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Connect the Dots: Tighter Discrete
Approximations of Privacy Loss Distributions
Abstract: The privacy loss distribution (PLD) provides
a tight characterization of the privacy loss of a mecha-
nism in the context of differential privacy (DP). Recent
work [18–20, 24] has shown that PLD-based accounting
allows for tighter (ε, δ)-DP guarantees for many popular
mechanisms compared to other known methods. A key
question in PLD-based accounting is how to approx-
imate any (potentially continuous) PLD with a PLD
over any specified discrete support.
We present a novel approach to this problem. Our
approach supports both pessimistic estimation, which
overestimates the hockey-stick divergence (i.e., δ) for
any value of ε, and optimistic estimation, which un-
derestimates the hockey-stick divergence. Moreover, we
show that our pessimistic estimate is the best possi-
ble among all pessimistic estimates. Experimental eval-
uation shows that our approach can work with much
larger discretization intervals while keeping a similar er-
ror bound compared to previous approaches and yet give
a better approximation than an existing method [24].
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1 Introduction
Differential privacy (DP) [8, 9] has become widely
adopted as a notion of privacy in analytics and machine
learning applications, leading to numerous practical de-
ployments including in industry [3, 7, 13, 16, 29] and
government agencies [2]. The DP guarantee of a (ran-
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domized) algorithm is parameterized by two real num-
bers ε > 0 and δ ∈ [0, 1]; the smaller these values, the
more private the algorithm.

The appeal of DP stems from the strong privacy
that it guarantees (which holds even if the adversary
controls the inputs of all other users in the database),
and from its nice mathematical properties. These in-
clude composition, whose basic form [8] says that exe-
cuting an (ε1, δ1)-DP algorithm and an (ε2, δ2)-DP al-
gorithm and returning their results gives an algorithm
that is (ε1+ε2, δ1+δ2)-DP. While basic composition can
be used to bound the DP properties of k algorithms, it
is known to not be tight, in particular for large values
of k. In fact, advanced composition [12] yields a gen-
eral improvement, often translating to ≈

√
k reduction

in the ε privacy bound of the composition of k mecha-
nisms each of which being (ε0, δ0)-DP. Such a reduction
can be sizeable in practical deployments, and therefore
much research has been focusing on obtaining tighter
composition bounds in various settings.

In the aforementioned setting where each mecha-
nism has the same DP parameters, Kairouz et al. [17]
derived the optimal composition bound. For the more
general case of composing k mechanisms whose privacy
parameters are possibly different, i.e., the ith mecha-
nism is guaranteed to be (εi, δi)-DP for some parame-
ters εi, δi, computing the (exact) DP parameters of the
composed mechanism is known to be #P-complete [27].

While the results of [17, 27] provide a complete pic-
ture of privacy accounting when we assume only that
the ith mechanism is (εi, δi)-DP, we can often arrive
at tighter bounds when taking into account some addi-
tional information about the privacy loss of the mech-
anisms. For example, the Moments Accountant [1] and
Rényi DP [26] methods keep track of (upper bounds
on) the Renyi divergences of the output distributions
on two adjacent databases; this allows one to com-
pute upper bounds on the privacy parameters. These
tools were originally introduced in the context of deep
learning with DP (where the composition is over multi-
ple iterations of the learning algorithm) in which they
provide significant improvements over simply using the
DP parameters of each mechanism. Other known tools
that can also be used to upper-bound the privacy pa-
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rameters of composed mechanisms include concentrated
DP [6, 11] and its truncated variant [5]. These methods
are however all known not to be tight, and do not allow
a high-accuracy estimation of the privacy parameters.

A numerical method for estimating the privacy pa-
rameters of a DP mechanism to an arbitrary accuracy,
which has been the subject of several recent works start-
ing with [24, 30], relies on the privacy loss distribution
(PLD). This is the probability mass function of the so-
called privacy loss random variable in the case of dis-
crete mechanisms, and its probability density function
in the case of continuous mechanisms. From the PLD
of a mechanism, one can easily obtain its (tight) pri-
vacy parameters. Moreover, a crucial property is that
the PLD of a composition of multiple mechanisms is the
convolution of their individual PLDs. Thus, [19] used
the Fast Fourier Transform (FFT) in order to speed up
the computation of the PLD of the composition. Fur-
thermore, explicit bounds on the approximation error
for the resulting algorithm were derived in [15, 18–20].
The PLD has been the basis of multiple open-source im-
plementations from both industry and academia includ-
ing [22, 23, 25]. We note that the PLD can be applied to
mechanisms whose privacy loss random variables do not
have bounded moments, and thus for which composition
cannot be analyzed using the Moments Accountant or
Rényi DP methods. An example such mechanism is DP-
SGD-JL from [4].

A crucial step in previous papers that use PLDs
is in approximating the distribution so that it has fi-
nite support; this is especially needed in the case where
the PLD is continuous or has a support of a very large
size, as otherwise the FFT cannot be performed ef-
ficiently. With the exception of [15]1, previous PLD-
based accounting approaches [18–20, 24] employ pes-
simistic estimators and optimistic estimators of PLDs.
Roughly speaking, the former overestimate (i.e., give
upper bounds on) δ, whereas the latter underestimate
δ. For efficiency reasons, we would like the support of
the approximate PLDs to be as small as possible, while
retaining the accuracy of the estimates.

Our Contributions

Our main contributions are the following:

1 Gopi et al. [15] uses an estimator that is neither pessimistic
nor optimistic, and instead derive their final values of δ using
concentration bound-based error estimates.

. We obtain a new pessimistic estimator for a PLD and
a given desired support set. Our pessimistic estimator
is simple to construct and is based on the idea of “con-
necting the dots” of the hockey-stick curve at the dis-
cretization intervals. Interestingly, we show that this
is the best possible pessimistic estimator (and there-
fore is at least as good as previous estimators).

. We complement the above result by obtaining a new
optimistic estimator that underestimates the PLD.
This estimator is based on the combination of a
greedy algorithm and a convex hull computation. In
contrast to the pessimistic case, we prove that there
is no “best” possible optimistic estimator.

. We conduct an experimental evaluation showing that
our estimators can work with much larger discretiza-
tion intervals while keeping a similar error bound
compared to previous approaches and yet give a bet-
ter approximation than existing methods.

2 Preliminaries
For k ∈ N, we use [k] to denote {1, . . . , k}. For a set
S ⊆ R ∪ {−∞,+∞}, we write exp(S) to denote {ea |
a ∈ S}. Similarly, for S ⊆ R≥0 ∪ {+∞}, we use log(S)
to denote {log(a) | a ∈ S}. Here we use the (standard)
convention that e+∞ = +∞ and e−∞ = 0; we also use
the convention that (+∞) · 0 = (−∞) · 0 = 0. Moreover,
we use [x]+ as a shorthand for max{x, 0}.

We use supp(P ) to denote the support of a proba-
bility distribution P . For two distributions P,Q, we use
P⊗Q to denote the product distribution of the two. Fur-
thermore, when P,Q are over an additive group, we use
P ∗Q to denote the convolution of the two distributions.

2.1 Hockey-Stick Divergence and Curve

Let α ≥ 0. The α-hockey-stick divergence between two
probability distributions P and Q over a domain Ω is
given as

Dα(P ||Q) := sup
S

[P (S)− α ·Q(S)]+ , (1)

where supS is over all measurable sets S ⊆ Ω.
For any pair (A,B) of distributions, let h(A,B) :

R≥0 ∪ {+∞} → [0, 1] be its hockey-stick curve, given
as h(A,B)(α) := Dα(A||B) = supS [A(S)− α ·B(S)]+.

The following characterization of hockey-stick
curves, due to [32], is helpful:
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Lemma 2.1 ([32]). A function h : R≥0∪{+∞} → [0, 1]
is a hockey-stick curve for some pair of distributions if
and only if the following three conditions hold:
(i) h is convex and non-increasing,
(ii) h(0) = 1,
(iii) h(α) ≥ [1− α]+ for all α ∈ R≥0 ∪ {+∞}.

2.2 Differential Privacy

The definition of differential privacy (DP) [8, 9]2 can be
stated in terms of the hockey-stick divergence as follows.

Definition 2.2. For a notion of adjacent datasets, a
mechanismM is said to satisfy (ε, δ)-differential privacy
(denoted, (ε, δ)-DP) if for all adjacent datasets S ∼ S′,
it holds that Deε(M(S)||M(S′)) ≤ δ.

We point out that the techniques developed in this pa-
per are general and do not depend on the specific adja-
cency relation. For the rest of the paper, for convenience,
we always use α to denote eε.

In most situations however, mechanisms satisfy
(ε, δ)-DP for multiple values of ε and δ. This is captured
by the privacy loss profile δM : R → R of a mecha-
nismM given as δM(ε) := supS∼S′ Deε(M(S)||M(S′)).
It will be more convenient to consider the hockey-stick
curve instead of the privacy profile. The only difference
is that the hockey-stick curve takes α = eε as parameter
instead of ε as in the privacy profile.

2.3 Dominating Pairs

A central notion in our work is that of a dominating
pair for a mechanism, defined by Zhu et al. [32].

Definition 2.3 (Dominating Pairs [32]). A pair (P,Q)
of distributions dominates a pair (A,B) of distributions
if it holds that

∀α ≥ 0 : Dα(A||B) ≤ Dα(P ||Q);

we denote this as (A,B) � (P,Q).
A pair (P,Q) of distributions is a dominating pair

for a mechanismM if for all adjacent datasets S ∼ S′,
it holds that (M(S),M(S′)) � (P,Q); we denote this as
M� (P,Q).

2 For more background on differential privacy, we refer the
reader to the monograph [10].

A pair (P,Q) of distributions is a tightly dominating
pair forM if for every α ≥ 0, it holds that Dα(P ||Q) =
supS∼S′ Dα(M(S)||M(S′)).

Note that, by definition, (P,Q) � (A,B) if and only
if h(P,Q) is no smaller than h(A,B) pointwise, i.e.,
h(P,Q)(α) ≥ h(A,B)(α) for all α ∈ R≥0 ∪ {+∞}.

The following result highlights the importance of
dominating pairs.

Theorem 2.4 ([32]). If M � (P,Q) and M′ �
(P ′, Q′), thenM◦M′ � (P⊗P ′, Q⊗Q′), whereM◦M′ is
the composition of M and M′. Furthermore, this holds
even for adaptive composition.3

Thus, in order to upper bound the privacy loss pro-
file δM(ε) := supS∼S′ Deε(M(S)||M(S′)), it suffices to
compute Deε(P ||Q) for a dominating (P,Q) pair forM.

2.4 Privacy Loss Distribution

Privacy Loss Distribution (PLD) [11, 30] is yet another
way to represent the privacy loss. For simplicity, we give
a definition below specific to discrete distributions P,Q;
it can be extended, e.g., to continuous distributions by
replacing the probability masses P (o), Q(o) with proba-
bility densities of P,Q at o.

Definition 2.5 ([11]). The privacy loss distribution
(PLD) of a pair (P,Q) of discrete distributions, denoted
by PLD(P,Q), is the distribution of the privacy loss ran-
dom variable L generated by drawing o ∼ P and let
L = P (o)/Q(o).

As alluded to earlier, PLD can be used to compute the
hockey-stick divergence [24, 30] (proof provided in Ap-
pendix A for completeness):

Lemma 2.6. For any pair (P,Q) of discrete distribu-
tions and ε ∈ R ∪ {−∞,+∞}, we have

Deε(P ||Q) :=
∑

ε′∈supp(PLD(P,Q))

[1− eε−ε
′
]+ · PLD(P,Q)(ε′).

Note that the RHS term above depends only on
PLD(P,Q) and not directly on P,Q themselves. For

3 In adaptive composition of M′ ◦ M, M′ can also take the
output ofM as an auxiliary input. Here theM′ � (P ′, Q′) has
to hold for all possible auxiliary input.



Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions 555

convenience, we will abbreviate the RHS term as
Deε(PLD(P,Q)).

The main advantage in dealing with PLDs is
that composition simply corresponds to convolution of
PLDs [24, 30]:

Lemma 2.7. Let P,Q, P ′, Q′ be discrete distributions.
Then we have

PLD(P⊗P ′,Q⊗Q′) = PLD(P,Q) ∗ PLD(P ′,Q′).

2.5 Accounting Framework via
Dominating Pairs and PLDs

Dominating pairs and PLDs form a powerful set of
building blocks to perform privacy accounting. Recall
that in privacy accounting, we typically have a mecha-
nismM =M1 ◦ · · · ◦Mk where eachMi is a “simple”
mechanism (e.g., Laplace or Gaussian mechanisms) and
we would like to understand the privacy profile ofM.

The approach taken in previous works [18–20, 24]
can be summarized as follows.4

1. Identify a dominating pair (Ai, Bi) for eachMi.
2. Find a pessimistic estimate5 (P ↑i , Q

↑
i ) � (Ai, Bi)

such that PLD(P↑
i
,Q↑

i
) is supported on a certain set

of prespecified values.
3. Compute PLD↑ = PLD(P↑1 ,Q

↑
1) ∗ · · · ∗ PLD(P↑

k
,Q↑

k
).

4. Compute δ↑(ε) from PLD↑ using the formula from
Lemma 2.6.

By Theorem 2.4 and Lemmas 2.6 and 2.7, we can
conclude that δ↑(ε) ≥ δM(ε); in other words, the mech-
anismM is (ε, δ↑(ε))-DP as desired.

Note that the reason that one needs PLD(P↑
i
,Q↑

i
) to

have finite support in the second step is so that it can
be computed efficiently via the Fast Fourier Transform
(FFT). Currently, there is only one approach used in
previous works, called Privacy Buckets [24]. Roughly
speaking, this amounts simply to rounding the PLD up
to the nearest point in the specified support set. (See
Section 4.1 for a more formal description.)

4 Note that their results are not phrased in terms of dominat-
ing pairs, since the latter is only defined and studied in [32].
Nonetheless, these previous works use similar (but more re-
stricted) notions for “worst case” distributions.
5 We remark that this is slightly inaccurate as the “pessimistic
estimate” in previous works may actually not be a valid PLD;
please see Section 4.1 for a more detailed explanation.

While the above method gives us an upper bound
δ↑(ε) of δM(ε), there are scenarios where we would like
to find a lower bound on δM(ε); for example, this can
be helpful in determining how tight our upper bound is.
Computing such a lower bound is also possible under the
similar framework, except that we need to know a list
of tightly dominating pairs (A∗1, B∗1), . . . , (A∗k, B∗k) such
that there exists an adjacent datasets S, S′ for which
Deε(M(S)||M(S′)) = Deε(A∗1⊗· · ·⊗A∗k||B∗1 ⊗· · ·⊗B∗k).
If such tightly dominating pairs can be identified, then
we can follow the same blueprint as above except we re-
place a pessimistic estimate with an optimistic estimate
(P ↓, Q↓) � (A∗i , B∗i ). This would indeed gives us a lower
bound δ↓(ε) of δM(ε).

The described framework is illustrated in Figure 1.

3 Finitely-Supported PLDs
As alluded to in the previous section, to take full advan-
tage of FFT, it is important that a PLD is discretized
in a way such that its support is finite. For exposition
purposes, we will assume that the discretization points
include −∞ and +∞. We will use E for discretization
points for the PLD and A for the corresponding dis-
cretization points for the hockey-stick curve:

Assumption 3.1. Let A = {α0, . . . , αk} be any finite
subset of R≥0 ∪ {+∞} such that 0 = α0 < α1 < · · · <
αk = +∞, and let E = {ε0, . . . , εk} be such that ε0 =
−∞, εk = +∞ and εi = log(αi) for all i ∈ [k − 1].

For the remaining of this work, we will operate under the
above assumption and we will not state this explicitly
for brevity.

Using the characterization in Lemma 2.1, we can
also characterize the hockey-stick curve of PLDs whose
support is on a prespecified finite set E , stated more pre-
cisely in the lemma below. Furthermore, the “inverse”
part of the lemma yields an algorithm (Algorithm 1)
that can construct A,B given (h(αi))αi∈A which we will
use in the sequel.

Lemma 3.2. A function h : R≥0 ∪ {+∞} → [0, 1]
is a hockey-stick curve for some pair (P,Q) such that
supp(PLD(P,Q)) ⊆ E if and only if the following condi-
tions hold:
(i) h is convex and non-increasing,
(ii) h(0) = 1,
(iii) h(αi) ≥ [1− αi]+ for all αi ∈ A,
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MechanismM1

MechanismM2

...

MechanismMk

(A1, B1)

(A2, B2)

...

(Ak, Bk)

Dominating Pairs

�

�

�

(P ↑1 , Q
↑
1)

(P ↑2 , Q
↑
2)

...

(P ↑k , Q
↑
k)

Convolution
(Lemma 2.7)

PLD↑
Compute δ
(Lemma 2.6)

Pessimistic
Estimate

(A∗1, B∗1)

(A∗2, B∗2)

...

(A∗k, B∗k)

Tightly Dom-
inating Pairs

�

�

�

(P ↓1 , Q
↓
1)

(P ↓2 , Q
↓
2)

...

(P ↓k , Q
↓
k)

Convolution
(Lemma 2.7)

PLD↓
Compute δ
(Lemma 2.6)

Optimistic
Estimate

δ↓(ε) ≤ δM(ε) ≤ δ↑(ε)

Fig. 1. Illustration of the framework for privacy accounting using PLDs and the notion of (tightly) dominating pairs.

(iv) For all i ∈ [k−1], the curve h restricted to [αi−1, αi]
is linear: i.e., for all α ∈ [αi−1, αi), we have h(α) =
α−αi

αi−1−αi
· h(αi−1) + αi−1−α

αi−1−αi
· h(αi).

(v) For all α > αk−1, h(α) = h(+∞).

A consequence of Lemma 3.2 is that h is completely
specified by h(A). More formally, given f : A → [0, 1],
the only possible extension of f to a hockey-stick curve
is its piecewise-linear extension f defined by

f(α) :={
α−αi

αi−1−αi
f(αi−1) + αi−1−α

αi−1−αi
f(αi) if α ∈ [αi−1, αi)

f(+∞) if α > αk−1,

for all α ∈ R≥0 ∪ {+∞}. Note that this f may still not
be a hockey-stick curve, as it may not be convex.

Proof of Lemma 3.2. (⇐) We start with the con-
verse direction by describing an algorithm that, given
h(α0), . . . , h(αk), can construct the desired P,Q. In fact,
we will construct distributions P and Q with supports
contained in A satisfying the following:

(Π1) P (α) = α ·Q(α) for all α ∈ A \ {+∞},
(Π2) Q(∞) = 0,
(Π3) Dα(P ||Q) = h(α) for all α ∈ A.

The first two conditions imply that supp(PLD(P,Q)) ⊆ E
and the last condition implies that h(P,Q) = h as desired.

The construction of P,Q is described in Algo-
rithm 1.

Algorithm 1 PLD Discretization.
procedure DiscretizePLD(h(α0), . . . , h(αk))

Q(αk)← 0 . αk = +∞
for i = k − 1, . . . , 1 do

Q(αi)← h(αi−1)−h(αi)
αi−αi−1

− h(αi)−h(αi+1)
αi+1−αi

Q(α0)← 1−
∑
j∈[k−1] Q(αj) . α0 = 0

P (α0)← 0 . α0 = 0
for i = 1, . . . , k − 1 do

P (αi)← αi ·Q(αi)
P (αk)← h(αk) . αk = +∞

Let us now verify that both P and Q are valid prob-
ability distributions. First, notice that Q(αi) ≥ 0 due to
the convexity of h. Furthermore,

Q(0) = 1−
∑

j∈[k−1]

Q(αj) = 1− 1− h(α1)
α1

≥ 0,

where the last inequality follows from (iii). Thus, Q is
indeed a probability distribution. As for P , notice that
P (αi) ≥ 0 for all αi ∈ A. Finally, we also have∑

i∈{0,...,k}

P (αi)
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= h(+∞) +
∑

i∈{0,...,k−1}

αi ·Q(αi)

= h(+∞)+∑
i∈{0,...,k−1}

αi

(
h(αi−1)− h(αi)

αi − αi−1
− h(αi)− h(αi+1)

αi+1 − αi

)

= h(+∞) +
∑

i∈[k−1]

(αi+1 − αi) ·
h(αi)− h(αi+1)

αi+1 − αi

= h(+∞) + (h(0)− h(+∞))
= 1,

meaning that P is a probability distribution as desired.
Properties (Π1) and (Π2) are immediate from the

construction. We will now check Property (Π3), based
on two cases whether α > αk−1.

. Case I: α ≥ αk−1. In this case, we have Dα(P ||Q) =
P (+∞)− eεQ(+∞) = h(+∞).

. Case II: α < αk−1. Suppose that α ∈ [αi−1, αi) for
i ∈ [k − 1]. We have

Dα(P ||Q) = P ({αi, . . . , αk})− α ·Q({αi, . . . , αk})

=
k∑
j=i

(αj − α) ·Q(αj)

= α− αi
αi−1 − αi

·
k∑
j=i

(αj − αi−1) ·Q(αj)

+ αi−1 − α
αi−1 − αi

·
k∑
j=i

(αj − αi) ·Q(αj).

Furthermore, we have
k∑
j=i

(αj − αi−1) ·Q(αj)

=
k∑
j=i

(αj − αi−1)

·
(
h(αj−1)− h(αj)

αj − αj−1
−
h(αj)− h(αj+1)

αj+1 − αj

)
= h(αi−1).

Similarly, we also have
∑k
j=i(αj−αi) ·Q(αj) = h(αi).

Combining the three equalities, we arrive at

Dα(P ||Q) = α− αi
αi−1 − αi

· h(αi−1) + αi−1 − α
αi−1 − αi

· h(αi),

which is equal to h(α) due to assumption (iv).

As a result, h(P,Q) = h as desired.
(⇒) We will now prove this direction. (i), (ii),

and (iii) follow immediately from Lemma 2.1. As a

result, it suffices to only prove (iv) and (v). Sup-
pose that h(P,Q) = h for some pair (P,Q) such that
supp(PLD(P,Q)) ⊆ E . Let R be a shorthand for the dis-
tribution of exp(PLD(P,Q)). To prove (iv), consider any
α ∈ [αi−1, αi) for some i ∈ [k − 1]. We then have

h(α) = Dα(P ||Q)

=
k∑
j=i

(1− α/αj) ·R(αj)

= α− αi
αi−1 − αi

·
k∑
j=i

(1− αi−1/αj) ·R(αj)

αi−1 − α
αi−1 − αi

·
k∑
j=i

(1− αi/αj) ·R(αj)

= α− αi
αi−1 − αi

· h(αi−1) + αi−1 − α
αi−1 − αi

· h(αi),

which completes the proof of (iv).
Next, we prove (v). Consider any α ≥ αk−1. We

have

h(α) = Dα(P ||Q) = R(+∞) = h(+∞),

thereby completing our proof.

4 Pessimistic PLDs with Finite
Support

As we have described in Figure 1, pessimistic estimates
of PLDs with finite supports are crucial in the PLD-
based privacy accounting framework. The better these
pessimistic estimates approximate the true PLD, the
more accurate is the resulting upper bound δ↑(ε).

Equipped with tools developed in the previous sec-
tion, we will now describe our finite-support pessimistic
estimate of a PLD. Specifically, given a pair (A,B) of
distributions, we would like to compute (P ↑, Q↑) such
that (P ↑, Q↑) � (A,B) with supp(PLD(P↑,Q↑)) ⊆ E . In
fact, as we will show below (Lemma 4.1), our choice of
PLD(P↑,Q↑) “best approximates” PLD(A,B).

Our construction of the pair (P ↑, Q↑) is sim-
ple: run DiscretizePLD (Algorithm 1) on the input
h(A,B)(α0), . . . , h(A,B)(αk).

Recall from the proof of Lemma 3.2 that this con-
struction simply gives h(P↑,Q↑), which is a piecewise-
linear extension of h(A,B)(α0), . . . , h(A,B)(αk). In other
words, we simply “connect the dots” to construct the
hockey-stick curve of our pessimistic estimate. Note that
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(a) Gaussian Mechanism (b) Laplace Mechanism

Fig. 2. Illustrations of the hockey-stick curves of the Gaussian and Laplace mechanisms (with noise multipliers equal to 1 and 2/3 re-
spectively), and their pessimistic estimates from our approach (labelled “pessimistic”) and the Privacy Bucket (PB) approach (labelled
“PB pessimistic”) of [24]. The horizontal lines represent the discretization points in the set A. As corroborated by Corollary 4.3, our
pessimistic estimates is closer to the true curves (labelled “exact”) compared to the PB pessimistic estimates for all α.

this, together with the convexity of h(A,B) (Lemma 2.1),
implies that (P ↑, Q↑) � (A,B) as desired.

Additionally, it is not hard to observe that our
choice of pessimistic PLD is the best possible, in sense
that (P ↑, Q↑) is the least element (under the domination
partial order) among all pairs that dominate (A,B):

Lemma 4.1. Let P,Q be any pair of distributions such
that PLD(P,Q) is supported on A and (P,Q) � (A,B).
Then, we must have (P,Q) � (P ↑, Q↑)

Proof. Recall that it suffices to prove that h(P,Q)(α) ≥
h(P↑,Q↑)(α) for all α ∈ R≥0 ∪ {+∞}. We will consider
two cases based on the value of α:

. Case I: α ≥ αk−1. From Lemma 3.2, we simply
have h(P,Q)(α) = h(P,Q)(+∞) ≥ h(A,B)(+∞) =
h(P↑,Q↑)(α).

. Case II: αk−1 > α ≥ 0. Suppose that α ∈ [αi−1, αi).
From Lemma 3.2(ii), we have

h(P,Q)(α)

= α− αi
αi−1 − αi

· h(P,Q)(αi−1) + αi−1 − α
αi−1 − αi

· h(P,Q)(αi)

≥ α− αi
αi−1 − αi

· h(αi−1) + αi−1 − α
αi−1 − αi

· h(αi)

= h(P↑,Q↑)(α),

where the first inequality follows from (P,Q) � (A,B)
and the last equality follows from our construction of
(P ↑, Q↑).

We remark that PLD(P↑,Q↑) also has a simple form, due
to the properties (Π1) and (Π2):

PLD(P↑,Q↑)(εi) := P ↑(αi)

for all i ∈ [k].

4.1 Comparison to Privacy Loss Buckets

The primary previous work that also derived a pes-
simistic estimate of PLD is that of Meiser and Moham-
madi [24], which has also been used (implicitly) in later
works [18–20]. In our terminology, the Privacy Buckets
(PB) algorithm of Meiser and Mohammadi [24]6 can
be restated as follows: let the pessimistic-PB estimate
P̃LD

↑
(A,B) be the probability distribution where

P̃LD
↑
(A,B)(εi) = PLD(A,B)((εi−1, εi]),

for all i ∈ [k]. In other words, P̃LD
↑
(A,B) is a proba-

bility distribution on E that stochastically dominates
PLD(A,B); furthermore, P̃LD

↑
(A,B) is the least such distri-

bution under stochastic dominant (partial) ordering. In
previous works [18–20, 24], such an estimate is then used
in place of the true (non-discretized) PLD for account-
ing and computing δ’s (via Lemma 2.7 and Lemma 2.6).

6 This is referred to as grid approximation in [18–20].



Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions 559

A priori, it is not clear whether P̃LD
↑
(A,B) is even a

valid PLD (for some pair of distributions). However, it
not hard to prove that this is indeed the case:

Lemma 4.2. There exists a pair (P ↑PB, Q
↑
PB) of distri-

butions such that P̃LD
↑
(A,B) = PLD(P↑PB,Q

↑
PB).

Proof. Let P ↑PB be defined by

P ↑PB(αi) = P̃LD
↑
(A,B)(εi)

for all i ∈ {0, . . . , k}. It is clear that P ↑PB is a valid
distribution.

Then, define Q↑PB by

Q↑PB(α) = P ↑PB(α)/α,

for all α ∈ A \ {0} and let Q↑PB(0) = 1 −∑
α∈A\{0}Q

↑
PB(α). To check that Q↑PB is a valid dis-

tribution, it suffices to show that Q↑PB(0) ≥ 0. This is
true because∑
α∈A\{0}

Q↑PB(α) =
∑
i∈[k]

P ↑PB(αi)/αi

=
∑
i∈[k]

P̃LD
↑
(A,B)(εi)/αi

=
∑
i∈[k]

PLD(A,B)((εi−1, εi])/αi

=
∑
i∈[k]

∑
o∈supp(B)

A(o)/B(o)∈(αi−1,αi]

A(o)/αi

≤
∑
i∈[k]

∑
o∈supp(B)

A(o)/B(o)∈(αi−1,αi]

B(o)

≤ 1.

Finally, it is obvious from the definitions of
P ↑PB, Q

↑
PB that PLD(P↑PB,Q

↑
PB) = P̃LD

↑
(A,B).

Combining the above lemma and the fact that P̃LD
↑
(A,B)

dominates PLD(A,B) with Lemma 4.1, we can conclude
that our estimate is no worse than the PB estimate:

Corollary 4.3. Let (P ↑, Q↑) be as defined above. Then,
for all α ≥ 0, we have h(P↑,Q↑)(α) ≤ Dα(P̃LD

↑
(A,B)).

Illustrations of the exact hockey-stick divergence and
its pessimistic estimates from our approach and PB ap-
proach can be found in Figure 2. A more detailed eval-
uation of the error from the two approaches (after com-
positions) can be found in Section 6.

5 Optimistic PLDs with Finite
Support

We next consider optimistic PLDs, i.e., PLD(P,Q) dom-
inated by a given PLD(A,B). We start by showing that,
unlike pessimistic PLDs for which there is the “best”
possible choice (Lemma 4.1), there is no such a choice
for optimistic PLDs:

Lemma 5.1. There exists a pair (A,B) of distributions
and a finite set A such that, for any pair (P,Q) �
(A,B) such that supp(PLD(P,Q)) ⊆ E, there exists a pair
(P ′, Q′) � (A,B) such that PLD(P ′,Q′) is supported on
E and (P ′, Q′) � (P,Q).

Proof. Let (A,B) be the result of the ε-DP binary ran-
domized response, i.e.,

A(0) = B(1) = eε

eε + 1 ,

A(1) = B(0) = 1
eε + 1 .

It is simple to verify that

h(A,B)(α) =


1− α if α ≤ e−ε,
eε

eε+1 −
α

eε+1 if e−ε < α < eε,

0 if α ≥ ε.

Let A be {0, α1, α2,+∞} where α1 = e−ε − γ, α2 =
e−ε + γ for any γ < min{eε − e−ε, e−ε}.

Let h1 : A ∪ {+∞} → [0, 1] be defined as

h1(0) = 1,
h1(α1) = h(A,B)(α1),
h1(α2) = 1− α2,

h1(+∞) = 0,

and let h1 be its piecewise-linear extension. It is again
simple to verify that h1 satisfies the conditions in
Lemma 3.2 and therefore h1 = h(P1,Q1) for some P1, Q1
such that PLD(P1,Q1) is supported on E . Furthermore,
it can be checked from our definition that (A,B) �
(P1, Q1).

Similarly, let h2 : A ∪ {+∞} → [0, 1] be defined as

h2(0) = 1,

h2(α1) = 1− e−ε + γ

eε + 1 ,

h2(α2) = h(A,B)(α2),
h2(+∞) = 0,
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and let h2 be its piecewise-linear extension. Again,
h2 = h(P2,Q2) for some P2, Q2 such that PLD(P2,Q2) is
supported on E and (A,B) � (P2, Q2).

Now, consider any (P,Q) � (A,B) such that
PLD(P,Q) is supported on E . We claim that (P,Q) �
(P̂1, Q̂1) or (P,Q) � (P2, Q2). To prove this, assume for
the sake of contradiction that (P,Q) � (P1, Q1) and
(P,Q) � (P2, Q2). This means that

h(P,Q)(α1) ≥ h1(α1) = h(A,B)(α1),
h(P,Q)(α2) ≥ h2(α2) = h(A,B)(α2).

From piecewise-linearity of h(P,Q) restricted to
[α1, α2] (Lemma 3.2), we then have h(P,Q)(eε) =
1
2
(
h(P,Q)(α1) + h(P,Q)(α2)

)
> h(A,B)(eε), a contradic-

tion to the assumption that (P,Q) � (A,B).

5.1 A Greedy and Convex Hull
Construction

The previous lemma shows that, unfortunately, there
is no canonical choice for an optimistic estimate for a
given PLD. Due to this, we propose a simple greedy
algorithm to construct an optimistic estimate for the
PLD of a given pair (A,B). Similar to before, it will
be more convenient to deal directly with the hockey-
stick curve. Here we would like to construct f : A →
[0, 1] such that its piecewise-linear extension f point-
wise lower bounds h(A,B). The distribution P,Q (and
PLD(P,Q)) can then be computed using Algorithm 1.

Our algorithm will assume that we can compute the
derivative of h at any given point α ∈ R≥0 (denoted by
h′(α)). We remark that, for many widely used mecha-
nisms including Laplace and Gaussian mechanisms, the
closed-formed formula for h′(α) can be easily computed.

First Greedy Attempt. Before describing our algo-
rithm, let us describe an approach that does not work;
this will demonstrate the hurdles we have to overcome.
Consider the following simple greedy algorithm: start
with f(α0) = 0 and, if we are currently at f(αi), then
find the largest possible f(αi+1) such that the line
f(αi), f(αi+1) is below h(A,B). (In other words, the line
f(αi), f(αi+1) is tangent to h(A,B).)

While this is a natural approach, there are two is-
sues with this algorithm:

. First and more importantly, it is possible that at some
discretization point f(αi+1) becomes negative! Obvi-
ously this invalidates the construction as f will not
correspond to a hockey-stick curve.

. Secondly, each computation of tangent line requires
several (and sequential) computations of the deriva-
tive h′—rendering the algorithm inefficient—and is
also subject to possible numerical instability.

We remark that if we instead start from right (i.e.,
f(αk)) and proceed greedily to the left (in decreasing
order of i), then the first issue will become that f(αi)
can be smaller than [1 − αi]+, which also makes it an
invalid hockey-stick curve due to Lemma 2.1(iii). As
will be explained below, we will combine these two di-
rections of greedy together with a convex hull algorithm
in our revised approach.

An Additional Assumption. For our algorithm, we
will also need a couple of assumptions. The first one is
that 1 belongs to the discretization set:

Assumption 5.2. 1 ∈ A (or equivalently 0 ∈ E).

For the remainder of this section, we will use i∗ ∈ [k] to
denote the index for which αi∗ = 1 (i.e., εi∗ = 0).

We show below that this assumption is necessary.
When it does not hold, then it may simply be impossible
to find an optimistic estimate at all:

Lemma 5.3. There exists a pair (A,B) of distribu-
tions such that any (P,Q) � (A,B) satisfies 0 ∈
supp(PLD(P,Q)).

Proof. Let A = B. We simply have h(A,B)(α) = [1−α]+.
Due to Lemma 2.1(iii), we must have h(P,Q)(α) = [1 −
α]+. This simply implies PLD(P,Q)(0) = 1 as desired.

Our Greedy + Convex Hull Algorithm. We are
now ready to describe our final algorithm. The main
idea is to not attempt to create the curve in one left-
to-right or right-to-left sweep, but rather to simply gen-
erate a “candidate set” Fi for each f(αi). (Such a set
will in fact be a singleton for all i except i = i∗, for
which |Fi| ≤ 2, but we will refer to Fi’s as sets here
for simplicity of notation.) We then compute the con-
vex hull of these points {(αi, fi)}i∈[k−1],fi∈Fi

and take
it (or more precisely its lower curve) as our optimistic
estimate. This last step immediately ensures the con-
vexity of our curve, which is required for it to be a valid
hockey-stick curve (Lemma 2.1(i)).

To construct the candidate set Fi, we combine the
left-to-right and right-to-left greedy approaches. Specif-
ically, for i = {0, . . . , i∗ − 1}, we draw the tangent line
of the true curve h at h(αi) and let its intersection with
the vertical line α = αi+1 be (αi+1, f

→
i+1); then we add



Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions 561

f→i+1 into Fi+1. Similarly, for i = {k − 1, . . . , i∗ + 1}, we
draw the tangent line of the true curve h at h(αi) and
let its intersection with the vertical line α = αi−1 be
(αi−1, f

←
i−1); then we add f←i−1 into Fi−1. At the very

end points i = 0 and i = k − 1, we also add 1 and 0
respectively to Fi.

Notice that this algorithm, unlike the previous
(failed) greedy approach, only requires a calculation of
h′ at each αi ∈ A\{1,+∞}, which can be done in paral-
lel. Furthermore, efficient algorithms for convex hull are
well known in the literature and can be used directly.

The complete and more precise description of our
algorithm is given in Algorithm 2. We also note here
that |Fi| = 1 for all i 6= i∗ and |Fi∗ | ≤ 2 (as the point
constructed from the left may be different from the point
from the right). Nonetheless, we write Fi’s as sets for
simplicity of notation. An illustration of the algorithm
can be found in Figure 4.

Algorithm 2 Optimistic PLD Construction.
procedure OptimisticPLD(h,A)

for i = 0, . . . i∗ − 1 do
f→i+1 = h(αi) + (αi+1 − αi) · h′(αi)

f→0 ← 1 . h(α0) = 1
for i = k − 1, . . . i∗ + 1 do

f←i−1 = h(αi)− (αi − αi−1) · h′(αi)

f←k−1 ← 0
H ← ConvexHull({(αi, f→i )}i∈{0,...,i∗} ∪

{(αi, f←i )}i∈{i∗,...,k−1})
for i = 0, . . . , k − 1 do

(αi, f(αi)) ← lowest intersection point be-
tween H and the vertical line α = αi

f(αk)← 0 . αk = +∞
return DiscretizePLD(f(α0), . . . , f(αk))

Having described our algorithm, we will now proof
its correctness, i.e., that it outputs a pair of distributions
dominated by the input pair.

Theorem 5.4. Let (P ↓, Q↓) denote the output of
OptimisticPLD(h,A) where h = h(A,B). Then, under
Assumption 5.2, we have (P ↓, Q↓) � (A,B).

To prove Theorem 5.4, it will be crucial to have the
following lower bounds on the candidate points.

Lemma 5.5. (i) For all i ∈ {0, . . . , i∗}, f→(αi) ≥ 1−
αi.

(ii) For all i ∈ {i∗, . . . , k − 1}, f←(αi) ≥ 0.

(iii) For all i ∈ {0, . . . , i∗}, f→(αi) ≤ h(αi).
(iv) For all i ∈ {i∗, . . . , k − 1}, f←(αi) ≤ h(αi).

Proof. (i) The statement obviously holds for i = 0.
Next, consider i ∈ [i∗]. From (ii) and (iii) of
Lemma 2.1, we have h′(0) ≥ −1. Furthermore,
the convexity of h (Lemma 2.1(i)) implies that
h′(αk−1) ≥ h′(0) ≥ −1. Therefore, we have

f→(αi) = h(αi−1) + (αi − αi−1) · h′(αi−1)
≥ h(αi−1)− (αi − αi−1)
≥ (1− αi−1)− (αi − αi−1)
= 1− αi,

where the second inequality is due to
Lemma 2.1(iii).

(ii) The statement obviously holds for i = k − 1. Next,
consider i ∈ {i∗, . . . , k−2}. Since h is non-increasing
(from Lemma 2.1(i)), we have h′(αi+1) ≤ 0. There-
fore, f←(αi) ≥ h(αi+1) ≥ 0.

(iii) The statement obviously holds for i = 0. For i ∈
[i∗], the convexity of h (Lemma 2.1(i)) immediately
implies that

f→(αi) = h(αi−1) + (αi − αi−1) · h′(αi−1) ≤ h(αi).

(iv) The statement obviously holds for i = k − 1. For
i ∈ {i∗, . . . , k−2}, the convexity of h (Lemma 2.1(i))
immediately implies that

f→(αi) = h(αi+1) + (αi+1 − αi) · h′(αi+1)
≤ h(αi).

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. We start by observing that the
vertices of the convex hull H consists of the points
(α`0 , f

→(α`0)), . . . , (α`q
, f→(α`q

)), (α`q+1 , f
←(α`q+1)),

. . . , (α`m
, f←(α`m

)), where 0 = `0 < · · · < `m = k − 1
and `q ≤ i∗ ≤ `q+1.

First, we have to show that f(α0), . . . , f(αk) con-
stitute a valid input to the DiscretizePLD algo-
rithm. Per Lemma 3.2, we only need to show that
(i) f is non-increasing, (ii) f is convex, and (iii)
f(α) ≥ [1 − α]+ for all α ∈ R≥0. Notice also that
f is simply the piecewise-linear curve connecting
(α`0 , f

→(α`0)), . . . , (α`q
, f→(α`q

)), (α`q+1 , f
←(α`q+1)),

. . . , (α`m
, f←(α`m

)).
To see that (i) holds, observe that the second-

rightmost point in the convex hull must be (αj , fj) for
some j ∈ {0, . . . , k−2} where fj = f→j or fj = f←j . In ei-
ther case, Lemma 5.5 implies that fj ≥ 0 = f←(αk−1).
Since f is the lower curve of the convex hull H and
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(αj , fj), (αk−1, 0) is its rightmost segment, we can con-
clude that f is non-increasing in the range [α0, αk−1]. Fi-
nally, since we simply have f(α) = 0 for all α > αk−1, it
is also non-increasing in the range [αk−1,+∞), thereby
proving (i).

As for (ii), since f |[α0,αk−1] forms the lower bound-
ary of the convex hull H, f is convex in the range
[α0, αk−1]. Again, since we simply have f(α) = 0 for
all α > αk−1, we can conclude that it is convex for the
entire range [0,+∞).

Finally, for (iii), Lemma 5.5 states that all the points
{(αi, f→i )}i∈{0,...,i∗} ∪ {(αi, f←i )}i∈{i∗,...,k−1} is above
the curve α 7→ [1 − α]+. Since f is in the convex hull
H, we can conclude that f also lies above this curve, as
desired.

Now that we have proved that f(α0), . . . , f(αk) is
a valid input to the DiscretizePLD algorithm (and
therefore the output (P ↑, Q↑) is a pair of valid proba-
bility distributions), we will next show that (P ↑, Q↑) �
(A,B). This is equivalent to showing that f(α) ≤ h(α)
for all α ≥ R≥0∪{+∞}. To prove this, we consider three
cases based on the value of α. For brevity, we say that a
curve C1 is below a curve C2 when they share the same
domain Ω and C1(o) ≤ C2(o) for all o ∈ Ω.

. Case I: α ≥ αk−1. In this case, f(α) = 0 ≤ h(α).

. Case II: α ∈ [1, αk−1). Suppose that α ∈ [αi, αi+1).
Let L1 denote the line segment from (αi, f←(αi))
to (αi+1, f

←(αi+1)), and L2 denote the line seg-
ment from (αi, f←(αi)) to (αi+1, h(αi+1)). From
Lemma 5.5(iv), L1 is below L2. Furthermore, since
f |[αi,αi+1) is a lower boundary of the convex hull H
containing L1, it must also be below L1. Therefore,
we have

f(α) ≤ L2(α) ≤ L1(α)
= h(αi+1)− (αi+1 − α)h′(αi+1)
≤ h(α),

where the last inequality follows from convexity of h.
. Case III: α ∈ [0, 1). Suppose that α ∈ [αi, αi+1).
Similarly to the previous case, let L3 denote the
line segment from (αi, f→(αi)) to (αi+1, f

→(αi+1)),
and L4 denote the line segment from (αi, h(αi)) to
(αi+1, f

→(αi+1)). From Lemma 5.5(iii), L3 is below
L4. Furthermore, since f |[αi,αi+1) is a lower boundary
of the convex hull H containing L3, it must also be
below L3. Therefore, we have

f(α) ≤ L3(α) ≤ L4(α)
= h(αi) + (αi+1 − α)h′(αi)

≤ h(α),

where the last inequality follows from convexity of h.

As a result, we can conclude that (P ↑, Q↑) � (A,B),
completing our proof.

5.2 Comparison to Privacy Loss Buckets

Similar to Section 4.1, PB [24] can also be applied for
optimistic-estimate: let P̃LD

↓
(A,B) be the probability dis-

tribution where

P̃LD
↓
(A,B)(εi−1) = PLD(A,B)([εi−1, εi)),

for all i ∈ [k]. That is, P̃LD
↓
(A,B) is a probability distribu-

tion on E that is stochastically dominated by PLD(A,B);

furthermore, P̃LD
↓
(A,B) is the greatest such distribution

under stochastic dominant (partial) ordering. It is im-
portant to note that, unlike the pessimistic-PB esti-
mate, the optimistic-PB estimate P̃LD

↓
(A,B) is not nec-

essarily a valid PLD for some pair of distributions. This
can easily be seen by, e.g., taking a PLD of any ε-DP
mechanism for finite ε and let E = {−∞,+∞}; the
optimistic-PB estimate puts all of its mass at 0, which
is clearly not a valid PLD.

We present illustrations of our optimistic PLD and
optimistic-PB estimates in Figure 3. Recall that in the
pessimistic case, we can show that the pessimistic-PB
estimate is no better than our approach (Corollary 4.3).
Although we observe similar behaviours in the opti-
mistic case in simple examples (e.g. Figure 3) and also
in our experiments in Section 6, this unfortunately does
not hold in general. Indeed, if PLD(A,B) has a non-zero
mass at +∞ (or equivalently h(+∞) 6= 0), then the
optimistic-PB estimate still keeps this mass while our
does not. The latter is because we set f(+∞) = 0 in
Algorithm 2. Note here that we cannot set f(+∞) =
h(+∞) here because the monotonicity may not hold
anymore; it is possible that f→(αi) < h(+∞) for some
i ∈ [i∗]. Such examples highlight the challenge in find-
ing a good optimistic estimate (especially in light of the
non-existence of the best one, i.e., Lemma 5.1), and we
provide further discussion regarding this in Section 7.
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(a) Gaussian Mechanism (b) Laplace Mechanism

Fig. 3. Illustrations of the hockey-stick curves of the Gaussian and Laplace mechanisms , and their optimistic estimates from our ap-
proach and the Privacy Bucket (PB) approach of [24]. The setting of parameters and labels are similar to Figure 2.

(a) One Step of Candidate Generation for i < i∗ (b) One Step of Candidate Generation for i > i∗ (c) All Candidate Points and Its Convex Hull

Fig. 4. Illustrations of our optimistic PLD construction algorithm (Algorithm 2) for Laplace mechanism with noise multiplier 1. Fig-
ure 4a demonstrates one step of how the candidate points are generated when i < i∗. Specifically, a line tangent to the hockey-stick
curve is drawn at each point (αi, h(αi)); the intersections with the vertical line at αi+1 give the candidate points (αi+1, f→i+1). Simi-
larly, Figure 4b shows such a step for i > i∗; in this case, the same line is drawn and its intersection with the vertical line at αi−1 give
the candidate points (αi−1, f←i−1). Figure 4c shows all the candidate points generated together with its convex hull, which we use as
our optimistic estimate.
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Fig. 5. ε vs Number of Compositions of the Gaussian mecha-
nism with noise scale 80. All methods evaluated with the same
discretization interval of 0.005.

6 Evaluation
We compare our algorithm with the Privacy Buckets al-
gorithm [24] as implemented in the Google DP library7,
and the algorithm of Gopi et al. [15] implemented in Mi-
crosoft PRV Accountant.8 Gopi et al.’s algorithm does
not fit into the pessimistic/optimistic framework as de-
scribed in Section 2.5. Instead, their algorithm uses an
approximation of PLD that is neither optimistic nor
pessimistic and uses a concentration bound to derive
pessimistic and optimistic estimates. Indeed, their ap-
proximate distribution maintains the same expectation
as the true PLD, which is the main ingredient in their
improvement over previous work.

As a first cut, we evaluate pessimistic and optimistic
estimates on the privacy parameter ε, for a fixed value
of δ = 10−5, for varying number of compositions of the
Gaussian mechanism with noise scale 80, while compar-
ing our approach to the two other implementations men-
tioned above. We use the same discretization interval to
evaluate each algorithm. The reason for choosing the
Gaussian mechanism is that the exact value of ε can be
computed explicitly. We find that the estimates given
by our approach are the tightest.

7 Even though there are several other papers [18–20] that build
on PB, all of them still use the same PB-based approxima-
tion, with the differences being how the truncation is computed
for FFT. We use the implementation in the Google DP library
github.com/google/differential-privacy/tree/main/python
8 Implementation from github.com/microsoft/prv_accountant

Remark 6.1. For any specified discretization interval,
each algorithm has a different choice of how many dis-
cretization points are included in E . Our implementation
uses the same set of discretization points as used by the
Google DP implementation. The number of discretiza-
tion points increases with the number of self composi-
tions (we use the Google DP implementation to perform
self composition9). On the other hand, Microsoft PRV
Accountant chooses a number of discretization points,
depending on the number of compositions desired, and
this number does not change after self composition. In
all the evaluation experiments mentioned in this paper,
we find that the number of discretization points in our
approach are lower than the number of discretization
points in the PRV Accountant (even after composition).

Our main evaluation involves computing pessimistic and
optimistic estimates on the privacy parameter ε, for a
fixed value of δ, for varying number of compositions
of the Poisson sub-sampled Gaussian mechanism and
comparing our approach to each of the two other im-
plementations. Note that this particular mechanism is
quite popular in that it captures the privacy analysis
of DP-SGD where the number of compositions is equal
to the number of iterations of the training algorithm,
and the subsampling rate is equal to the fraction of
the batch size divided by the total number of train-
ing examples [1]. In particular, we consider the Gaus-
sian mechanism with noise scale 1, Poisson-subsampled
with probability 0.01. We compare against each com-
peting algorithm twice, once where both algorithms use
the same discretization interval, and once where our
approach uses a larger discretization interval than the
competing algorithm. We additionally plot the running
time required for this computation for each number of
compositions; we ran the evaluation for each number of
compositions 20× and plot the mean running time along
with a shaded region indicating 25th–75th percentiles of
running time.

9 We found that the Google DP implementation has a sig-
nificantly worse running time when computing optimistic esti-
mates, due to lack of truncation. We modify the self-composition
method in the Google DP library to incorporate truncation
when computing optimistic estimates, and evaluate both ours
and Google DP implementation with this minor modification.
These do not change the estimates significantly, but drastically
reduce the running time.

https://github.com/google/differential-privacy/tree/main/python
https://github.com/microsoft/prv_accountant
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Comparison with Google DP.
The comparison with Google DP is presented in Fig-
ure 6. Figures 6a and 6c compare the ε’s and runtimes
for both methods using the same discretization interval,
and finds that our method gives a significantly tighter
estimate for a mildly larger running time. Figures 6b
and 6d compare the ε’s and runtimes for both methods
with different discretization intervals, and using a dis-
cretization interval that is 66.66× larger, our method
gives comparable estimates, with a drastic speed-up
(∼ 300×).

Comparison with Microsoft PRV Accountant.
The comparison with Microsoft PRV Accountant is pre-
sented in Figure 7. Figures 7a and 7c compare the ε’s
and runtimes for both methods using the same dis-
cretization interval, and finds that our method gives a
significantly tighter estimate with already shorter run-
ning time. Figures 7b and 7d compare the ε’s and run-
times for both methods with different discretization in-
tervals, and using a discretization interval that is 6.66×
larger, our method gives comparable estimates, with an
even larger speed-up.

In Appendix B, we perform a similar evaluation for
the Poisson-subsampled Laplace mechanism.

7 Discussion & Open Problems
In this work, we have proposed a novel approach to pes-
simistic and optimistic estimates for PLDs, which out-
performs previous approaches under similar discretiza-
tion intervals, and allows for a more compact represen-
tation of PLDs while retaining similar error guarantees.
There are still several interesting future directions that
one could consider.

As we have proved in Lemma 5.1, there is no unique
“best” way to pick an optimistic estimate, and we pro-
posed a greedy algorithm (Algorithm 2) for this task.
However, it is difficult to determine how good this
greedy algorithm is in general. Instead, it might also
be interesting to find (P ↓, Q↓) � (A,B) that minimizes
a certain objective involving h(P↓,Q↓) and h(A,B). For
example, one could consider the area between the two
curves, or the Fréchet distance between them. An in-
triguing direction here is to determine (i) which objec-
tive captures the notion of “good approximation” better
in terms of composition, and (ii) for a given objective,
whether there is an efficient algorithm to compute such

(P ↓, Q↓). We remark that for some objectives, such as
the area between the two curves, it is possible to dis-
cretize the candidate values for each f(αi) and use dy-
namic programming in an increasing order of i (with
the state being f(αi−1), f(αi)). Even for these objec-
tives, it remains interesting to determine whether such
discretization is necessary and whether more efficient
algorithms exist.

Also related is the question of how to theoretically
explain our experimental findings (Section 6). Although
we see significant numerical improvements, it is intrigu-
ing to understand theoretically where these improve-
ments come from and which properties of PLDs govern
how big such improvements are. More broadly, given an
estimate of a PLD, how can we quantify how “good” it
is? Previous work (e.g., [15, 19]) has obtained certain
theoretical bounds on the errors; it would be interesting
to investigate whether these bounds can help answer the
aforementioned question.

Furthermore, the entire line of work on PLD-based
accounting [18–20, 24], including this paper, has so far
considered only non-interactive compositions, meaning
that the mechanisms that are run in subsequent steps
cannot be changed based on the outputs from the previ-
ous steps. This is not a coincidence: interactive composi-
tion is highly non-trivial and in fact it is known that the
advanced composition theorem (which is even a more
specific form of PLD) does not hold in this regime [28].
Several solutions have been proposed here, such as mod-
ified formulae for advanced compositions [28, 31] and
Renyi DP [14, 21]. However, as discussed earlier, these
methods may be loose even in the non-interactive set-
ting, which is the original motivation for PLD-based
accounting. Therefore, it would be interesting to under-
stand whether there is a tighter method similar to PLDs
that also works in the interactive setting.
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(a) ε comparison with discretization interval 0.005 for both this work and
Google DP

(b) ε comparison with discretization interval 0.005 for this work,
0.000075 for Google DP

(c) Running time comparison with discretization interval 0.005 for both
this work and Google DP (shaded region indicates 25-75 percentile range
across 20 independent runs)

(d) Running time comparison with discretization interval 0.005 for this
work, 0.000075 for Google DP (shaded region indicates 25-75 percentile
range across 20 independent runs)

Fig. 6. Computation of pessimistic/optimistic estimates of the privacy parameter ε (for fixed parameter δ = 10−5) for self-composition
of the Gaussian mechanism with noise scale 1, Poisson-subsampled with probability 0.01, using the Google DP implementation of the
PB approach [24] vs. our approach. Figures 6a and 6c compare the ε’s and runtimes for both methods using the same discretization
interval. Figures 6b and 6d compare the ε’s and runtimes for both methods with different discretization intervals.
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(a) ε comparison with discretization interval 0.005 for both this work and
PRV Accountant

(b) ε comparison with discretization interval 0.005 for this work, 0.00075
for PRV Accountant (shaded region indicates 25-75 percentile range
across 20 independent runs)

(c) Running time comparison with discretization interval 0.005 for both
this work and PRV Accountant (shaded region indicates 25-75 percentile
range across 20 independent runs)

(d) Running time comparison with discretization interval 0.005 for this
work, 0.00075 for PRV Accountant

Fig. 7. Computation of pessimistic/optimistic estimates of the privacy parameter ε (for fixed parameter δ = 10−5) for self-composition
of the Gaussian mechanism with noise scale 1, Poisson-subsampled with probability 0.01, using the Microsoft PRV Accountant [15]
vs. our approach. We note that the pessimistic and optimistic curves of the Microsoft PRV Accountant [15] are identical in Figure 7c
and Figure 7d.
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A Proofs
Lemma 2.6. For any pair (P,Q) of discrete distribu-
tions and ε ∈ R ∪ {−∞,+∞}, we have

Deε(P ||Q) :=
∑

ε′∈supp(PLD(P,Q))

[1− eε−ε
′
]+ · PLD(P,Q)(ε′).

Proof. We have from the definition of hockey-stick di-
vergence that

Deε(P ||Q) =
∑
ω

[P (ω)− eε ·Q(ω)]+

=
∑
ω

[1− eε−log(P (ω)/Q(ω))]+ · P (ω)

=
∑

ε′∈supp(PLD(P,Q))

[1− eε−ε
′
]+ · PLD(P,Q)(ε′)

where the last line follows from the fact that

PLD(P,Q)(ε′) :=
∑

ω:log(P (ω)/Q(ω))=ε′
P (ω) .

B Evaluation of
Poisson-Subsampled Laplace
Mechanism

Similar to Section 6, we compute pessimistic and opti-
mistic estimates on the privacy parameter ε, for a fixed
value of δ, for varying number of compositions of the
Poisson sub-sampled Laplace mechanism and compar-
ing our approach to the Google DP implementation.10

In particular, we consider the Laplace mechanism with
noise scale 5, Poisson-subsampled with probability 0.01.
We compare against Google DP implementation twice,
once where both algorithms use the same discretization
interval, and once where our approach uses a larger dis-
cretization interval than the competing algorithm. We
additionally plot the running time required for this com-
putation for each number of compositions; we ran the
evaluation for each number of compositions 20× and
plot the mean running time along with a shaded region
indicating 25th–75th percentiles of running time.

The comparison with Google DP is presented in Fig-
ure 8. Figures 6a and 8c compare the ε’s and runtimes

10 we were unable to compare against Microsoft PRV Accoun-
tant, since their implementation does not have support for the
Laplace mechanism yet.

for both methods using the same discretization interval,
and finds that our method gives a significantly tighter
estimate for a mildly larger running time. Figures 8b
and 8d compare the ε’s and runtimes for both meth-
ods with different discretization intervals, and using a
discretization interval that is 100× larger, our method
gives comparable estimates, with a significant running
time speed-up (∼ 75×).

C Inaccuracies from
Floating-Point Arithmetic

We briefly discuss the errors due to floating-point arith-
metic. In our implementation, we use the default float
datatype in python, which conforms to IEEE-754 “dou-
ble precision”. Roughly speaking, this means that the
resolution of each floating-point number of 2−53 ≈
1.1 · 10−16. The number of operations performed in our
algorithms scales linearly with the support size of the
(discretized) PLD, which is less than 104 in all of our
experiments. Therefore, a rough heuristic suggests that
the numerical error for δ here would be less than 10−11.
We stress however that this is just a heuristic and is
not a formal guarantee: achieving a formal guarantee is
much more complicated, e.g., our optimistic algorithm
requires computing a convex hull and one would have
to formalize how the numerical error from convex hull
computation affects the final δ.

Finally, we also remark that, while Gopi et al. [15,
Appendix A] note that they experience numerical issues
around δ ≈ 10−9, we do not experience the same issues
in our algorithm even for similar setting of parameters
even for δ as small as 10−12.
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(a) ε comparison with discretization interval 0.0002 for both this work
and Google DP

(b) ε comparison with discretization interval 0.0002 for this work,
0.000002 for Google DP (shaded region indicates 25-75 percentile range
across 20 independent runs)

(c) Running time comparison with discretization interval 0.0002 for both
this work and Google DP (shaded region indicates 25-75 percentile range
across 20 independent runs)

(d) Running time comparison with discretization interval 0.0002 for this
work, 0.000002 for Google DP

Fig. 8. Computation of pessimistic/optimistic estimates of the privacy parameter ε (for fixed parameter δ = 10−5) for self-composition
of the Laplace mechanism with noise scale 1, Poisson-subsampled with probability 0.01, using the Google DP implementation of the
PB approach [24] vs. our approach.Figures 8a and 8c compare the ε’s and runtimes for both methods using the same discretization
interval. Figures 8b and 8d compare the ε’s and runtimes for both methods with different discretization intervals.
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