assessment) regressions for each year separately 2019, 2020, and
2021

2019 2020 2021

(1) (2) (3)

GENDERMale 0.717 0.977 0.951
(0.598, 0.861) (0.762, 1.251) (0.769, 1.177)
p = 0.0004∗∗ p = 0.853 p = 0.645

AGECAT30-49 1.045 1.257 1.231
(0.793, 1.378) (0.904, 1.749) (0.941, 1.611)

p = 0.755 p = 0.174 p = 0.131

AGECAT50-64 1.353 1.062 1.196
(1.023, 1.790) (0.733, 1.538) (0.861, 1.661)

p = 0.035∗ p = 0.752 p = 0.287

AGECAT65+ 1.437 0.998 0.973
(1.065, 1.938) (0.660, 1.508) (0.688, 1.376)

p = 0.018∗ p = 0.993 p = 0.877

RACEBlack or African American 0.986 0.823 1.150
(0.730, 1.331) (0.592, 1.144) (0.855, 1.546)

p = 0.926 p = 0.246 p = 0.356

RACEAsian or Asian-American 1.640 1.195 1.073
(0.933, 2.883) (0.805, 1.775) (0.747, 1.542)

p = 0.086 p = 0.378 p = 0.702

RACEOther 0.667 1.017 0.822
(0.465, 0.958) (0.678, 1.527) (0.522, 1.297)

p = 0.029∗ p = 0.934 p = 0.401

HISPANICYes 1.124 0.941 1.735
(0.845, 1.496) (0.633, 1.398) (1.118, 2.691)

p = 0.422 p = 0.763 p = 0.014∗

EDUCATIONBachelor’s or more 0.735 1.166 1.036
(0.592, 0.913) (0.869, 1.566) (0.793, 1.353)
p = 0.006∗∗ p = 0.307 p = 0.795

EDUCATIONSome college 0.801 1.131 0.933
(0.636, 1.007) (0.830, 1.541) (0.711, 1.223)

p = 0.058 p = 0.437 p = 0.615

POLPARTYRep/Lean Rep 1.518 1.427 0.745
(1.253, 1.841) (1.101, 1.848) (0.595, 0.932)
p = 0.00003∗∗ p = 0.008∗∗ p = 0.011∗

Constant 1.014 0.571 0.658
(0.755, 1.363) (0.380, 0.857) (0.484, 0.895)

p = 0.925 p = 0.007∗∗ p = 0.008∗∗

Observations 2,012 1,138 1,537
Log Likelihood −1,361.237 −769.597 −1,026.828
Akaike Inf. Crit. 2,746.474 1,563.193 2,077.655

Note: ∗p<0.05; ∗∗p<0.01
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Table 6. Question 2 (sharing genetic data with law enforcement) regressions for each year separately 2019, 2020, and 2021

2019 2020 2021

(1) (2) (3)

GENDERMale 0.633 1.087 0.900
(0.527, 0.761) (0.850, 1.390) (0.730, 1.111)
p = 0.00001∗∗ p = 0.505 p = 0.327

AGECAT30-49 1.191 0.969 1.124
(0.902, 1.574) (0.700, 1.342) (0.862, 1.467)

p = 0.218 p = 0.849 p = 0.389

AGECAT50-64 1.765 0.721 1.147
(1.332, 2.340) (0.499, 1.041) (0.829, 1.587)
p = 0.0001∗∗ p = 0.081 p = 0.407

AGECAT65+ 2.157 0.876 1.337
(1.594, 2.919) (0.584, 1.315) (0.954, 1.874)
p = 0.00000∗∗ p = 0.524 p = 0.092

RACEBlack or African American 0.843 0.928 1.149
(0.623, 1.142) (0.672, 1.283) (0.856, 1.542)

p = 0.270 p = 0.653 p = 0.355

RACEAsian or Asian-American 0.847 0.897 0.962
(0.480, 1.495) (0.604, 1.333) (0.671, 1.380)

p = 0.568 p = 0.593 p = 0.834

RACEOther 0.805 0.917 1.049
(0.562, 1.152) (0.612, 1.374) (0.673, 1.636)

p = 0.236 p = 0.675 p = 0.834

HISPANICYes 1.012 0.829 1.211
(0.760, 1.347) (0.559, 1.230) (0.785, 1.867)

p = 0.938 p = 0.353 p = 0.387

EDUCATIONBachelor’s or more 0.730 0.919 0.984
(0.587, 0.908) (0.687, 1.230) (0.756, 1.281)
p = 0.005∗∗ p = 0.571 p = 0.906

EDUCATIONSome college 0.784 0.788 0.951
(0.623, 0.987) (0.580, 1.071) (0.729, 1.242)

p = 0.039∗ p = 0.128 p = 0.714

POLPARTYRep/Lean Rep 1.164 1.314 0.844
(0.959, 1.412) (1.015, 1.700) (0.677, 1.052)

p = 0.124 p = 0.039∗ p = 0.131

Constant 1.006 1.006 0.754
(0.748, 1.355) (0.674, 1.500) (0.557, 1.022)

p = 0.967 p = 0.978 p = 0.069

Observations 2,012 1,138 1,537
Log Likelihood −1,352.573 −778.105 −1,049.512
Akaike Inf. Crit. 2,729.146 1,580.209 2,123.024

Note: ∗p<0.05; ∗∗p<0.01
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Table 7. Question 3 (fitness data sharing with medical researchers) regressions for each year separately 2019, 2020, and 2021

2019 2020 2021

(1) (2) (3)

GENDERMale 0.971 1.228 1.377
(0.806, 1.170) (0.960, 1.572) (1.114, 1.704)

p = 0.758 p = 0.102 p = 0.004∗∗

AGECAT30-49 0.697 1.023 0.831
(0.528, 0.922) (0.738, 1.420) (0.635, 1.088)

p = 0.012∗ p = 0.890 p = 0.178

AGECAT50-64 0.442 0.809 1.134
(0.332, 0.590) (0.560, 1.170) (0.817, 1.573)
p = 0.00000∗∗ p = 0.261 p = 0.454

AGECAT65+ 0.513 0.969 1.477
(0.378, 0.696) (0.645, 1.457) (1.048, 2.082)
p = 0.00002∗∗ p = 0.881 p = 0.026∗

RACEBlack or African American 1.127 0.882 0.833
(0.824, 1.541) (0.638, 1.220) (0.617, 1.122)

p = 0.454 p = 0.449 p = 0.230

RACEAsian or Asian-American 1.461 0.982 1.463
(0.881, 2.424) (0.661, 1.460) (1.013, 2.113)

p = 0.143 p = 0.930 p = 0.043∗

RACEOther 0.912 0.975 0.884
(0.631, 1.317) (0.649, 1.465) (0.564, 1.386)

p = 0.623 p = 0.904 p = 0.593

HISPANICYes 1.361 0.713 1.029
(1.007, 1.840) (0.479, 1.061) (0.664, 1.594)

p = 0.046∗ p = 0.096 p = 0.899

EDUCATIONBachelor’s or more 0.952 1.738 1.481
(0.764, 1.188) (1.295, 2.331) (1.132, 1.936)

p = 0.666 p = 0.0003∗∗ p = 0.005∗∗

EDUCATIONSome college 1.023 1.360 1.302
(0.810, 1.292) (0.999, 1.850) (0.993, 1.708)

p = 0.848 p = 0.051 p = 0.057

POLPARTYRep/Lean Rep 0.848 1.050 0.522
(0.696, 1.033) (0.810, 1.361) (0.417, 0.653)

p = 0.102 p = 0.713 p = 0.000∗∗

Constant 1.191 0.687 0.778
(0.881, 1.610) (0.459, 1.028) (0.572, 1.058)

p = 0.257 p = 0.068 p = 0.110

Observations 1,989 1,138 1,537
Log Likelihood −1,314.534 −774.020 −1,026.291
Akaike Inf. Crit. 2,653.068 1,572.040 2,076.582

Note: ∗p<0.05; ∗∗p<0.01
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Table 8. Question 4 (monitoring for mental health crises by social media companies) regressions for each year separately 2019, 2020,
and 2021

2019 2020 2021

(1) (2) (3)

GENDERMale 0.848 1.326 1.369
(0.686, 1.049) (1.034, 1.700) (1.106, 1.694)

p = 0.129 p = 0.027∗∗ p = 0.004∗∗∗

AGECAT30-49 0.473 1.002 1.007
(0.353, 0.632) (0.723, 1.387) (0.773, 1.312)

p = 0.00000∗∗∗ p = 0.993 p = 0.958

AGECAT50-64 0.297 0.490 0.480
(0.218, 0.405) (0.337, 0.713) (0.344, 0.672)
p = 0.000∗∗∗ p = 0.0002∗∗∗ p = 0.00002∗∗∗

AGECAT65+ 0.304 0.652 0.576
(0.218, 0.426) (0.433, 0.982) (0.409, 0.810)
p = 0.000∗∗∗ p = 0.041∗∗ p = 0.002∗∗∗

RACEBlack or African American 1.264 0.987 0.871
(0.903, 1.770) (0.712, 1.368) (0.646, 1.173)

p = 0.173 p = 0.938 p = 0.364

RACEAsian or Asian-American 1.280 1.114 1.026
(0.741, 2.211) (0.748, 1.660) (0.716, 1.470)

p = 0.377 p = 0.595 p = 0.890

RACEOther 0.774 0.831 0.870
(0.511, 1.173) (0.551, 1.255) (0.555, 1.365)

p = 0.228 p = 0.380 p = 0.546

HISPANICYes 1.085 0.992 1.413
(0.776, 1.517) (0.665, 1.478) (0.912, 2.191)

p = 0.634 p = 0.967 p = 0.123

EDUCATIONBachelor’s or more 0.772 1.317 1.023
(0.601, 0.991) (0.979, 1.771) (0.784, 1.337)
p = 0.043∗∗ p = 0.069∗ p = 0.865

EDUCATIONSome college 0.884 1.303 1.006
(0.680, 1.147) (0.955, 1.778) (0.768, 1.319)

p = 0.354 p = 0.096∗ p = 0.963

POLPARTYRep/Lean Rep 0.748 0.880 0.779
(0.596, 0.938) (0.677, 1.143) (0.624, 0.973)
p = 0.013∗∗ p = 0.338 p = 0.028∗∗

Constant 1.099 0.802 0.942
(0.798, 1.513) (0.536, 1.200) (0.695, 1.277)

p = 0.562 p = 0.284 p = 0.701

Observations 1,989 1,138 1,537
Log Likelihood −1,089.413 −765.412 −1,030.537
Akaike Inf. Crit. 2,202.825 1,554.824 2,085.073

Note: ∗p<0.05; ∗∗p<0.01
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Table 9. Interaction between 2019 and 2020, with 2019 as reference. Fixed effects are omitted for brevity. See Table 5-8 for reference.

Question 1 Question 2 Question 3 Question 4
Government Law Enforcement Medical Research Corporate

Terrorism Genetic Fitness Mental Health

(1) (2) (3) (4)

YEAR2020 0.562 0.999 0.577 0.729
(0.340, 0.930) (0.607, 1.645) (0.349, 0.954) (0.436, 1.221)

p = 0.025∗ p = 0.999 p = 0.033∗ p = 0.230

GENDERMale:YEAR2020 1.362 1.717 1.265 1.563
(1.001, 1.852) (1.264, 2.332) (0.929, 1.723) (1.127, 2.167)

p = 0.050∗ p = 0.001∗∗ p = 0.136 p = 0.008∗∗

AGECAT30-49:YEAR2020 1.203 0.813 1.468 2.119
(0.782, 1.851) (0.530, 1.248) (0.954, 2.257) (1.369, 3.279)

p = 0.400 p = 0.345 p = 0.081 p = 0.001∗∗

AGECAT50-64:YEAR2020 0.785 0.408 1.829 1.650
(0.493, 1.248) (0.257, 0.649) (1.146, 2.920) (1.015, 2.683)

p = 0.307 p = 0.0002∗∗ p = 0.012∗ p = 0.044∗

AGECAT65+:YEAR2020 0.695 0.406 1.890 2.141
(0.417, 1.157) (0.245, 0.674) (1.135, 3.146) (1.261, 3.636)

p = 0.162 p = 0.0005∗∗ p = 0.015∗ p = 0.005∗∗

RACEBlack or African American:YEAR2020 0.835 1.101 0.783 0.781
(0.535, 1.303) (0.707, 1.715) (0.499, 1.228) (0.489, 1.248)

p = 0.427 p = 0.671 p = 0.287 p = 0.302

RACEAsian or Asian-American:YEAR2020 0.729 1.059 0.672 0.871
(0.366, 1.451) (0.530, 2.116) (0.353, 1.279) (0.443, 1.712)

p = 0.368 p = 0.871 p = 0.227 p = 0.689

RACEOther:YEAR2020 1.524 1.140 1.070 1.074
(0.885, 2.624) (0.663, 1.958) (0.618, 1.851) (0.598, 1.929)

p = 0.129 p = 0.636 p = 0.811 p = 0.811

HISPANICYes:YEAR2020 0.837 0.820 0.524 0.914
(0.513, 1.364) (0.503, 1.335) (0.318, 0.863) (0.543, 1.539)

p = 0.475 p = 0.425 p = 0.012∗ p = 0.735

EDUCATIONBachelor’s or more:YEAR2020 1.586 1.259 1.824 1.706
(1.100, 2.286) (0.875, 1.811) (1.263, 2.635) (1.158, 2.515)

p = 0.014∗ p = 0.215 p = 0.002∗∗ p = 0.007∗∗

EDUCATIONSome college:YEAR2020 1.412 1.005 1.329 1.475
(0.961, 2.076) (0.685, 1.475) (0.903, 1.956) (0.982, 2.214)

p = 0.079 p = 0.979 p = 0.149 p = 0.062

POLPARTYRep/Lean Rep:YEAR2020 0.940 1.129 1.239 1.176
(0.680, 1.297) (0.818, 1.558) (0.894, 1.716) (0.832, 1.662)

p = 0.706 p = 0.462 p = 0.199 p = 0.359

Observations 3,150 3,150 3,127 3,127
Log Likelihood −2,130.834 −2,130.678 −2,088.554 −1,854.825
Akaike Inf. Crit. 4,309.667 4,309.355 4,225.108 3,757.649

Note: ∗p<0.05; ∗∗p<0.01
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Table 10. Interaction between 2020 and 2021, with 2020 as reference. Fixed effects are omitted for brevity. See Table 5-8 for reference.

Question 1 Question 2 Question 3 Question 4
Government Law Enforcement Medical Research Corporate

Terrorism Genetic Fitness Mental Health

(1) (2) (3) (4)

YEAR2021 1.153 0.750 1.133 1.175
(0.692, 1.920) (0.454, 1.239) (0.682, 1.881) (0.709, 1.948)

p = 0.585 p = 0.262 p = 0.630 p = 0.532

GENDERMale:YEAR2021 0.974 0.828 1.121 1.032
(0.703, 1.350) (0.600, 1.144) (0.810, 1.552) (0.744, 1.432)

p = 0.874 p = 0.253 p = 0.491 p = 0.850

AGECAT30-49:YEAR2021 0.979 1.160 0.812 1.006
(0.639, 1.499) (0.762, 1.767) (0.531, 1.241) (0.661, 1.530)

p = 0.923 p = 0.488 p = 0.336 p = 0.980

AGECAT50-64:YEAR2021 1.126 1.592 1.401 0.980
(0.686, 1.848) (0.975, 2.598) (0.856, 2.293) (0.593, 1.619)

p = 0.638 p = 0.064 p = 0.181 p = 0.936

AGECAT65+:YEAR2021 0.975 1.526 1.524 0.883
(0.568, 1.671) (0.900, 2.588) (0.894, 2.597) (0.518, 1.506)

p = 0.926 p = 0.117 p = 0.122 p = 0.649

RACEBlack or African American:YEAR2021 1.397 1.238 0.944 0.882
(0.898, 2.176) (0.799, 1.916) (0.607, 1.466) (0.567, 1.373)

p = 0.139 p = 0.339 p = 0.797 p = 0.580

RACEAsian or Asian-American:YEAR2021 0.898 1.072 1.490 0.921
(0.526, 1.535) (0.627, 1.831) (0.868, 2.557) (0.538, 1.575)

p = 0.695 p = 0.800 p = 0.149 p = 0.763

RACEOther:YEAR2021 0.808 1.144 0.907 1.047
(0.439, 1.488) (0.627, 2.087) (0.495, 1.663) (0.569, 1.926)

p = 0.495 p = 0.662 p = 0.753 p = 0.884

HISPANICYes:YEAR2021 1.844 1.460 1.443 1.425
(1.021, 3.331) (0.813, 2.624) (0.799, 2.606) (0.788, 2.579)

p = 0.043∗ p = 0.206 p = 0.225 p = 0.242

EDUCATIONBachelor’s or more:YEAR2021 0.888 1.071 0.852 0.777
(0.597, 1.322) (0.723, 1.585) (0.572, 1.268) (0.522, 1.158)

p = 0.561 p = 0.734 p = 0.430 p = 0.217

EDUCATIONSome college:YEAR2021 0.825 1.207 0.958 0.773
(0.547, 1.245) (0.804, 1.812) (0.635, 1.444) (0.512, 1.166)

p = 0.360 p = 0.363 p = 0.837 p = 0.220

POLPARTYRep/Lean Rep:YEAR2021 0.522 0.642 0.497 0.886
(0.371, 0.735) (0.458, 0.902) (0.352, 0.700) (0.628, 1.249)
p = 0.0003∗∗ p = 0.011∗ p = 0.0001∗∗ p = 0.489

Observations 2,675 2,675 2,675 2,675
Log Likelihood −1,796.424 −1,827.617 −1,800.311 −1,795.949
Akaike Inf. Crit. 3,640.848 3,703.234 3,648.622 3,639.897

Note: ∗p<0.05; ∗∗p<0.01
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Table 11. Interaction between 2019 and 2021, with 2019 as reference. Fixed effects are omitted for brevity. See Table 5-8 for reference.

Question 1 Question 2 Question 3 Question 4
Government Law Enforcement Medical Research Corporate

Terrorism Genetic Fitness Mental Health

(1) (2) (3) (4)

YEAR2021 0.649 0.750 0.653 0.857
(0.423, 0.994) (0.490, 1.147) (0.425, 1.005) (0.551, 1.332)

p = 0.047∗ p = 0.184 p = 0.053 p = 0.494

GENDERMale:YEAR2021 1.326 1.422 1.418 1.614
(1.002, 1.755) (1.076, 1.879) (1.069, 1.881) (1.195, 2.180)

p = 0.049∗ p = 0.014∗ p = 0.016∗ p = 0.002∗∗

AGECAT30-49:YEAR2021 1.178 0.944 1.191 2.131
(0.801, 1.733) (0.642, 1.387) (0.808, 1.756) (1.439, 3.156)

p = 0.406 p = 0.768 p = 0.376 p = 0.0002∗∗

AGECAT50-64:YEAR2021 0.884 0.650 2.562 1.616
(0.574, 1.361) (0.423, 0.999) (1.657, 3.962) (1.024, 2.551)

p = 0.575 p = 0.050∗ p = 0.00003∗∗ p = 0.040∗

AGECAT65+:YEAR2021 0.677 0.620 2.880 1.891
(0.428, 1.070) (0.394, 0.975) (1.819, 4.560) (1.171, 3.054)

p = 0.096 p = 0.039∗ p = 0.00001∗∗ p = 0.010∗∗

RACEBlack or African American:YEAR2021 1.166 1.363 0.739 0.689
(0.765, 1.778) (0.893, 2.078) (0.479, 1.139) (0.439, 1.080)

p = 0.475 p = 0.151 p = 0.170 p = 0.105

RACEAsian or Asian-American:YEAR2021 0.655 1.135 1.001 0.802
(0.335, 1.279) (0.579, 2.225) (0.536, 1.872) (0.417, 1.542)

p = 0.216 p = 0.712 p = 0.997 p = 0.508

RACEOther:YEAR2021 1.232 1.304 0.970 1.124
(0.689, 2.203) (0.736, 2.309) (0.543, 1.734) (0.609, 2.075)

p = 0.482 p = 0.364 p = 0.919 p = 0.708

HISPANICYes:YEAR2021 1.543 1.197 0.756 1.303
(0.914, 2.606) (0.712, 2.012) (0.444, 1.286) (0.750, 2.262)

p = 0.105 p = 0.498 p = 0.303 p = 0.348

EDUCATIONBachelor’s or more:YEAR2021 1.409 1.348 1.554 1.327
(0.999, 1.987) (0.958, 1.897) (1.098, 2.200) (0.920, 1.913)

p = 0.051 p = 0.087 p = 0.013∗ p = 0.131

EDUCATIONSome college:YEAR2021 1.165 1.214 1.273 1.139
(0.817, 1.661) (0.854, 1.726) (0.890, 1.820) (0.782, 1.659)

p = 0.399 p = 0.282 p = 0.187 p = 0.497

POLPARTYRep/Lean Rep:YEAR2021 0.490 0.725 0.615 1.041
(0.365, 0.659) (0.541, 0.972) (0.456, 0.830) (0.758, 1.431)
p = 0.00001∗∗ p = 0.032∗ p = 0.002∗∗ p = 0.803

Observations 3,549 3,549 3,526 3,526
Log Likelihood −2,388.064 −2,402.085 −2,340.825 −2,119.949
Akaike Inf. Crit. 4,824.129 4,852.170 4,729.651 4,287.898

Note: ∗p<0.05; ∗∗p<0.01
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