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ABSTRACT
Website ngerprinting (WF) attacks, usually conducted with the

help of a machine learning-based classier, enable a network eaves-

dropper to pinpoint which website a user is accessing through the

inspection of trac patterns. These attacks have been shown to

succeed even when users browse the Internet through encrypted

tunnels, e.g., through Tor or VPNs. To assess the security of new

defenses against WF attacks, recent works have proposed feature-

dependent theoretical frameworks that estimate the Bayes error

of an adversary’s features set or the mutual information leaked by

manually-crafted features. Unfortunately, as WF attacks increas-

ingly rely on deep learning and latent feature spaces, our experi-

ments show that security estimations based on simpler (and less

informative) manually-crafted features can no longer be trusted to

assess the potential success of a WF adversary in defeating such

defenses. In this work, we propose DeepSE-WF, a novel WF security

estimation framework that leverages specialized kNN-based esti-

mators to produce Bayes error and mutual information estimates

from learned latent feature spaces, thus bridging the gap between

current WF attacks and security estimation methods. Our evalua-

tion reveals that DeepSE-WF produces tighter security estimates

than previous frameworks, reducing the required computational

resources to output security estimations by one order of magnitude.

KEYWORDS
bayes error, deep neural networks, mutual information, security

estimation, trac analysis, website ngerprinting

1 INTRODUCTION
The simple activity of web browsing can pose a threat to users’

privacy. Regardless of whether encryption is used to obscure the

content of communications, a network eavesdropper may still be

able to infer meaningful privacy-sensitive data (like a user’s health

condition or nancial situation) by identifying the website (or se-

quences of websites) that a user is accessing [77]. The problem

arises from the fact that encryption hides a communication’s con-

tents but not its metadata (e.g. the source and destination of trac

produced by users).

To thwart an eavesdropper’s ability to infer privacy-sensitive

information resulting from the analysis of browsing metadata, low-

latency anonymous communication tools, such as Tor [18], are
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able to obscure both the content and destination of communica-

tions by routing encrypted trac through a number of network

nodes. However, Tor does not signicantly modify the shape of

trac patterns, preserving the packet timing and volume charac-

teristics which are tied to a given website [51] (mostly to support

an interactive browsing experience). Unfortunately, this leaves Tor

vulnerable to two important classes of trac analysis attacks, com-

monly denominated by end-to-end conrmation attacks andwebsite
ngerprinting (WF). The former aim to correlate network ows en-

tering and exiting the Tor network in order to link users with their

destinations [52, 57]. The latter are the focus of this paper, and aim

to unveil specic websites visited by users through the analysis of

Tor connections’ trac characteristics [63, 80].

As a response to WF attacks, the research community developed

multiple defenses [7, 27, 38] that aim to reshape a website’s original

trac patterns. By adding and/or delaying a connection’s packets,

these defenses make it hard for an adversary to pinpoint, with high

condence, the website browsed by a given user. Thus, a critical

aspect in the evaluation of such defenses is the assessment of their

eectiveness against increasingly sophisticated attacks.

Up until recently, the security of WF defenses could only be

assessed by testing their ability to defend users from the strongest

existing WF attacks. However, this methodology perpetuated an

arms race that shed few light on the ability of a defense to survive

against an attack specially devised to undermine it. The quest for

devising a general security evaluation procedure has led to the

surfacing of two main frameworks, one based on the estimation of

the Bayes error [10], and the other one using the concept of mutual

information [45]. These frameworks use a set of features, manually

crafted by domain experts, to estimate the security of a defense

irrespective of the choice of attack or classier, shifting the focus

of WF research to the search for more informative features [10, 45].

This quest for more informative features as a means to improve

the success of WF attacks led researchers to explore the use of deep

neural networks (DNNs) [63, 69]. One notorious benet of this

approach is that neural networks are able to automatically extract

information-rich latent feature spaces, yielding the most accurate

WF attacks to date. Unfortunately, these lines of work led to a severe

dissociation between the (latent) features used to perform state-of-

the-art attacks and the manually crafted features used by security

estimation frameworks to assess the security of emerging defenses.

We observed that these sets of manual features lack the ability to

characterize trac patterns to the same degree of detail obtained by

latent feature spaces, and thus that security estimations based on

manually-engineered features are no longer reliable indicators of

the security of novel defenses against DNN-based attacks. Further,

DNN-based attacks use large datasets to learn meaningful latent
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features. This means that security estimation frameworks must be

able to scale to large numbers of samples to exploit their theoretical

behavior and eciently assess defenses’ security guarantees.

To address the above limitations, this paper introduces DeepSE-

WF (Deep Security Estimations for Website Fingerprinting), a novel
framework for security estimation of WF defenses. DeepSE-WF

overcomes two core limitations of existing security estimationmeth-

ods. First, it takes advantage of DNNs to ingest a large number of

website traces and build highly-informative latent feature spaces.

The features obtained by such a process deliver a more comprehen-

sive characterization of complex trac interactions when compared

to manual feature engineering. Second, DeepSE-WF leverages two

highly scalable kNN-based estimators which make use of the previ-

ously obtained latent feature spaces to compute the Bayes error and

mutual information estimates of the security of WF defenses. This

eectively bridges the gap between the representations of features

used by WF attacks and defense estimation methodologies. Fur-

thermore, by deploying both a Bayes error- and MI-based defense

estimator on the same learned latent feature space, our framework

unies existing security estimation methods in a single framework.

DeepSE-WF relies on techniques developed by the elds of ma-

chine learning and information theory to estimate both quantities

of interest (i.e., the Bayes error and mutual information), and to

understand how they are related [20, 32, 65, 70]. Yet, the impact

of deploying these estimators after applying a potentially learned

feature transformation on top of raw (network trac) data is largely

under-explored. We build on top of one of the few works in this

area [68] to motivate DeepSE-WF from a theoretical point of view.

Contributions.We summarize our key contributions as follows:

• We identify a disconnect between the information-rich fea-

tures used in current WF attacks (obtained from learned

latent feature spaces) and those used by existing WF security

estimation approaches (obtained through manual feature en-

gineering). We show that this disconnect can lead to severe

overestimates of a WF defense’s security guarantees.

• We propose DeepSE-WF, a new WF security estimation

framework that takes advantage of learned latent feature

spaces to jointly estimate the Bayes error and mutual infor-

mation achieved by existing WF defenses, and motivate the

use of these estimators from a theoretical perspective.

• We experimentally evaluate DeepSE-WF and show that it can

achieve signicantly tighter bounds than previous WF secu-

rity estimationmethods based on the Bayes error (WFES [10])

or mutual information (WeFDE [45]). Our results also reveal

that DeepSE-WF is able to scale up the number of samples

used in security estimations by 2 orders-of-magnitude vs.

WFES, and is up to 7 times faster than WeFDE in producing

an estimation. We have publicly released our codebase [78].

2 WEBSITE FINGERPRINTING
Website ngerprinting (WF) is a class of statistical trac analysis

attacks aimed at identifying which websites a user is visiting, even

when encrypted tunnels are used to obscure a user’s intended des-

tination (e.g., when browsing through a VPN, or when forwarding

trac through an anonymity network like Tor). These attacks can

Figure 1: Threat model for website ngerprinting. Websites
within the orange region are deemed monitored and those
within the blue region correspond to unmonitored websites.

be launched by passive network adversaries (e.g., an ISP), being im-

perceptible to users, and rely on the analysis of dierent indicators

obtained from the trac patterns of a network connection, such as

packet direction, timing, or bursting behavior. Since these attacks

require only the analysis of network metadata, they can be applied

without the need for breaking the cryptographic primitives used to

encrypt users’ trac.

The threat model of a WF attack is illustrated in Figure 1. For

launching a WF attack, an adversary typically operates as follows.

First, the adversary accesses a pool of websites of interest (mon-

itored pages)W = {w1,w2, ...,wn }, collecting multiple network

trac observations of accesses to these websites. Following the def-

inition of Cai et al. [7], these observations can be represented as web-

site traces, i.e., packet sequences T=〈(ipd1,l1),(ipd2,l2),...,(ipdn ,ln )〉
where ipd represents the inter-packet timing dierence between

packets i and i-1, and l represents the packet length which can

further be signed as a positive value if the packet is outgoing or

as a negative value if the packet is incoming. (Note that while WF

attacks can make use of packet size information in general settings,

this information is usually disregarded when considering the Tor

scenario since Tor leverages xed-sized cells as its basic commu-

nication data unit [58].) Then, the adversary extracts a number

of features from these traces (i.e., the ngerprints), and resorts to

machine learning (ML) techniques to build a model which, given

any user trace t , predicts the corresponding visited website ŵt ∈W .

WF attacks can be typically launched in two dierent settings:

Closed world vs open world. The closed world setting is consid-

ered to be the ideal scenario for an adversary. In this setting, the

adversary assumes a set of websitesW = {w1,w2, ...,wn } as the

only websites a user is allowed to visit. The adversary then learns a

model which, given any trace t predicts the corresponding website

ŵt ∈W . In contrast, the open world setting is more realistic since

an adversary assumes that a user can visit any existing website

on the Internet. Since it is impossible to obtain ngerprints for all
Internet pages, the goal of the adversary is then to decide whether

a client has visited a particular website amongst a set of monitored

websitesW ′ = {w ′
1
,w ′

2
, ...,w ′

n } and if so, which one.

In this paper, we choose to focus on the analysis of attacks con-

ducted in the closed world setting. The rationale behind this choice

sits on our intention to assess the security provided by a defense in

the most advantageous setting for an adversary. Indeed, the closed-

world setting oers the adversary a limited or complete absence

of uncertainty about what websites can be potentially visited by a

targeted Tor user. By focusing on this setting, DeepSE-WF analyses

the most favorable scenario for an attacker, and therefore provides

a lower bound for the security of any defense mechanism.
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Despite the above, it is generally understood that the ability of

an adversary to perform an attack in the closed world setting is

unrealistic in most practical cases [12, 37]. Section 8 points out

potential limitations of our closed world-based security estimation

methodology, taking into account that we do not currently provide

security estimations for defenses in the open world setting.

3 RELATEDWORK
This section starts by describing a range of inuential WF attacks

(Section 3.1) and defenses (Section 3.2). Then, we detail existing

directions on the security evaluation of WF defenses (Section 3.3).

3.1 Website Fingerprinting Attacks
One of the most important aspects of a successful website nger-

printing attack lies in the choice of the features used to train ML

classiers [10, 69]. The next paragraphs present a brief description

of the most inuential website ngerprinting attacks on Tor devel-

oped in the last few years. Our exposition is organized according

to the kind of features considered by each attack.

Attacks using manually crafted features. Multiple WF attacks

have focused on the manual extraction of features to feed machine

learning classiers and perform predictions on user-visited websites

over encrypted Tor connections [8, 35, 59, 81]. Among these, three

attacks earned particular relevance by signicantly outperforming

earlier WF attempts, achieving over 90% accuracy when classifying

websites in the closed-world setting. Specically, the k-NN [80]

attack leverages the k-Nearest Neighbors classier and a feature set

with over 3 000 features including the total transmission bandwidth

and elapsed time, the number of incoming and outgoing packets, or

packet ordering and bursts. The CUMUL [58] attack makes use of

a Support Vector Machine and 104 hand-crafted features, including

the number of incoming and outgoing packets and total bandwidth

used in each direction. Lastly, the k-FP [31] attack introduces a

combination of features used in previous attacks with novel trac

characteristics, leading to a systematic analysis of 150 features. The

classier works by building a ngerprint for each website using

a modication of the Random Forest algorithm and then uses a

k-Nearest Neighbors classier to predict website accesses.

Attacks using automated feature extraction. Departing from

the manual labour to extract features, recent research in WF attacks

has shown that deep learning approaches can be successfully used

to automate the feature extraction process [1, 69]. Such attacks

typically require an adversary to collect a larger amount of website

traces and to nd an ecient representation of these traces to train

the deep learning classier and perform a successful attack.

Constructing over the work of Abe and Goto [1], Rimmer et

al. [69] collected the largest dataset of Tor website access traces to

date. They explored the performance of WF attacks when using

a range of DNN-based models, including stacked-denoising au-

toencoders, convolutional and long short-term memory networks.

Their attack, named Automated Website Fingerprinting (AWF) [69],

makes use of a trace packets’ direction to automatically extract

features. Similarly, Oh et al. [56] have also studied the ability of

deep learning classiers to launch accurate WF attacks. The Deep

Fingerprinting (DF) attack proposed by Sirinam et al. [75] uses the

same directional trace representation used in AWF but exploits an

advanced CNN architecture that outperforms earlier deep learn-

ing attacks. Since then, the Tik-Tok [63] and Var-CNN [4] attacks

improved over DF by also including packet timing information.

Recently, a related research thrust has strived to improve the suc-

cess of WF when small amounts of training data are available to an

adversary. Examples of such endeavors are Var-CNN [4], Triplet Fin-

gerprinting [76], GANDaLF [55], or Adaptive Fingerprinting [79].

3.2 Website Fingerprinting Defenses
Website ngerprinting defenses aim to thwart the ability of an

adversary to successfully launchWF attacks by obfuscating the real

characteristics of a website access trace, either by injecting dummy

packets in the network, or by delaying packets according to some

obfuscation scheme. Next, we deliver an overview of the space of

existing WF defenses and their security/overhead trade-os.

Constant-rate padding. Defenses like BuFLO [8], CS-BuFLO [6],

and Tamaraw [7] hide timing patterns and packet transmission

burst behavior by leveraging dierent strategies that rely on the

transmission of packets at xed-rates. In addition, some of these

defenses [6, 7] obfuscate the size of websites being transmitted by

grouping websites in sets of websites with similar sizes and padding

the sites within a set to a common size. Despite their success in

thwarting WF attacks, these defenses incur in large bandwidth

and latency overheads that preclude their wide adoption in Tor.

DynaFlow [47] aims to provide similar security guarantees as the

above defenses, but with lower overheads. The recently proposed

RegulaTor [36] regularizes the size of packet sequences sent over a

short period of time to mask potentially revealing features.

Supersequence. Another class of WF defenses attempts to cluster

traces of dierent sites to create a group of anonymity sets and

extracts the shortest common supersequence. Examples of such

defenses include Glove [54] and Supersequence [81]. However, the

generation of supersequences requires previous knowledge about

the content of websites, making these defenses hard to deploy for

websites that load dynamic content. Walkie-Talkie [82] modies

the Tor Browser to communicate in half-duplex mode. In this way,

real packets can be buered and mixed with dummy packets to

create supersequences in a more ecient fashion.

Adaptive and randomized padding. Adaptive padding makes

websites’ packet inter-arrival timing distribution similar and in-

distinguishable for all traces by inserting dummy packets to mask

existing time gaps between packets [74]. WTF-PAD [38] is a light-

weight adaptive padding technique tailored to Tor that exhibits a

substantial overhead reduction w.r.t. earlier defenses. FRONT [27]

introduces a random number of randomly-padded dummy packets

to the beginning of packet sequences to obfuscate website accesses.

Application-layer defenses. Defenses in this class work at the

application layer, instead of the network layer. Panchenko et al. [59]

introduced a browser plug-in that loads random websites to obfus-

cate a given site’s trac pattern. HTTPOS [49] manipulates HTTP

requests and the behavior of TCP to change the size and timing

of packets and/or web objects. LLaMA [11] acts on the client-side

and randomly delays outgoing HTTP requests while introducing

dummy HTTP requests. In turn, ALPaCA [11] is a server-side de-

fense that inserts dummy web objects (or pads existing ones) to

change the size of dierent websites to a common size.
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Trac splitting. This class of defenses aims to prevent an adver-

sary from inspecting all trac exchanged by clients, by making

use of multihoming technologies to send trac through multi-

ple networks. Following this idea, HyWF [34] splits Tor trac

towards a given Tor bridge among multiple networks. In turn, Traf-

cSliver [16] splits trac over multiple entry Tor nodes while dis-

torting repeatable trac patterns by distributing HTTP requests’

fragments over the dierent paths.

Trace merging. These defenses rely on the diculty to separate

consecutive traces of website loads. GLUE [27] adds dummy pack-

ets that obscure the fact that two websites are loaded separately,

gluing their traces together. This forces a WF adversary to correctly

separate website loads before ngerprinting a website, a problem

that remains the focus of research on multi-tab WF [83, 85].

Adversarial traces.A recent class of defenses strives to thwart the

success of the latest WF attacks based on deep learning techniques.

Mockingbird [61] generates traces that resist WF attacks against

an adversary that is assumed to be able to train a classier in

previously defended traces. Dolos [73] disrupts WF deep learning

classiers by computing input-agnostic adversarial patches that

guide the injection of dummy packets into trac traces. Nasr et al.

developed BLANKET [53], a technique that can defeat deep learning

WF attacks by blindly perturbing the features of live connections.

Learning-based trace generation: Another class of defenses has
started to explore the use of generative adversarial networks (GANs)

to mimic realistic trac patterns of dierent webpages. A promi-

nent example from this line of work is Surakav [29].

3.3 Security Estimation of WF Defenses
So far, three main methods have been proposed in the literature to

prove lower-bounds for the error of WF adversaries. We outline

the three methods in terms of their chronological appearances and

summarize their features, and metrics, in Table 1.

Comparativemathematical framework.Cai et al. [7] use a com-

parative method for evaluating defenses against an ideal WF adver-

sary. They estimate the lower bound for the error of WF adversaries

as the number of websites that produce the same network trace,

and that could thus lead the adversary to erroneously classify the

access to a website, irrespective of the chosen attack. To understand

whether and by howmuch defenses are successful at mitigatingWF

attacks, Cai et al. rst transform a website class w into another class

w’ while diering by a single feature category (e.g., packet timing).

Then, they ascertain whether a defense is successful in hiding a par-

ticular feature if, after applying the defense, there is no discernible

dierence between w and w’. Even though this method can be used

to evaluate both deterministic and probabilistic defenses [82], it is

highly sensitive to noise in the communication (e.g., jitter), which

can lead to similar trac being misclassied [10]. In addition, the

information leakage between features is not quantied [45].

Bayes error rate. Cherubin [10] suggested to use a black-box and

feature-dependent method to derive the security bounds of WF

defenses by estimating the smallest achievable error, i.e., the Bayes

error rate (BER), incurred by any WF adversary. The notion of

lowest possible error generalizes the framework proposed by Cai et

al. [7] in that the lowest error is naturally achieved if the features of

all website are indistinguishable. Estimating the BER or its bounds

Table 1: Features and security metrics used by WF defenses’
security estimators. All estimators take advantage of trace
representations based on timing and direction of packets.

Estimator Features Metric

Ideal Adversary [7] Packet Sequence Accuracy

WFES [10] Manually crafted Bayes Error Rate (BER)

WeFDE [45] Manually crafted Mutual Information (MI)

DeepSE-WF (this work) Learned DL BER & MI

using nite datasets is an extensively researched problem in the eld

of machine learning [5, 13, 17, 21, 22, 60, 66, 72]. Inspired by Cover

and Hart [13], Cherubin reduces the WF problem to a classication

task and leverages the error of the Nearest Neighbor classier as a

proxy to estimate the lower bound for the error of any potential

classier used on predened features. While this method does not

depend on any specic learned classier, assessments of the security

of a given WF defense depend on the identication of a set of

manually-crafted (and, ideally, optimal) feature sets. Unfortunately,

the transformation of raw network traces into manually-crafted

features may i) ignore trac characteristics that provide useful

information forWF attacks [75] and thus implicitly increase the BER

in this transformed feature space, and ii) impose signicant impacts

on the convergence rates of a Nearest Neighbor classier [68],

jeopardizing the validity of the estimated BER lower bounds. We

elaborate on this aspect in Section 5.3 and validate it on Section 6.2.

Information leakage. Li et al. proposed WeFDE [45], a method-

ology to measure the amount of information leaked by a website

ngerprint through the quantication of mutual information
1
(MI).

The core idea of WeFDE is to use adaptive kernel density estimation

to model the probability density function of a feature or a category

of features. The estimated distributions are used to calculate the

joint MI of multiple features. In order to evaluate the MI, WeFDE

uses a list of 3043 features out of 14 categories, removes redun-

dant features and groups them into clusters. Finally, it estimates

the joint distribution of the clusters to get the nal estimation.

Yet, and similarly to the work by Cherubin [10], WeFDE relies on

manually-crafted sets of features which may miss relevant trac

characteristics for informing potentially successful WF attacks.

Finally, well-established relations in terms of tight mathematical

bounds between the BER and information-theoretical quantities,

such as MI [20, 33, 41, 71], suggest that for certain regimes (e.g.,

perfectly secure or insecure defenses), both quantities are equally

powerful to assess the security guarantees. We further discuss their

relation in Section 7.2. Next, we describe a set of transformations

necessary to obtain features from raw network trac, and discuss

how WF attacks bypass WF defenses by relying on features that

are disregarded by those defenses.

4 SECURITY PITFALLS DUE TO TRAFFIC
REPRESENTATION MISMATCHES

In this section, we start by assembling existing work on WF attacks,

analyzing the trend on how these attacks transform raw trac

data into trac representations that are more amenable to train

classiers. Then, through the help of concrete examples found in the

1
The terms information leakage and mutual information are used interchangeably in

Li et al.’s work [45] and in this paper.
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Raw representation 
(Packet capture)

Trace representation 
(Packet sequences)

Feature representation 
(Manually-crafted or
learned through DL ) 

Transformation 1 Transformation 2

Less Information Full Information 
(Harder to classify) (Easier to classify) Figure 2: Transformations of trac representations. Each

transformation aims to summarize a trac representation
to improve the eciency and eectiveness ofWF classiers.

literature (as well as pointers to the results of our own experiments),

we describe how the use of contrasting representations in attacks

and defenses may lead to complications in the correct evaluation

and estimation of WF defenses’ security, making a case for the

development of improved WF security estimation methods.

4.1 Transformations over Network Trac
Ideally, a WF adversary would leverage all the information con-

tained in the network trac observations it has collected to launch

successful WF attacks. In such a setting, the adversary would use a

raw representation of website loads or list every possible feature to

train an eective classier. This would however result in possibly

innite feature combinations that cannot be feasibly enumerated.

Apart from this issue, and even if calculating such feature listing

was a tractable task, prolic literature on ML [39] (and WF [45,

84] in particular) has shown that not all features are useful for

classication. In particular, and since the size of WF datasets are

nite, having a large number of irrelevant and redundant features

may increase the chances for overtting and for being aicted by

the curse of dimensionality [84]. To tackle this issue, considerable

eort has been put in place to transform the representation of raw

trac into trace and feature representations that can increase the

“signal-to-noise ratio” in the WF domain [45, 84].

Transformations. Figure 2 depicts two usual sequential transfor-

mation steps used to process the raw representation of website loads

(e.g., the contents of a .pcap le) into more useful representations

for classication. For instance, the rst transformation converts this

raw representation into a simpler trace representation, while the sec-
ond transformation recasts trac traces as a feature representation.
It should be noted, however, that each transformation incurs some

information loss, e.g., losing TCP header information when obtain-

ing a trace representation, or losing ne-grained packet timing

information when obtaining a given feature representation. Never-

theless, these produce feature representations that can fuel highly

eective WF classiers. Next, we describe the most relevant trace

and feature representations derived from said transformations.

Trace representations. These representations are obtained from

the simplication of raw trac into packet sequences.

• Directional representation. Represents a website trace as a

sequence of 1s and -1s, resp., for outgoing/incoming packets.

• Timing representation. Represents a website trace as a se-

quence of positive or negative timestamps starting from 0,

depending on whether a packet is outgoing or incoming.

Feature representations.These representations are obtained from
the simplication of trace representations through manual feature

engineering or automated feature extraction through deep learning.

Table 2: Overview of the features and trac representations
used by prominent WF attacks.
Attack Features Trace Representation

(2014) kNN [80] Manually crafted Time, Direction

(2016) CUMUL [58] Manually crafted Time, Direction

(2016) kFP [31] Manually crafted Time, Direction

(2017) AWF [69] Learned DL Direction

(2018) DF [75] Learned DL Direction

(2019) TF [76] Learned DL Direction

(2021) Adaptive WF [79] Learned DL Direction

(2021) GANDaLF [55] Learned DL (GAN) Time, Direction

(2018) Var-CNN [4] Learned DL + Manually crafted Time, Direction

(2020) Tik-Tok [63] Learned DL Time, Direction

• Manually-crafted features. These kind of features are ob-

tained by extracting summary statistics from website traces,

and can be split into two categories. The rst category is

composed of packet statistics, where examples include the #

of incoming/outgoing packets, packet frequency, ordering,

or inter-packet timing percentiles of packets in a connection.

The second category is composed of bursts statistics, where a
burst is understood as a contiguous sequence of packets sent

in the same direction. Examples of features include burst

size, burst duration, or the # of incoming/outgoing bursts.

• Learned latent features. These features are obtained by train-

ing a DNN to project traces’ representations into a latent

feature space of lower dimensionality. This process enables

the complete ingestion of directional/timing trac repre-

sentations, accomplishing dimensionality reduction while

retaining relevant information about the original traces.

Next, we expose how the inconsistent use of trace and feature

representations of network trac prevents the proper judgement

of the security of WF defenses.

4.2 Flawed Security Estimations due to Trac
Representation Inconsistencies

One of the most noticeable trends in the development of new WF

attacks is the importance attributed to the analysis of alternative

trac representations and to the development of comprehensive

feature extraction processes – now believed to be the most critical
step in devising successful WF attacks [10]. This trend is better

observed in Table 2, which depicts a breakdown of the features and

trace representations used by some of the most prominent attacks in

the WF literature. The table helps us identify three main categories

of attacks, depending on the nature of features, namely whether

they are i) manually crafted, ii) learned through deep learning, or

iii) a mix of both. Further, Table 2 highlights that attacks based

on manually crafted features tend to rely on both types of trace

representations (time and direction), whereas DL-based attacks

sometimes tend to rely on direction only with recent advances

incorporating the timing information again.

A closer analysis of this table results in two main observations,

which reveal the inadequacy of a large fraction of existing WF

defenses and security estimators to cope with the latest WF attacks:

(1) Themost recent attacks tend to use as much information
as possible about website traces. As revealed by recent WF at-

tacks like Tik-Tok or Var-CNN, the use of timing information allows

for an increased success in performing website ngerprinting. This
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means that the security properties provided by defenses that exclu-

sively attempt to hide directional patterns, e.g., to defend against

AWF or DF, may be severely degraded when facing a WF adversary

that makes use of directional and timing trace representations, and

the additional information contained therein.

As a concrete example, consider Walkie-Talkie [82], a defense

that relies on padding two websites such that their directional trace

representation looks the same. Thus, an attack based on directional

information would achieve an accuracy of at most 50% (this was

indeed approximated by the DF attack, which obtained 49.7%). How-

ever, the Tik-Tok attack proposed by Rahman et al. [63] has shown

that including packet timing information can increase the success

of ngerprinting Walkie-Talkie defended traces up to 97%.

The above re-emphasizes the current status quo in learning-based
trac analysis; attacks should use as much information as possible

to increase their eectiveness over WF defenses, particularly those

that are able to modify both directional and timing aspects [4, 63].

(2)WF attacks no longermake an extensive use ofmanually-
crafted features. As shown in Table 2, WF attacks departed from

the exclusive use of manually crafted features – which may unwill-

ingly fail to include important features about website traces – and

currently leverage feature extraction mechanisms based on DNNs.

This enables the generation of latent feature vectors representing

complex features that support eective learning, by distilling the

large amounts of information contained in trace representations.

In turn, this means that existing security estimation methods can
no longer be trusted to perform accurate estimations. As a matter of

fact, security estimators like WFES and WeFDE (see Table 1) focus

solely on the analysis of manually-crafted features, whereas deep

learning-based attacks extract latent features that are much more

complex than those obtained via manual feature engineering meth-

ods based on expert knowledge. Indeed, as shown in our evaluation

(Section 6.2), the classication error achieved by state-of-the-art

WF attacks (e.g., Tik-Tok) is substantially smaller than the estimates

provided by WFES, for all defenses under test that are not based in

the creation of constant-rate ows.

We conjecture that this discrepancy between attacker accuracy

and security estimation is mainly given by the aforementioned

mismatch in feature representations, and indirectly by the nite,

xed size datasets used to provide security estimates.

Next, we introduce a new security estimation method for WF

defenses which considers latent feature spaces and is able to bridge

the gap between earlier estimation methods and currentWF attacks.

5 IMPROVED SECURITY ESTIMATIONS FOR
WEBSITE FINGERPRINTING DEFENSES

This section introduces DeepSE-WF, a novel framework that pro-

duces tight estimations of the security of WF defenses. Our frame-

work explicitly targets the security evaluation of defenses in the

simplied closed-world WF scenario (Section 2). This scenario al-

lows an adversary to launch a WF attack in controlled settings,

thus making it ideal to evaluate the security of defenses [10, 37].

Next, we provide an overview of our estimation methodology, de-

scribe the architecture of DeepSE-WF, and provide the theoretical

reasoning guiding our approach.

5.1 Estimation Methodology
DeepSE-WF is a new WF security estimation method relying on

specialized BER and MI estimators that leverage learned latent

feature spaces generated by deep learning approaches. In contrast

to existing WF security estimation frameworks that make use of

manually-crafted features, the use of latent feature spaces allows

DeepSE-WF to level the playing ground w.r.t. to the features used

by DNN-based WF attacks (e.g., [63, 75]).

Estimating theBayes error.Bayes error estimators deployed over

dierent feature transformations have been extensively studied

by Renggli et. al. [65]. A key nding states that a very simple

estimator given by Cover and Hart [13] consistently outperforms all

other newer estimators when run over pre-trained transformations

instead of the raw features. The estimator uses the nearest neighbor

(NN) error to estimate the BER. If there is a lack of good pre-trained

transformations available, one can train such a representation to

increase the performance of the BER estimator; the training process

should be performed on a dierent dataset than the one used to

actually estimate the BER to avoid overtting. An intuitive way to

train such a representation would be to train a representation which

at the same time minimizes the kNN error rate. As the calculation

of this value is not dierentiable, one has to either approximate the

kNN error [25], or minimize another dierentiable classier’s error.

We chose the latter and thus minimize the cross entropy loss of a

linear classier, supported by the fact that a lower linear classier

error translates to better kNN performance [68].

Estimating mutual information. Estimating the MI is a vibrant

area of research in the eld of ML and information theory. One

prominent area of research aims to improve simple kNN-based

estimators over raw features to perform well on combinations of

discrete and continuous datasets [24]. As these approaches often

fail in high-dimensional spaces, another line of work pioneered

by MINE [3] simultaneously learns complex representations and

estimates the MI on high dimensional inputs. As we discuss in

Appendix A, it is non-trivial to train MINE on unexplored data

modalities, mainly due to the hard task of choosing a good set of

hyperparameters or working on limited amounts of data. Thus,

DeepSE-WF relies on a (to the best of our knowledge) novel ap-

proach to estimate the MI which, inline with the BER estimation

strategy, consists of deploying a simple kNN-based estimator on

top of separately trained representations.

5.2 The Architecture of DeepSE-WF
Figure 3 depicts DeepSE-WF’s security estimation pipeline. In the

rst step of the pipeline, website traces are rst transformed, i.e.,

defended, with the help of a WF defense. In this paper, we generate

defended traces by using defense simulators based on pre-recorded

traces, with further details on the use of simulated defended traces

in Section 6.1. Despite this choice, nothing precludes DeepSE-WF

to be used to perform security estimations based on real defended

traces obtained with actual defense implementations, i.e., DeepSE-

WF is agnostic to the way defended traces are generated.

Then, in the second step of the pipeline, DNNs are trained to

generate feature representations of defended packet sequences in a

latent feature space on many dierent trace representations. Finally,
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Figure 3: DeepSE-WF pipeline for the unied security estimation for WF defenses. We start by applying a specic WF defense
on the rawest compatible trace representation (directional, or directional and timing). We then train a DNN on the defended
traces and take the minimal/maximal estimation over kNN-based estimations of the Bayes error/MI, respectively.

the resulting learned latent features are used as input to special-

purpose kNN-based estimators, which estimate the BER and the MI.

Here, we take the minimum and maximum over trace representa-

tions, respectively, for estimating the BER and MI of the defended

traces. We now shed light over each step of our estimation pipeline:

Step 1 - Collect network observations and apply a WF de-
fense mechanism. First, our pipeline applies a given WF defense

on trace representations of network trac (i.e., both directional

only, and direction+timing). Then, it splits the resulting data X
into two disjoint sets T (training set) and E (testing set). This step

ensures that our security estimations do not overt to any nite-

sample dataset, a natural problem of deep learning, or machine

learning in general. The sizes of the splits are given in Section 6.1.

Step 2 - Train and extract deep learned features from multi-
ple trace representations. The second step of our pipeline learns

feature representations through the training of a DNN using T .

To make DeepSE-WF compatible with both directional and direc-

tional + timing representations, we train a DNN for each of the two

trac representations. We then extract the last-layer features for

all trained DNNs. In practice, we use a DNN that ingests packets’

direction and timing (similar to Tik-Tok) to evaluate defenses that

consider both traces’ representations (e.g., Tamaraw), and a DNN

that solely considers directional traces (similar to DF) to evaluate

defenses that only consider these traces (e.g., Walkie-Talkie).

Step 3 - Perform kNN-based security estimations based on
the latent feature spaces. The third step of our pipeline performs

and delivers BER and MI security estimates for WF defenses. To

compute a minimum BER estimate, DeepSE-WF relies on formula:

min

f
�(Rf (X ))n,1 = min

f

©«
(Rf (X ))n,1

1 +

√
1 −

C(Rf (X ))n,1
C−1

ª®®¬ , (1)

where (Rf (X ))n,1 is the kNN error with k = 1 attained after trans-

forming the features X with function f , and C is the number of

classes. f is either the trained deep feature representation on top

of directional traces, or the one trained using direction and timing.

Correspondingly, DeepSE-WF delivers the maximum MI esti-

mate, with formula:

max

f
Î (f (X );Y ) = max

f
(ψ (N ) − 〈ψ (Nx )〉

+ ψ (k) −
〈
ψ (mf )

〉)
,

(2)

with the same feature transformations as in Eq. (1) andψ denoting

the digamma function; N represents the total number of samples,

Nx is the number of samples per class averaged over all classes; k
is a hyperparameter (normally chosen to be small, 5 in our case),

andm captures the average number of samples (class-independent)

in the radius dened by the k nearest samples of the same class for

every data point. The full details about the kNN-based estimator in

Eq. (2) can be found in the original paper by Ross [70] (c.f., Eq. (2)

therein). Notice that the only transformation-dependent parameter

is m and the estimator is known to be asymptotically unbiased

when reporting nats (i.e., a natural unit of information assuming

the natural logarithm for the information theoretical quantity) [23].

We thus multiply the result of Eq. (2) by a constant factor log
2
(e) in

all experiments to have bits as a resulting unit. We refer the reader

to Appendix A for more details on the possible use of alternative

MI estimation techniques in the context of DeepSE-WF.

5.3 Theoretical Reasoning
Our method is theoretically guided by three main observations,

which we detail in the following paragraphs.

(1) WF defenses rely on transformations which purposely
decrease useful information. Since WF defenses are typically

designed as transformations acting solely on features, we exam-

ine the impact of such feature transformations on two quantities

of interest. First, it is well known that any deterministic feature

transformation can only increase the BER [68]. Conversely, it is

easy to show (we provide a proof in Appendix B) that any deter-

ministic feature transformation can only decrease the MI between

features and labels. This is precisely what a WF defense is trying to

achieve: a good defense is represented by a transformation which

purposely increases the BER towards its maximum
C−1
C , where C

are the number of classes, and simultaneously decreases the mutual

information towards 0 whilst having low computational overhead.

(2) Estimating security guarantees on raw representations
is hard. Guided by observation (1) and the fact that assessing the

potential increase of the BER, or decrease in MI induced by any

transformation, or by a chain of transformations, is equally hard as

estimating the BER or MI itself, it is natural that one should take the

rawest possible representation2, i.e., not performing any additional

change in representation, to estimate security guarantees after

2
Injective transformations are safe, as they are invertible and thus intuitively do not

lead to any reduction in information [68].
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having applied theWF defense. Still, as we are estimating a property

of an unknown probability distribution (i.e., for an innite amount

of data) based on a nite-sample dataset, we have to consider the

convergence behavior of the estimators.

We now outline this reasoning for a theoretically understood

BER estimator. Having access to innite samples, one could use a

consistent classier (i.e., one with its error converging to the BER)

like the k-Nearest-Neighbor (kNN) estimator, which is known to

be strongly consistent provided k diverges (i.e., grows to innity),

whereas
k
n converges to 0 as n → ∞, where n is the number of

samples. Formally, the convergence of the kNN classier error

(RX )n,k is given by:

En
[
(RX )n,k

]
− R∗X = O

(
1

√
k

)
+ O

(
L

(
k

n

)
1/D

)
, (3)

where D is the raw feature dimension, L is some distribution de-

pendent constant, and R∗X is the BER [30].

In other words, the kNN algorithm converges to the BER with

increasing number of samples, as long as k is also increased, but at

a slower rate than the number of samples. Unfortunately, we have

neither access to innite number of samples, nor can we set k to be

innitely large. One alternative approach is therefore to estimate

bounds on the BER rather than the BER itself.

The BER estimator proposed by Cover and Hart [13], uses the

NN accuracy (i.e., the kNN accuracy for k = 1) as an upper bound

of the BER
3
, and a scaled version of the NN accuracy

�(RX )∞,1 to

estimate the BER lower bound. Formally, under mild assumptions

we have:

(RX )∞,1 ≥ R∗X ≥
(RX )∞,1

1 +

√
1 −

C(RX )∞,1

C−1

=�(RX )∞,1. (4)

Notice that this lower bound is only guaranteed to be valid for

innite number of samples. For a xed nite n, the lower bound

estimate
�(RX )n,1 can in fact be wrong even in expectation (i.e.,

neglecting the impact of the variance). The regime in which the

estimator is wrong depends on the ratio between nite-sample

positive bias (i.e.,
�(RX )n,1 − �(RX )∞,1), given by the convergence

of the estimator, and the tightness of the lower bound for a xed

probability distribution (i.e., R∗X − �(RX )∞,1).

Given that the nite-sample bias in all examined real-world

use-cases is strictly larger than the tightness of the lower bound

estimate [65], we refer to the lower bound estimator in Eq. (4)

for the remainder of the paper as a BER (and not a lower bound)

estimator. The convergence rate of the NN-based estimators is

known to have an exponential dependency on the dimension of

the raw feature space (c.f., Eq. (3)). Still, this BER estimator has

been shown to be very powerful (i.e., reducing signicantly the

nite-samples bias) when applied on top of (potentially pre-trained)

feature transformations [65]. The convergence rate of the kNN

classier error on top of any feature transformation becomes:

En
[
(Rf (X ))n,k

]
− R∗X =

O

(
1

√
k

)
+ O

(
Lд

(
k

n

)
1/d

)
+ δf ,

(5)

3
In fact any expected classier accuracy trained on any number of samples is a valid

upper bound of the BER.

where d is the dimension of the transformed features, Lд a property

of the transformed feature space, and δf represents the increase

of the BER [68]. Thus, despite potentially having another small

positive bias term (i.e., an increase in BER at innity), transforma-

tions can speed up the nite-sample convergence of the classier

accuracy if Lд and d are much smaller than L and D respectively,

and thus positively impact the accuracy of the BER estimator.

Given that existing consistency and convergence analyses for

kNN-based MI estimators, which represent the most studied MI

estimators [24, 42, 43], deployed with nite k or applied on trans-

formed data are largely missing, and outside of the scope of this

work, we conjecture that the same reasoning holds for the simple

kNN-based MI estimator introduced by Ross [70] by substituting

the terms “BER” and “positive bias” with “MI” and “negative bias”

for the remaining of this section.

(3) Better estimators can be obtained by observing dierent
feature transformations.Guided by the reasoning in observation
(2) and the fact that the sum of nite-sample bias and transformation

bias are positive and typically strictly larger than the tightness of

the lower bound estimate, it is natural that even without having

knowledge of the additional induced biases the NN-based estimators

can only benet from deterministic feature transformations in the

nite-sample case. A natural consequence of this is that one can

simply achieve a better estimate of the BER by not only inspecting a

single representation, but rather try many dierent transformations

and report the minimal achieved BER [66]. Note that a theoretical

counterpart for NN-basedMI estimators (e.g., negative nite-sample

bias) is missing. Nevertheless, our evaluation in Section 6 suggests

that for the evaluated defenses and dataset sizes, one can take the

maximal estimate kNN-basedMI score over various transformations

without noticing any impact of such a negative bias.

Takeaways. All in all, the theoretical reasoning from before helps

us motivate two major aspects of DeepSE-WF: (1) why using a BER

or MI estimate for assessing the eectiveness of WF defenses is the

metric of interest and better suited compared to using the accuracy

of WF attacks, and (2) why kNN-based estimators can safely be

deployed over multiple transformations. The latter, backed with the

given convergence rates of BER estimators, can be useful for future

research, where sample complexity and convergence for equally

performing defenses could be compared based on synthetically

generated traces with known BER.

6 EXPERIMENTAL EVALUATION
This section details the experimental evaluation of DeepSE-WF

on multiple axes. We start by describing our experimental setup

(Section 6.1). Then, we deliver a comparison of DeepSE-WF security

estimates against existing estimation methods (Section 6.2), analyse

the convergence of our proposed estimators (Section 6.3), and dis-

cuss DeepSE-WF’s results when using alternate DNN architectures

and parameterizations when producing security estimates (Sec-

tion 6.4). Lastly, we perform additional validations on DeepSE-WF’s

estimates using an alternative dataset (Section 6.5).

6.1 Experimental Setup
This section describes our assumptions and evaluation testbed, as

well as the methodology through which we evaluated DeepSE-WF.
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Assumptions. In our evaluation, we assume that website traces

are i.i.d. random variables, that is, we assume that all traces sam-

pled from a given website follow the same arbitrary distribution.

Previouswork showed that violating this assumptionwould only de-

teriorate a WF adversary’s success when attempting to ngerprint

a website [10]. Moreover, we assume accesses to any monitored

website (in the closed-world setting focused in our work) to be

equally likely. We also assume a very powerful attacker who can

perfectly separate the traces pertaining to the loading of dierent

websites and that is able to nd out which defense is under use.

Dataset. The bulk of our experiments use the dataset released by

Rimmer et al. [69]. The closed-world dataset consists of over 900

unique websites where each website is visited up to 5000 times

using the Tor network. We lter out corrupted traces (i.e. traces

beginning with an ACK or incoming packet) and sort the packets

according to their timestamp. We remove all packets which do not

carry any Tor payload and extract directional and timing-related

information. Each trace is truncated to a length of 5000 packets

or padded with zeros if the original trace is shorter. We refer to

the dataset as AWFW .T , whereW refers to the number of unique

websites and T to the number of traces per website in the dataset.

We perform additional validations with the DS19 dataset [27].

Cross-validation. We make use of cross-validation to produce

accurate security estimations in our experiments. We split the data

into ve splits, where each split contains the same number of traces

per website. Four splits are used to train the classier and the fth

split is divided into two test sets, E1 and E2 of equal size and equal

number of traces per website. We generate DeepSE-WF estimations

using E1 for training the kNN classier and testing on E2 and vice

versa, where we average the results. Since we split the data and do

not use any training data in the BER/MI estimation, we mitigate

any unwanted bias in the estimation. This process is repeated using

the next split for the BER/MI evaluation and the rest for training

the classier. We experience a negligible variance in our evaluation

(≤ 1%) and thus omit the condence interval in our plots.

Attacks, defenses, and estimators. We use publicly available

code to i) simulate WF attacks, ii) generate defended traces, and iii)

estimate the security of WF defenses. Specically, we use Cheru-

bin’s codebase [9] to experiment with the Tamaraw and CS-BuFLO

defenses, as well as theWFES estimator; Gong et al.’s repository [26]

to experiment with the FRONT and WTF-PAD defenses; and Rah-

man et al.’s re-implementation ofWeFDE [62].We also implemented

the kNN-based BER estimator proposed by Renggli et al [66].

We analyse a selection of WF defenses that assume the ability of

an adversary to inspect all of a client’s trac links (e.g., in contrast

to TracSliver [16]), that do not assume the protection of direc-

tional information-only (e.g., in contrast to Mockingbird [61] or

Dolos [73]), and that provide a defense simulator that can be applied

to existing trac traces (e.g., dierently from BLANKET [53]). We

use the original attacks and defense simulators with their recom-

mended parameters, i.e., we perform no parameter tuning (Appen-

dix C). We note that defense simulators aim to produce a faithful

representation of how defenses should operate on real trac. Typ-

ically, undefended traces are collected on the real Tor network,

and then modied in an “oine” way, resulting in defended traces

based on the theoretical outcome of the defense. Gong et al. [28]

have recently compared the results obtained by the simulation and

implementation of a set of WF defenses, nding that simulations

correctly capture the strength of each defense against attacks.

Laboratory testbed. To assess the computational performance

of DeepSE-WF when compared to existing estimators, we used a

MacBook Pro with an M1 Pro CPU and 32 GB RAM. To evaluate

further performance enhancements when using a GPU, we used

an Ubuntu 20.04 machine provisioned with 40 2.1 GHz Intel Xeon

E5-262 CPU cores, an NVIDIA TITAN X GPU and 256 GB RAM.

6.2 Comparison to Existing Estimators
We relied on the DF architecture to generate BER estimates and we

compared DeepSE-WF (DF) against WFES and WeFDE, the state-

of-the-art BER and MI estimators, respectively, in three dierent

dimensions: tightness of estimates, scalability, and computational
performance. While the original DF consumes directional traces

only, we extended its architecture to ingest directional + timing

traces (corresponding to Tik-Tok’s extended architecture). Next, we

present our results and main ndings.

DeepSE-WFdelivers tighter estimates. Figure 4 depicts the com-

parison between DeepSE-WF’s BER and MI estimations against the

ones obtained by WFES and WeFDE. We leverage the AWF100.90
and AWF100.500 datasets, respectively, since these are the maximum

dataset sizes we can process with reasonable memory and time re-

quirements on WFES and WeFDE with our laboratory machine.

For WFES, we estimate the bounds for all implemented classiers

and report the smallest one achieved (see all computed bounds in

Appendix D). Figure 4 a) reveals that, except for CS-BuFLO and

Tamaraw, DeepSE-WF achieves a lower BER estimation than that

provided by WFES. We also see that the Tik-Tok error is below the

WFES estimates for all defenses which are not using constant rate

trac. Our results also show that there is a signicant margin for

the improvement of WF attacks since a large gap exists between

DeepSE-WF and Tik-Tok error, e.g., as large as ≈0.18 for Front_T1.

In addition, Figure 4 b) reveals an interesting insight regarding

WeFDE: despite its usefulness in estimating per-feature informa-

tion leakage, it does a poor job at jointly estimating the MI when

all features are involved (close to the maximum of log
2
(100) ≈ 6.65

bits) regardless of whether a defense is applied. In this regard, the

gure shows that the MI estimations of DeepSE-WF produce more

reasonable results compared to WeFDE. For example, WeFDE es-

timated the information leakage of CS-BuFLO to be close to the

maximum, suggesting that there exists an attack which is able to

perfectly classify websites when the defense is used (in contrast

to Figure 4a). DeepSE-WF estimates the information leakage to be

only 2.46 bits, which seems to be a more reasonable estimation.

DeepSE-WF ismore scalable.As mentioned in the previous para-

graph, WFES and WeFDE exhaust our testbed machine’s memory

when using datasets larger than AWF100.90 and AWF100.500, respec-

tively. In contrast, DeepSE-WF is able to process the AWF100.4500
dataset within our memory requirements, and using a maximum

of 34 GB during its operation. Figure 5 depicts the BER and MI esti-

mations obtained by DeepSE-WF (and Tik-Tok’s error) using the

AWF100.4500 dataset when compared to WFES and WeFDE in their

previous setting. Figure 5 a) reveals that data constraints can se-

verely aect the tightness of WF security estimations. For instance,
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(a) BER estimated by DeepSE-WF and WFES (AWF100 .90).
Tik-Tok’s error shown for comparison.

(b) MI estimated by DeepSE-WF andWeFDE (AWF100 .500).

Figure 4: BER and MI estimates obtained by DeepSE-WF and other WF security estimators.

(a) BER estimated by WFES (AWF100 .90). DeepSE-WF and
Tik-Toks’s error (AWF100 .4500) shown for comparison.

(b) MI estimated by WeFDE (AWF100 .500). DeepSE-WF
(AWF100 .4500) shown for comparison.

Figure 5: BER andMI estimates as obtained by DeepSE-WF and otherWF security estimators when additional data is available.

for Front_T1, the error of Tik-Tok is 0.16, and the BER estimate

provided by WFES is 0.67. In turn, DeepSE-WF estimates a BER of

≈0.10. Surprisingly, neither the estimation for CS-BuFLO nor for

Tamaraw have improved when using more data. These results al-

low us to make three observations. First, DeepSE-WF can generally

provide tighter BER estimations when provided with additional

data (e.g., it estimates a BER of ≈0.10 using AWF100.4500 vs a BER

of ≈0.48 using AWF100.90 for the Front_T1 defense). Second, addi-

tional data allows DeepSE-WF to produce estimations which lower

bound the error obtained by existing state-of-the-art WF attacks

like Tik-Tok, suggesting that even more accurate classiers can

be devised. Third, the BER estimation for constant-rate defenses

seems to converge very fast (see also Section 6.3).

DeepSE-WF is more ecient. Our experiments have also re-

vealed that, for the same problem scale, DeepSE-WF is able to

deliver WF security estimation results much faster than existing

approaches. Figure 6 depicts the wall-clock time spent by DeepSE-

WF, WFES, and WeFDE when producing estimations for dierent

amounts of per-website samples. For instance, consider a security

estimation over AWF100.90, for a single defense, using our MacBook

Pro testbed. In such a case, DeepSE-WF delivers its results within

25 min per cross-validation fold while WFES delivers its estimate

after 9h 30 min for a single classier estimation, over an order of

magnitude slower. A similar case happens for the estimation of

MI over AWF100.500, where DeepSE-WF delivers its MI estimation

within 1h 24 min and WeFDE delivers its estimate only after 8h 30

min. When we use the GPU server, DeepSE-WF can estimate BER

and MI over AWF100.4500 within 4h per cross-validation fold. Here

the training time for both neural networks takes the most time with

3h 24 min, followed by the feature extraction which takes another

22 min. The nal BER and MI estimation are signicantly faster,

Figure 6: DeepSE-WF processing time for a single CV fold
with increasing number of traces per website. WFES times
are extrapolated based on a processing time of 3.7s/trace.

only taking 4 and 7 min respectively. The above results suggest that

DeepSE-WF can scale to signicantly larger datasets and obtain

tighter security estimations when compared to existing security

estimators. Extended results can be found in Appendix D.

6.3 Convergence of the Estimations
Here, we evaluate the convergence rate of DeepSE-WF’s estimates.

Akin to Cherubin [10], we study the asymptotic behaviour of BER

in our nite AWF100.4500 data, for an increasing amount of samples.

Figure 7 depicts the evolution of DeepSE-WF’s BER estimates,

for multiple defenses, as the amount of samples available to the

estimator increases (see Appendix D). The plot shows that DeepSE-

WF reports an estimated BER below 20% for all the defenses that

try to obscure the original website trace by introducing noise (e.g.,

the Front variants), provided sucient data (≈ 2000 samples). This

could mean that our estimation method is able to learn the ran-

domly distributed noise of these defenses. In contrast, DeepSE-WF’s

BER estimation does not decrease as more data becomes available

for constant rate defenses such as CS-BuFLO and Tamaraw. This
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Figure 7: BER estimates for increasing traces per website.
suggests that DeepSE-WF converges to an estimation for the direc-

tional and timing representation with a low amount of samples.

We also experiment with the importance of the testing set (E)

size for kNN, and observed that increasing the number of samples in

E does not have a signicant impact on the BER convergence. These

results and the convergence of the MI can be found in Appendix E.

6.4 Varying DeepSE-WF’s DNN Architecture
Our earlier experiments used the DF architecture to generate BER

estimates. In this section, we explore the implications of using other

DNN architectures proposed in previous WF attacks – AWF-CNN,

TF, and Var-CNN – to generate BER estimates. We also extended

these DNNs to use a direction + timing trace representation.

We note that, towards generalizing theWF attack across dierent

scenarios and data distributions, TF is originally (pre-)trained on a

set of websites and then ne-tuned and evaluated on a dierent set,

making use of N-shot learning [76]. However, for allowing a direct

comparison of TF’s feature extractor with those of the other DNNs

evaluated in our work, we train the TF architecture following the

same methodology detailed in Section 6.1. Similarly to traditional

transfer learning methods, developing a fair comparison using TF’s

original N-shot learning technique would entail additional work

on understanding website samples’ complexity in both upstream

and downstream tasks. We relegate this task for future work.

Training DeepSE-WF’s DNNs. We re-implemented the network

architecture of deep learning-based WF attacks while using a learn-

ing rate of 0.002 with no weight decay and a batch size of 128. For

each defense and trace representation, we train the network for 50

epochs with early stopping, and nally evaluate the classication

error using the test set T before removing the last three layers.

The feature extractors of all DNN models are trained using bi-

nary cross-entropy loss, except for TF which originally uses either

L2 or cosine loss. Throughout our evaluation, we use the former

for training and estimating TF’s BER since, for all other models, we

estimate the BER by computing the k-NN error over latent features

using the (Euclidean) L2 distance. In Appendix F, we present fur-

ther results on the use of TF when considering cosine loss, which

provides tighter estimates vs. TF with L2 loss, but whose estimates

are ultimately not as tight as the ones produced by DF or Var-CNN.

Comparing the BER of dierent architectures. Figure 8 shows
a bar plot comparison between the BER obtained by DeepSE-WF

when estimating the security of WF defenses using dierent DNN

architectures on the AWF100.4500 dataset. We can see that, for con-

stant rate defenses like CS-BuFLO and Tamaraw, the dierences

between the BER estimate obtained by dierent architectures is

rather similar, varying only by a maximum of 1.9%. For other de-

fenses, we see that the choice of DNN architecture is a dening

Figure 8: BER estimation using dierent DNN architectures,
considering the AWF100.4500 dataset.

Figure 9: Mean and std.dev. BER estimation using dierent
DNN hyperparameters, considering the AWF100.500 dataset.

factor in the computation of tight BER estimates. For instance, for

the Front_T1 defense, we can observe that the AWF-CNN architec-

ture obtains a BER of 39.9%, more than double the BER obtained

when using DF (9.9%). Interestingly, the use of Var-CNN (a less re-

cent architecture than TF or Tik-Tok) leads to tighter BER estimates

for the defenses that do not produce constant-rate ows. The results

of the above experiments show that the latent features produced by

dierent DNN architectures have an impact on the estimation of

the BER. Therefore, practitioners should strive to train DeepSE-WF

with a selection of the most recent DNN architectures used in WF

attacks to obtain the tightest security estimates for a particular

defense. Ancillary experiments on the convergence behavior and

processing time of dierent DNNs suggest that practitioners can

also choose to trade-o shorter security estimate computation times

for accurate (yet looser) security estimates (see Appendix G). As an

example, the BER estimates based on Var-CNN take about 3 times

longer to complete when compared to the ones based on the DF

architecture, for a decrease of 5.7% in the BER bound for Front_T1.

Optimization of DNNs hyperparameters. To assess whether

DeepSE-WF’s results are robust with regard to the parameterization

of the DNN architecture used for estimation, we conducted a sensi-

tivity study to gauge the tightness of DeepSE-WF BER bounds when

changing a selection of the considered DNNs’ hyperparameters. In

our experiments, we chose dierent congurations for dropout and
embedding_size, representing the most important aspect for regu-

larization of neural networks and thus restricting their overtting

capability. We prevent the need for tuning hyperparameters of the

optimizer by xing a small learning rate with many epochs, and

enable early stopping for eciency. The results of our experiments,

depicted in Figure 9, show the mean and standard deviation of the

BER over all the dierent combinations of dropout ∈ (0.1, 0.2, 0.3),

and embeddinд_size ∈ (64, 128, 512) in each of the DNN architec-

tures. We can observe that the BER estimates produced by each

DNN remain rather stable, with a maximum standard deviation of

3.3% for the Var-CNN DNN when considering the Front_T2 defense.
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Table 3: Classication error (in %) for WF attacks on WF de-
fenses compared to our BER estimation on AWF100.4500.
Attacks & Estimators NoDef WTF-PAD Front_T1 Front_T2 CS-BuFLO Tamaraw

k-FP 04.1 ± 0.0 33.0 ± 0.0 41.2 ± 0.2 46.3 ± 0.1 80.9 ± 0.1 93.2 ± 0.1

AWF-CNN 03.5 ± 0.1 37.5 ± 0.9 51.0 ± 0.5 60.7 ± 0.4 84.6 ± 0.5 94.9 ± 0.1

DF 00.7 ± 0.0 07.4 ± 0.1 15.8 ± 0.1 22.9 ± 0.1 83.0 ± 0.1 94.8 ± 0.1

TF (L2 loss) 02.9 ± 0.4 45.4 ± 2.0 42.6 ± 2.1 52.2 ± 4.8 90.0 ± 0.1 97.3 ± 0.3

Var-CNN 00.7 ± 0.1 03.3 ± 0.1 06.4 ± 0.2 11.1 ± 1.3 83.0 ± 0.0 96.0 ± 2.0

Tik-Tok 01.0 ± 0.1 06.5 ± 0.2 15.9 ± 0.6 22.3 ± 0.2 82.8 ± 0.1 94.8 ± 0.1

DeepSE-WF (AWF-CNN) 01.3 ± 0.1 19.9 ± 0.2 39.9 ± 0.2 47.8 ± 0.5 67.3 ± 0.1 86.3 ± 1.1

DeepSE-WF (DF) 00.4 ± 0.0 04.2 ± 0.2 09.9 ± 0.2 14.8 ± 0.2 67.2 ± 0.1 85.4 ± 1.1
DeepSE-WF (TF - L2 loss) 01.5 ± 0.2 25.9 ± 1.3 24.3 ± 1.4 31.0 ± 3.7 69.1 ± 0.2 86.1 ± 1.2

DeepSE-WF (Var-CNN) 00.4 ± 0.0 02.2 ± 0.1 04.2 ± 0.1 07.1 ± 0.2 68.6 ± 0.5 86.3 ± 1.1

DeepSE-WF’s BER estimates vs. current WF attacks’ error.
Table 3 compares DeepSE-WF’s BER estimation against the classi-

cation error obtained by well-known WF attacks on a selection

of relevant WF defenses. The table reveals that DeepSE-WF con-

sistently obtains BER estimations below the classication error of

existing WF attacks. For instance, DeepSE-WF (Var-CNN) obtains

an average BER estimate of 7.1% for Front_T2 while the Var-CNN

attack implementation, i.e., the best performing attack against this

defense, is only able to reach an average classication error of 11.1%.

This observation is more pronounced for constant-rate padding

defenses, where k-FP actually performed better than existing deep

learning-based attacks. For instance, for CS-BuFLO, DeepSE-WF

(DF) obtains an average BER estimate of 67.2% while the k-FP attack

achieves a classication error of 80.9%. These results suggest that

WF attacks have a wide margin for further improvements.

6.5 Experiments on the DS19 Dataset
So far, our experimental evaluation leveraged the widely available

AWF [69] dataset, which was collected in 2017. Since then, there

have been a number of improvements to Tor (e.g., padding schemes

to protect against trac correlation [50]). To understand whether

more recent versions of Tor provide perceivable improvements

against WF, and whether DeepSE-WF security estimations hold

when using a more recent dataset, we used the DS19 dataset [27],

collected in 2019, to perform an additional validation of our results.

We leveraged the DS19 dataset to perform a set of experiments

that followed the same methodology used throughout this section.

Table 4 and Table 5 depict the BER estimations of dierent DNN

architectures when considering the AWF100.100 and DS19100.100
datasets, respectively. To perform a direct comparison between

these datasets, we used a sample of AWFwith 100 traces per website

to match the number of traces made available in the DS19 dataset.

For the considered datasets, DeepSE-WF’s BER estimates reveal

a similar trend to our previous experiments: the BER of constant-

rate padding defenses is typically larger than the error achieved

for other defenses, while the estimates using the DF and Var-CNN

architectures generally outperform the AWF-CNN and TF ones.

Tables 4 and 5 also reveal a discrepancy between the BER esti-

mates obtained by the same DNN when considering the dierent

datasets. Several factors may contribute to these dierences [12, 37].

First, the version of Tor used to collect DS19 incorporates multiple

updates which can translate in changes to websites’ trac patterns.

Second, since the top 100 websites included in each dataset were

drawn from the (dynamic) Alexa Top Sites list, these websites may

not be the same in both datasets. Third, even if a fraction of web-

sites are the same in both datasets, it is plausible that their content

(and their corresponding trac signatures) have changed between

Table 4: BER estimation with dierent DNNs on AWF100.100.
Architecture NoDef WTF-PAD Front_T1 Front_T2 CS-BuFLO Tamaraw

AWF-CNN 09.2 ± 0.2 50.4 ± 3.0 74.5 ± 2.7 77.9 ± 2.0 70.4 ± 1.4 84.8 ± 1.1

DF 05.0 ± 0.3 24.3 ± 0.7 46.0 ± 0.4 53.6 ± 1.3 68.7 ± 0.7 83.9 ± 0.6

TF (L2 loss) 25.3 ± 1.5 56.4 ± 1.8 73.1 ± 1.2 77.6 ± 0.8 71.3 ± 0.6 84.9 ± 0.9

Var-CNN 03.0 ± 0.3 29.1 ± 9.2 50.9 ± 2.3 61.8 ± 2.3 73.1 ± 0.9 84.3 ± 0.8

Table 5: BER estimation with dierent DNNs on DS19100.100.
Architecture NoDef WTF-PAD Front_T1 Front_T2 CS-BuFLO Tamaraw

AWF-CNN 05.9 ± 0.3 34.3 ± 1.9 68.8 ± 1.2 77.7 ± 2.3 68.0 ± 1.7 74.3 ± 1.4

DF 02.8 ± 0.2 07.3 ± 0.5 18.8 ± 0.5 30.9 ± 1.2 67.2 ± 0.6 72.5 ± 1.5

TF (L2 loss) 12.6 ± 1.0 30.1 ± 0.5 61.5 ± 1.4 71.4 ± 1.6 67.9 ± 0.7 73.7 ± 1.3

Var-CNN 03.1 ± 1.0 06.7 ± 0.4 20.7 ± 4.8 36.4 ± 5.5 72.3 ± 1.0 72.1 ± 1.2

the collection of AWF (2017) and DS19 (2019). Hardware/network

congurations of trac collectors may lead to further discrepancies.

In addition, our experiments also help showcasing dierences in

the estimates produced by dierent DNN architectures depending

on the amounts of available data. For instance, DF shows better re-

sults than VarCNN in Table 4 (when using AWF100.100), as opposed

to Table 3 (when using AWF100.4500), suggesting that VarCNN can

obtain tighter estimates at the cost of a larger training dataset.

7 THEORETICAL ANALYSIS
We now discuss provable bounds for DeepSE-WF estimates (Sec-

tion 7.1) and the relationship between BER and MI (Section 7.2).

7.1 Evaluation of Provable Bounds
Most WF defenses do not have provable bounds on the maximum

accuracy possible for any attack on them. We now introduce a sim-

ulated defense based on merged traces, where a user combines the

traces ofM websites loaded at the same time. While such a defense

implies a large overhead and would thus unlikely be considered for

hardening Tor against WF attacks in practical settings, it provides

us with compelling theoretical properties that enable us to evaluate

provable bounds of DeepSE-WF’s estimations – such a defense has

the provable property that the BER is exactly 1 − 1

M .

Merged traces. To simulate a scenario where a user can simultane-

ously loadM pages, we concatenateM − 1 randomly chosen traces

from our dataset with a pre-selected trace and then sort all packets

on the traces by their respective timestamps. In such a setting, an

adversary can at best randomly guess which website is the pre-

selected one, even in the unlikely event that she can distinguish all

M traces. With that, the adversary has at most an expected success

of
1

M , where we assume that the theoretical error for M = 1 is 0

(i.e., we can perfectly classify the undefended traces).

Evaluation.We simulate the above scenario forM ∈ [1, 10] and set

a baseline with the Tik-Tok attack [63] and the AWF100.1000 dataset.

The classication error of that attack will serve as an upper bound

of the BER. The BER is estimated using DeepSE-WF (with Tik-Tok’s

DNN) on the same dataset. Figure 10 compares our estimation and

Tik-Tok to the theoretical BER. The plot shows that for allM , we

lower-bound the Tik-Tok attack but due to the nite amount of data

and feature transformations (c.f. Section 5.3), we are not able to

provide a lower bound of the true BER. This could also be due to the

fact that correctly identifying theM websites from a single trace is

a hard problem. Another reason could be the sheer dimension of

the traces – merging up to 10 traces into a single one can increase

the overall length above 50000. Truncating the trace to a length of

5000 might ignore useful information, increasing the BER.
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Figure 10: Comparison of our estimated BER with Tik-Tok
and the theoretical BER using the merged traces.

7.2 Comparing the BER and MI
In this section, we show why using estimators of the mutual infor-

mation and the Bayes error rate result in similar insights. Although

Li et. al. [45] show that for some classiers with very small accuracy

(dierent from the Bayes classier), there exists a distribution yield-

ing high information leakage (c.f., Figure 1 and Theorem 1 in [45]),

we explain why this is not the case when relating the BER to MI. We

achieve this by relying on well-established information theoretical

bounds between the BER and MI [20, 33, 41]. To understand the

dierence between our analysis and Theorem 1 by Li et. al. [45],

note that the accuracy of the Bayes classier (1 - the BER) can not

be smaller than 1/n for classifying n dierent websites. For this, the

posterior distribution must be equal to a uniform distribution, as

the Bayes classier would have a strictly larger accuracy otherwise.

This aspect is violated in the constructed example for the proof

of Theorem 1 by Li et. al. [45], suggesting that the upper bounds

derived there are not tight for the Bayes classier accuracy. Using

Fano’s bound [20], we can lower bound the MI given the BER by:

I (W ;T ) ≥ H (|W |) − H (R∗) − R∗ log
2
(|W | − 1), (6)

where R∗ is the BER,W is the set of websites andT the traces. Like-

wise we can upper bound the MI with Kovalevskij’s [41] bounds:

I (W ;T ) ≤ min

2≤k≤ |W |
H (|W |) − log

2
(k)

− k(k + 1) log
2

(
k + 1

k

) (
R∗ −

k − 1

k

)
,

(7)

whereW is the set of websites. Fano’s [20] and Kovalevskij’s [41]

bounds are shown in Figure 11 a). To understand whether DeepSE-

WF produces reasonable MI estimations, we plug in the theoretical

BER values for the merged traces into the Fano and Kovalevskij

bounds to obtain upper and lower bounds for the true MI of our

merged traces. This exercise, depicted in Figure 11 b), reveals that

our estimation is in the range of possible MI values, while being

located close to the lower bound.

8 CONCLUSIONS
In this paper, we showed that current security estimation frame-

works overestimate the protection oered by existing WF defenses

against deep learning WF attacks. To tackle this issue, we pro-

posed DeepSE-WF, a novel method for estimating the security of

WF defenses based on Nearest Neighbors Bayes error and mutual

information estimators deployed over latent feature spaces.

While disregarding the need to manually craft features, DeepSE-

WF is notWF attack agnostic. Instead, DeepSE-WF picks one amongst

(a) (b)
Figure 11: Placement of DeepSE-WF MI estimations (b)
within the Fano and Kovalevskij bounds for MI (a).

several existing DNN architectures (used in current attacks) and cor-

responding hyperparameters that yield the best BER/MI estimate.

This methodology can be perceived as an estimate of the potential

of a given deep learning approach. Indeed, the ML literature [64]

showed that a similar technique can serve as a proxy for model

selection in transfer learning and the visual domain, but this would

require further investigation in the context of WF.

In addition, since DeepSE-WF simply picks the DNN represen-

tation that yields the lowest BER (or higher MI) estimate, it does

not provide or require further comparisons between learned repre-

sentations. Orthogonal to our work, the ML community has been

conducting a urry of work aimed at comparing (e.g., via similarity

metrics) and understanding neural network representations, rang-

ing from early work like centered kernel alignment (CKA) [40], to

modern approaches like model stitching [2, 15, 44].

Despite its reliance in known attacks, DeepSE-WF oers com-

pelling opportunities to improve the design and evaluation process

of WF defenses by a) allowing researchers to evaluate WF defenses

against the potential exhibited by state-of-the-art DNN-based at-

tacks, and b) prompting future research on the eectiveness of WF

defenses to analyse sample complexity and convergence. From our

theoretical understanding, we know to which value a BER or MI

estimate should converge (exactly for synthetic traces).

Limitations and future directions. Our work has laid out the

groundwork for a more comprehensive set of experiments on the

examination of WF defenses’ security estimation methods.

First, in contrast to WFES and WeFDE, our method analyses

latent feature spaces and is unable to provide human-interpretable

data about the most informative trac features (i.e., which trac

features should be better hidden when developing new defenses).

Nevertheless, we stress that ourmethod does not ignore information

from the defended traces’ representations, and that current research

trends on explainable deep learning [48, 67] may allow DeepSE-WF

to produce interpretable feature analyses in the future.

Second, DeepSE-WF does not provide security estimations for

defenses in the open-world setting due to the lack of exact number

of classes and known prior website probabilities in this setting. The

latter is crucial for formulating information theoretical quantities

such as MI or the BER. Nonetheless, as stressed out in Section 2, as-

suming a uniform probability for websites in a closed-world setting

yields a lower bound for the security of any defense mechanism.

Given this fact, we are, by comparing lower bound estimates, unable

to assess, for instance, whether two defenses that provide rather

disparate security guarantees in the closed-world setting can oer

similar security in the open world setting. An interesting direction

for future work would be to adapt DeepSE-WF to enable security

estimations in the open world setting.
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APPENDIX
A Alternate MI Estimators
When building DeepSE-WF, we have also considered MINE [3],

another recently proposed method for estimating the MI of high

dimensional variables. Similar to our work, MINE requires the

training of neural networks to generate learned features used in

estimations. However, MINE may unpredictably over- or under-

estimate MI due to its sensitivity to hyperparameters and to the

use of particular neural network structures [3]. Thus, while promis-

ing, we relegate a comprehensive study of the ability of MINE to

accurately estimate the security of WF defenses for future work.

Nevertheless, we deliver a preliminary comparison of DeepSE-

WF andMINE, by selecting a set ofMINE hyperparameters that max-

imize MI for our (non-) defended data. As we see in Figure 12, both

approaches produce reasonably close estimations. Therefore, we

pragmatically chose to use a kNN-based MI estimation in DeepSE-

WF since we can use the same learned features both for estimating

the BER and MI, and our approach does not depend on hyperpa-

rameter tuning (apart from that already performed in the original

WF attacks’ DNNs we used to learn latent features).

B MI and Feature Transformations
We prove the following statement made in the main body of this

work:

Lemma .1. For any deterministic transformation f and two random
variablesX and Y , where a realization of x ∼ X represent the features
of a sample and y ∼ Y its label, it holds that I (X ;Y ) ≥ I (f (X );Y ),
where I (·; ·) represent the mutual information.
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Figure 12: Comparison of DeepSE-WF and MINE MI bounds
(AWF100.4500).

Proof of Lemma .1: Notice that Y → X → f (X ) for a Markov

chain, i.e. f (X ) and Y are independent given X . Applying the data
processing inequality [14], it directly follows that I (Y ; f (X )) ≤

I (Y ;X ). Symmetry of the mutual information concludes the proof.

�

C Defending the Dataset
To evaluate our estimation approaches and assess their performance,

we used a number of defenses which are simulated on the timing

representation. While we use default parameters for WF defenses,

as suggested in their original papers, here we shed light on the

particular congurations used.

We used the WTF-PAD [38] implementation included in the

repository of WFES [10], and two versions of Front [27] with pa-

rameters Nc = Ns = 1700,Wmin = 1 andWmax = 14 for Front_T1

and Nc = Ns = 2500 for Front_T2. Since Front_T2 has a larger

sampling window, it should induce more dummy packets to the

trace and therefore have a higher BER than Front_T1. For CS-

BuFLO [6] and Tamaraw [7], we use the parameters d = 1 and

2
−4 ∗ 1000 ≤ ρ ≤ 2

3 ∗ 1000 and ρout = 0.04, ρin = 0.012 with

L = 50, respectively.

D Extended Results
This section oers a more comprehensive numerical outlook on

the estimations provided by DeepSE-WF and past WF security

estimation frameworks.

DeepSE-WF estimates. Table 6 includes the nal BER (in %) esti-

mated by DeepSE-WF for an increasing number of samples per web-

site, including the standard deviation of our 5-fold cross-validation.

Table 7 includes the nal MI (in bits) estimated by DeepSE-WF

in the same conditions. We show these results in addition to the

graphical overview shown in Figure 7 and Figure 13.

WFES Bayes Error Rate estimates. Table 8 shows the BER esti-

mates produce by WFES (over the AWF100.90 dataset) for dierent

feature sets considered by well-knownWF attacks based on manual

feature engineering. We can observe that WFES obtains the ma-

jority of its smaller bounds estimates when using the k-FP attack

feature set, while generally overestimating the results obtained by

DeepSE-WF, even for the same amount of samples (refer to column

90 in Table 6).

WeFDE and MINE mutual information estimates. Table 9 de-
picts the mutual information estimates obtained by WeFDE and

Figure 13: DeepSE-WFMI estimation for increasing number
of traces per website (AWF100.4500).

Figure 14: BER estimations for increasing number of sam-
ples for the kNN estimation while keeping the feature em-
beddings xed (AWF100.4500).

MINE over the AWF100.500 and AWF100.4500 datasets, respectively.

The numbers in this table suggest that WeFDE overestimates MI

when compared to MINE, and that MINE obtains similar results

to DeepSE-WF’s kNN-based MI estimates (refer to the rightmost

column of Table 7).

E Convergence Plot for Mutual Information
Figure 13 shows the convergence for our MI estimation. We see

that using more data increases the MI estimation, except for Tama-

raw which decreases to 0. Figure 14 shows the convergence of

the BER estimation as we increase the number of samples for the

kNN estimation while keeping the feature embeddings xed. The

results show that our kNN-based BER estimator does not provide

signicantly dierent results with increasing amounts of data. This

suggests that the major improvements on BER estimations when

using more data (like those shown when comparing Figure 4 and

Figure 5 are likely explained by the fact that the neural network is

able to produce more accurate learned features.

F Extended Analysis of TF Estimates
The main body of our paper presents the results for the TF DNN

while using the L2 loss during the training process and L2 distance

on the k-NN classication step. In this section, we shed additional

light on the results obtained while using TF with the alternative

cosine loss (and distance) also used in the original TF paper [76].

The TF attack error and DeepSE-WF’s (TF) BER estimates.
Table 10 depicts the classication error of the TF attack and DeepSE-

WF (TF)’s BER estimates on the AWF100.4500 dataset, when using

the L2 and cosine loss. We can see that, mirroring the conclusions

from the original TF paper [76], the use of cosine loss allows the TF
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Table 6: DeepSE-WF Bayes error rate estimation (in %) for multiple number of traces per website.

Traces 60 90 100 500 1000 2000 4500

NoDef 7.7 ± 0.6 5.1 ± 0.4 5.0 ± 0.3 1.4 ± 0.2 1.0 ± 0.0 0.6 ± 0.1 0.4 ± 0.0

WTF-PAD 34.0 ± 0.6 26.3 ± 1.2 24.3 ± 0.7 9.4 ± 0.4 7.0 ± 0.1 5.0 ± 0.3 4.2 ± 0.1

Front_T1 54.5 ± 1.5 48.4 ± 0.7 46.0 ± 0.4 19.5 ± 0.5 15.6 ± 0.3 11.8 ± 0.6 9.9 ± 0.2

Front_T2 61.2 ± 2.3 56.1 ± 1.2 53.6 ± 1.3 27.6 ± 0.3 22.7 ± 0.6 18.3 ± 0.2 14.8 ± 0.2

CS-BuFLO 69.6 ± 1.4 68.6 ± 0.7 68.7 ± 0.7 68.5 ± 0.3 67.9 ± 0.2 67.8 ± 0.1 67.2 ± 0.1

Tamaraw 84.1 ± 1.3 83.5 ± 1.5 83.9 ± 0.6 84.6 ± 0.9 84.4 ± 0.4 85.4 ± 0.5 85.4 ± 1.1

Table 7: DeepSE-WF mutual information estimation (in bits) for multiple number of traces per website.

Traces 60 90 100 500 1000 2000 4500

NoDef 5.93 ± 0.0 6.31 ± 0.0 6.34 ± 0.0 6.51 ± 0.0 6.54 ± 0.0 6.58 ± 0.0 6.59 ± 0.0

WTF-PAD 4.00 ± 0.0 4.82 ± 0.1 5.00 ± 0.0 6.00 ± 0.0 6.17 ± 0.0 6.38 ± 0.1 6.36 ± 0.0

Front_T1 2.74 ± 0.0 3.41 ± 0.1 3.59 ± 0.0 5.34 ± 0.0 5.62 ± 0.0 5.99 ± 0.1 5.98 ± 0.0

Front_T2 2.20 ± 0.0 2.82 ± 0.0 2.94 ± 0.1 4.74 ± 0.0 5.08 ± 0.0 5.45 ± 0.1 5.59 ± 0.0

CS-BuFLO 2.09 ± 0.0 2.34 ± 0.0 2.35 ± 0.0 2.46 ± 0.0 2.49 ± 0.0 2.48 ± 0.0 2.51 ± 0.0

Tamaraw 1.06 ± 0.0 0.98 ± 0.0 0.93 ± 0.0 0.29 ± 0.0 0.13 ± 0.1 0.08 ± 0.1 0.00 ± 0.0

Table 8: WFES Bayes error rate estimations (in %) using the feature sets from WF attacks that use manually-crafted features
over the AWF100.90 dataset. Estimates marked in bold are used in Figure 4 and Figure 5.

Attack Feature Set k-NN [80] k-FP [31] CUMUL [58] LL [46] vng++ [19]

NoDef 23.6 26.4 11.5 38.1 33.9

WTF-PAD 55.2 47.0 48.2 67.8 62.6

Front_T1 71.2 66.9 71.9 80.8 78.7

Front_T2 77.0 72.6 76.7 83.8 81.3

CS-BuFLO 68.0 67.5 67.8 71.0 67.8

Tamaraw 83.9 84.6 83.8 85.1 83.6

Table 9: Mutual information estimation (in bits) of WeFDE and MINE when using the AWF100.4500 dataset.

MI Estimator WeFDE MINE

NoDef 6.63 6.44

WTF-PAD 6.60 6.30

Front_T1 6.59 6.01

Front_T2 6.64 5.79

CS-BuFLO 6.55 2.53

Tamaraw 6.58 0.98
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(a) BER using AWF-CNN (AWF100 .4500). (b) BER using TF - L2 loss (AWF100 .4500). (c) BER using Var-CNN (AWF100 .4500).

Figure 15: BER estimates obtained by DeepSE-WF when using AWF-CNN (a), TF - L2 loss (b), and Var-CNN (c) architectures.

attack to obtain better results than when using L2 loss. Specically,

while there is not a signicant dierence in the results obtained

for constant rate defenses, the use of cosine loss in TF’s training

procedure allows the attack to decrease its classication error by

as much as 17.3% for the WTF-PAD defense.

We can observe a similar trend when analyzing the BER esti-

mates produced by DeepSE-WF (TF), where the use of cosine loss

in TF’s training also allows for obtaining tighter estimates than

those achieved when using L2 loss. For instance, for the Front_T1

defense, DeepSE-WF (TF - L2 loss) achieves a BER of 24.3%, while

DeepSE-WF (TF - cosine loss) achieves a BER of 17.5%. Neverthe-

less, DeepSE-WF’s (TF - cosine loss) BER estimates are looser than

those obtained when training DeepSE-WF with the DF or Var-CNN

architectures (refer to Table 3). As an example, while DeepSE-WF

(TF - cosine loss) achieves a BER of 17.5% for the Front_T1 defense,

DF achieves 9.9% and Var-CNN achieves 4.2%.

TF experiments on the DS19 dataset. Tables 11 and 12 depict

the results obtained while using the two versions of TF to estimate

the BER when using the AWF100.100 and DS19100.100 datasets. Both

sets of experiments follow the trend previously identied in this

section, where training TF with cosine loss allows us to obtain

tighter BER estimates than when using L2 loss. Nevertheless, results

still fall short of those obtained when using the DF or Var-CNN

architectures (refer to Tables 4 and 5).

G Convergence Behavior and Eciency of
Alternative DNNs

In this section, we start by analysing the convergence behavior of

other DNNs (AWF-CNN, TF - L2 loss, and Var-CNN) focused in

Section 6.4 when producing security estimates with DeepSE-WF.

Like our main results presented throughout Section 6, we show

the results obtained when training DeepSE-WF’s DNNs according

to the procedure described in Section 6.4. Then, we explore the

eciency of producing these BER estimates using the same DNNs.

Convergence behavior: Figure 15 shows the BER estimates of

DeepSE-WF using AWF-CNN, TF, and Var-CNN for an increasing

number of traces per website. The plots show that all DNNs output a

quite stable BER estimation for the constant-rate defenses, similarly

to our observation when using the DF DNN (Figure 7). However, the

plots also reveal that these architectures behave dierently with re-

spect to other defenses. Compared to DF (Figure 7), AWF-CNN (Fig-

ure 15a)) and TF (Figure 15b)) show a less pronounced convergence

for an increasing number of traces. For instance, for AWF-CNN,

the BER estimation of Front_T1 decreases only from 77.3% to 39.9%,

whereas TF’s BER estimation for Front_T1 decreases from 71.7%

Table 10: Classication error (in %) for the TF attack on WF
defenses compared to TF BER estimates on AWF100.4500.
Attacks & Estimators NoDef WTF-PAD Front_T1 Front_T2 CS-BuFLO Tamaraw

TF (L2 loss) 02.9 ± 0.4 45.4 ± 2.0 69.3 ± 0.7 77.5 ± 0.2 90.4 ± 0.2 97.5 ± 0.3

TF (cosine loss) 03.0 ± 0.1 16.5 ± 0.2 31.9 ± 0.5 43.4 ± 0.1 89.9 ± 0.1 97.3 ± 0.3

DeepSE-WF (TF - L2 loss) 01.5 ± 0.2 25.9 ± 1.3 24.3 ± 1.4 31.0 ± 3.7 69.1 ± 0.2 86.1 ± 1.2

DeepSE-WF (TF - cosine loss) 01.0 ± 0.1 08.6 ± 0.1 17.5 ± 0.3 24.8 ± 0.1 69.0 ± 0.2 86.1 ± 1.3

Table 11: BER estimates obtained by the two TF alternatives
on the AWF100.100 dataset.
Architecture NoDef WTF-PAD Front_T1 Front_T2 CS-BuFLO Tamaraw

DeepSE-WF (TF - L2 loss) 25.3 ± 1.6 56.4 ± 1.8 73.0 ± 1.3 77.6 ± 0.9 71.3 ± 0.5 84.9 ± 0.9

DeepSE-WF (TF - cosine loss) 17.7 ± 0.5 47.9 ± 0.8 65.8 ± 1.2 70.1 ± 1.1 71.0 ± 0.9 85.3 ± 0.7

Table 12: BER estimates obtained by the two TF alternatives
on the DS19100.100 dataset.
Attacks & Estimators NoDef WTF-PAD Front_T1 Front_T2 CS-BuFLO Tamaraw

DeepSE-WF (TF - L2 loss) 12.7 ± 0.9 30.1 ± 0.5 61.6 ± 1.4 71.4 ± 1.7 67.9 ± 0.7 73.7 ± 1.3

DeepSE-WF (TF - cosine loss) 08.3 ± 0.2 20.3 ± 0.5 42.4 ± 2.0 52.4 ± 1.6 67.9 ± 1.2 73.5 ± 1.3

Figure 16: DeepSE-WF processing time for a single CV fold
while increasing number of traces per website, while using
dierent DNN architectures (AWF100.4500).

to 24.3%. In turn, Var-CNN (Figure 15c)) seems to struggle when

the dataset size is small, with the BER estimate of Front_T1 (67.1%)

being higher than the one for Front_T2 (63.8%) with AWF100.100.

The architecture shows large improvements on the estimate of the

BER once the dataset size increases, with Front_T1 decreasing from

67.1% to 7.4% when all traces are considered.

Eciency: Figure 16 depicts the processing time spent by each of

the considered DNN architectures when producing estimates for

dierent amounts of per-website samples. We can see that, while

providing tighter BER estimates than other architectures, Var-CNN

takes about 2, 4, and 20 times longer to train compared to TF, DF

and AWF-CNN, respectively, on our GPU machine.
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