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ABSTRACT
Many countries limit their residents’ access to various websites. As
a substantial number of these websites do not support TLS encryp-
tion, censorship of unencrypted HTTP requests remains prevalent.
Accordingly, circumvention techniques can and have been found
for the HTTP protocol. In this paper, we infer novel circumvention
techniques on the HTTP layer from a web security vulnerability
by utilizing HTTP request smuggling (HRS). To demonstrate the
viability of our techniques, we collected various test vectors from
previous work about HRS and evaluated them on popular web
servers and censors in China, Russia, and Iran. Our findings show
that HRS can be successfully employed as a censorship circumven-
tion technique against multiple censors and web servers. We also
discover a standard-compliant circumvention technique in Russia,
unusually inconsistent censorship in China, and an implementa-
tion bug in Iran. The results of this work imply that censorship
circumvention techniques can successfully be constructed from ex-
isting vulnerabilities. We conjecture that this implication provides
insights to the censorship circumvention community beyond the
viability of specific techniques presented in this work.
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1 INTRODUCTION
Governments around the world block access to certain websites for
their residents [44]. While website encryption with TLS [18, 54]
provides some protection against censorship efforts, the SNI ex-
tension [20] still leaks the hostname. This allows potential censors
to analyze the SNI extension and block the traffic before the TLS-
encrypted channel to the website is built [55]. While using TLS is
nowadays state-of-the-art from a security perspective, many web-
sites still offer plain HTTP, often in conjunction with TLS [32].
Even when websites support only TLS, they often redirect clients’
HTTP traffic to HTTPS websites. This culminates in a consider-
able number of plain HTTP requests. Cloudflare Radar reports that
16 % of requests originating in China are transmitted over plain
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HTTP [16]. These HTTP requests are analyzed by censors world-
wide [9, 28, 36, 44]. As long as clients send HTTP requests that are
intercepted by censors, HTTP censorship remains an important
stepping stone toward circumventing censors.

Censors mainly filter HTTP requests by analyzing the domain
contained in their Host header [28, 44]. Using Deep Packet Inspec-
tion (DPI), censors isolate the HTTP layer of received network
packets, identify potential Host headers, and extract the domain
name. Circumventions of this process commonly follow one of two
avenues. First, obfuscating the domain or the Host header prevents
the censor from extracting a domain name [28]. Second, invalidat-
ing the TCP state prevents the censor from recognizing or filtering
any HTTP packets [10]. Both techniques modify an already present
HTTP request and attempt to pass it through the censor.

In this work, we create novel circumvention techniques against
Host header-based censorship from a web security vulnerability.
Specifically, we utilize the knowledge of HTTP request smuggling
(HRS) to create ambiguously defined HTTP requests that circum-
vent censors. Such an ambiguously defined HTTP request is de-
picted in Figure 1. The request contains a second—smuggled—HTTP
request and two differentiating length fields that encompass either
the first or both requests, respectively. A smuggled request that is
normally censored and missed by the censor but interpreted by the
web server constitutes a successful circumvention technique.

GET / HTTP/1.1
Host: example.com
Content-Length: 50
Transfer-Encoding: chunked

0

GET / HTTP/1.1
Host: censored.org

Figure 1: Example of a smuggled request. The Content-
Length header indicates a single request; the Transfer-
Encoding header indicates two requests.

Contributions. In our paper, we construct novel censorship cir-
cumvention techniques from HRS vectors based on current work in
the field. To determine the viability of our test vectors, our analysis
was twofold. First, we evaluated the acceptance rate of our test
vectors on popular local web servers, CDNs, and randomly chosen
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domains from the CitizenLab test-lists repository [14]. Second, we
analyzed censors’ behavior on our test vectors using vantage points
in China, Russia, and Iran. Our evaluation of local web servers
and CDNs revealed numerous request smuggling opportunities in
web servers and CDNs. Our analysis of censors yielded numerous
successful circumvention strategies. We combined the results of
both analyses and extracted strategies that circumvent censors and
are accepted by widely used web servers. Through further analysis,
we detected a general standard-compliant circumvention technique
for the censor in Russia, inconsistencies in the censorship behavior
of China’s Great Firewall, and an implementation bug in Iran’s cen-
sor. Most importantly, we show that a vulnerability can be directly
transformed into censorship circumvention techniques.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce HTTP request smuggling, outline cen-
sorship practices of governments worldwide, and discuss current
countermeasures and measurement platforms.

2.1 HTTP Request Smuggling (HRS)
HRS is a web security vulnerability that utilizes discrepancies in
the HTTP parsers of at least two systems in a frontend-backend
configuration. Specifically, HRS is possible if the frontend and back-
end servers consider different bounds for the same HTTP message.
In this case, an attacker can hide—smuggle—bytes in the bounds
of the first HTTP message which are interpreted by one system
and missed by the other. To achieve this behavior, the attacker
ambiguously defines the bounds of the HTTP message through
HTTP headers: usually, the Transfer-Encoding (TE) header and the
Content-Length (CL) header [23].

HTTP Headers. The Content-Length header explicitly defines
the number of bytes 𝑛 contained in the body of the HTTP request
through Content-Length: 𝑛. The Transfer-Encoding header spec-
ifies the encoding, which is applied to the message body. For HRS,
the chunked encoding (Transfer-Encoding: chunked) is relevant.
It indicates that the body is streamed in a series of chunks. Each
chunk begins with the hexadecimal length of itself, followed by the
chunk data. A chunk of length zero terminates the body. Figure 2
depicts the correct usage of both headers for the same HTTP mes-
sage. Notably, while these headers are used for transferring data
in the HTTP body (e.g., in HTTP POST requests), their usage in
HTTP GET requests is allowed.

POST /path HTTP/1.1
Host: example.com
Content-Length: 15

example-content

POST /path HTTP/1.1
Host: example.com
Transfer-Encoding: chunked

9
example-c
6
ontent
0

Figure 2: POST request with correct usage of Content-Length
and Transfer-Encoding headers.

HTTP Request Smuggling Research. HRS was first presented by
Linhart et al. [43] in 2005. Linhart et al. successfully attacked web
servers and middleboxes threefold: with two Content-Length (CL)
headers, two Transfer-Encoding (TE) headers, and a combination
of both. In 2019, Kettle [38] discovered that many servers were re-
silient against same-header smuggling attacks but introduced new
HRS attacks that contain a combination of the CL and TE header.
In the following years, new attack vectors have been discovered
manually by Klein [40] and through fuzzing by Jabiyev et al. [34].
defparam [17] implemented a tool that gathers known test vectors
and automatically detects HRS vulnerabilities in web server im-
plementations. In our work, we gather test vectors from previous
work [17, 34, 38, 40] and utilize them to construct novel censorship
circumvention techniques.

Kettle [39] and Emil Lerner [21] discovered further HRS attacks
against HTTP/2. We did not consider their vectors as browsers only
support HTTP/2 in conjunction with TLS [27] and changes to the
HTTP headers in this scenario are invisible to the censor.

Attack Example. To execute an HRS attack, an attacker includes
both headers in a single HTTP request such that they indicate
different message bounds. Figure 1 displays an example of an HRS
attack attempt in which the second HTTP request, depicted after
the dotted line, is smuggled alongside the first HTTP request. The
CL header field of the first request in line 3 defines a body size of
50 bytes: the body contains the highlighted bytes and the second
request is not parsed as a second HTTP request. The TE header
field in line 4 defines a chunked encoding: the body contains only
an empty chunk and the second HTTP request is parsed as such.
Therefore, the amount of HTTP requests this message contains
depends on which header is accepted by a parser. The standard
forbids the presence of both headers and specifies that the TE header
takes precedence [23, 46]. The works we discussed above still found
HRS vulnerabilities, especially by invalidating either header. In
this paper, we draw on test vectors that invalidate either header to
circumvent HTTP censorship.

2.2 Censorship
Network censorship is widely used by many countries and has been
revealed by numerous analyses [3–6, 26, 45, 50, 52, 60, 64, 67]. Some
countries maintain their censorship infrastructure themselves [62]
while others delegate this task to local Internet Service Providers
(ISPs) [63]. In both cases, middleboxes either block IPs directly or
use DPI to scan packets for domain names or other keywords they
want to censor. To interrupt a connection, middleboxes drop pack-
ets [61, 63] or inject additional malicious packets such as wrong
DNS responses [4, 31, 51], or TCP RST packets [15, 42] into the con-
nection. Some middleboxes also employ residual censorship: they
block innocuous packets for some time after a previous packet trig-
gered censorship behavior [8]. Various platforms such as OONI [25],
CensoredPlanet [56], and GFWatch [30] collect censorship measure-
ments around the world and make them freely accessible. Similarly,
various censorship circumvention tools implement a wide range of
circumvention techniques [13, 29, 37, 41, 48, 58, 66]. We refer to the
comprehensive work of Master and Garman [44] for an overview
of countries and techniques involved in global censorship efforts.
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Censors Analyzed in this Work. In our work, we analyzed censors
in China, Russia, and Iran. China’s censor — the Great Firewall
of China (GFW) — is arguably the most researched censor [4, 10–
12, 15, 22, 28, 31, 44, 61, 62]. The GFWmaintains an infrastructure of
state-owned middleboxes [62] which analyze the content of HTTP
packets [28] and forcibly interrupt connections by injecting three
TCP RST packets [10, 12]—immediately and residually [8, 11]. Un-
til 2020, Russia maintained a centralized blocklist but delegated
censorship implementation to its ISPs [53]. In 2021, Russia further
centralized its censorship by mandating ISPs to build dedicated cen-
sorship devices into their networks [63, 64]. These so-called TSPU
devices intercept connections by setting the RST flag in packets
or dropping them altogether [63]. As of 2021, TSPU devices did
not trigger on HTTP packets [65]. HTTP censorship in Iran was
first detected by Aryan et al. [5] in 2013. They found that Iran’s
censor injects an HTTP block page to tear down connections. In
2020, Bock et al. [9] detected an additional Iranian censor which
restricts ports 53 (DNS), 80 (HTTP), and 443 (HTTPS) to these
protocols and also uses residual censorship [8]. This makes Iran’s
censor comparably strict in that they only allow traffic on these
well-known ports which their censorship system can analyze. We
analyzed the censors of China, Russia, and Iran in this work as they
censor HTTP, are well-researched, and undergo frequent changes.

Censorship Circumvention. The censors we analyzed and other
censors focus on the Host header and request path fields of HTTP
requests [5, 10, 36, 67]. Accordingly, the obfuscation of these fields
to a censor is paramount for a successful circumvention of HTTP
censorship and has been successfully achieved by previous work.
Bock et al. [10] found numerous HTTP censorship circumventions
by manipulating packet fields on the TCP layer; this invalidates
the reduced TCP state of the censor such that it lets the packets
pass. Manipulations on the TCP layer have the benefit of applying
to other application layer protocols as well. On the other hand,
they usually require elevated privileges which might not be eas-
ily achievable on some devices and it has been shown that the
GFW fixed at least one circumvention over time [47]. Jermyn and
Weaver [35] and Harrity et al. [28] present many circumvention
techniques that confuse censors by modifying the HTTP headers
of censored requests. While we considered similar modifications in
our evaluations, we did not apply them to censored resources di-
rectly. Instead, we modify a crafted request containing the censored
request in its body.

In their paper, Harrity et al. [28] relate their methodology to HRS
by drawing similarities between their fuzzing approaches. How-
ever, they claim that the objective of censorship circumvention—
modifying a request such that it passes the censor—differs from
the objective of HRS: hiding a second request alongside the first.
We argue that censorship circumvention and HRS can follow the
same objective by hiding a censored request in a second uncensored
request and smuggling it past the censor.

3 TURNING HRS ATTACKS INTO
CENSORSHIP CIRCUMVENTIONS

Our major observation is that HRS attacks are conceptually similar
to censorship circumvention attacks on censors between a client

censored.org

GET / HTTP/1.1
Host: example.com
CL: 50
TE: chunked

body

GET / HTTP/1.1
Host: example.com
CL: 50
TE: chunked

GET / HTTP/1.1
Host: censored.org

HTTP/1.1 XXX ERROR

HTTP/1.1 200 OK

Client Censor

Figure 3: HRS attack on a frontend/censor. The
Content-Length and Transfer-Encoding headers are short-
ened for readability.

and a server. Consider the smuggling vector in Figure 1. A cen-
sor that interprets the CL header parses the second request as the
body of the first request. Subsequently, it would only analyze the
harmless Host header of the first message and not censor the mes-
sage. Should the web server interpret the TE header of the first
request, it would interpret both requests separately and return the
censored resource alongside the uncensored one. If the web server
does not host the uncensored resource, it might also return an error
alongside the censored request. Figure 3 depicts a successful cen-
sorship circumvention using HRS. Note, that a stateful censor could
match the number of HTTP requests and HTTP responses and
drop additional HTTP responses. We did not identify this behavior
from censors in this work and this case could be accommodated by
sending an additional dummy request. In summary, we postulate
that HRS can be used to circumvent censorship as long as parsing
ambiguities between censors and web servers exist. In the follow-
ing, we present our analyses of various HRS vectors and show that
censorship circumvention using HRS is possible.

4 METHODOLOGY
In this section, we define the structure of our test vectors and
describe our evaluation process. As the censors that we analyze
employ different censorship mechanisms, we accommodated our
scans accordingly.

4.1 Test Vectors
To circumvent censorship, we attempt to smuggle a censored HTTP
request alongside an uncensored one through the censor. Accord-
ingly, each of our test vectors consists of two consequent HTTP
requests. The first request always has exactly one CL and one TE
header in this order. One header sets the bounds of the first request
behind the second request, attempting to confuse the censor; the
other header sets the bounds of the first request before the second
request, attempting to be accepted by the web server. A test vector
is then a modification of either the TE or CL header by strategies
such as injecting a new line (\n) in the corresponding header. We
split the test vectors into four types: CL*/TE, TE*/CL, CL/TE*, and
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TE/CL*. The first value indicates the header that sets the message
bounds after the second request, effectively hiding the second re-
quest. The second value indicates the header that sets the message
bounds after the first request, revealing the second request. Our
test vectors modify one of these headers which is indicated by the
asterisk (*).

Figure 1 depicts a ground truth test vector without modifications
in which the CL header sets the bounds after the second request,
confusing the censor. The type of this test vector is CL/TE. Modi-
fying the CL header would result in type CL*/TE while modifying
the TE header would result in type CL/TE*. For each modification,
we created up to four vectors—one for each type. These test vectors
differ in which header the modification is applied to and which
bounds each header indicates. Notably, not all modifications can be
applied to both headers such as insertions that specifically target
the chunked keyword of the TE header. Overall, we generated 4,488
unique test vectors from 1,138 modifications. All our test vectors
are taken from previous HRS work (cf. Section 2). This way we
directly transform a web security vulnerability into a censorship
circumvention technique.

4.2 Web Server Acceptance
Successful test vectors bypass the censor and elicit a correct re-
sponse from the targeted web server (cf. Figure 3). Specifically, the
web server has to send two responses of which the last one must in-
dicate a success. To test web servers’ acceptance of our test vectors
we analyzed which test vectors elicit two responses from common
web servers and recorded the HTTP status codes. We consider a
test vector to be accepted by a web server if the web server sends
two HTTP responses and if the status code of the second response
is either 200 Success or 3XX Redirect. Overall, we evaluated 50
different web servers: local web servers, CDNs, and hosts taken
from the CitizenLab test lists for China, Iran, Russia, and the global
list [14]. This diverse set of web servers aims to find a balance
between popular technologies and web servers that are directly
impacted by censorship. We performed our evaluation of live web
servers on 5th November, 2023. Below, we outline how we decided
on web servers for each category.

Local Web Servers. To scan local web servers, we decided to use
the most popular web server versions according to W3Tech[59]. As
of 26th August, 2023, W3Tech identified Apache and Nginx to have
the highest market share followed by Cloudflare Server. As local
web servers, we decided to test the four versions with the highest
market share of Apache and Nginx as well as the latest version at
the point of our evaluations. These were Apache versions 2.2.15,
2.4.6, 2.4.29, 2.4.41, and 2.4.57-latest and Nginx versions 1.14, 1.18,
1.21, 1.22, and 1.25.2-latest respectively.

CDNs. As popular CDNs to scan, we selected Akamai, Amazon,
Cloudflare, and Fastly. For each of these CDNs, we selected five
popular websites with the help of Hunter Web Services [33]. We
verified the hosts with a Who-is-Lookup of their IP address and
checked that the Autonomous System Number (ASN) belongs to
that CDN before adding them to our targets.We refer to Appendix A
for the selection of websites for each CDN.

CitizenLab List Domains. Additionally, we also evaluated our test
vectors on websites that are directly impacted by censorship. For
this, we randomly selected five hosts from the CitizenLab test lists
for China, Iran, Russia, and the global test list, respectively [14].
We list all domains in Appendix A.

4.3 Censor Scans
After evaluating our test vectors on web servers, we determined
which test vectors successfully circumvent censorship. For this,
we considered every vector that was accepted by at least one web
server as described in Section 4.2. This reduces the amount of test
vectors we have to evaluate against censors while ensuring that any
circumvention technique we find is also accepted by web servers.
Additionally, we considered a ground truth vector that consists of
a single plain HTTP GET request. We evaluated each accepted test
vector against censors in China (Zhengzhou), Russia (Moscow), and
Iran (Mashhad). Specifically, we sent our test vectors from a vantage
point inside the country to a control server located in Germany
and recorded the ensuing network behavior. We sent our messages
to a control server rather than an existing web server to gain more
control over connection errors, lower the chance of additional IP
censorship, and prevent unnecessary load on real-life applications.
We also used different authentic User-Agent headers during our
evaluations to lower the chance of our request being fingerprinted.
We provide further details such as the vendor and autonomous
system number (ASN) of our vantage points in Appendix B.

For each country, we selected two censored and two uncensored
websites. The censored websites were taken from the respective
CitizenLab test list [14] while the uncensored websites are either
government websites or popular websites such as qq.com in China.
We manually verified that HTTP requests including these domains
were censored.While some of these domains do not support HTTP—
or redirect to HTTPS—we could utilize them to trigger and evaluate
censorship in the respective countries. We refer to Section 4.2 for
our evaluation of web server support for our test vectors. In our
censor evaluation, we applied each of the four domains to each test
vector: the Host header of the second—smuggled—request in the
test vector was set to the censored domain while the Host header
of the first request was always set to an uncensored domain. Our
ground truth vector, which consists of only one HTTP GET request,
contained only the censored domain. We randomized the order of
our test vectors and sent them 10 times each to our control server
which answers every request with static bytes. We saved the possi-
ble server responses next to network information such as possible
TCP RSTs, timeouts, and block pages. We manually triggered and
identified block pages, categorized the server responses, and auto-
matically detected them in our evaluations based on the observed
status codes: 403 or 307. We conducted all of the censor scans in
March and April 2024. In the following paragraphs, we outline
the censorship mechanism of each country and our corresponding
evaluation methodology.

China. For China, we selected freetibet.org/ andwww.uyghurnet.
org/ as censored websites. In a preliminary scan, we discovered
that censorship in China happens consistently through injected
TCP RST packets after receiving the initial HTTP request. This
aligns with previous research [28]. Therefore, we considered a test
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vector blocked in China if it triggers a TCP RST. Next to direct cen-
sorship through TCP RST injection, we also encountered residual
censorship of 60–90 seconds on the triple (source IP, destination IP,
destination port). This also aligns with previous research [8]. To
avoid classifying uncensored test vectors as censored due to resid-
ual censorship, we connected to 1000 different destination ports on
our control server and waited at least 120 seconds before reusing a
destination port. Specifically, we selected ports 10,000–10,999 for
which we ascertained the described HTTP censorship behavior in
a previous scan.

Iran. For Iran, we selected gaytoday.com and twitter.com as cen-
sored websites. In a preliminary scan, we discovered that censorship
in Iran happens very consistently through injected HTTP block
pages. Therefore, we considered a test vector blocked in Iran if it
triggers an HTTP block page. Since we observed no residual cen-
sorship in Iran, we could perform the whole scan on destination
port 80, mimicking real HTTP traffic. We want to point out that we
could not reproduce the residual censorship on port 80 encountered
in previous work [8].

Russia. For Russia, we selected eurasia.amnesty.org and www.
mdif.org as censored websites. In a preliminary scan, we discovered
inconsistent censorship behavior in Russia. When sending censored
requests to our control server, the rate of requests that would trigger
a block page varied considerably. We also noticed that the same
requests did not trigger a block page butwere droppedwhenwe sent
them to another server. We attribute this inconsistent censorship
behavior to upstream ISPs which are triggered depending on the
network path of our packets. This aligns with the results of Bhaskar
and Pearce [7]. We also infer that we did not encounter censorship
by the newly developed TSPU devices [63]; these devices may still
ignore HTTP traffic altogether, as in 2021 [65]. In the end, we
considered a test vector to be blocked when it triggered an HTTP
block page. Since we observed no residual censorship in Russia, we
performed our scan on destination port 80.

5 RESULTS
In this section, we present and interpret the results of our evalu-
ations. We also analyze web servers’ behavior regarding our test
vectors and show that HRS can be used to circumvent censorship.

5.1 Web Server Evaluation
Of our 4,488 test vectors, 2,015 were accepted by at least one web
server. As described in Section 4, we consider a test vector accepted
if it elicits two responses from the web server, and if the last re-
sponse is either a 200 Success or a 3XX Redirect. Table 1 depicts the
acceptance rate of web servers for each of our test vector types (cf.
Section 4.1). Test vectors of the CL*/TE type are most successful
followed by test vectors of the TE*/CL type. The high acceptance
rates of the CL*/TE and TE*/CL types in comparison to the CL/TE*
and TE/CL* types indicate that web servers largely prefer to in-
terpret the unaltered headers. We did not detect any web server
accepting and interpreting an altered CL header. We attribute this
to the corresponding RFCs [23, 24, 46] which assign precedence
to the TE header. Overall, web servers accepted 44.9% of our test
vectors with a profound preference for test vectors for which they

could accept the unaltered header. For these vectors to circumvent
censorship, the censor has to interpret the altered header. Below,
we provide a more detailed overview of the acceptance rates of our
test vectors by specific web servers.

Table 1: Number of test vectors which we successfully evalu-
ated on web servers ordered by test vector type.

Vector Type Evaluated Accepted

CL*/TE 1,114 1,103 (99.0%)
TE*/CL 1,130 859 (76.0%)
CL/TE* 1,130 53 (4.7%)
TE/CL* 1,114 0 (0.0%)

Total 4,488 2,015 (44.9%)

Local Servers. We locally evaluated our test vectors on five ver-
sions of Apache and Nginx; the results are depicted in Table 2
and Table 3, respectively. Both vendors show a decline in accepted
test vectors for newer versions. Specifically, no TE/CL* or CL/TE*
vectors are accepted by the latest Apache and Nginx versions we
evaluated. We attribute this to HRS countermeasures implemented
in Apache 2.4.25 [1], Apache 2.4.52 [2], and Nginx 1.21.1 [19]. The
few CL*/TE and TE*/CL headers Apache 2.4.57 accepts invalidate
the corresponding header heavily through symbol injections such
as \ffContent-Length. In comparison, Nginx accepted a consid-
erable amount of our test vectors. The latest version we evaluated,
Nginx 1.25.2, accepted 1,315 vectors in total. Overall, newer Apache
versions are much stricter in their acceptance of HRS vectors than
newer Nginx versions. We disclosed our findings to Apache and
Nginx. Neither intends to change their implementation’s behavior
in future versions.

Table 2: Successful test vectors on Apache versions ordered
by test vector type.

Vector Type Accepted by Apache Version
2.2.15 2.4.6 2.4.29 2.4.41 2.4.57

CL*/TE 1,101 1,101 156 156 5
TE*/CL 841 841 6 6 6
CL/TE* 41 41 20 20 0
TE/CL* 0 0 0 0 0

Total 1,983 1,983 182 182 11

CDNs and CitizenLab list. During our evaluation of CDNs and
domains from the CitizenLab list, we encountered various web
server implementations. Many web server implementations were
closed-source implementations by the respective CDN while some
were an Apache or Nginx version, an Nginx derivative [49, 57], or
other closed-source implementations. Table 4 lists all web servers
that we could identify with a Server header and the number of test
vectors they accepted. CDNs largely dismissed our test vectors, with
Cloudflare and Amazon’s Elastic Load Balancing (awselb) being
exceptions. Interestingly, Amazon’s awselb accepted some of our
test vectors while Amazon’s other web server Cloudfront accepted
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Table 3: Successful test vectors on Nginx ordered by test vec-
tor type.

Vector Type Accepted by Nginx Version
1.14 1.18 1.21 1.22 1.25.2

CL*/TE 859 859 657 657 657
TE*/CL 837 836 658 658 658
CL/TE* 29 28 0 0 0
TE/CL* 0 0 0 0 0

Total 1,725 1,723 1,315 1,315 1,315

none. Most of the non-CDN web servers we discovered accepted
an identical or similar set of test vectors as the Nginx versions we
evaluated. We suspect that these libraries are built from Nginx;
OpenResty and Taobao also state so on their websites [49, 57].
Through similar sets of accepted test vectors, we could also identify
web servers with outdated Nginx or Nginx-derivative versions and
notified their owners. In summary, the web server implementations
of CDNs were stricter than the web server implementations by non-
CDNs; mainly because many web servers are using either Nginx or
one of its derivatives.

Notably, many websites we evaluated redirect HTTP traffic to an
HTTPS port. Acceptance of our test vectors by these web servers
still indicates a general acceptance of our test vectors by HTTP
implementations used in the wild.

Table 4: Test vectors on CDNs and web servers that resulted
in two responses during CitizenLab list evaluation.

Vendor Web Server Two Responses

Cloudflare Cloudflarea 1,653–1,677b

Amazon awselb/2.0a 470
Amazon Cloudfront 0
Akamai GHost 0
Fastly Varnish 0

Taobao Tengine 1,725
Open Source Caddy 1,316
Open Source Prometheus 1,315
OpenResty openresty 1,315

a Second response is a redirect.
b Cloudflare servers accepted between 1,653 and
1,677 test vectors across 5 domains. We attribute
this to different deployments or connection issues.

5.2 Censor Evaluation
We evaluated all test vectors that were accepted by at least one web
server on censors in China, Iran, and Russia. Of these 2,015 test
vectors, 19 circumvented the censor in China and 254 circumvented
the censor in Iran. Interestingly, all of our test vectors successfully
evaded censorship on our Russian vantage point. We discuss the
censorship behavior on our vantage points in Russia and China

below. The censorship behavior of Iran is discussed together with
the strategies we discovered in Section 5.3.

Table 5 depicts a selection of test vectors that were accepted by
at least one web server and circumvented at least one censor. We
group these test vectors by their type (cf. Section 4.1) and categories
which we describe in Section 5.3. Overall, test vectors of the TE*/CL
and CL*/TE types are most successful as web servers accept 0 and
53 test vectors from the TE/CL* and CL/TE* types, respectively.
None of the test vectors that were accepted by the latest Nginx
and Apache versions circumvented censorship in China or Iran;
we discuss this limitation in Section 6. Our test vectors were still
evaluated positively on other widely used versions of Apache and
Nginx, CDNs, and domains from the CitizenLab list. We consider
this positive for the viability of HRS for censorship circumvention
and stress the importance of testing live servers in conjunction
with local web servers for censorship research.

Russia. As mentioned above, all of our test vectors successfully
circumvented the censorship at our vantage point in Russia. We
confirmed this behavior through the manual execution of our test
vectors. After confirmation of our results, we analyzed the censor-
ship behavior from our vantage point in Russia further. We found
that the censor always analyzed only the first HTTP packet of the
first TCP segment in a TCP stream. The censor never blocked a
second HTTP request either as part of the same TCP packet or in a
different TCP packet. Thus, all our test vectors circumvented the
censorship at our vantage point in Russia as the censor never ana-
lyzed the second—smuggled—HTTP request. We suspect that the
censor we encountered is stateful and assumes that the Host header
does not change during a TCP connection. Thus, the censor is cir-
cumventable with a standard-compliant circumvention technique.
Additionally, coalescing multiple application layer packets into a
single TCP segment is an interesting technique that opposes the
well-known fragmentation of a single application layer packet over
multiple TCP segments. We see this as an additional hint towards
advanced fragmentation techniques that coalesce and fragment
network packets over multiple network layers as is possible for TLS
or QUIC.

China. In China, most of our test vectors either circumvented
the GFW without triggering TCP RST injection or were censored
with TCP RSTs such that the answer did not reach our vantage
point in any case. For 13 of our test vectors, the behavior was
more mixed: we encountered TCP RSTs on some executions and
the correct server answer on others. We executed an additional
scan with all test vectors and evaluated the behavior of the GFW
with 100 executions on each test vector and both censored domains.
This scan reproduced the behavior we saw in our first scan on
the same test vectors: a subset of our test vectors circumvents
the GFW with a rate between 10% and 35%. We suspect that we
encountered two parts of the GFW’s infrastructure which employ
different mechanisms for its HTTP censorship. This behavior is
peculiar for the GFW which is usually considered consistent in its
censorship behavior.We suggest a future analysis of the consistency
of the GFW’s censorship.
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5.3 Strategies
Below, we describe and discuss the strategies depicted in Table 5.

Double Colon. The double colon strategy consists of test vectors
that inject another double colon in the modified header after the
existing one. Interestingly, this strategy was successful in Iran for
CL*/TE and CL/TE*. We suspect that the censor does not accept this
format and that the CL*/TE test vector falls into the same category
as Wrapping which we explain below. This strategy also worked
for two to four Apache versions and some of the domains on the
CitizenLab list for Russia and China.

White-space Injection. This strategy consists of injecting white
space in the modified header. The injection of white space is done
through injecting line breaks (\0d or \0a), tabs, or spaces. Accord-
ing to the standard, tabs and spaces are allowed, however, line
breaks are not. Iran’s censor accepted the modified header with
tabs and spaces in the CL*/TE and TE*/CL case, which makes Iran’s
censor circumventable with a standard-compliant circumvention
technique. China’s censor was stricter and did not accept tabs and
spaces at all. In some cases, the GFW seems to prefer the CL header
when tabs or spaces are injected into the TE header. Inserting tabs
and spaces was successful for older Apache and Nginx versions,
CDNs, and many servers from the CitizenLab lists. Neither Iran
nor China accepts headers with injected line feeds (\0a) but Iran
accepts TE headers with injected carriage returns (\0d). Further
analysis showed that Iran ignores carriage returns (\0d) in header
names but fails to parse a header if the header name contains a
line feed (\0a). Inserted line breaks were mostly accepted by old
Apache versions and Cloudflare.

Letter Case. The letter case strategy changes the case of all or
some letters to upper case. In some instances, this led the GFW
to ignore the TE header and interpret the CL header instead. We
suspect that some parts of the GFW rely on the correct case of
the headers. Changing the case of letters in the header name is
standard-compliant as header names are case-insensitive. Many
Apache and Nginx versions, aws, and servers from the CitizenLab
lists preferred the other header.

Wrapping. The wrapping strategy wraps the value of the modi-
fied header with extra bytes. This strategy was very successful in
Iran for the CL*/TE type. At first, we suspected that Iran’s censor
ignored symbols it could not parse when interpreting the value of
the CL header. When we tried to verify this behavior, we recognized
that we could not circumvent Iranian censorship by invalidating
the CL header if no TE header was present. The CL header was
ignored and the second request was blocked. The presence of the
TE header was required for the Iranian censor to ignore the second
request. We stress that while the presence was required, the Iranian
censor did not interpret it as it would have recognized and blocked
the second request; it did so when the value of the CL header was a
valid integer. Overall, Iran’s censor failed to interpret the TE header
when a CL header with an invalid value was present. We conclude
that the Iranian censor gracefully handles invalid values for the
CL header and attempts to parse the following HTTP packets. The
same invalid value in the CL headers seems to let the censor fail
and pass the following traffic when it interprets the TE header.

We suspect an implementation bug in Iran’s censor which only
becomes apparent through the interplay of its CL and TE header
parsing. The GFW sometimes accepted the CL header when it was
ended by an additional line feed (\0a) or when it was ended by two
line feeds and an additional header. The acceptance of test vectors
in the Wrapping category by web servers varied, with some being
accepted by newer Apache versions.

Invalid Header. This strategy invalidates the header name. For
example, this can be done by injecting an additional Unicode char-
acter. As a result, the header itself becomes invalid, which leads
to many web servers accepting the request because they cannot
parse the modified header. All test vectors that were accepted by
the newest Apache and Nginx versions are of this type; they treat
the modified CL or TE header as an unknown header and no HRS
countermeasures are undertaken. This strategy was only successful
in Russia where all of our test vectors were successful, as discussed
above. The reason for this is that a censor would normally have to
parse the modified header correctly, which it is unable to do for an
invalid header name.

Double-Header. All censors accepted a test vector with two TE
headers instead of one of which only the last indicates a chunked
encoding. As the vector has the TE*/CL type censors still interpret
the chunked encoding when multiple TE headers are present and
do not fall back to the CL header. This test vector was accepted
by Nginx 1.14 and some servers from the CitizenLab lists. The
standard-compliant way to indicate multiple encodings is in a list
of the same TE header.

6 LIMITATIONS
As HRS is a security vulnerability, many web servers have patched
their implementations to be less accepting of known HRS vectors.
Still, we showed the viability of HRS as a censorship circumven-
tion technique on commonly used web server implementations and
public web servers. Furthermore, the test vectors we used in our
evaluations were all taken from previous work about HRS. We sug-
gest that a large-scale analysis of web servers and vantage points,
using more test vectors, will produce more censorship circumven-
tion techniques that complement the techniques we describe in this
work. We consider a fuzz-style approach as in the work of Jabiyev
et al. [34] promising. Finally, we evaluated censorship from specific
vantage points. Our results might not apply to other vantage points
in specific countries.

7 ETHICAL CONSIDERATIONS
We designed our methodology with a minimal impact on web
servers, clients, and residents in the countries we evaluated. Like
previous work [10, 28, 42], we used vantage points for our cen-
sorship scans; we sent all requests from these vantage points to
another vantage point in Germany. We did not use or send requests
to machines owned by third parties. The evaluations of Apache
and Nginx were executed on local machines. Only our evaluations
of CDNs and domains on the CitizenLab list imposed traffic on
their respective web servers. To each, we sent around 45,000 HTTP
requests which we consider a negligible number for a publicly
accessible web server.
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Table 5: Selection of test vectors that circumvented censorship and were accepted by web servers.  =successful, ⃝=partially
successful, –=unsuccessful. Successful test vectors circumvented censorship with both censored domains in the Host header. In
China, partially successful test vectors circumvented the GFW in some but not all of its executions. For the CitizenLab lists, a
test vector is counted as successful if it is accepted by at least one of the five domains. <len> stands for the correct length value
until the end of the second request. Injected ASCII values are represented by their hex values in the format \[value]. Notably,
the presented vectors are always applied to the general HRS structure, depicted in Figure 1.

Type Category Vector
Censors Apache 2.X.X Nginx 1.XX CDN CitizenLab

CN IR RU 2.15 4.6 4.29 4.41 4.57 14 18 21 22 25.2 CF1 aws2 IR RU CN GL

CL*/TE

Double Colon Content-Length:: <len> –       – – – – – – – – –   –

White-Space
Injection

Content-Length\20: <len>\20 –     – – –   – – –   –    
Content-Length\09: <len>\09 –     – – –   – – –   –    

Wrapping

Content-Length: ’<len>’ –       – – – – – – – – –   –
Content-Length:\20<len>\20 –       –   – – – –  –    
Content-Length: <len>\20\0aX: X –     – – –   – – – –  –    
Content-Length: <len>\u00FF\0aX: X† –     – – – – – – – – – – – – – –
Content-Length:\0b <len> –     – – – – – – – – – – – – – –
Content-Length: <len>\0a\0aX: X ⃝   – – – – – – – – – –    –   
Content-Length: <len>\0a ⃝   – – – – – – – – – –  – – – – –

Invalid Header Content-Encoding: <len> – –                  
\u00FFContent-Length: <len>\u00FF† – –    – – –       –     

TE*/CL

Double Header Transfer-Encoding: identity\0d\0a
Transfer-Encoding: chunked

   – – – – –  – – – – –  –   –

White-Space
Injection

\20Transfer-Encoding: chunked\20 –   – – – – –   – – –   –    
\09Transfer-Encoding: chunked\09 –   – – – – –   – – –   –    
Transfer-Encoding\0d: chunked\0d –     – – – – – – – – – – – – – –

Invalid Header
Content-Encoding: chunked – –                  
\u00FFTransfer-Encoding: chunked\u00FF† – –    – – –       –     
Transfer_Encoding: chunked – –            –      

CL/TE*

Letter Case TRANSFER-ENCODING: CHUNKED ⃝ –      –   – – – –  –    
TrAnSFer-EnCODinG: cHuNkeD ⃝ –      –   – – – –  –    

Double Colon Transfer-Encoding:: chunked –   – –   – – – – – – – – –   –

White-Space
Injection

Transfer-Encoding\20: chunked\20 ⃝ –    – – – – – – – – – – – – – –
Transfer-Encoding\09: chunked\09 ⃝ –    – – – – – – – – – – – – – –
Transfer-Encoding:\0a chunked ⃝ –    – – – – – – – – – – – – – –
\0aTransfer-Encoding: chunked\0a    – – – – – – – – – –  – – – – –

1 Cloudflare
2 awselb/2.0
† The extended ASCII character \u00FF is UTF-8 encoded to \xc3\xbf.

We also believe that our research is more beneficial to the cen-
sorship circumvention community than it is to censors. To the best
of our knowledge, HRS has not been discovered as a censorship
circumvention technique by the community and can complement
currently used techniques. While censors might be able to fix their
implementations, they would have to allocate resources for that
process. We also want to emphasize the general contribution of our
work: we showed that a web security vulnerability can be turned
into a censorship circumvention technique.

8 CONCLUSIONS
In this paper, we presented novel censorship circumvention tech-
niques, transferred from a web security vulnerability. We success-
fully evaded censorship in Iran, China, and Russia and showed that
web servers accept our requests. For at least one vantage point in
Russia, we could also identify an additional standard-compliant
censorship circumvention technique. Furthermore, we detected
inconsistencies in China’s GFW and an implementation bug in

Iran’s censor. We provide our code and data on GitHub1 to promote
reproducibility. This repository also contains a proof-of-concept
that circumvents censorship in Iran with one of our test vectors.
We project that HRS can be applied by proxies to smuggle clients’
requests and implemented in tools such as Geneva to find advanced
circumvention techniques that incorporate HRS. The direct deriva-
tion of censorship circumvention techniques from an attack is a
novel approach to censorship circumvention and we suggest that it
applies to other vulnerabilities. We hope our findings aid affected
people and incite new research around the similarities between
vulnerabilities and censorship circumvention techniques.
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A VECTOR VIABILITY

Table 6: Targets for our vector viability scan

Category Targets
Apache 2.2.15 2.4.6 2.4.29 2.4.41 2.4.57-latest
Nginx 1.14 1.18 1.21 1.22 1.25.2-latest
Akamai akamai.com united.com starwars.com amd.com ikea.com
Amazon redhat.com sony.com flickr.com rakuten.com eventbrite.com
Cloudflare tinyurl.com creativecommons.org w3.org cloudflare.com vimeo.com
Fastly† tomsguide.com giphy.com techradar.com behance.net usatoday.com
Global CL data.worldbank.org www.nmrc.org www.hackhull.com www.sbc.net instinctmagazine.com
China CL www.redcross.org.cn clb.org.hk www.grandlisboahotels.com www.president.gov.tw www.sohu.com
Iran CL www.funpatogh.com www.dwturkce.com parsget.com www.aparat.com zezito.ir
Russia CL zezito.ir nr2.com.ua www.wonderzine.com www.sotnik-tv.com perevedem.ru

†We erroneously scanned stackoverflow.com and behance.com for Fastly when they were hosted on Cloudflare and Amazon respectively. We
considered the result of these scans for Cloudflare and Amazon instead and evaluated two alternative websites for Fastly instead.
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B SERVER SPECIFICATIONS

Table 7: Specification of the server in China.

Country: Zhengzhou. China
Autonomous System Number: 4837
Vendor: China VPS Hosting
URL: https://chinavpshosting.com/
ISP: CHINA UNICOM (state-owned)

Table 8: Specification of the server in Russia.

Country: Moscow, Russia
Autonomous System Number: 50867
Vendor: Server Wala
URL: https://serverwala.cloud/
ISP: HOSTKEY B.V. (private)

Table 9: Specification of the server in Iran.

Country: Mashhad, Iran
Autonomous System Number: 201295
Vendor: Avanetco
URL: https://www.avanetco.com/
ISP: Shabakeh Ertebatat Artak Towseeh PJSC (private)

Table 10: Specification of the server in Germany.

Country: Berlin, Germany
Autonomous System Number: 201295
Vendor: IONOS
URL: https://www.ionos.de/
Internet Service Provider: IONOS SE (private)
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