
Ten Years Gone: Revisiting Cloud Storage Transports to Reduce
Censored User Burdens

Paul Vines
Two Six Technologies

Arlington, Virginia, USA
paul.vines@twosixtech.com

ABSTRACT
We present Skyhook, a cloud storage-based censorship circumven-
tion channel providing highly-available short-lived bidirectional
communications to assist users to bootstrap higher-performance
secret-based circumvention connections (e.g. bridge and proxy re-
quests). In designing Skyhook, we revisit a prior circumvention
system (CloudTransport) and redesign its approach to optimize for
signaling use cases. We implement Skyhook as a decomposed chan-
nel using the Raceboat framework and demonstrate its flexibility
for combining with other circumvention channels.

KEYWORDS
censorship, privacy, cloud storage, network, security

ACM Reference Format:
Paul Vines. 2024. Ten Years Gone: Revisiting Cloud Storage Transports to
Reduce Censored User Burdens . In Proceedings of Free and Open Communi-
cations on the Internet 2024. ACM, New York, NY, USA, 8 pages.

1 INTRODUCTION
Internet censorship has been increasing in prevalence and sophis-
tication over the past decade and more. In response, many dif-
ferent censorship circumvention techniques, or channels, have
been developed to enable users to freely reach content[8, 11]. The
canonical use-case for these circumvention channels has been en-
abling browsing censored websites, but more generic goals likes
enabling connection into the Tor [10] network are also used. These
goals require channels to have low-latency, high-bandwidth, and
high-availability. These goals have driven development of several
channels successfully deployed around the world today [1, 5]. How-
ever, these goals have also become constraints on innovation that
preclude the development and adoption of some channel concepts
despite their potential utility under different circumstances.

In this paper we revisit the CloudTransport [3] channel pub-
lished by Brubaker et al. in 2014; we modify and extend its core
concept in light of alternative use scenarios for circumvention
channels. CloudTransport used uncensored cloud storage services
to exchange network data and built a channel to provide (rela-
tively) low-latency and high-bandwidth connections aligned with
the canonical use case of uncensored web browsing or Tor network
access. We argue that low-latency long-lived connections were not
the optimal use case for cloud storage-based channels and present

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet 2024 (2), 34–41
© 2024 Copyright held by the owner/author(s).

New Bridge

Cloud Storage (S3)

Bridge
DistributorCensored

User

Skyhook
Skyhook

Other Channel
(obfs, etc.)

Other Channel
(obfs, etc.)

Figure 1: Canonical use-case for Skyhook as a signaling chan-
nel to accomplish tasks like bridge distribution. A censored
user and a distribution server relay requests and responses
through a cloud storage service to bootstrap a higher perfor-
mance connection that requires secrecy to remain unblocked.

Skyhook as an alternate design and implementation suited for use as
a signaling channel (see below). By changing its goals, Skyhook
can make different tradeoffs and mitigate several significant
drawbacks of CloudTransport’s original design: namely, op-
erational costs and requiring paid end-user accounts.

We follow Vines et al’s [12] definition of signaling channels as
channels that remain available even when the user has no shared
secrets. A primary use-case for these channels is bootstrapping
higher-performance channels that rely on shared secrets, e.g. Tor
bridge address distribution [14]. In these contexts, Skyhook only
needs to provide transmission of a few messages in each direction
and can suffer higher latency without driving away users because
it is only used during an initial connection-setup step. We also
make use of the Raceboat [12] decomposed application tunneling
framework to construct Skyhook in a modular fashion that enables
more advanced versions for enhanced threat models.

As a signaling channel, Skyhook represents an alternative to
existing channels with similar characteristics such as: meek [7]
(domain fronting); raven [13] (email); and PushRSS [15] (push no-
tifications). Skyhook is not necessarily better or worse than these
channels, but represents another pathway for communication that
requires a different service to be censored to prevent its use. We
argue that a greater diversity of channels is valuable if users can
easily move amongst them, because it requires a censor to block
many different services or channel techniques before users actually
experience increased censorship. This could even dissuade censors
from attempting to block any channels, knowing there are easy
alternatives.

Our contributions are:
34

https://orcid.org/0009-0002-3328-6319
https://creativecommons.org/licenses/by/4.0/


Ten Years Gone Free and Open Communications on the Internet 2024 (2)

• Design of the Skyhook signaling channel conceptually in-
spired by CloudTransport.

• Formalizing use of unilateral permissioning to enable a bidi-
rectional connection.

• Implementation of Skyhook as modular Raceboat Transport
and User Model components to support flexible combination
with other channels and standalone use.

• Evaluation of Skyhook in terms of network security, signal-
ing performance, and cost.

2 DESIGN
We revisit the original CloudTransport approach in light of redefin-
ing goals to that of a signaling channel.

2.1 Design Requirements
The requirements of a signaling channel have three major differ-
ences from typical circumvention channels:

(1) Required connection lifespan is limited to two messages,
‘client hello‘ and ‘server response‘

(2) Required bandwidth and latency are poorer: roughly 1KB
per message and ∼1 minute latency.

(3) Must require no information known by the client and server
but not the censor (i.e. no shared secrets) to remain avail-
able and secure.

Otherwise, the requirements are much the same as any other
circumvention channel: avoid being detectable or blockable by the
censor via passive analysis or active attacks at the network or appli-
cation layers; avoid denial of service (DOS) attacks on infrastructure;
minimize burden on clients and minimize operational costs
on servers. We call out the latter two as particular shortcomings
of the original CloudTransport design.

2.2 CloudTransport In Brief
Figure 2 shows the operations of the CloudTransport system. At its
core (Figure 2A), CloudTransport transmits data by writing bytes to
an object file and then uploading that file to a cloud storage service
(e.g. AWS S3) at a specific file name. The receiver side polls to check
for the file to exist, fetches it to process the data, and deletes the
file in the cloud storage. The deletion signals to the sender that
they can write the file again to transmit new data. This process
occurs on two files, one for client-to-server connectivity and one
for server-to-client connectivity.

2.2.1 Connection Handshake. CloudTransport establishes connec-
tions via a two-way handshake (Figure 2B) during which the client
selects a random UUID from which the bidirectional data file names
are derived (e.g. "client-UUID" and "bridge-UUID") and sends this
hello request to the server as data written to a default "init" file-
name. Similarly, the server responds to a default "resp" filename to
indicate its side of the connection is ready. For efficiency, multiple
connections can be established from a single handshake (i.e. multi-
ple UUIDs can be sent in a single request). There is additionally a
"cumuliform" mode which batches and multiplexes all data across
a single pair of files, rather than using a different pair for each

application TCP connection; this reduces the number of storage ser-
vice operations necessary to facilitate highly-parallelized network
applications like web browsers.

2.2.2 Accounts. CloudTransport’s use of a storage service is based
on the client user providing a paid account for the service and then
sharing access credentials (i.e. read/write file permissions only) to
the server during the bootstrapping process. The client and server
then use the client’s account for the read/write operations described
above. Interestingly, this creates a type of proof of work for the
client by requiring they register a storage account and imposes the
financial costs for CloudTransport use on the client. The account
design mitigates denial of service and sybil attacks, but also
imposes a high burden on the client (i.e. the censored user)
to go through account setup, access credential creation, and
provide payment information.

2.2.3 Bootstrapping. CloudTransport bootstraps client-server re-
lationships (Figure 2C) by having servers create publicly-readable
and publicly-writable cloud storage directories, dead drops, that
prospective clients submit encrypted bootstrap tickets to. The ad-
dress of the dead drop and the public key of the server are assumed
to be publicly known; the prospective client constructs a ticket by
bundling the client account access credentials, the client storage
directory address, and the client public key, and then encrypting
the bundle with the server’s public key. CloudTransport’s dead
drop bootstrapping approach is similar to Skyhook’s connection
design, but we introduce several critical changes to provide sig-
naling channel usage which could not be achieved by the existing
CloudTransport design.

2.3 Removing Client Storage Accounts
CloudTransport’s design uses cloud storage accounts owned by the
client (censored user). This design may be sensible for a circumven-
tion channel to support full network applications since it mitigates
some DOS attacks. However, it is a significant burden on users that
we can alter the design of Skyhook to avoid.

A trivial change would be to simply flip the account usage de-
sign to have servers own the accounts but publicly share access
credentials to read/write the cloud storage. This creates a signif-
icant DOS attack surface since the censor can use these publicly
shared credentials to spam the account.

Instead, we move to an unauthenticated access model: each client
is an anonymous public user with no credentials at all. The server
sets up a publicly writable object in the storage service and publicly
shares that address. Clients begin a connection by writing a hello
to the object containing randomly chosen fetch UUID and post
UUID to enable a subsequent connection without authentication as
described in the next subsection. Additionally, this hello can contain
arbitrary application data (e.g. a bridge request, or the start of a
key exchange). Figure 3 shows this process using the link-address-
oriented Raceboat APIs.

Note that unlike CloudTransport’s dead drops, this is a single ob-
ject not an entire directory, and it only has public write permissions
which eliminates potential attacks based on observation of the hello
requests. We discuss advanced DOS protection approaches further
in section 5.

35



Free and Open Communications on the Internet 2024 (2) Vines

(A) CloudTransport Data Transmission

Sender Cloud Storage Receiver

WriteFile('uuid', data)

Wait until FileExists('uuid')

FetchAndDelete('uuid')

Wait until NOT FileExists('uuid')

(B) CloudTransport Connection Handshake
Client Cloud Storage Server

WriteFile('init', request)
Wait until FileExists('init')

FetchAndDelete('init')
Wait until FileExists('resp')

WriteFile('resp', responses)
FetchAndDelete('resp')

(C) CloudTransport Bootstrapping via Dead Drop

Client  Public Read/Write Cloud Storage Server

WriteFile('myticket', ticket)
FetchAndDelete('*')

Figure 2: Summary connection diagrams of the three main "modes" of CloudTransport operation: (A) transmission on an
existing connection; (B) establishing a connection via handshake; (C) bootstrapping a client-server relationship via dead drop.
Skyhook borrows from but alters and extends each of these.

Skyhook Connection Establishment
ServerClient

loadLinkAddress( ) createLink()

{ send: public-uuid, receive: " "  }

Public Initial Link (Unidirectional)

createLink() loadLinkAddress( )
Private Final Link (Bidirectional)

{ send: c2s-uuid_1, receive: s2c_uuid_1}

Figure 3: Connection diagrams showing how a private bidirectional Skyhook connection is bootstrapped from an initial public
Skyhook link. Note that application data (if present) is sent as part of the initial client message, so most signaling uses can be
accomplished in a single round-trip.

2.4 Unilateral Permissioning For Bidirectional
Connections

Providing only public write permissions for the initial hello object
clearly enables a private hello to be sent. However, we must then
support subsequent bidirectional communicationswithout resorting
to an authenticated access model. To do this, we revisit the random
UUIDs set at the start of the connection. CloudTransport just uses
these to disambiguate connection files. Skyhook uses object-level

permissions to set individual UUIDs as publicly readable or publicly
writable. We use the space of possible UUIDs, and the ability to
restrict listing the objects in the directory, to enable a de facto access
restriction based on the secrecy of the UUIDs: only the client and
server know the UUIDs sent in the hello request, and thus only they
know which objects are available for public reading and writing.

Only the account holder can set the object-level permissions,
so the server manages setting both public read permissions for

36



Ten Years Gone Free and Open Communications on the Internet 2024 (2)

Skyhook Data Transmission

...

Cloud Storage Server (AccountHolder)Client (PublicUser)

WriteFile(c2s-uuid_n, data)
Poll(c2s-uuid_n)

FetchAndDelete(c2s-uuid_n)
WriteFile(c2s-uuid_n+k, data)

FetchAndDelete(c2s-uuid_n+1)

MakeWritable(c2s-uuid_n+k+1)

WriteFile(c2s-uuid_n+k+1, data)

MakeWritable(c2s-uuid_n+k+2)

...

Client 
Sending

Server 
Sending

WriteFile(s2c-uuid_n)
MakeReadable(s2c-uuid_n)

Poll(s2c-uuid_n) MakeWritable(c2s-uuid_n:n+k)

WriteFile(s2c-uuid_n+k)

MakeReadable(s2c-uuid_n+k)

Poll(s2c-uuid_n+k)

Text

Figure 4: Connection diagrams for an established Skyhook connection transmitting data bidirectionally with multiple send
"bursts" in each direction to illustrate the UUID chaining concept. First a series of client-to-server, then a series of server-to-
client.

server-to-client objects and public write permissions for client-to-
server objects. This unilateral permissioning scheme requires that
the server is always aware of which files should and should not
have public permissions.

2.4.1 UUID Chains. CloudTransport used a single constant UUID
for each direction of its connection and used the deletion of the file
upon fetching by the receiver as a signal to the sender that another
message could be sent. Once again, this is sensible in a low-latency
synchronous use case but not the only design available. Instead,
Skyhook uses a chain of UUIDs in each direction of connectivity,
where the next UUID is derived from a hash of the prior UUID.

The server pregenerates a "buffer" of UUIDs in each direction
based on the hello request and sets their public permissions. This
enables either side of the connection to send up to the buffer-length
in separate messages before the other side needs to actively receive
them. Each time the server sends or receives a message, it extends
the relevant buffer by an additional UUID (by setting a public read
or write permission on it). Figure 4 shows this operation and the
asymmetry of operations between the public and account holder
sides of the connection. From the client, we use an implicit ac-
knowledgment: if the client sends a message, the server assumes it
has already fetched any prior posted UUID on the server-to-client
chain, and can unpermission and delete prior messages. For specific
application loads, this scheme may be suboptimal and a variety
of other options exist if application tailoring is desired. For the
signaling use case, there are so few messages in each direction that
the chains never actually need to be extended in-practice.

3 IMPLEMENTATION
We implemented Skyhook as a set of C++ components within the
decomposed application tunneling framework provided by Race-
boat and refer the reader to that publication [12] for context on

subsequent sections. Figure 5 shows this component breakdown
for the client and server implementations. We chose to use a com-
piled language to minimize the size and dependency footprint of
Skyhook, particularly for the client users; the client plugins total
just 528KB.

3.1 Transport Components
The core of Skyhook logic and its cloud storage interactions are
handled by the transport components. There are two variants: the
PublicUser transport which is used by the client and makes no
use of account credentials; and the AccountHolder transport used
by the server that manages object permissions corresponding to
connections. Both components execute 𝐹𝐸𝑇𝐶𝐻 and 𝑃𝑂𝑆𝑇 actions
from the User Model timeline (see below). Both also specify no
constraints on the type of content they require for 𝑃𝑂𝑆𝑇 , since a
cloud storage object can contain any data (including raw bytes) and
Skyhook’s baseline threat model assumes TLS prevents the censor
from inspecting the actual content in-transit. However, Skyhook
can be paired with arbitrary Encoding components to mitigate
threat models that involve content inspection by the censor without
modification to any of the Skyhook code, we discuss this further in
Section 5.

3.1.1 PublicUser Transport. The PublicUser Transport executes
𝐹𝐸𝑇𝐶𝐻 and 𝑃𝑂𝑆𝑇 actions bymaking HTTPS requests to a specified
AWS S3 object UUID. The URL is intentionally built as ℎ𝑡𝑡𝑝𝑠 :
//𝑠3. < 𝑟𝑒𝑔𝑖𝑜𝑛 > .𝑎𝑚𝑎𝑧𝑜𝑛𝑎𝑤𝑠.𝑐𝑜𝑚/< 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 > /< 𝑢𝑢𝑖𝑑 >

such that, without breaking TLS, a network observer can only
observe a request to the regional S3 subdomain. Thus, blocking
access to this URL would require blocking all HTTPS requests to
an entire S3 region. This is also why we use a CURL request, rather
than an API library like AWS-CLI, because the latter makes requests

37



Free and Open Communications on the Internet 2024 (2) Vines

to an account-specific subdomain that could be blocklisted if known
by the censor.

The PublicUser Transport supports two methods of "link es-
tablishment." Firstly, it can load a link-address that contains the
starting fetch and post UUIDs and essentially "jumps into" a con-
nection immediately. Alternatively, it can create a link, including
generating a link-address that specifies the fetch and post UUIDs.
In the create case, this link-address must then be transmitted to
an AccountHolder Transport (i.e. a server) to load it before the
specified object permissions will actually be enacted. Until then,
the PublicUser cannot actually use the link it has created; in partic-
ular it cannot try to post any messages ahead of transmitting the
link-address because the AccountHolder has not yet made the post
UUIDs available for public writing.

        Skyhook Server

        Skyhook Client

Cloud Storage (S3)

Client App
(Bridge Retriever)

Encode
Encoding
(No-Op*)

Skyhook
AccountHolder

Transport

Skyhook
User Model

Server App
(Bridge Distributor)

Decode

R
ec
v

Se
nd

Fetch

Post

PO
ST

G
ET

Encode
Encoding
(No-Op*)

Skyhook
PublicUser
Transport

Skyhook
User Model

DecodeFetch

Post

Se
nd

R
ec
v

G
ET

PO
ST

Figure 5: Architecture of the Skyhook client and server im-
plemented in the Raceboat decomposed channel framework.
A generic user model component is used by both, but distinct
PublicUser and AccountHolder transport variants. Skyhook
uses a No-Op encoding under the baseline adversary model,
but can use any encoding since cloud storage supports arbi-
trary content types.

3.1.2 AccountHolder Transport. The AccountHolder is effectively a
superset of the PublicUser Transport. It executes 𝐹𝐸𝑇𝐶𝐻 and 𝑃𝑂𝑆𝑇
actions in the same way, but with additional steps associated with
maintaining the object permissions. Each time the AccountHolder
Transport 𝐹𝐸𝑇𝐶𝐻es a new message, it removes the public write
permissions from the UUID, deletes the file, and extends the buffer
of publicly writable UUIDs by one. It also removes the read per-
mission and deletes each file it wrote to before this fetched file was
written to, under the assumption that the PublicUser will read files
before writing new ones. Each time the AccountHolder Transport

𝑃𝑂𝑆𝑇 s a new message, it extends the buffer of publicly readable
UUIDs to include the new file.

3.2 User Model Components
The User Model components of Skyhook generate sequences of
𝐹𝐸𝑇𝐶𝐻 and 𝑃𝑂𝑆𝑇 actions for each link that is established. The tim-
ing of these sequences is designed to avoid excessive delays while
also limiting the amount of unnecessary requests (e.g. requests for
objects that have not been written yet). We settle on a 1-second
polling rate and an on-demand sending model. The former means
a 𝐹𝐸𝑇𝐶𝐻 action is scheduled for each link every second; the latter
means that 𝑃𝑂𝑆𝑇 actions are only scheduled if there is data to send,
and they are scheduled for as-soon-as-possible execution.

The User Models are simple generators of 𝐹𝐸𝑇𝐶𝐻 and 𝑃𝑂𝑆𝑇

actions to avoid excessive costs while providing sufficient perfor-
mance for signaling channel use cases; they are not designed for
providing security against user behavior analysis attacks. We argue
that the limited duration and infrequent execution of signaling
channel uses makes these types of attacks in a common censorship
circumvention scenario unlikely. However, if a specific use/threat
model for Skyhook does include such attacks (i.e. if Skyhook were
planned to be used for longer-lived continuous connections like the
original CloudTransport, see Section 5) then the User Models can
be extended as appropriate to disguise Skyhook use at some perfor-
mance cost. For example, the GAN-based approach used by Wails
et al. [13] could be used to produce realistic timelines of actions
based on real world traffic traces. We stress that these changes are
formally abstracted from the Transport code via the decomposed
framework, such that no Transport code modifications would be
required.

4 EVALUATION
Skyhook is a fully functioning channel implementation for the
Raceboat framework (technically two: the PublicUser and Accoun-
tHolder variants) and can be used in anywaywithin that framework.
However, our specific motivation for its use is as a signaling channel
to support operations like retrieving a bridge address or bootstrap-
ping another channel from only publicly available information. We
demonstrate Skyhook’s utility and flexibility in two configurations:

(1) Skyhook-only bridge request & response scenario
(2) Skyhook + another signaling channel bridge request & re-

sponse

4.1 Skyhook in Isolation
In this scenario, we run Raceboat with Skyhook as the only channel;
there is a single initial Skyhook link created by the server and its
link-address is publicly shared out-of-band with the client (and
assumed known by the censor). This initial public link is used for
the hello request by the user which both contains a request for a
bridge at the "application" layer (i.e. above Raceboat) and an in-band
link-address for a new Skyhook link that provides a new, private,
link for the server to respond on.

Table 1 shows the latency for this bridge request operation across
varying AWS S3 regions with the client and server run from private
devices nearest the U.S. East region.

38



Ten Years Gone Free and Open Communications on the Internet 2024 (2)

4.2 Skyhook in Combination
To demonstrate the flexibility of using Skyhook, we conduct the
same bridge request & response operation with two other Raceboat-
supporting channels: EmailBase64 and FlickrJEL. The former uses
automation to send and/or receive emails and simply base64-encodes
the request data; the latter uses JEL [4] to steganographically en-
code the request into a JPEG image and then transmits it via a
public Flickr post. Table 2 show results for swapping these with
Skyhook for both the initial client-to-server (public) link and the
responding server-to-client (private) link.

We do not show these results to demonstrate Skyhook’s superi-
ority to other signaling channels, but to demonstrate its flexibility
to mix-and-match with other channels within the Raceboat frame-
work. Depending on the threat model and user environment, some
channels may be functionally worse (or nonfunctional) as public
request links, or private response links, or as either but never both.

5 EXTENDED SECURITY MODEL
Our initial design requirements (Section 2.1) used a broad and
generic threat model to represent the censor: we assumed that TLS
remained intact, HTTPS queries to cloud storage services were
innocuous, Skyhook would be used for short-lived signaling con-
nections, and no extensive analysis of user behaviors was being
conducted. Essentially, we claim Skyhook can hide within the noise
of a busy network environment without providing a concise detec-
tion or blocking rule for the censor, short of blocking access to the
cloud storage service altogether.

However, such a generic threat model is not always valid. In
this section, we highlight several attack surfaces along with
directions Skyhook can be extended tomitigate them. Figure 6
lays out a hypothetical scenario of adversary advances and Skyhook
responses described in the following subsections. We posit that the
modular construction of Skyhook lends itself to this sort of agility
against real world censor tactics.

5.1 Content Inspection Attacks
Our standard threat model assumes TLS encryption is intact so we
do not bother encoding the content of Skyhook data as anything
other than binary blobs since it is unobservable to the censor. How-
ever, for threat models that cannot assume intact transport security
(e.g. TLS is subject to man-in-the-middle attacks or is blocked out-
right) Skyhook can be combined with an arbitrary other Encoding

Table 1: Latency of a Lox-based Bridge Request + Invitation
Redemption (346B request + 1.3KB response) using Skyhook
across different AWS S3 regions, client and server run in
eastern US.

S3 Region Total Time

US (Virginia) 7.926s
US (California) 11.763s

Sweden 14.618s
India 19.361s
Japan 18.611s

Table 2: Latency using Skyhook (in US, Virginia) and another
signaling channel, with one used as the request channel and
the other as the response channel. Same 346B + 1.3KB Lox-
based Bridge Request + Invitation Redemption as Table 1

Req. Channel Resp. Channel Total Time

Skyhook EmailBase64 24.54s
Skyhook FlickrJEL 90.10s

EmailBase64 Skyhook 14.51s
FlickrJEL Skyhook 65.13s

component [12] that provides steganographic encoding of message
data. Since a wide variety of content might plausibly be stored in
the cloud, a wide variety of Encodings might be reasonable: e.g.
Raceboat already has support for one steganographic image en-
coding [4]; Format Transforming Encryption (FTE) [6] could also
provide a variety of encoding options like static HTML content or
natural language text [2].

Due to implementation of Skyhook in the decomposed Raceboat
framework, addition of an Encoding requires no modification of the
Transport code itself. Modifying a single manifest file and providing
the plugin that contains the Encoding component at runtime is all
that is necessary.

5.2 User Behavior Pattern Attacks
Skyhook can theoretically be detected based on behavior patterns:
both analysis of individual Skyhook connections and aggregate
analysis of all connections a user makes over time could provide
a pattern that is separable from benign user behaviors using e.g.
machine learning classifiers. Wails et al. [13] illustrated this type of
attack on uses of email-based circumvention channels that create
anomalous email sending patterns.

Connection pattern attacks are inherently about detecting the
"shape" of the censored application traffic influencing the "shape"
of the circumvention connection: this is a significant attack surface
for a long-lived Skyhook (or CloudTransport) connection that is
tunneling a synchronous application. However, we posit that it is
much less feasible for short-lived signaling connections. E.g. in a
bridge request scenario, there is a single HTTPS POST and HTTPS
GET request, which we argue would correspond to many legitimate
uses of cloud storage services. In contrast, using Skyhook to tunnel
a livestream upload could create a distinctive pattern of traffic (i.e.
constant rate of small POSTs) that might be separable from all
"normal" cloud storage usage.

In summary, we consider these types of pattern attacks to be
outside the scope of our core threat model, potentially mitigated
by our intended use case, and highly dependent on knowledge
of a specific more advanced censor. Without a concrete basis for
this censor, it is not effective to devise defenses. However, due to
Skyhook’s decomposed implementation, pattern defenses can be
developed and deployed without altering (or even rebuilding) the
core plugin code. E.g. given some data for the censored environment,
a data-driven approach like Raven’s [13] GAN-based user model
generation could be applied to create a user model that restricts
Skyhook’s connection traffic to be within the local norm.

39



Free and Open Communications on the Internet 2024 (2) Vines

Adversary Advances

Mitigations Development and Deployment

Skyhook Skyhook

Adversary begins
TLS Breaking and
Content Inspection

Swap-in existing
content encoding

(e.g. JEL)
Skyhook Skyhook

Adversary begins
User Behavior

Pattern Filtering

Adversary blocks
the cloud storage

service

Add realistic
/ stochastic
user model

Extend transport to
new cloud storage

APIs

Initial Skyhook
system working

Figure 6: Hypothetical timeline showing deployment of Skyhookwhich provokes adversary advances to block it. These advances
are thenmitigated by targeted extensions to Skyhook. Themodular nature of Skyhook leaves themajority of its code untouched
by any given mitigation.

5.3 Cloud Storage Access Fingerprinting Attacks
Skyhook uses HTTPS cURL requests to fetch and post content to
cloud storage. We specifically use this "raw" type of request to en-
able directing the request to a generic regional subdomain rather
than an account-associated subdomain; the account-associated sub-
domain is assumed known by the censor and so could be blocked
without disrupting all access to the storage provider.

However, there may be network environments where this is
the wrong trade-off: if the censor can determine that this style
of request is suspicious and safe to block, then Skyhook should
be modified/extended to use an alternative access method. Once
multiple modes are supported, this could be easily set on a per-link
basis to enable a universal Skyhook channel that can operate in
either case (including heterogenous mixes, if applicable).

5.4 Denial of Service (DOS) Attacks
There are several DOS attack surfaces in the Skyhook implementa-
tion. Object-level permissioning on pseudorandom object UUIDs
prevents DOS attacks by third-parties on private links: only the
client and server of the connection know the chain of UUIDs that
can be read and written publicly.

However, in the case of a public link where the initial UUID is
assumed known, or if a client turns out to be malicious, a DOS
attack surface exists. The censor could write repeatedly and/or
large objects to a publicly writable UUID. In assessing DOS threats
we must distinguish two types of resources that can be exhausted:
actual processing and the cost of operating the cloud storage service.

5.4.1 Compute DOS. Processing-based DOS attacks are less of a
threat to Skyhook than some other circumvention channels because
a major cloud storage provider will actually bear the brunt of the
attack: e.g. the censor will be trying to launch a DOS attack
on AWS S3, not a privately hosted webserver. Large numbers
of hello requests could also slow the processing of legitimate re-
quests by the Skyhook server, but the amount of work conducted
per-request is small and the Skyhook server can be run within the
hosting environment of the cloud storage provider to give it an
inherent advantage in processing requests versus the external cen-
sor in making the requests. A concerted attack by the censor on
the cloud storage service approaches the same effect as blocking

the storage service in the first place. We assume that imposes un-
acceptable collateral damage on the censor’s economic and social
interests, but ultimately is a choice the censor can make (just as
cutting off Internet access entirely is).

5.4.2 Monetary DOS. Exhausting Skyhook server infrastructure
monetarily is a different case. We analyze potential monetary DOS
attacks based onAWS S3 pricing [9], assuming other cloud providers
follow similar billing approaches. First, data transfer into storage
is free, so there is no cost for the censor uploading large amounts
of data initially. Objects in storage are deleted after processing,
and additional rules for automated deletion after time are also sup-
ported, this should minimize costs for storage to sustainable levels
that would raise the bar for the monetary DOS attack to become a
computational/network DOS attack on the cloud provider.

There are no publicly-known read links in the Skyhook use-cases
formulated in this paper, so any publicly readable UUID is known
only to a client that has successfully started a connection with
a server. Assuming a malicious client connection is established,
the client can maliciously fetch readable objects to impose costs
for transferring data out of storage. These are free up to the first
100 GB/month, and $0.05-0.09 GB/month after. In the context of
our 1.3KB bridge response, this equates to more than 15 million
signaling connections per-dollar. Furthermore, since these read
operations depend on establishing a connection, there is an oppor-
tunity for the server to execute DOS-protection logic to prevent
an undetermined number of readable files. Naturally, cost mitiga-
tions like slowing the rate of connection acceptance or adding some
"proof of work" on the client can itself provide the original denial
of service the censor aimed for.

5.4.3 API Gateways Defenses. If DOS attacks cannot simply be
sustained by the cost and compute infrastructure, there is another
design mitigation available: shifting resource access to a managed
API gateway enables inclusion of WAF-like rules such as track-
ing connection source IP addresses and blocking abusive hosts.
Thus, a API gateway-guarded Skyhook link could detect and block
censor attempts to exhaust resources with reads and writes. The
trade off, however, is the gateway requires directing requests to
a unique subdomain, which could become the target of censor-
ship. The ephemeral nature of the domain does enable a potential

40



Ten Years Gone Free and Open Communications on the Internet 2024 (2)

flux-based defense which raises the complexity of censorship by
requiring continuous update of blocking rules. However, since the
address must be public, there is no fundamental way to prevent
censor blocking of the subdomain.

6 CONCLUSION
In this paper we have revisited the concept of censorship circumven-
tion using cloud storage services proposed in CloudTransport. We
find shortcomings in its original use case and the design oriented to-
wards it: supporting generic and long-lived networked application
support. We instead reorient the cloud storage concept towards
a more suitable and increasingly important use case: providing
signaling channels for short-lived connections with no pre-shared
secrets in order to bootstrap higher-performance circumvention
connections. We devise a new channel, Skyhook, within the decom-
posed application tunneling framework provided by Raceboat: we
redesign several important aspects of CloudTransport to support
greater resilience and usability, and demonstrate the suitability of
Skyhook for use as a signaling channel to bootstrap other censor-
ship circumvention connections (e.g. Tor bridges) without secret
information.

ACKNOWLEDGMENTS
This material is based upon work supported by the AFRL-RI and
DARPA under Contract No. FA8750-19-C-0501. Any opinions, find-
ings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views
of the AFRL-RI and/or DARPA. “A” (Approved for Public Release,
Distribution Unlimited).

REFERENCES
[1] Yawning Angel. 2023. obfs4: The obfourscator. https://gitlab.com/yawning/obfs4

Access on 5/30/2023.
[2] Luke A Bauer, James K Howes IV, Sam A Markelon, Vincent Bindschaedler,

and Thomas Shrimpton. 2021. Covert Message Passing over Public Internet
Platforms Using Model-Based Format-Transforming Encryption. arXiv preprint
arXiv:2110.07009 (2021).

[3] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. 2014. CloudTransport:
Using Cloud Storage for Censorship-Resistant Networking. In Privacy Enhanc-
ing Technologies Symposium. Springer. https://petsymposium.org/2014/papers/
paper_68.pdf

[4] Chris Connolly. 2015. libjel – JPEG Embedding Library. https://github.com/SRI-
CSL/jel Access on 5/30/2023.

[5] Tor Documentation. 2023. Snowflake: pluggable transport that proxies traffic
through temporary proxies using webrtc. (2023). https://trac.torproject.org/
projects/tor/wiki/doc/Snowflake

[6] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2013.
Protocol Misidentification Made Easy with Format-Transforming Encryption. In
Computer and Communications Security. ACM. https://eprint.iacr.org/2012/494.
pdf

[7] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. Privacy Enhancing
Technologies 2015, 2 (2015). https://www.icir.org/vern/papers/meek-PETS-2015.
pdf

[8] Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M. Swanson, Steven J.
Murdoch, and Ian Goldberg. 2016. SoK: Making Sense of Censorship Resistance
Systems. Privacy Enhancing Technologies 2016, 4 (2016), 37–61. https://murdoch.
is/papers/popets16makingsense.pdf

[9] s3-pricing 2024. Amazon S3 pricing. https://aws.amazon.com/s3/pricing/
Accessed on 4/15/2024.

[10] tor 2023. Tor. https://torproject.org/ Accessed on 5/30/2023.
[11] Michael Carl Tschantz, Sadia Afroz, Anonymous, and Vern Paxson. 2016. SoK:

Towards Grounding Censorship Circumvention in Empiricism. In Symposium
on Security & Privacy. IEEE. https://www.eecs.berkeley.edu/~sa499/papers/
oakland2016.pdf

[12] Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy. 2024. Com-
munication Breakdown: Modularizing Application Tunneling for Signaling
Around Censorship. Privacy Enhancing Technologies 2024, 1 (2024). https:
//www.petsymposium.org/popets/2024/popets-2024-0027.pdf

[13] Ryan Wails, Andrew Stange, Eliana Troper, Aylin Caliskan, Roger Dingledine,
Rob Jansen, and Micah Sherr. 2022. Learning to Behave: Improving Covert
Channel Security with Behavior-Based Designs. Proceedings on Privacy Enhancing
Technologies 3 (2022), 179–199.

[14] Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas J. Hopper. 2013. rBridge:
User Reputation based Tor Bridge Distribution with Privacy Preservation. In
Network and Distributed System Security. The Internet Society. https://www-
users.cs.umn.edu/~hopper/rbridge_ndss13.pdf

[15] Diwen Xue and Roya Ensafi. 2023. The Use of Push Notification in Censorship
Circumvention. Free and Open Communications on the Internet (2023).

41

https://gitlab.com/yawning/obfs4
https://petsymposium.org/2014/papers/paper_68.pdf
https://petsymposium.org/2014/papers/paper_68.pdf
https://github.com/SRI-CSL/jel
https://github.com/SRI-CSL/jel
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake
https://eprint.iacr.org/2012/494.pdf
https://eprint.iacr.org/2012/494.pdf
https://www.icir.org/vern/papers/meek-PETS-2015.pdf
https://www.icir.org/vern/papers/meek-PETS-2015.pdf
https://murdoch.is/papers/popets16makingsense.pdf
https://murdoch.is/papers/popets16makingsense.pdf
https://aws.amazon.com/s3/pricing/
https://torproject.org/
https://www.eecs.berkeley.edu/~sa499/papers/oakland2016.pdf
https://www.eecs.berkeley.edu/~sa499/papers/oakland2016.pdf
https://www.petsymposium.org/popets/2024/popets-2024-0027.pdf
https://www.petsymposium.org/popets/2024/popets-2024-0027.pdf
https://www-users.cs.umn.edu/~hopper/rbridge_ndss13.pdf
https://www-users.cs.umn.edu/~hopper/rbridge_ndss13.pdf

	Abstract
	1 Introduction
	2 design
	2.1 Design Requirements
	2.2 CloudTransport In Brief
	2.3 Removing Client Storage Accounts
	2.4 Unilateral Permissioning For Bidirectional Connections

	3 implementation
	3.1 Transport Components
	3.2 User Model Components

	4 evaluation
	4.1 Skyhook in Isolation
	4.2 Skyhook in Combination

	5 Extended Security Model
	5.1 Content Inspection Attacks
	5.2 User Behavior Pattern Attacks
	5.3 Cloud Storage Access Fingerprinting Attacks
	5.4 Denial of Service (DOS) Attacks

	6 conclusion
	Acknowledgments
	References

