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ABSTRACT
DNS manipulation is one of the most prevalent and effective tech-
niques for censoring Internet access and interfering with users’
online activities worldwide. Reliable detection of DNS tampering is
crucial, but challenging due to evolving censorship tactics and the
lack of complete ground truth data. In this paper, we demonstrate
the power of machine learning (ML) in addressing these challenges
by applying supervised and unsupervised models to recent global
DNS measurement data collected by the Open Observatory of Net-
work Interference (OONI). Our models achieve high accuracy in
learning expert-defined heuristics for DNS tampering and uncover-
ing new manipulation instances missed by rule-based approaches.

Through an extensive analysis evaluating different training data
volumes and time windows from one to 24 months, we provide key
insights into how the quantity and diversity of data, as well as evolv-
ing censorship behaviors, impact model performance over time.
Remarkably, our ML detector can enhance traditional heuristics
by accurately identifying DNS fingerprints with high confidence.
These findings underscore the effectiveness of ML techniques in
detecting global DNSmanipulation at scale while adapting to emerg-
ing censorship tactics.

To foster future research, we will release our regularly updated
models, enabling the development of robust, sustainable censorship
detection systems capable of withstanding the dynamic landscape
of Internet censorship worldwide. Our work paves the way for more
proactive interventions that safeguard Internet freedom globally.

KEYWORDS
DNS Tampering, Anomaly Detection, Machine Learning

1 INTRODUCTION
The Domain Name System (DNS) is vital for Web connectivity. DNS
maps human-readable domain names to numerical IP addresses,
which are necessary for routing traffic on the Internet. Due to the
insecure and unauthenticated design of the traditional DNS res-
olution process, DNS is often targeted and abused by malicious
actors [19, 22, 27]. DNS tampering occurs when DNS answers are
manipulated for illicit purposes, interfering with the normal reso-
lution process.
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The DNS resolution process can be tampered with by a va-
riety of entities such as rogue DNS resolvers [36], DNS injec-
tors [1, 14, 23], or Internet Service Providers (ISPs) [17] or subtly
disrupting Web access [22]—-to redirecting users to harmful sites
for distributing malware or monetizing through ads [19, 37]. The
manipulated answers often take the form of no responses [22],
DNS error messages (e.g., NXDOMAIN) [4, 21, 22], private IP ad-
dresses (e.g., 127.0.0.1 [3, 6, 7, 13, 23]), or routable but wrong IP
addresses [1, 13, 14, 22]. To add to the complexity, discrepancies
in DNS answers can also happen for legitimate reasons such as
DNS-based load balancing [31, 32]. As a result, detecting DNS ma-
nipulation is challenging since tampering signatures can vary across
resolution vantage points, countries, and over time.

Prior studies have attempted to detect DNSmanipulation, usually
by leveraging heuristic methods [22, 27]. The basic approach in-
volves evaluating the consistency between DNS responses observed
at the testing and control sites. The latter of which is assumed to be
uncensored. More specifically, IP addresses resolved for the same
domain name are compared between the two sites to see if they
match or belong to the same Autonomous System (AS). If they do
not match, then DNS manipulation is suspected and vice versa.

Such approaches, however, could result in inaccurate inference
due to the aforementioned legitimate reasons. For instance, if the
control site is located in a distant location than the testing site the IP
addresses resolved for the same domain name may not match due to
DNS-based load balancing or sites hosted on different Content De-
livery Networks (CDNs) [27, 31]. Taking advantage of such dynamic
behaviors as part of normal Internet operations, sophisticated cen-
sors like China’s Great Firewall (GFW) have been observed to evade
detection by injecting different routable but wrong IP addresses to
hinder straightforward detection [1, 13, 14].

The advent of machine learning (ML) has recently enabled re-
searchers to automatically learn tampering heuristics and uncover
new manipulation instances missed by hardcoded rules, effectively
detecting DNS manipulation by the GFW, one of the most sophisti-
cated censors in the world [5]. However, the applicability of these
models at global scale and their effectiveness in detecting evolving
tampering over time remain unknown. In this paper, we advance
these efforts by applying the approach proposed previously on
recent measurement data at global scale. Given the increasing ad-
vancement of machine learning and the plethora of new global
measurement data, we believe that this research direction will be
of interest to both networking and Internet freedom communities.

To that end, the contributions of this paper lie in our investi-
gation of the extent to which the ML approaches are valid and
applicable to global scale. We train both supervised and unsuper-
vised models on the network measurement data collected from
around the world by the Open Observatory of Network Interfer-
ence (OONI) [26]. Our models achieves comparable performance in
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learning tampering heuristics. We also train models with incremen-
tally expanding data windows–from one to 24 months—-to explore
how increased coverage of diverse volunteer data and evolving
censorship affect model accuracy and validity. Furthermore, we
demonstrate how an automatic ML detector can augment heuristic
approaches by identifying DNS fingerprints with high confidence,
thereby improving blocking signature detection.

We will release our models and regularly update them to cope
with potential changes in DNS tampering around the world and
encourage future research in this domain 1.

2 BACKGROUND AND MOTIVATION
This section provides an overview of DNS manipulation and the
associated detection challenges. We also explore how advance-
ments in machine learning contribute to addressing these issues
and outline the motivation for our research in demonstrating the
effectiveness of ML for automated DNS tampering detection.

2.1 DNS manipulation and challenges in
detection

The Domain Name System (DNS) plays a crucial role in almost
every Internet communication by mapping human-readable do-
main names to numerical IP addresses needed for routing traffic.
However, the traditional DNS resolution process is vulnerable to
manipulation due to its insecure and unauthenticated design [20].
DNS manipulation occurs when DNS responses are tampered with,
interfering with the normal resolution process [1, 8, 14, 28, 31, 33].

Several entities like rogue DNS resolvers, DNS injectors, or Inter-
net Service Providers (ISPs) can carry out DNS manipulation. Their
objectives range from censorship [1, 14, 23, 28, 31, 33], where users
are blocked from accessing certain websites, to redirection to mali-
cious sites for distributing malware or phishing attacks [8]. The ma-
nipulated DNS responses often take the form of no responses, DNS
errors [4, 21, 22], non-routable private IP addresses [3, 6, 13, 23],
or routable but incorrect IP addresses [1, 13, 14, 22]. Due to the
foundational role of DNS in Web access and the ease of implemen-
tation, DNS manipulation has become one of the most common
and effective methods for interfering with users’ online activities,
especially in repressive regions of the world.

Detecting DNS manipulation is challenging for several reasons.
Firstly, DNS tampering signatures can vary across measurement
vantage points, countries, and over time as censors continuously
evolve their techniques [5]. For example, China’s Great Firewall
(GFW) has been known to dynamically change DNS tampering
behaviors over the past two decades [1, 12, 14]. Furthermore, dis-
crepancies in DNS responses can legitimately occur due to factors
like DNS-based load balancing or sites hosted on different Con-
tent Delivery Networks (CDNs) [31]. Obtaining ground truth data
on DNS tampering worldwide is also difficult. Collectively, these
factors pose significant challenges in accurately detecting DNS
manipulation at scale.

Previous studies have attempted to detect DNS manipulation by
leveraging heuristic methods that evaluate the consistency between
DNS responses observed at the testing and control sites [9, 22].
However, such approaches can result in inaccurate inferences due
1https://github.com/InternetCensorship/dns_ml_scripts

to the aforementioned legitimate reasons for discrepancies while
censors continuously evolve their techniques to hamper detection
and circumvention [5]. Moreover, independent confirmation of
suspected manipulation can be expensive and requires a significant
amount of manual effort and expertise. As a result, reliably detecting
DNS manipulation requires advanced techniques that can learn
complex patterns and account for the various factors influencing
DNS responses.

2.2 Machine learning as an emerging approach
Given the challenges in reliably detecting DNS manipulation using
rule-based heuristic methods, machine learning (ML) has recently
emerged as a promising approach to tackle many security and
networking problems [2, 11, 15, 29]. ML techniques have also been
shown to be able to automatically learn the complex patterns and
signatures of DNS tampering from data, without requiringmanually
defined rules [5]. This ability to discover intricate relationships
makes ML a plausible solution for detecting DNS manipulation at
scale, especially in the face of evolving censorship tactics.

Several recent works have applied ML models to identify DNS
censorship instances missed by rule-based approaches. By training
on large network measurement datasets, these ML models can
learn expert-defined heuristics as well as uncover new blocking
signatures. Their performance has demonstrated the effectiveness
of ML in automatically detecting sophisticated DNS manipulation
tactics employed by nation-state censors.

However, prior work applied ML in this context has been limited
to specific countries or regions, such as China [5]. The generalizabil-
ity of these ML models to new countries and evolving censorship
behaviors over time remains an open question. As censors con-
stantly adapt their techniques to avoid detection, the robustness
and longevity of trained ML models needs to be evaluated.

Moreover, the lack of complete ground truth data on global
DNS manipulation poses challenges in training and evaluating ML
models accurately. Supervised models require high-quality labeled
data, while unsupervised anomaly detection methods need careful
delineation of “normal” vs “anomalous” patterns.

This work aims to advance the application of ML for detecting
DNS manipulation at global scale over time. By replicating previous
approaches on recent worldwide network measurement data, we
investigate the portability and sustainability of ML models for this
problem. Our techniques for curating training data and addressing
sampling biases can inform future efforts. Ultimately, our goal is
to develop robust, regularly-updated ML models that can reliably
identify evolving DNS tampering tactics used by censors around
the world.

3 DATA COLLECTION AND MACHINE
LEARNING PIPELINE

This section describes the dataset used in our study, the rationale
behind our choice of this dataset, and the machine learning pipeline
we developed to detect global DNS tampering. Figure 1 illustrates
our machine learning pipeline from data collection to detection of
DNS tampering using the OONI dataset.
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3.1 Dataset
Our study utilizes data from OONI [9], which is one of the earliest
efforts to monitor global Internet censorship, offering both raw
data and labels essential for our analysis. OONI stands out as the
sole platform providing comprehensive and up-to-date dataset with
labels on global censorship at the time of our study. Initially, we
also intended to use Satellite dataset [31] from the Censored Planet
project [34], but recent changes in the format of their dataset and
a lack of labeled data limited our capacity to use this resource. As
detailed in §4, the availability of labeled data is essential for the
evaluation of our ML models.

OONI’s efforts in monitoring Internet censorship contribute sig-
nificantly to our understanding of network interference, offering
insights into network performance and censorship incidents. With
an extensive collection of over 1.7 billion measurements from more
than 200 countries as of the time of our study, OONI’s dataset is
invaluable for training and testing our models [26]. However, lever-
aging this vast dataset also presents several challenges, particularly
in data engineering, to make it amenable to machine learning (ML)
applications. We discuss these challenges and our approaches to
address them in the following subsection.
Initial dataset. Our initial dataset comprises OONI probes col-
lected over a two-year period, from January 1, 2022, to December
31, 2023, leveraging OONI’s “blocking” label to train supervised
models and evaluate the accuracy of unsupervised models. It is
important to note that obtaining ground truth for DNS tamper-
ing is challenging, and OONI’s “blocking” label may contain false
positives flagged as anomalies [25]. We get multiple models, both
supervised and unsupervised, trained on the same dataset to explore
the differences between OONI’s labels and the models’ output. This
approach allows us to comprehensively understand the complex
nature of DNS tampering and identify critical factors that influence
anomaly detection.

3.2 Data cleaning and preprocessing
Ensuring the high quality of training datasets is crucial for the effec-
tiveness of machine learning models, as it directly influences their
ability to identify patterns accurately. This is particularly true in
DNS tampering detection, where a DNS failure could indicate tam-
pering, requiring distinguishing from measurement failures caused
by generic network errors or issues with the client device. This is
even more critical for unsupervised models that determine under-
lying structures without labeled data. To improve the quality of the
OONI dataset, we sanitize the data by removing records with miss-
ing values and failed measurements, normalize the data formats,
and convert categorical variables into numerical representations
through one-hot encoding.

Table 1 provides a summary of the initial dataset and the pre-
processed dataset, including the number of records labeled as DNS
censorship or not.
Dropping invalid records. To ensure high quality of training
datasets, we set up criteria for the inclusion of records from OONI’s
dataset. Recognizing that normal operational failures–not neces-
sarily related to censorship–can lead to missing or invalid data, we
filter out such records. Specifically, we exclude records with incom-
plete or incorrect probe ASN and resolver ASN, which represent

Duration Jan. 1, 2022 - Dec. 31, 2023

Initial dataset 888M
Pre-processed dataset 800M
Clean 766M
Anomalous DNS 5.20M

Pre-encoding Features 14
Encode Features 73

Table 1: Number of records and features in our curated
datasets.

the ASN information of the measurement location and the DNS re-
solver used, respectively. These features are crucial for the effective
training of our model. In addition, records with an undetermined
body proportion are removed to maintain the dataset’s accuracy, as
this value is also used for training. Finally, we exclude the country
code from our dataset as this categorical variable is not used in
training the model.

To tailor our datasets specifically for DNS anomaly detection,
we retain only records marked as “accessible” or “DNS tampered.”
This process ensures the dataset’s high quality. Table 1 illustrates
the number of data retained after applying these filters, confirming
the adequacy of our datasets for training our ML models.

Filling missing fields in the control datasets. In our ML models,
one of the important features is the matching between the ASNs to
which the IP addresses of the DNS response belong and the ASNs
of the IP addresses received by the control node. However, not
all OONI’s control records contain IP-to-ASN data, as this was an
enhancement integrated into the OONI platform starting in 2023.
To adapt our models for analysis of data points collected prior to
this enhancement, we fill the missing fields in the control datasets,
which are crucial for our model training. To accomplish this, we
utilize services from Team Cymru [35] and IPinfo.io [16].

Team Cymru offers historical IP to ASN lookup services and sup-
ports bulk queries, enabling us to retrieve precise ASN information
corresponding to the time when the data was collected. However,
occasionally, it returns multiple ASNs for a single IP address, which
could be attributed to various factors such as “multihoming” or
“sub-allocating”. In the case where multiple ASNs are returned,
we utilize IPinfo.io to determine the most appropriate ASN from
the available options. IPinfo.io does not provide historical data,
which is the primary reason for not using it exclusively across all
experiments. Instead, it serves as a complement to Team Cymru,
contributing to the enhancement of our control dataset’s accuracy.

Classifying “clean” and “anomalous” data. In the OONI dataset,
a record is classified as “clean” if it is not marked as “DNS tampered”
by OONI and if the IP addresses it returns are consistent with those
observed by OONI’s control node. Records that do not meet these
criteria are labeled as “anomalous.” In our unsupervised learning
models, we train the algorithms using data labeled as “normal” (i.e.,
clean), while acknowledging the potential for rare and minimal
false positives [25], assuming that the data is unlikely to have DNS
tampering instances. In our supervised learningmodels, the training
datasets include a mix of both “clean” and “anomalous” records.
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Figure 1: Our ML pipeline from data collection to DNS anomaly detection using OONI dataset.

3.3 Addressing biases with data sampling and
balancing

Despite OONI’s extensive global coverage, significant disparities
exist in measurement volumes across countries due to reliance on
volunteer contributions. For instance, by the end of 2023, the US
had a measurement count that was 28 times higher than that of
Turkey. This difference can be attributed to OONI’s reliance on
volunteer contributions for data collection, with certain regions
facing challenges in volunteer recruitment.

To address these disparities and ensure a balanced analytical
perspective, we implement a stratified random sampling approach
to avoid any potential biases resulting from uneven sample distri-
bution and provide a representative global dataset. This approach
divides the data into subgroups (i.e. strata) based on the country
code of each probe. We then draw a proportional, random sample
from each stratum, thereby ensuring that our sample accurately
mirrors the characteristics of each subgroup and the collective
dataset.

To mitigate sampling biases, we train and evaluate our models
using different sample sizes of 2.5%, 5%, and 20% to better identify
potential issues arising from varying sample sizes

3.4 Feature Selection

Initial selection. The OONI dataset comprises various features.
To mitigate the risk of over-fitting, where the model could learn
irrelevant details rather than underlying patterns, we exclude IP
addresses and domains from our training set. This decision is based
on the limited shared IP address records, which could lead themodel
to prioritize noise over meaningful patterns. Our model includes
both resolver ASN and probe ASN to account for topological factors

of the client and resolver. Table 2 presents the complete set of
features retained for our training.

Feature scaling. For categorical variables, we employ one-hot
encoding to convert them into numerical representations. This
involves assigning a unique numeric identifier to each distinct level
within a variable, facilitating one-hot encoding. For variables like
http experiment failure and dns experiment failure, which are in
string format, we group the strings into predefined error categories
before applying one-hot encoding.

Unlike other variables, for the ASNs related to both probes and
resolvers, we apply the encoding without assigning unique labels
to each ASN. Instead, we directly encode them to retain structural
or hierarchical information inherent in the ASNs.

ASN control match. In addition, we also introduce a derived
feature, “ASN control match”, to offer a looser interpretation of
whether ASNs differ between the control and testing sites. This
feature is set to 1 if there is any overlap between the resolved ASN
and control ASN, indicating at least one common ASN.

3.5 Training

Dataset curation.We partition the dataset into three separate sets:
training (80%), validation (10%), and testing (10%). When training su-
pervised models, we combine “clean” and “anomalous” data in each
set. However, for unsupervised models, we use only “clean” data
for training, while both “clean” and “anomalous” data are included
in the validation and test sets. The rationale behind this approach
is to ensure that the model is trained on normal data, which is more
abundant, while also being exposed to anomalies during validation
and testing to evaluate its performance in detecting DNS tampering.
We use the validation set to choose hyper-parameters, settings that
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Table 2: Description of the features used to train our machine learning models

Feature Name Data Type One-Hot Encoded Derived Description

probe_network_name Discrete Y N Network name where the testing client is located
resolver_network_name Discrete Y N Network name of DNS resolver used by testing client
domain_name Discrete Y N Domain being tested during experiment
dns_experiment_failure Discrete Y N Indicates failure in DNS experiment
http_experiment_failure Discrete Y N Indicates HTTP connection failure despite DNS consis-

tency
status_code_match Discrete Y Y Checks HTTP status code match at client and control

server
headers_match Discrete Y Y Compares HTTP headers at client with those at control

server
title_match Discrete Y Y Verifies webpage title match at client and control server
probe_asn Discrete Y N Testing client ASN
resolver_asn Discrete Y N ASN of DNS resolver used by testing client
test_runtime Continuous N N Total runtime of test, in seconds
measurement_start_time Continuous N N Start time of the measurement
asn_control_match Discrete N Y Checks if DNS response ASN matches control ASN
body_proportion Continuous N Y Measures proportionality between control and response

body

guide the model’s learning, and held-out tests, using new data to
check the model’s performance, for overall performance evaluation.
Iterative feature selection. For our final feature set determination,
we utilize an iterative process wheremodels were trained on various
combinations of explanatory variable sets. Our best models include
both resolver ASN and probe ASN, resulting in higher reliability.We
analyze their FNR (False Negative Rate), FPR (False Positive Rate),
ACC (Accuracy), SHAP (Shapley Additive exPlanations) values
to understand each feature’s impact. Based on these insights, we
update the feature set in our training dataset to optimize for both
interpretability and accuracy in our model’s performance.

3.6 Time window
To examine how the training dataset size and time span affect
model performance, we adopt an expanding window evaluation
method. We begin with a training set comprising 2.5% of the data
from December 2023 and incrementally expand backward in time,
adding data from each month until we reach January 2022. This
approach allows us to determine whether larger window sizes lead
to better anomaly detection accuracy and evaluate the coverage
needed for our models to maintain their usefulness and accuracy.

3.7 ML algorithms
We adopt two unsupervised models–Isolated Random Forest
(IF) [18] and the One-Class Support Vector Machine (OCSVM) [30]–
and one supervised model, XGBoost (XGB) [10]. Each model un-
dergoes a detailed tuning process where we adjust and test various
parameters to optimize performance.
Isolation Random Forest (IF) [18]. This unsupervised model,
constructed with decision trees similar to Random Forests, does
not need predefined labels, which is advantageous for anomaly
detection, particularly in situations like DNS manipulation where

ground truth is not trivial to obtain. It effectively isolates outliers by
dividing the data using chosen features, making it highly effective
for pinpointing unusual data points.

One-Class Support Vector Machine (OCSVM) [30]. OCSVM is
adept at detecting unusual patterns or new occurrences, which can
enhance its effectiveness in identifying DNS manipulation. This
is because OCSVM employs a different strategy from tree-based
models like Isolation Forest (IF) by trying to delineate a clear bound-
ary between normal data and outliers in a high-dimensional space.
While both OCSVM and IF analyze all available features, the man-
ner in which they do so differs, with OCSVM using a hyperplane for
separation and IF using decision trees to isolate points, potentially
making OCSVMmore suited for certain types of anomaly detection.

XGBoost (XGB) [10]. This is a supervised learning method that
combines multiple decision trees to makemore accurate predictions,
a strategy known as ensemble learning. It’s part of the gradient
boosting family, where models are built sequentially to correct the
errors of previous ones. XGBoost also uses regularization, a tech-
nique to prevent the model from fitting too closely to the training
data, thereby enhancing its ability to perform well on unseen data.

4 ANALYSIS AND FINDINGS
In this section, we present a comprehensive analysis of our machine
learning models’ performance in detecting global DNS manipula-
tion. We evaluate various aspects, including overall accuracy, false
positive and negative rates, and feature importance. Additionally,
we investigate the impact of training data size and time window
on model effectiveness. Finally, we highlight the capability of our
models to discover blocking signatures and support existing ones,
ultimately enhancing our understanding of evolving DNS tamper-
ing tactics worldwide.
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Table 3: Comparative performance metrics across all our
machine learning models (sample size=2.5%)

Model FNR FPR TPR TNR ACC
IF 0.0718 0.1321 0.9282 0.8679 0.8699

OCSVM 0.0244 0.9711 0.9756 0.0289 0.0598
XGB 0.0597 0.0005 0.9403 0.9995 0.9991

4.1 Performance Evaluation

Data sampling. To mitigate potential biases arising from uneven
sample distribution across countries, we employ a stratified ran-
dom sampling approach. This technique ensures that our training
and evaluation datasets accurately represent the characteristics
of each subgroup (country) and the collective global dataset. We
train and evaluate our models using stratified random samples of
2.5%, 5%, and 20% of the full dataset. Experimental results reveal
no significant performance differences across these sample ratios,
with the XGBoost (XGB) model exhibiting minimal variance in
performance metrics. Consequently, we select a 2.5% sample size
for computational efficiency.
Model performance comparison. Table 3 compares the perfor-
mance metrics for our three machine learning models (IF, One-Class
SVM, and XGB) using a 2.5% sample size. As expected for a super-
vised approach, XGB outperforms the other models, achieving the
lowest False Positive Rate (FPR) of 0.0005, indicating strong agree-
ment with OONI’s blocking labels with high confidence. The IF
model demonstrates commendable overall performance, effectively
balancing True Positives and True Negatives. In contrast, the One-
Class SVM exhibits notably lower accuracy coupled with a low
True Negative Rate (TNR) but higher True Positive Rate (TPR) and
FPR, indicating a bias towards predicting instances as censored. An
in-depth analysis of One-Class SVM’s performance characteristics
is scope for future investigation.
Feature importance analysis. Understanding the significance
of features in a model’s decision-making process is crucial for in-
terpreting its behavior and the influence of each factor. Table 4
highlights the top 10 most important features for the IF and XGB
models, as measured by SHAP (SHapley Additive exPlanations)
values. The IF model assigns the highest importance to the resolver
ASN and probe ASN features, underscoring the relevance of ASN
information. Conversely, for XGB, ‘headers match’ and ‘asn control
match’ prove to be more critical indicators, highlighting a diver-
gence in feature importance between the models.

4.2 Performance Window
We investigate how the size of the training dataset affects the per-
formance of our models over time. Specifically, we examine how
much monthly data is required over the two-year period to cre-
ate an accurate predictive model that can generalize to multiple
months beyond the training period. Figure 2 displays the distribu-
tion of records in the OONI dataset, labeled as either “accessible”
or experiencing “DNS tampering.”

Our analysis reveals that the Isolation Forest (IF) model per-
forms best when trained on one to six months of data. Remarkably,
for the XGBoost (XGB) model, we find that using only a single

Table 4: Top 10 features importance for IF and XGB

Feature IF XGB

ASN Control Match 0.025 [6] 0.177 [3]

Body Proportion 0.017 [7] 0.087 [5]

Domain Name 0.123 [4] 0.051 [6]

Headers Match 0.009 [9] 0.317 [1]

HTTP Experiment Failure 0.000 [10] 0.118 [4]

Probe ASN 0.220 [2] 0.032 [7]

Probe Network Name 0.148 [3] 0.023 [9]

Resolver ASN 0.237 [1] 0.021 [10]

Resolver Network Name 0.169 [5] 0.023 [8]

Status Code Match 0.012 [8] 0.097 [2]

month’s worth of data is sufficient to achieve optimal predictive
performance.

This finding highlights the potential of machine learning mod-
els to extend their predictions well beyond the initial training pe-
riod while maintaining high accuracy levels and low false negative
and false positive rates. The graph in Figure 3 (a) exhibits the per-
formance of the IF model trained on different amounts of data.
Notably, the model with the lowest false negative rate (FNR) is
the one trained on two months of data. Furthermore, the figure
demonstrates a general decrease in the false positive rate (FPR) as
we increase the number of months in the dataset, with the FPR
reaching its minimum point at 24 months. However, this trend
comes at the expense of an increasing FNR, which rises at a greater
rate as the number of months grows. Lastly, the figure illustrates
that the model trained on a smaller dataset, one month in dura-
tion, achieved the highest accuracy, and accuracy tends to drop 5
percentage points (PP) as more months are added. One possible
explanation for these results may be over-fitting.

In contrast, Figure 3 (b) illustrates that the performance fluctua-
tions of the XGB model are comparatively subtle. The deviations
from the lowest score range from 0 to 5 PP for the FNR, 0.07 PP
for the FPR, and 0.10 PP for Accuracy (ACC). Additionally, models
trained with shorter duration of data typically exhibit higher accu-
racy, with peaks observed at one month and four months. These
observations imply that although larger training datasets may cap-
ture a broader spectrum of patterns, they also have the potential to
introduce noise and contribute to overfitting, which could reduce
the model’s overall effectiveness.

Our analysis demonstrates the importance of carefully selecting
the appropriate training dataset size and time window to achieve
optimal performance in detecting DNS tampering using machine
learning models. It also highlights the potential of these models to
generalize beyond their initial training period, providing a promis-
ing direction for developing robust and sustainable censorship
detection systems.
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Figure 2: Distribution count of records in the OONI dataset, labeled as either accessible or indicative of DNS tampering.
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Figure 3: FNR, FPR, and ACC distributions as the training set cumulatively increase by one month in each model. (The red-
colored markers indicates the lowest values.)

4.3 Signature Discovery
A key objective of our study is to explore whether machine learning
(ML) models can uncover new blocking signatures beyond those
already identified by OONI’s existing rules [24]. To achieve this,
we develop a robust methodology that leverages multiple models
within each ML approach to generate reliable predictions through
a majority voting scheme.

Specifically, we allow the individual models within each ML
setup (e.g., three models for OCSVM) to "vote" on their predictions,
and we accept the decision made by the majority. This majority
rule approach is complemented by considering confidence scores to
ensure the reliability of our predictions.We then evaluate all records
that both OONI’s labels and our majority prediction (supported by
high confidence) classify as censored cases—these represent true
positive instances.

To mitigate potential false positives, we exclude records with
fewer than 50 similar instances, applying a conservative thresh-
old for further analysis. Subsequently, we investigate records not
included in OONI’s predefined signatures, focusing on those that
meet our criteria. Our goal is to confidently identify new DNS
censorship fingerprints that can be added to the existing rule set.

The flexibility of unsupervised models like OCSVM and IF is vital
for pattern recognition, as these models can detect a wide range
of DNS censorship patterns without relying on pre-labeled data,
unlike the supervised XGBoost model, which depends on known
labels. Table 5 presents our findings, showcasing the potential of
ML models in identifying DNS censorship instances while high-
lighting the necessity of manual verification to address potential
misclassifications, such as confusing load balancing for blocking.
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Our methodology not only highlights the potential of ML models
in identifying DNS censorship but also underscores the importance
of combining ML analysis with manual review. This combined ap-
proach effectively enhances our ability to validate and discover new
censorship patterns, reinforcing the robustness of our approach.

By leveraging the strengths of both unsupervised and supervised
ML models, along with manual verification, we demonstrate a com-
prehensive strategy for uncovering evolving DNS tampering tactics
employed by censors worldwide. Our findings pave the way for
developing more dynamic and precise interventions in the land-
scape of global Internet censorship. We are planning to share these
fingerprints that our models have identified with high confidence
with the OONI community to enhance their existing rule set and
improve the usability of the OONI Explorer tool by increasing the
number of anomalous probes that can be marked as “confirmed”
censorship events.

5 RELATEDWORK
DNS censorship is a prevalent form of network interference that
restricts access to specific websites by manipulating DNS responses.
Detecting DNS manipulation is crucial for understanding the ex-
tent of censorship and its impact on Internet freedom. Numerous
efforts have been made to develop techniques for detecting DNS
censorship [22, 28, 31], mostly focusing on rule-based methods that
rely on expert-defined heuristics to identify anomalies in DNS re-
sponses. However, as discussed earlier in the paper, these methods
are limited in their ability to adapt to new censorship techniques
and evolving tampering strategies.

Recently, with the increasing availability of large network mea-
surement datasets and advancements in machine learning tech-
niques, researchers have explored the application of ML models
to detect DNS censorship. Brown et al. [5] propose a machine
learning approach to automate the detection of DNS manipula-
tion. The authors train supervised and unsupervised models on
network measurement data collected by OONI [9] and Censored
Planet [34] in China and the United States. Evaluating the models
using the state-of-the-art labeled censored domain names detected
by GFWatch [14]. This seminal work demonstrates the potential
of ML models in detecting DNS censorship and highlights the im-
portance of leveraging large-scale network measurement datasets
for training and evaluating these models. Nevertheless, the gen-
eralization of the proposed approach to other countries and the
effectiveness of the models in detecting evolving tampering over
time remain unclear, motivating our work to tackle broader re-
search questions of whether these proposed ML methods can be
applied at a global scale and how they perform in detecting DNS
manipulation in different countries and over time.

6 CONCLUSION
In this study, we demonstrated the powerful capability of machine
learning models to detect global DNS tampering at scale. Our super-
vised and unsupervised models achieved high accuracy by learning
expert-defined heuristics and uncovering new censorship instances
missed by rule-based approaches, showcasing their effectiveness
against evolving manipulation tactics.

Table 5: Signature Discovery from OCSVM and IF Models

Counts Injected IP Known Fingerprint Country

52 195.19.90.226 False RU
53 202.169.44.80 True ID
56 49.205.171.201 True IN
56 173.209.39.114 True CA
57 208.91.112.55 True Multiple
58 171.25.175.70 True RU
61 95.167.13.51 False RU
61 95.167.13.50 False RU
61 188.19.132.154 False RU
61 188.19.132.155 False RU
63 78.128.216.33 False CZ
64 90.207.238.183 False GB
66 90.255.255.14 False GB
69 80.250.8.1 False CZ
72 217.175.53.72 True IT
77 218.248.112.60 True IN
79 81.200.2.238 True RU
104 83.224.65.79 False IT
126 94.140.14.35 False US and CA
144 85.142.29.248 False RU
167 36.86.63.185 True ID
169 83.224.65.74 True IT
231 49.44.79.236 True IN
242 188.186.154.88 True RU
261 202.83.21.14 True IN
281 *13.127.247.216 False IN
288 167.233.14.14 False DE
305 188.186.146.208 True RU
311 188.186.146.207 True RU
338 188.186.154.79 True RU
383 175.139.142.25 True MY
468 195.175.254.2 True TR
662 146.112.61.106 True Multiple

Note: An asterisk (*) before an IP address indicates that the IF model
also identified this record.

Through evaluations spanning 1 to 24 months of training data,
we gained insights into how data quantity, diversity, and the dynam-
ics of censorship impact model performance over time. Notably, our
models generalized well beyond the initial training period while
maintaining high accuracy.

A key highlight was our automatic ML detector that accurately
identified DNS fingerprints, including previously undocumented
censorship patterns. This underscores machine learning’s potential
to drive proactive interventions safeguarding Internet freedom
globally.

While promising, continuous monitoring and model updates are
crucial due to evolving censorship landscapes. We will release our
regularly updated models to foster further research in developing
robust, sustainable censorship detection systems worldwide.
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