
Exploring Amazon SimpleQueue Service (SQS) for Censorship
Circumvention

Michael Pu
University of Waterloo

Waterloo, Ontario, Canada
michael.pu@uwaterloo.ca

Andrew Wang
University of Waterloo

Waterloo, Ontario, Canada
andrew.wang2@uwaterloo.ca

Anthony Chang
University of Waterloo

Waterloo, Ontario, Canada
anthony.chang@uwaterloo.ca

Kieran Quan
University of Waterloo

Waterloo, Ontario, Canada
kieran.quan@uwaterloo.ca

Yi Wei Zhou
University of Waterloo

Waterloo, Ontario, Canada
yw3zhou@uwaterloo.ca

ABSTRACT
The Snowflake censorship circumvention system uses blocking-
resistant rendezvous methods to connect clients to proxies. This
paper describes our experience implementing a new rendezvous
method that uses Amazon SQS (Simple Queue Service) and dis-
cusses its suitability as a general signalling channel. We provide an
overview of the implementation followed by some of the design
decisions and implementation details that we encountered. The
SQS rendezvous method has been deployed in the latest version of
Snowflake and the Tor Browser. It has served over 14808 client con-
nections from over 20 countries, including Iran, the United States,
China, and Russia. Additionally, we present a country-wise break-
down of users utilizing the existing Snowflake rendezvous methods,
as determined by our newly implemented metrics.

KEYWORDS
censorship circumvention, cloud computing, signalling channels

1 INTRODUCTION
There is an increasing effort to develop long-term censorship cir-
cumvention techniques that “stand the test of time”. That is, even
if an adversary gains knowledge of the system’s inner workings or
makes advances in their surveillance capabilities, it should remain
robust and resistant to blocking [7]. This idea aligns with a funda-
mental idea in cryptography, Kerckhoffs’ Principle, which states
that “the system must not require secrecy and can be stolen by the
enemy without causing trouble” [16].

One such system that attempts to address the objective of “stand-
ing the test of time” is Snowflake [2]. Snowflake is a censorship
circumvention system that uses a large pool of low-cost, temporary
proxies that relay traffic between censored clients and a centralized
bridge via WebRTC, a common peer-to-peer connection protocol.
The sheer volume of proxies that are constantly changing coupled
with tunneling through the popularWebRTC protocol [8, 13] makes
it highly resistant to blocking attempts by adversaries.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet 2024 (2), 22–26
© 2024 Copyright held by the owner/author(s).

The process in which clients discover proxies through a central
server, known as the broker, is called rendezvousing. This process is
vulnerable to blocking. The different protocols that clients can use to
communicate with the broker over blocking-resistant channels are
known as rendezvous methods, which are described in more detail
in 2.1. There are currently two rendezvous methods for Snowflake:
domain fronting and AMP cache [2]. In this paper, we describe our
experience with implementing and deploying a third rendezvous
method using Amazon SQS to increase Snowflake’s resilience.

2 BACKGROUND
2.1 Signalling Channels
The process of rendezvousing in Snowflake is an instance of a more
general problem in censorship circumvention known as signalling,
bootstrapping, or registration. We use signalling channels to commu-
nicate circumvention connection information with clients that lack
access to the uncensored internet in the first place [25].

The requirements for these signalling channels are generally
less stringent than those for the channels through which actual
circumvention traffic flows, as they can tolerate higher latency,
lower bandwidth, and sporadic usage [25]. For example, in the
case of Snowflake, any method capable of transmitting messages
of about 1,500 bytes bidirectionally between the client and broker
could work as a rendezvous method [2].

Although the requirements for signalling channels are relatively
loose, the channels must be highly resistant to blocking. Vines et al.
describes two properties of blocking-resistant signalling channels:
indirectness (the two endpoints connect to one or more intermediate
hosts) and publicly addressability (information needed to initiate
the connection is known to the adversary) [25]. A common strategy
to achieve such resistance is to leverage an existing service that a
censor deems too costly to block. By using the idea of “collateral
damage”, we want to make it harmful to the censor to block the
channel by forcing them to also block content with economic or
social value [9]. This is the philosophy behind using Amazon SQS
as a signalling channel.

2.2 Amazon SQS
Amazon SQS (Simple Queue Service) is a distributed messaging
queue for programmatic sending and receiving ofmessages between
web services [21]. It was first proposed to be used as a rendezvous

22

https://creativecommons.org/licenses/by/4.0/


Exploring AWS SQS for Censorship Circumvention Free and Open Communications on the Internet 2024 (2)

method for Snowflake in 20181, but had not been worked on un-
til now. Its intended use is as a messaging queue for production
systems and provides “extremely high message durability” [17].

Since clients communicate with SQS servers at a fixed endpoint
(https://sqs.us-east-1.amazonaws.com) over HTTPS, it is in-
feasible for an adversary to differentiate SQS traffic intended for
censorship circumvention from genuine Amazon SQS traffic used
by other web services. This means that to block this signalling
channel, an adversary would have to completely block usage of
Amazon SQS.

2.3 Related Works
In addition to the two rendezvousmethods available in Snowflake [2,
9], there are a multitude of other signalling channels that have been
proposed. Conjure uses DNS requests [3] and refraction networking
[10], SWEET [11] uses email messages, MoneyMorph [15] is a
provably secure scheme using cryptocurrencies, CoverCast [14]
uses live video streams, Camoufler [24] uses instant messaging
platforms, and Raceboat [25] experimented with AWS S3, Flickr,
and Tumblr.

3 IMPLEMENTATION

Figure 1: Overview of SQS Rendezvous in Snowflake

The following is an overview of the flow of events between a
client and a broker using the SQS rendezvous method illustrated in
Figure 1:

(1) When the broker starts up, it listens on the incoming queue,
which is used for one-way client to broker communication. The
URL of this queue is distributed to clients through some out-of-band
protocol (e.g. online forums, email). Note that the knowledge of this
queue URL by an adversary does not compromise the rendezvous
method, as explained in 2.1.

1https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/issues/26151

(2) When the client wishes to rendezvous, it sends a message to
the incoming queue with a unique client ID that it generates along
with a Session Description Protocol (SDP) offer, which includes
information needed to establish a WebRTC connection.

(3) The broker receives the message from the client and it creates
a temporary, single-use outgoing queue, which is used for one-way
broker to client communication. This outgoing queue is uniquely
identified by the client ID generated by the client. The broker also
forwards the SDP offer in the message to an available Snowflake
proxy.

(4) When the broker receives an SDP answer from the Snowflake
proxy indicating that the proxy can accept the connection, the
broker will forward the message to the outgoing queue.

(5) The client, which has been continuously polling the outgoing
queue, will receive the message with the SDP answer, completing
the rendezvous process.

3.1 Bi-directional Communication
We describe the different ways of implementing bi-direction com-
munication between clients and the broker that were considered.

3.1.1 Using a Single Incoming, a Single Outgoing Queue. A single
SQS queue supports having multiple producers (message senders)
and consumers (message receivers) where a particular service can
be both a producer and a consumer simultaneously [21]. A straight-
forward approach would be to have two queues: one for incoming
messages to the broker and another for outgoing messages from
the broker.

However, since there is no way to direct a message to a particular
consumer or to retrieve a specific message from the queue, this
means that all consumers will be receivingmessages intended for all
other consumers as well when receiving messages [23]. This raises
concerns with efficiency (clients will have to continuously pop from
the queue and add messages back until it find a message directed for
them) and privacy (clients would be able to see messages directed
towards other clients that are also rendezvousing at the same time).
The problem with privacy could be solved by using public key
encryption [6], but the problem with efficiency still stands.

3.1.2 Using a Single Incoming, Multiple Outgoing Queues. To mit-
igate these concerns, we decided to create a temporary outgoing
queue for each client that is identified by a randomly generated
64-bit ID. All clients would send messages to the broker through a
single incoming queue shared between all clients. To preserve pri-
vacy, clients would only have permission to send messages into the
queue and only the broker would have permission to read messages
from the queue.

Since all messages in each outgoing queue would be directed
towards a single client, clients can be sure that any message they
receive through that queue is intended from them.

After rendezvous is complete, the outgoing queues are no longer
needed and need to be cleaned up. The broker periodically checks
for and deletes outgoing queues that were last modified more than a
specific number of minutes ago (since rendezvous should not take
more than several minutes). This ensures that queues corresponding
to completed rendezvous as well as failed rendezvous attempts are
both cleaned up.

23

https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/26151
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/26151


Free and Open Communications on the Internet 2024 (2) Pu, Wang, Chang, Quan, Zhou

3.1.3 Using Amazon SQS Temporary Queues. An implementation
using the Temporary Queue Client provided by Amazon SQS
[1] was also considered. This feature allows the client to implicitly
map many temporary queues (that are visible to the application)
onto a single SQS queue. It is recommended in the AWS Developer
Guide to be used for request-response systems, which fits this use
case [19]. However, under the hood, all message are still being sent
over a single queue which is abstracted as multiple virtual queues
that are actually visible to the client. This meant that the concerns
with efficiency and privacy described in 3.1.1 still stand and these
problems have just been abstracted away from the clients. As a
result, we decided to proceed with the implementation described
in 3.1.2.

3.2 SQS Details
We discuss some of the intricacies of SQS that we configured or
encountered as part of using it as a rendezvous method.

3.2.1 Short vs. Long Polling. By default, SQS queues use short
polling to receive messages [18], which means that only a subset
of the SQS servers are checked for messages and a response is sent
back immediately. On the other hand, in long polling, all of the SQS
servers are queried and a response is sent back only when at least
one available message is collected, a specified timeout is reached,
or a specified maximum number of messages is collected. Long
polling is usually preferable over short polling in cases where an
immediate response is not necessary [17], which is true for our use
case.

We use the maximum allowed value of 20 seconds for the long
poll timeout since it minimizes the number of empty responses
received (when the queue is empty) and also reduces the number of
false empty responses received (when not all of the SQS servers are
queried). This helps reduce cost since SQS usage is billed according
to the number of requests made [17], as well as the load on the
broker spent processing empty responses.

3.2.2 Visibility Timeout and Deleting Messages. When a message
is received by a consumer from an SQS queue, the message remains
in the queue until it is explicitly deleted [20]. To prevent other
consumers from processing the message again, there is a “visibility
timeout” on each queue that prevents the message from being
received by all consumers once it has been received. Since we did
not expect processing messages on the client or broker side to take
more than 30 seconds, we decided to simply use the default 30
second “visibility timeout” value.

When receiving messages from a queue, we first process the
message before deleting it from the queue. This is to ensure that if
the message isn’t completely processed (e.g. due to a connection
issue), it remains in the queue to be retried at a later time.

3.2.3 Deleting OutgoingQueues. When outgoing queues that are no
longer needed are deleted as described in 3.1.2, it may take up to 60
seconds for the entire deletion process to complete [22]. This meant
that when retrieving a list of queues to delete, that list may include
queues that have already been recently deleted, and attempting to
delete them again would result in an error.

If we encounter an error when deleting a queue, we simply ignore
it. If the error occurred because the queue was already recently

deleted, then eventually its deletion process will complete and it
will no longer be returned in the list of queues. If the error occurred
for some other reason, then we would attempt to delete the queue
again the next time the cleanup operation is run again.

3.3 Metrics
Snowflake had existing metrics that track the total number of client
polls per rendezvous method. As part of our changes, we added the
SQS rendezvous method to these metrics as well as binned counts of
the number of clients polling each rendezvous method aggregated
by country. These are both now being collected by CollecTor and
published publicly2. This allowed us to identify what rendezvous
methods were being used in each country, which is very useful
to know since specific rendezvous methods may work better in
certain countries than others.

3.3.1 Country Identification for Clients. To identify which country
a client is polling from, we can use the IP address of the client
to geolocate it against a database of IP address ranges for each
country. However, identifying the IP address of a client in an indirect
signalling channel is a challenge. This is because a request from a
client will likely make multiple hops in the network before reaching
the broker.

For the domain fronting and AMP cache rendezvous methods
[2], we can use the IP addresses in the header of the HTTP request.
We use the realclientip-go3 library to retrieve the leftmost ad-
dress that is not internal or private from the Forwarded header [4]
first. If this header field is not populated, we then try to use the
X-Forwarded-For header [5], followed by the IP source address as
a last resort.

For the SQS rendezvous method, we use the IP addresses from
the list of ICE (Interactive Connectivity Establishment) candidates
in the SDP offer parsed using the pion4 library. ICE candidates
with a higher priority candidate type are preferred since they are
geographically closer to the client [12]. Ties are then broken using
the ICE candidate’s priority property. The IP address of the selected
ICE candidate is then used as a “best guess” to geolocate the client.

4 DEPLOYMENT
4.1 Core Functionality
The core functionality5 6 of the SQS rendezvousmethodwasmerged
in February 2024, deployed in Snowflake v2.9.07, and was released
in Tor Browser Stable 13.0.108 and Tor Browser Alpha 13.5a59.

We then announced the new feature on the net4people BBS fo-
rum10 and the Tor forum11 for testers to begin trying the new ren-
dezvous method. As of 2024-06-17, the usage has remained within
2https://metrics.torproject.org/collector.html#snowflake-stats
3https://pkg.go.dev/github.com/realclientip/realclientip-go@v1.0.0
4https://pkg.go.dev/github.com/pion/ice/v2
5https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/merge_requests/214
6https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/merge_requests/243
7https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/commit/38352b22ade217bd1372772b9cb69f8eff93e919
8https://blog.torproject.org/new-release-tor-browser-13010/
9https://blog.torproject.org/new-alpha-release-tor-browser-135a5/
10https://github.com/net4people/bbs/issues/335
11https://forum.torproject.org/t/new-sqs-rendezvous-method-for-snowflake/11713

24

https://metrics.torproject.org/collector.html#snowflake-stats
https://pkg.go.dev/github.com/realclientip/realclientip-go@v1.0.0
https://pkg.go.dev/github.com/pion/ice/v2
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/214
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/214
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/243
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/243
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/commit/38352b22ade217bd1372772b9cb69f8eff93e919
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/commit/38352b22ade217bd1372772b9cb69f8eff93e919
https://blog.torproject.org/new-release-tor-browser-13010/
https://blog.torproject.org/new-alpha-release-tor-browser-135a5/
https://github.com/net4people/bbs/issues/335
https://forum.torproject.org/t/new-sqs-rendezvous-method-for-snowflake/11713


Exploring AWS SQS for Censorship Circumvention Free and Open Communications on the Internet 2024 (2)

the limits of the AWS Free Tier (1 million requests per month) and
has not yet incurred any costs.

4.2 Bug Fixes and Improved Metrics
After the initial deployment, we received feedback from users and
identified some bugs. One problem that was encountered was that
the SQS rendezvous method would take much longer than usual
(about 3 minutes) to complete the rendezvous in some cases.

The root cause of this issue was because we were reusing the
same 64-bit client ID across rendezvous attempts. This meant that
if the first attempt to rendezvous failed, subsequent attempts would
have to wait for the deletion process for the outgoing queue cor-
responding to the first rendezvous attempt to complete first, as
described in 3.2.3. This introduced unnecessary delay and was fixed
by using a new 64-bit client ID on each rendezvous attempt12.

Another problem we encountered was related to the AWS cre-
dentials that we distributed publicly for clients to access the Ama-
zon SQS API on the net4people BBS forum13. These were likely
discovered by AWS Support through GitHub’s automated secret
scanning14. Although the credentials were provisioned with very
limited permissions and were intentionally distributed publicly, we
were still asked by AWS support to delete them15. As a workaround,
we now encode the credentials in base64 before distributing them
publicly16.

To better understand which rendezvous methods were being
used most frequently in which countries, we implemented improve-
ments to the metrics collected by Snowflake by tracking binned
counts (rounded up to the nearest multiple of 8 to preserve pri-
vacy) of the uses of each rendezvous method by country17 as de-
scribed in 3.3.1. These changes were merged in March 2024, de-
ployed in Snowflake v2.9.218, and was released in Tor Browser
Stable 13.0.1219 and Tor Browser Alpha 13.5a620. Figures 2, 3,
4, and 5 are summaries of these improved metrics that have been
collected since 2024-03-21.

5 FUTUREWORK
This paper describes our experience with the initial deployment
of SQS as a rendezvous method for Snowflake. In the future, we
hope to roll this out as a default bridge provided to users alongside
domain fronting and AMP cache. Additionally, we hope to further
explore the censorship resistance of SQS, such as against DDOS
attacks, TLS fingerprinting, and packet size analysis.

12https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/merge_requests/263
13https://github.com/net4people/bbs/issues/335#issue-2157478835
14https://docs.github.com/en/code-security/secret-scanning/secret-scanning-
patterns#supported-secrets
15https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/issues/40337
16https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/merge_requests/264
17https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/merge_requests/258
18https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-
/commit/05a95802c195b1d8a68bb6fe4fa98f12763af519
19https://blog.torproject.org/new-release-tor-browser-13012/
20https://blog.torproject.org/new-alpha-release-tor-browser-135a6/

ACKNOWLEDGMENTS
The authors would like to thank Cecylia Bocovich for advising this
project. We would also like to thank David Fifield, meskio, Nathan
Freitas, and Xiaokang Wang for supporting this project.

Figure 2: Total number of client polls for the SQS rendezvous
method per country since 2024-03-21 until 2024-06-22

Figure 3: Number of client polls per day for the domain
fronting rendezvous method for the top 5 countries

Figure 4: Number of client polls per day for the AMP cache
rendezvous method for the top 5 countries

Figure 5: Number of client polls per day for the SQS ren-
dezvous method for the top 5 countries

25

https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/263
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/263
https://github.com/net4people/bbs/issues/335#issue-2157478835
https://docs.github.com/en/code-security/secret-scanning/secret-scanning-patterns#supported-secrets
https://docs.github.com/en/code-security/secret-scanning/secret-scanning-patterns#supported-secrets
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/40337
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/40337
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/264
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/264
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/258
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/merge_requests/258
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/commit/05a95802c195b1d8a68bb6fe4fa98f12763af519
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/commit/05a95802c195b1d8a68bb6fe4fa98f12763af519
https://blog.torproject.org/new-release-tor-browser-13012/
https://blog.torproject.org/new-alpha-release-tor-browser-135a6/


Free and Open Communications on the Internet 2024 (2) Pu, Wang, Chang, Quan, Zhou

REFERENCES
[1] awslabs. 2023. Amazon SQS Java Temporary Queue Client. Retrieved April 6, 2024

from https://github.com/awslabs/amazon-sqs-java-temporary-queues-client
[2] Cecylia Bocovich, Arlo Breault, David Fifield, Serene, and Xiaokang Wang. 2024.

Snowflake, a censorship circumvention system using temporaryWebRTC proxies.
(2024).

[3] Mingye Chen. 2022. DNS registration. Retrieved April 13, 2024 from https:
//github.com/refraction-networking/conjure/wiki/DNS-registration

[4] Mozilla Contributors. 2024. Forwarded. Retrieved April 6, 2024 from https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Forwarded

[5] Mozilla Contributors. 2024. X-Forwarded-For. Retrieved April 6, 2024 from https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For

[6] W. Diffie and M. Hellman. 1976. New directions in cryptography. IEEE Transac-
tions on Information Theory 22, 6 (1976), 644–654. https://doi.org/10.1109/TIT.
1976.1055638

[7] David Fifield. 2024. Against the “arms race”. (2024). https://www.bamsoftware.
com/talks/arms-race-foci-2024/ Free and Open Communications on the Internet
2024.

[8] David Fifield and Mia Gil Epner. 2016. Fingerprintability of WebRTC.
arXiv:1605.08805 [cs.CR]

[9] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. Proceedings on
Privacy Enhancing Technologies (2015).

[10] Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex Halderman, Nikita Borisov,
and Eric Wustrow. 2019. Conjure: Summoning Proxies from Unused Address
Space. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (London, United Kingdom) (CCS ’19). Association for
Computing Machinery, New York, NY, USA, 2215–2229. https://doi.org/10.1145/
3319535.3363218

[11] Amir Houmansadr, Wenxuan Zhou, Matthew Caesar, and Nikita Borisov. 2017.
SWEET: Serving theWeb by Exploiting Email Tunnels. IEEE/ACM Transactions on
Networking 25, 3 (2017), 1517–1527. https://doi.org/10.1109/TNET.2016.2640238

[12] Ari Keränen, Christer Holmberg, and Jonathan Rosenberg. 2018. Interactive
Connectivity Establishment (ICE): A Protocol for Network Address Translator
(NAT) Traversal. RFC 8445. https://doi.org/10.17487/RFC8445

[13] Kyle MacMillan, Jordan Holland, and Prateek Mittal. 2020. Evaluating Snowflake
as an Indistinguishable Censorship Circumvention Tool. arXiv:2008.03254 [cs.CR]

[14] Richard McPherson, Amir Houmansadr, and Vitaly Shmatikov. 2016. CovertCast:
Using Live Streaming to Evade Internet Censorship. Proceedings on Privacy
Enhancing Technologies 2016 (2016), 212 – 225. https://api.semanticscholar.org/
CorpusID:46488544

[15] Mohsen Minaei, Pedro Moreno-Sanchez, and Aniket Kate. 2020. MoneyMorph:
Censorship Resistant Rendezvous using Permissionless Cryptocurrencies. Pro-
ceedings on Privacy Enhancing Technologies 2020 (07 2020), 404–424. https:
//doi.org/10.2478/popets-2020-0058

[16] Fabien A. P. Petitcolas. 2011. Kerckhoffs’ Principle. Springer US, Boston, MA,
675–675. https://doi.org/10.1007/978-1-4419-5906-5_487

[17] Amazon Web Services. 2024. Amazon SQS FAQs. Retrieved April 6, 2024 from
https://aws.amazon.com/sqs/faqs

[18] Amazon Web Services. 2024. Amazon SQS short and long polling. Retrieved
April 6, 2024 from https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html

[19] Amazon Web Services. 2024. Amazon SQS temporary queues. Retrieved
April 6, 2024 from https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-temporary-queues.html

[20] Amazon Web Services. 2024. Amazon SQS visibility timeout. Retrieved
April 6, 2024 from https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-visibility-timeout.html

[21] Amazon Web Services. 2024. Basic Amazon SQS architecture. Retrieved
April 6, 2024 from https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-basic-architecture.html

[22] Amazon Web Services. 2024. DeleteQueue. Retrieved April 6, 2024 from
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
API_DeleteQueue.html

[23] Amazon Web Services. 2024. Receive and delete a message (console). Retrieved
April 6, 2024 from https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/step-receive-delete-message.html

[24] Piyush Kumar Sharma, Devashish Gosain, and Sambuddho Chakravarty. 2021.
Camoufler: Accessing The Censored Web By Utilizing Instant Messaging Chan-
nels. In Proceedings of the 2021 ACM Asia Conference on Computer and Commu-
nications Security (Virtual Event, Hong Kong) (ASIA CCS ’21). Association for
Computing Machinery, New York, NY, USA, 147–161. https://doi.org/10.1145/
3433210.3453080

[25] Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy. 2024. Com-
munication Breakdown: Modularizing Application Tunneling for Signaling
Around Censorship. Privacy Enhancing Technologies 2024, 1 (2024). https:
//www.petsymposium.org/popets/2024/popets-2024-0027.pdf

26

https://github.com/awslabs/amazon-sqs-java-temporary-queues-client
https://github.com/refraction-networking/conjure/wiki/DNS-registration
https://github.com/refraction-networking/conjure/wiki/DNS-registration
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Forwarded
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Forwarded
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://www.bamsoftware.com/talks/arms-race-foci-2024/
https://www.bamsoftware.com/talks/arms-race-foci-2024/
https://arxiv.org/abs/1605.08805
https://doi.org/10.1145/3319535.3363218
https://doi.org/10.1145/3319535.3363218
https://doi.org/10.1109/TNET.2016.2640238
https://doi.org/10.17487/RFC8445
https://arxiv.org/abs/2008.03254
https://api.semanticscholar.org/CorpusID:46488544
https://api.semanticscholar.org/CorpusID:46488544
https://doi.org/10.2478/popets-2020-0058
https://doi.org/10.2478/popets-2020-0058
https://doi.org/10.1007/978-1-4419-5906-5_487
https://aws.amazon.com/sqs/faqs
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-short-and-long-polling.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-short-and-long-polling.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-temporary-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-temporary-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-basic-architecture.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-basic-architecture.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/step-receive-delete-message.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/step-receive-delete-message.html
https://doi.org/10.1145/3433210.3453080
https://doi.org/10.1145/3433210.3453080
https://www.petsymposium.org/popets/2024/popets-2024-0027.pdf
https://www.petsymposium.org/popets/2024/popets-2024-0027.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Signalling Channels
	2.2 Amazon SQS
	2.3 Related Works

	3 Implementation
	3.1 Bi-directional Communication
	3.2 SQS Details
	3.3 Metrics

	4 Deployment
	4.1 Core Functionality
	4.2 Bug Fixes and Improved Metrics

	5 Future Work
	Acknowledgments
	References

