RecoCoDe: Recover From Data Corruption in Deniable Storage

Vero Estrada-Galifianes
EPFL
Lausanne, VD, Switzerland
veg@ieee.org

ABSTRACT

Some deniable storage tools use storage overcommitment as part
of their methods to hide encrypted data. This technique may help
to successfully conceal the existence of hidden data, however it
introduces the risk of hidden data overwriting. This serious limita-
tion of plausibly deniable tools is largely unexplored. Consider, for
example, that an investigative journalist might have being exposed
to serious life-threatening risks for gathering and safeguarding
data with a system vulnerable to data corruption. For the journalist,
ignoring data corruption is not an option.

Our ongoing research proposes RecoCoDe to store data redun-
dantly in hidden volumes to cope with data corruption arising from
arbitrary situations causing data overwriting. RecoCoDe can re-
cover from data corruption caused from undesirable overwrites
to hidden data by using some kind of error correcting codes. It
achieves that with another layer of indirection that entangles con-
tent together in a way that creates a more resilient hidden volume
without requiring any extra backup device and with insignificant
impact on the writing performance.

KEYWORDS

deniable storage, coercion resistance, data corruption, redundancy,
AF codes, device mapper target

1 INTRODUCTION

The need for concealing data is driven by various factors and has
a complex interplay between privacy, security, and ethical con-
cerns. Individuals have a right to privacy. Thus, concealment tools
can help to protect sensitive information and safeguarding against
breaches that could lead to personal harm. They can also contribute
for compliance to privacy regulations, such as GDPR (Europe),
CCPA (California, U.S.), etc. Governments and military organiza-
tions require these tools to protect information that if leaked would
threaten national security. Businesses need to protect intellectual
property, trade secrets, proprietary information from competitors,
and data from their customers. Concealment tools can protect in-
dividuals located in places where certain aspects of their identity
or beliefs may put them at risk of harm or discrimination. When
freedom of speech is not guaranteed, tools to conceal data can
protect dissidents, activists, and journalists from persecution. Fur-
thermore, concealment tools allow for the safe communication and
dissemination of information in oppressive regimes.

tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet 2024 (2), 54-63
© 2024 Copyright held by the owner/author(s).

This work is licensed under the Creative Commons Attribu-

54

Andrej Milicevic
EPFL
Lausanne, VD, Switzerland
andrej.milicevic@epfl.ch

Concealment tools include a wide range of solutions to hide in-
formation such as encryption, steganography, and various forms of
data obfuscation. The primary purpose of these tools is to prevent
unauthorized access. They work by making information unread-
able or invisible without the proper keys or capabilities. Taking
a step further, plausibly deniable (PD) storage offers the user the
possibility to deny convincingly that certain information is stored
on a storage device [5]. The first known PD tool was the stegano-
graphic file system proposed by Anderson in 1998 [1]. Since then,
researchers have proposed hidden volumes with diverse features
to conceal information with plausible deniability.

The rationale behind PD tools is that the adversary does not have
enough reasons to justify the effort of searching for data that they
cannot prove its existence. The adversary may persuade or coerce
the user to provide information. But, if the user is able to resist that
coercion and the tool successfully conceals the information, it is
reasonable to think that at some point, the adversary will give up,
letting the person go with the device. In the next subsections, we
provide two examples to illustrate the importance of this topic.

1.1 Motivation 1: Cross-border Journalism

Plausibly deniable storage tools are potentially used by journalists
and humanitarian workers in possession of sensitive information.
A motivation factor for using these tools is to protect data that can
imperil the identity of people under potentially life-threatening
situations. Global journalism has increase the number of cases in
which journalists need to transport material from one country to
another for journalist purposes.

A routine border search at the airport occurs at the discretion of
border agents when there is no evidence to support a reasonable
suspicion to seize any equipment. According to the US Customs
and Border Protection Directive 3340-049A [12], Section 5.1.2, “a
border search will include an examination of only the information
that is resident upon the device and accessible through the device’s
operating system or through other software, tools, or applications.”
The person authorized to conducted the search, from now on the
officer, “should also take care to ensure, throughout the course of
a border search, that they do not take actions that would make
any changes to the contents of the device” If the authorities stop
a user for a laptop’s inspection and request the device’s password,
as long as the user complies with the request and the agents do
not find any reason to suspect, it is possibly that the user will be
allowed to leave with its laptop. We assume that other countries
have similar procedures. Despite those procedures, it is reasonable
to consider that in certain borders computer equipment may be
handled improperly during routine border examinations.

We want to help address the following concern: Will the data be
intact after the agent inspection?

https://orcid.org/0000-0002-7791-8149
https://creativecommons.org/licenses/by/4.0/

RecoCoDe

1.2 Motivation 2: Coercive Control and
Domestic Abuse

Plausibly deniable storage tools are potentially used by victims of
domestic abuse to avoid the disclosure of sensitive information to
their coercers.

Victims of domestic abuse may need to conceal information from
their coercers. Digital environments provide an alternative for safe-
guarding information without the need of a concealed physical
space. We assume that the victim possess computer devices such
as a laptop or a mobile phone. While these are every day devices
that may not raise the attention to the coercer, the possession of en-
crypted information may put the victim in trouble. In particular, the
coercer may force the victim to disclose the password. The victim
may choose to store documents remotely in the cloud. Although
this alternative can help in some cases, the victim may need to
keep critical information locally, such as their credentials to access
government services. For example, one mitigation for coercion in
the context of e-voting systems is to give voters fake voting creden-
tials that they can surrender to a coercer as if they were the real
credentials [11]. Fake credentials look identical to real ones, but
cast votes that are silently omitted from the final tally.

Voters need to register in-person to obtain the credentials, which
are meant to be used during a few years. Basically, the registration
booth prints QR code credentials in paper format that later are read,
stored or activated using a trusted computer device. This solution
has been studied in the literature but is yet to be seen in the real-
world. One question that remains unanswered is how a victim of
domestic coercion can store the credentials safely. A simple solution
is suggesting that the victim entrusts their credential to a trusted
person. However, we are interested in providing a self-sovereign
solution that allows the victim to conceal information without
depending of third parties.

We may rely on plausibly deniable tools to solve this problem. A
caveat is that the coercer may request or force the victim to show
what the contents of their computer devices. Although plausibly
deniable tools may do their job of concealing information, it is pos-
sibly that hidden data may be corrupted during such examination.
Again, the question that is relevant to answer is: Will the data be
intact after the coercer inspection?

1.3 The Data Corruption Problem

Researchers have proposed diverse solutions to the problem of
concealing information. Generally speaking, the ultimate goal is to
protect data so only the authorized eyes can see the information
while the adversary is unaware of the existence of such protected
data. Under standard definitions for plausible deniability [5], the
tool does not need to safeguard data integrity. In fact, a basic device
inspection that includes write operations on the standard volume
may cause hidden data overwrites without the adversary awareness.
If an inspection corrupts data, no error messages can be shown
otherwise it will break the purpose of the protection. Unfortunately,
this is bad news for the user. It’s likely that some information could
be permanently lost when handling a volume that contains hidden
encrypted data in its free space.

We observe that the possibility of irrecoverable data does not
seem a cause of concern for researchers. From informal discussions

55

Free and Open Communications on the Internet 2024 (2)

Header Free space
[\ 7 N\
. -.- - [
o &8 88
Standard Hidden = Space for Hidden
Volume Header Volume Header — Files Volume

Figure 1: TrueCrypt volume layout with a hidden volume
inside the free space.

with PD tool developers, we learned that data corruption, resulting
from a device’s security being compromised, is often seen as a
beneficial side effect because it lowers the risk of information leaks.
This approach is, however, not sufficient to protect information
that may not have any other backup. In some scenarios, the data
holder may be exposed to serious life-threatening risks while the
tools cannot provide sufficient protection against data corruption.

We think that PD tools should provide redundancy to mitigate
data corruption arising from hidden data overwrites.

1.4 Contributions

In this paper, we propose to rethink plausible deniable storage tools
to consider the problem of data corruption. We propose RecoCoDe
a device mapper target for the Linux kernel that uses entanglement
codes to store data redundantly on hidden encrypted volumes. Re-
coCoDe may be integrated with PD tools like Shufflecake, a next
generation TrueCrypt-like solution. We also provide an insightful
discussion about adding redundancy to PD tools.

2 PLAUSIBLY DENIABLE STORAGE

Various PD schemes exist. While this paper focuses on device-
oriented PD schemes relying on storage layers, trace-oriented PD
schemes focus on the traces that read/write operations leave on the
storage medium.

2.1 TrueCrypt and VeraCrypt

TrueCrypt [14] is a discontinued software that offers on-the-fly
encryption (OTFE). It allows users to create a virtual encrypted disk
within a file or encrypt a physical disk or partition, i.e., a hidden
volume inside the free space of a TrueCrypt volume as seen in
Figure 1. Full disk encryption such as Linux Unified Key Setup (dm-
crypt/LUKS) [9] use plain disk headers, whereas in PD schemes the
disk headers and content are indistinguishable from random.

Truecrypt is limited and does not offer data integrity protection.
The system cannot protect the content that is hidden in the free
space while an adversary operates or observes the operation of a
device in which only the outer volume is mounted and the hidden
volume remains hidden (motivation 1 and 2). Writing operations on
the outer volume may request the allocation of free space containing
hidden data without raising errors.

VeraCrypt is a fork of TrueCrypt. As such, it supports plausibly
deniability and it is OFTE based. As its predecessor, it allows the
creation of a single hidden volume within another volume. A rela-
tive recent security evaluation [10] conducted by the Fraunhofer
Institute for Secure Information Technology (SIT) on behalf of the
Federal Office for Information Security (BSI) determined that Ver-
aCrypt seem to protect data effectively in case of theft or loss of

Free and Open Communications on the Internet 2024 (2)

encrypted devices since it protects data confidentiality as long as the
hidden volume is not mounted. However is not recommended for
any form of online attacks on a running system. Another limitation,
relevant to our work, VeraCrypt does not protect data integrity.

2.2 Shufflecake

Shufflecake [3] is a tool used to create multiple hidden volumes
on a storage device. It is designed as a block indirection layer on
top of an encryption layer and implemented as a deviced mapper
target for the Linux kernel. The current version has been tested
with Linux kernel versions 6.1, 6.2, and 6.3. It is a successor to tools
such as TrueCrypt and VeraCrypt, and provides two key properties
that those tools do not: Shufflecake can create multiple hidden
volumes, not just one, and it is independent of the filesystem of the
underlying storage device. Shufflecake can handle up to a maximum
of 15 hidden volumes on one storage device.

Shufflecake operates with a single underlying physical disk or
device. The device is formatted to host one or multiple volumes
(logical storage units, usually represented as virtual block devices),
each encrypted with its own symmetric key. The user can yield
to the examiner the password to some of these volumes (decoy
volumes). The decoy volumes might only contain deceptively in-
nocuous content. The crucial part of the design is that it should be
impossible for an adversary to tell whether all passwords have been
revealed, or if there is still undisclosed secret information remain-
ing. Volumes are only opened when their corresponding password
is provided. The mountpoint is hidden within the context of the
volume itself. In Shufflecake, it is up to the user to mount the de-
vices. But other implementations may mount devices automatically
once the volume is opened.

Shufflecake addresses the storage space at the slice granularity
instead of block granularity. The slice mechanism reserves a whole
slice of S; = 256 blocks every time a volume requests a block.
The slice mechanism works in harmony with some file systems to
avoid fragmentation in the long run. For instance, ext4 tries to keep
related files using the concept of block groups (32768 consecutive
blocks).

3 DATA CORRUPTION PROBLEM

In this section we focus on data corruption arising from hidden data
overwrites and the burden of responsibility, which is also relevant
to the problem.

3.1 Space Overcommitment

Overcommitment is a common practice in virtualization systems.
It refers to the technique of allocating more virtualized resources,
such as CPU, memory, or disk space, than the physical hardware
actually possesses. In its essence, Shufflecake is a disk virtualization
system, employing space overcommitment to facilitate Plausibly
Deniable (PD) storage. This is what allows the total size of the
logical volumes to surpass the physical storage space limit, as long
as the actual utilized space does not exceed the total available space.

Overcommitment is possible thanks to the lazy allocation tech-
nique that delays the allocation of resources, in this case space,
until they are actually needed.

56

Estrada and Milicevic

3.2 Hidden Data Overwrites

Hidden data overwrites may occur when not all volumes are opened.
Shufflecake has no way of detecting the existence of a volume unless
it receives the password for that volume. Given the overcommit-
ment of the physical storage space, there is a risk that an open
volume re-uses physical slices that were previously assigned to
a hidden volume. In other words, an allocation error occur when
a physical slice is incorrectly assigned to more than one volume.
Since the volume is not opened, the error is produced in silence and
eventually triggers a hidden data overwrite. We discuss in particular
hidden data overwrites in Shufflecake.

In Shufflecake, the standard volume must contain a “decoy” vol-
ume to convince an examiner of the existence of a single disk
volume. We assume that the victim has to surrender the password
of the standard volume to the examiner. As a quick recap, in the
context of our two motivation examples, the examiner represents
the border agent or the domestic abuser. During an investigation,
the examiner has access to the victim’s computer device to conduct
any kind of arbitrary behavior. If the examiner writes content on
the standard volume, it can corrupt data from the hidden volume.

Interestingly, developers admit this problem is “inevitable, and
can only be mitigated by frequent backups of the disks” [2]. But vic-
tims of coercion may not have opportunity to create backups. In our
examples, the users of PD tools may not have opportunity to create
external backups. In addition, shifting the burden of responsibility
onto users can be problematic.

We quantify the hidden data overwrite problem in the evaluation
section. Overall, we notice that the inadvertent overwriting of
hidden data is a significant problem. If the user does not open
all volumes, as suggested by the Shufflecake’s authors, the risk of
corrupting any important files stored in hidden volumes is real.
The more storage space is used, the higher the chance of data
corruption because the ratio between unused free space and free
space containing hidden data diminishes.

3.3 Burden of Responsibility

Within the domain of operational security, using a device that has
been compromised or potentially tampered with poses significant
risks. Once a device is out of one’s possession, its security integrity
is uncertain. It may have been merely inspected or, worse, infected
with spyware. While security experts might be able to assess and
mitigate these risks, a non-technical user likely lacks the skills to
do so effectively. Therefore, the safest course of action is to discard
the compromised device and restore data from a backup whenever
possible.

Encouraging or enabling the continued use of a compromised de-
vice by adding features for post-compromise repair can be counter-
intuitive and hazardous. Such features might inadvertently shift
the burden of security onto users, expecting them to discern and
manage risks that are best handled by the developers of security
tools.

Nonetheless, we urge to reconsider this stance as it is not uni-
versally applicable. In scenarios where backups are impractical or
impossible, such as when data must pass through physical security
checkpoints without duplication to avoid raising suspicion, the ap-
proach must be different. Here, implementing consistency checks

RecoCoDe

and incorporating redundancies can enhance data resilience. This
strategy, although it may introduce a higher degree of operational
security risk, ensures that critical information remains intact and
accessible when there are no alternatives.

3.4 Risk of Data Corruption

During coercion, users are forced to surrender their computer de-
vice and at least one password. The valuable data is concealed in a
Shufflecake device, not opened during examination. If the examiner
handles the computer device in a way that causes writes to the disk
there is a risk that blocks that contain hidden data are assigned
to the open device. The probability that a hidden data overwrite
occurs in the next write is lineal with the space used by the hidden
volumes. Considering the hidden volume used space is (H), and
that the total free space in the decoy volume is (F), The probability
P that a block written to the decoy volume corrupts data in the
hidden volume can be expressed by the ratio %

3.5 Solution Proposal

We propose to mitigate the risk of corruption when not opening all
volumes by using some form of error correction on the unopened
volumes. Once all the volumes are mounted again, the solution can
try to recover the missing data using the redundancy available in
the system. As with any solution that adds redundancy the price
that we need to pay is a reduction on the effective storage capacity.

4 THE RECOCODE ENTANGLED VOLUME

In this paper, we study how to store data redundantly on a hidden
volume without using any external device (as in local or off-site
backups) or cloud-based backup. We propose RecoCoDe, a layer
that sits between the user and the plausibly deniable tool to insert
redundant information that can be used to recover data in case of
hidden data overwrites.

4.1 RecoCoDe Layout

Redundant arrays of interdependent disks (RAID) [13] comprise
different types of disk array architectures using striping, mirroring,
or parities to increase performance and/or protecting data stored
against disk failures. RAID-like techniques [16] are used at differ-
ent storage layers and even in network file systems to protect data
against different type of failures. The most simple well-known lay-
out to create redundancy in storage devices is disk mirroring, also
referred as RAID 1. Disk mirroring is a data storage configuration
that copies (or "mirrors") data simultaneously onto two or more
hard drives.

RAID 1 provides data duplication across two drives in an array.
Notably, in our solution we use a single drive or device. This deci-
sion compromises one layer of domain failures since a failure of
the physical drive is not repairable. But our aim is to mitigate the
hidden data overwrite problem. In our scenario, the users have a
particular priority, they have to avoid arousing suspicion by carry-
ing or holding multiple devices. In case, this requirement does not
hold, it is possible to adapt RecoCoDe for multiple devices.

RecoCoDe operates directly at the logical volume level. In this
way the hidden volume will conceal data redundantly. Thus, if some

57

Free and Open Communications on the Internet 2024 (2)

0 3 A

[Data Block (di) [Parity Block (pi,j)

disa

Figure 2: Example of an entanglement chain

of the blocks are rewritten during an examination, other blocks
from the same logical volume may be used to recover data.

One of the main features of Shufflecake is the possibility to
conceal multiple volumes. That raises the question of storing data
redundantly across logical volumes. This strategy, however, does
not enhance reliability. We have decided against this option because
the volumes remain on the same physical drive, and using multiple
volumes compromises the separation of concerns.

4.2 The Entanglement Algorithm

Simple data entanglements are a technique that outperforms the
reliability of duplicating data (RAID 1 level) [8]. The additional
reliability increases the chances to recover missing data without
increasing the storage overhead of RAID 1 or compromising the
decoding complexity as in other RAID-like solutions. Any single
failure affecting, for example, a logic block of data is repaired with
only two blocks. Finally, simple entanglements are a straightfor-
ward algorithm that eases the RecoCoDe implementation.

Here, we explain briefly the main concepts of entanglements
and refer the reader to the Appendix A and the original paper [8]
for more details. The main component is the entanglement chain,
which is comprised of data and parity elements connected together
in an alternating manner, as seen in Figure 2. The actual physical
location of data and parity elements does not need to be contiguous.
The parities are computed using the XOR operation between the
previous two elements in the entanglement chain, as in:

1)

The idea behind Equation 1 is that each parity propagates redundant
information from the previous data element in the chain. For ex-
ample, py 5 propagates information from the previous data element
in the chain, dy, and together with ds will create ps ¢. Redundancy
propagation increases the way data can be recovered. As opposed
to data duplication that can only tolerates the loss of one copy
only, simple entanglements can tolerate the loss of the data and
its parity and other failure patterns. The analysis of irrecoverable
failure patterns can be found in the Appendix A.4.

Simple entanglements are designed for log-structured append-
only storage systems, where data can only be added and not mod-
ified or deleted once written. One could create more complex en-
tanglements designed particularly for read-write systems, allowing
users to modify files and directories as needed. If the user has stor-
age space to spare or the reliability is of utmost importance alpha
entanglement codes [7] may be considered. But, we leave these
alternatives for further research.

pij = Pi-1,i ®d;

5 RECOCODE IMPLEMENTATION

This section gives insights of RecoCoDe main components and our
implementation. Appendix B proposes how to use it.

Free and Open Communications on the Internet 2024 (2)

12 bytes for each

data/parity block
aterpanty bled Metadata
\

4096-byte

block

Data blocks Parity blocks

(b)
_.«'"‘a ctual '
7 free space™,
(c) * B “free” space B
8| (58 28 28

Figure 3: RecoCoDe Overview: (a) The logical entanglement
layer contains data, parity, and metadata blocks. The 4096-
byte blocks at the entanglement layer are stored in the under-
lying physical device. (b) When using a Shufflecake hidden
volume, the previously entangled blocks and metadata are
encrypted and allocated in the free space of the decoy volume.
(c) When mounting a decoy volume without mounting the
hidden volume, the visible free space may contain concealed
data from the hidden volume.

5.1 Overview

RecoCoDe operates at the block layer, implemented in the Linux
kernel. Entanglements can be implemented at the application, file
system or block device levels. We opt for the block level since it
is easier to create a block device mapper than creating a new file
system and expect user adoption. Moreover, implementing entan-
glements at the application layer is impractical for our use case, as it
would necessitate modifying any application that the user expects
to use in conjunction with the PD tool. Finally, our implementation
is done beneath the ext4 system, though it shall work with other file
systems. This is relevant since Shufflecake is file system agnostic.

RecoCoDe intercepts bio requests to create a logical entanglement
layer that is then stored in the underlying device. Figure 3 gives
an overview of the solution. For simplicity the underlying device
shows blocks instead of the slices.

o The logical entanglement layer contains data, parity, and meta-
data 4KB blocks, stored on the underlying physical device.

e The Shufflecake hidden volume includes a header (not shown).
The entangled blocks and metadata are encrypted and allocated
randomly within the free space of the decoy volume. While all
volumes are mounted there is no risk of hidden data overwrite.

e When a hidden volume is not mounted, e.g., during an exami-
nation, the a decoy volume shows an ostensibly free space that
may actually conceal data from the unmounted hidden volume.

5.2 The Device Mapper Framework

The Linux Device Mapper (DM) framework acts as a hardware
abstraction layer that sits between the file systems and the actual
block devices (like HDDs, SSDs, or RAID arrays). This abstraction
provides flexibility by facilitating the operation with logical devices
instead of operating direcly with the underlying hardware. Device
mapper targets rest above one or more physical devices and appear
as regular block devices to the upper layers. The DM framework

58

Estrada and Milicevic

supports stackable block devices. The kernel’s call stack is used
efficiently thanks to the recursion avoidance feature. Bio requests
are queued and submitted to the next layer only when the parent
bio submission completes.

5.3 Blocks I/0 (bio) Requests

A block is a fixed amount of bytes used in the communication
between a block device and its associated physical hardware. At the
user space level, a block usually represents how much data is read
from/ written to files in a single system call. At the logical level it
represents the small unit in bytes that is addressable in that device.
Our device mapper target operates with 4 KB data blocks, which is
common for modern file systems.

5.4 RecoCoDe Device Mapper

RecoCoDe intercepts bio requests between the file system and
the underlying device, essentially, it would be a hidden device
created by Shufflecake or a similar tool. It should be noticed that
our evaluation is done independently of the Shufflecake service,
which is an independent project under ongoing development. Thus,
in our case, the underlying device is directly the physical device. For
each 4KB data block intercepted, we compute the parity block, and
store both blocks on the device. The way we differentiate between
data and parity blocks is by their address, i.e., the sector number.

The underlying device is organized in two halves, the first half
containing data blocks and the second half containing parities.
At intercepting the bio write request, RecoCoDe takes care of the
following steps: 1) calculate the sector number for the parity block,
2) create a new request for that parity, 3) submit both the data
and parity requests to the layer below, where the blocks will be
persisted to disk.

The most recent block added to the chain is kept in cache memory
for efficiency as it is used by the entanglement algorithm in the
next write. The cache block is updated with every new element
added to chain. Keeping the last element in memory eliminates the
need of an additional read operation for every write.

RecoCoDe also intercepts read requests, which are directly resub-
mitted to the underlying device.

5.5 Block metadata

The metadata contains information related to the encoding and
checksums to increase integrity. Ideally, we would persist metadata
in a different device but RecoCoDe uses a single device. Hence these
metadata blocks are also stored in the same drive.

When the user creates a file, blocks are allocated randomly. Al-
though the entanglement algorithm is deterministic, we need to
save the information of which blocks are entangled together. This
is done by saving the block (logical) sector in the order in which
they appear in the entanglement chain. Otherwise, it would be
impossible to repair files.

Each block requires 8 bytes of memory to keep the sector. We
also calculate a CRC32 checksum for each block that requires 4
additional bytes per block. In summary, we use 12 bytes per 4096-
byte block (by block here, we mean both data and parity blocks)
to store all the information we need to implement this mechanism.
This is a less than 0.3% storage overhead.

RecoCoDe

6 RECOVERING FROM HIDDEN DATA
OVERWRITES

Hidden data overwrites can occur as a consequence of mounting
some of the volumes but not all of them. Because the PD tools over-
commit storage space, the file system does not know that within
the “free” space of a decoy volume there are actually used blocks
containing the most valuable data for the user.

The allocation errors that cause the hidden data overwrites are
silent. Thus, we need to first check if the volume has corrupted
blocks. This is a straightforward process that goes through all
blocks and compare their checksum with the actual content on disk.
Corrupted blocks are flagged for later repair. We keep a bitmap
which says if a block has been corrupted or not. Once corrupted
blocks are properly identified we proceed to try repairing them. In
this section we explain how repairs are done.

6.1 Repairs

The repair algorithm inspects the entanglement list to check whether
or not the blocks are corrupted. For each corrupted block, it checks
if the required blocks for the repair are not damaged. For a data
block, it requires the two adjacent parity blocks, i.e. the previous
element and the next element in the entanglement chain. For a par-
ity block, it requires either the two previous elements (so one data,
one parity block), or the next two elements in the entanglement
chain. The repair proceeds if the required blocks are intact. If not,
the algorithm recursively repairs the required blocks until it can
repair the one that initiated the recursive call.

In these recursive calls, we need a way to know if the blocks are
irrecoverable. As in any repair mechanism based on redundancy,
the algorithm succeeds only if the system has enough redundancy
to recover the missing data. As presented in Appendix A.4, entan-
glement chains have three irrecoverable failure patterns that will
prevent block repairs inside those pattern. Our algorithm recog-
nizes the patterns and marked the blocks as irrecoverable. We can
do that in the following way. Firstly, we only start repairing data
blocks. More specifically, in the recursion tree, we only want data
blocks as roots. That way, if we run into a corrupted data block in
the recursion while repairing another data block, that means we ran
into either type B or type C failure (as indicated in Appendix A.4). In
this case, we mark all blocks in the recursion as irrecoverable. The
procedure stops when all the elements of the chain are examined
and recovered when possible.

Algorithm 1 and Functions repairBlock, repairBlockRec repre-
sent the repair process and the irrecoverable_blocks_bitmap
represents the bitmap which tells which blocks are irrecoverable.
The bitmap size is equivalent to the total number of device’ sectors.
corrupted_blocks also represents a bitmap, this one just telling
us which blocks have been corrupted. entanglement is a doubly-
linked list of blocks representing the entanglement. The resulting
bitmap is not stored anywhere. It serves as a tool for checking for
irrecoverable blocks during the execution of the algorithm.

7 RECOCODE AND SHUFFLECAKE

Our solution decouples the data encoding performed by RecoCoDe
from the data encryption performed by Shufflecake. In this section

59

Free and Open Communications on the Internet 2024 (2)

Algorithm 1: Finding irrecoverable blocks

Result: Repaired blocks, and a bitmap with information on
which blocks are irrecoverable
irrecoverable_blocks_bitmap := [0]V;
corrupted_blocks;
entanglement := list of blocks;
for block € entanglement do
if block is data block A block is corrupted A block is
recoverable then
‘ repairBlock(block, irrecoverable_blocks_bitmap);
end
end

Function repairBlock(block, irrecoverable_blocks_bitmap)

leftBlock;

rightBlock;

leftBlockState := REPAIRED;
rightBlockState := REPAIRED;

if leftBlock is corrupted A leftBlock is recoverable then
leftBlockState = repairBlockRec(leftBlock,

B irrecoverable_blocks_bitmap, LEFT);

if rightBlock is corrupted A rightBlock is recoverable then

rightBlockState = repairBlockRec(rightBlock,

L irrecoverable_blocks_bitmap, RIGHT);

if leftBlockState == IRRECOVERABLE V rightBlockState ==

IRRECOVERABLE then
irrecoverable_blocks_bitmap[blockSector] = 1;

=

return;

repairedBlock := leftBlock @ rightBlock;
persistToStorage(repairedBlock);

Function repairBlockRec(block, irrecover-

able_blocks_bitmap, direction)

nextDataBlock;

nextParityBlock;

resultState;

if nextDataBlock is corrupted then
irrecoverable_blocks_bitmap[blockSector] = 1;

L return IRRECOVERABLE;

resultState = repairBlockRec(nextParityBlock,

irrecoverable_blocks_bitmap, direction);

if resultState == IRRECOVERABLE then
irrecoverable_blocks_bitmap[blockSector] = 1;

L return IRRECOVERABLE;

repairedBlock := nextDataBlock @ nextParityBlock;
persistToStorage(repairedBlock);
return REPAIRED;

Free and Open Communications on the Internet 2024 (2)

we present the design rationale and how RecoCoDe can be possibly
integrated with Shufflecake or similar PD tools.

7.1 Design Rationale

Our initial approach for was more integrated with Shufflecake and
based on the ext4 filesystem. Those decisions simplified the rapid
prototyping of our ideas but reduced the flexibility of the solution.

We first duplicated data on the second half of a Shufflecake vol-
ume. Paradoxically, our first attempts corrupted data at the filesys-
tem level causing unpredictable crashes. The cause was that our
redundancy system overwrote filesystem metadata, i.e., superblocks.
After some effort done to solve this problem, we realized that tai-
loring our solution specifically for ext4 compromises Shufflecake’s
filesystem agnostic design. In the end, we discarded this approach.

Instead, we opt for a device-mapper target, which creates a vir-
tual layer and defines how data is mapped from the virtual device to
underlying physical devices. This can involve complex operations
like striping data across multiple devices (as in RAID configura-
tions), or encrypting data on-the-fly. This novel kernel module
would take care of the data encoding with simple entanglement
codes, and all the necessary details needed to make it work. Such a
module can be loaded into the kernel, and Shufflecake could use it
as a sort of black box, without knowing any implementation details.

7.2 RecoCoDe Integration with Shufflecake

RecoCoDe is simply put at front of the deniable storage solution
(Figure 3). The implementation aspects of this work were time-
constraint to two master’s semester project iterations of 14 weeks,
each with a steep learning curve. The first iteration did not con-
sider the current RecoCoDe solution but other alternatives. When
we started with this work, Shufflecake was under development and
many aspects were unstable. Being an independent project many
aspects were outside of our control. Today, Shufflecake is incorpo-
rating some features and API that will help to integrate our solution
in a more seamless manner. Otherwise, to load RecoCoDe into Shuf-
flecake, we would need to modify some parts of the Shufflecake
codebase. When a hidden data overwrite occurs, it is due to a double
allocation problem that needs to be fixed in Shufflecake [6]. Finally,
in this paper we only consider a single hidden volume. When using
RecoCoDewith Shufflecake, one should create a virtual entangled
layer for each hidden volume that aims to protect with redundancy.

8 EVALUATION

We evaluate our RecoCoDe prototype implemented mostly in C and
compare the write request performance when writing directly onto
the block device. For all the testing and debugging purposes, and
during the research for this project in general, we use a USB stick
of 1GB in size as the underlying block device. More precisely, the
USB has a 32GB size and it was partitioned into a small device of
1GB to make it easier to test and debug.

8.1 Write Requests Performance

To evaluate our implementation, we measure the speed of write
requests since RecoCoDe introduces another layer between the
filesystem and the block device. We expect that the user is not
considerable affected by the addition of our solution.

60

Estrada and Milicevic

For the speed of the write requests, we use the Linux dd and
time commands. First, we create files filled with random bytes, and
wrote them to both the block device directly, and to the block device
through my device-mapper target. This gives us a clear picture of
whether or not the process of creating new parities, calculating
checksums, etc. affects the time it takes to write an arbitrary file, if
it affects it at all.

We tested the implementation on various workloads, repeating
the process for 30 iterations in order to observe the average and
the standard deviation of the requests. The results of these tests
can be seen in the two tables below.

Results from the tests on the block device directly
1MB | 5MB | 10MB | 50MB | 100MB | 200MB
Mean 10 35 57 243 480 940
SD 4 13 11 10 10 12

Table 1: Time in msec (mean and standard deviation) for
writing files of a particular size directly onto a block device.

Results from the tests using the device-mapper target
1MB | 5MB | 10MB | 50MB | 100MB | 200MB

Mean 10 38 58 241 482 927

SD 4 15 13 10 15 20

Table 2: Time in msec (mean and standard deviation) for
writing files through the entanglement device-mapper target

From these results, we observe that our new entanglement device-
mapper target does not impact the performance of write requests
from the user. The solution also scales well. This is generally what
was desired, to simply have the redundancy scheme working in the
background, without the user having to sacrifice any time.

The bash scripts for these particular tests, as well as the results,
can be found in the speed_tests directory of this project !.

9 DISCUSSION

RecoCoDe is a prototype not fully functional or ready for production.
Adding redundancy to a coercion resistant tool such as Shufflecake
proved to be more challenging than anticipated. While the imple-
mentation described here could be used by a savvy user, the current
usage is limited as shown in Appendix B.

9.1 The mdadm and RAID approach

The Linux tool mdadm stands for "multiple disk administration" and
is a utility in Linux used to manage software RAID devices. It allows
users to create, manage, and monitor RAID arrays within the Linux
environment using the disks available on the system. We tried this
option as an alternative approach to add redundancy for data in the
hidden volume. We report some of the encountered problems here.
When compared to plain Shufflecake, the mdadm approach has a
performance overhead of 1-3x for reads and 2-5x for writes. Our
measurements may have caused some overhead but the additional

1URL removed for peer-review anonymity.

RecoCoDe

RAID layer could turn out to be the culprit. We did not investigate
further since we also found that this method requires an excessive
use of Shufflecake slices during repairs because the RAID manager
cannot see Shufflecake slices. That was a problem, because at least
at the moment of doing this operations Shufflecake did not garbage
collected slices so slices cannot be reclaimed once assigned, which
renders this option impractical.

9.2 Append-only File System

Our prototype doesn’t restrict or handle block deletions or modifi-
cations. This should not be an issue for our use case, a user wants
to protect/preserve documents. If the user deletes content in the
hidden volume, RecoCoDe does not have a way to know that the
content was deleted. Two cases can occur: (A) While a block is
marked free but not rewritten, our decoder may use the block for
repairing other blocks in the future. (B) If a block is rewritten af-
ter deletion, RecoCoDe’ scan will detect it as data corruption. The
failure detection does not distinguish between content changes
due to deletions or content changes due to hidden data overwrites.
Some possible solutions: If the filesystem is ext4, the user could add
the append-only attribute to the file or filesystem. Alternatively,
Security-Enhanced Linux (SELinux) can be used for creating system
wide policies in consistency with an append-only logical volume.
RecoCoDe may interact with Shufflecake to know the mapping of
blocks, slices, and volumes to improve the failure detection.

In addition, RecoCoDe will need to handle the decrease of re-
dundancy. This requires additional research that falls outside the
scope of this paper. Entanglements work by propagating redun-
dancy across a system. If some blocks of the entanglement chain are
deleted, the decoder may stop earlier due to lack of those blocks.

9.3 Metadata Protection

Entanglements protect data blocks, but the metadata blocks (con-
taining checksums and other coding related information) are not
further protected. Since RecoCoDe works regardless of what the
underlying device actually is, it just writes the metadata onto the
underlying device. In case of the device being a Shufflecake volume,
that same metadata will be written to slices as per the Shufflecake
device mapper target. This means that the slices containing the
entanglement metadata are susceptible to corruption, much like
other data on said slices. Worthy to mention, RecoCoDe does not
require too much metadata. The ratio between user information
(data/parity blocks) and metadata is 341:1. Thus, there are lower
chances that a hidden data corruption event will affect the metadata
block. One can always replicate metadata blocks to increase the
chances to survive an allocation error.

9.4 Wear Leveling

Filesystems manage storage devices via the device’s firmware and
drivers rather than direct interactions with memory cells. Wear
leveling, crucial for flash memory management, redistributes data
uniformly across the device to extend its lifespan and improve
redundancy across different failure domains. At the same time,
wear leveling mechanisms may compromise plausibly deniability
by leaking information that can be used to detect the existence
of a hidden volume. During an investigation, wear leveling logic

61

Free and Open Communications on the Internet 2024 (2)

can expose critical information about past traces or even the traces
themselves [5]. Consequently, Shufflecake advises against using
wear leveling.

10 RELATED WORK

Data integrity is widely missing in the PD literature. In particular,
the data corruption problem is ignored.

TrueCrypt provides protection of hidden volume damage by mak-
ing the hidden volume read-only. This protection prevents that
content in the hidden volume gets overwritten when writing to the
outer volume. To activate this protection the user needs to check
the option before mounting the outer volume. It requires that the
user introduces the password for the hidden volume. TrueCrypt is
a discontinued software.

Artifice [4] combines the challenges of data concealment and
hidden data overwriting in one move using an information dispersal
algorithm. It leverages Shamir’s Secret Sharing (SSS) or systematic
erasure codes, along with an all-or-nothing transformation, to cre-
ate carrier blocks. Through these techniques, Artifice establishes a
(n, k) configuration, requiring a minimum of k carrier blocks from a
total of n to restore the initial data. If less than k blocks are present,
no data can be retrieved. SSS is closely related to Reed Solomon
Codes. Simple entanglement codes and its more general version
alpha entanglement codes depart from traditional erasure codes
bringing interesting properties for plausibly deniability.

While tool detection falls outside the scope of this paper, it is
worth to discuss it here. The Linux kernel 2.6 and later versions use
dm-crypt as its disk encryption subsystem. It encrypts entire block
devices allowing various encryption models. Invisiline [15] is a re-
cent multi-snapshot solution relies on dm-crypt, and stores hidden
data in dm-crypt’s initialization vectors (IV), ensuring that changes
to hidden data do not reveal the use of a PD system.. It introduced
the concept of plausible invisibility to describe a situation in which
adversaries cannot even detect the use of a PD system. Unfortu-
nately, Invisiline does not eliminate the risk that the concealed data
might be inadvertently deleted. If the disk is unmounted and the
solution is uninstalled, the user can still read public data with the
vanilla dm-crypt. However, any write operations may overwrite the
hidden data permanently, i.e., the deleted data cannot be recovered
even if the tool is re-installed. This problem indicates that there
is a larger space of solutions that can benefit from solutions like
ReCoCoDe.

11 CONCLUSION

This paper highlights the importance of the hidden data overwrite
problem in plausibly deniable tools. To our knowledge, RecoCoDe is
the first attempt to mitigate this problem with a redundancy layer
that can be combined with Shufflecake or other similar tools.

ACKNOWLEDGMENTS

We are grateful to Tommaso Gagliardoni and Elia Anzuoni for their
support with Shufflecake and insightful discussions. We thank Kil-
ian d’Eternod for his early involvement in this project and Simone
Colombo for his feedback on preliminary work. We are grateful
to Cornell Tech and the IC3/Ethereum Grant who partially funded
this reasearch.

Free and Open Communications on the Internet 2024 (2)

Type A Irrecoverable Failure

chain's end
HEEEEEEEEEEN
sandwich parity

/N
X X X NN

sandwich parities

P ~

X XXX X

Unavailable data Unavailable parity

Type B Irrecoverable Failure

Type C Irrecoverable Failure

D Data Block D Parity Block

Figure 4: The three (3) types of failures where some blocks
are irrecoverably lost.

REFERENCES

[1] Ross Anderson, Roger Needham, and Adi Shamir. 1998. The steganographic file
system. In International Workshop on Information Hiding. Springer, 73-82.

[2] Elia Anzuoni. 2022. Hidden Filesystem Design and Improvement. Technical Report.

[3] Elia Anzuoni and Tommaso Gagliardoni. 2023. Shufflecake: Plausible Deniability
for Multiple Hidden Filesystems on Linux. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. 3033-3047.

[4] Austen Barker, Staunton Sample, Yash Gupta, Anastasia McTaggart, Ethan L
Miller, and Darrell DE Long. 2019. Artifice: A deniable steganographic file system.
In 9th USENIX Workshop on Free and Open Communications on the Internet (FOCI
19).

[5] Chen Chen, Xiao Liang, Bogdan Carbunar, and Radu Sion. 2022. SoK: Plausibly
Deniable Storage. Proceedings on Privacy Enhancing Technologies 2 (2022), 132—
151.

[6] Shufflecake developers. 2023. Repair Corrupted Physical Slice Indexes (PSIs).
https://codeberg.org/shufflecake/shufflecake-c/issues/67 [Accessed: (April 20th,
2024)].

[7] Vero Estrada-Galifianes, Ethan Miller, Pascal Felber, and Jehan-Francois Paris.
2018. Alpha entanglement codes: practical erasure codes to archive data in
unreliable environments. In 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 183-194.

[8] Vero Estrada-Galifianes, Jehan-Francois Paris, and Pascal Felber. 2016. Simple

data entanglement layouts with high reliability. In 2016 IEEE 35th International

Performance Computing and Communications Conference (IPCCC). IEEE, 1-8.

Clemens Fruhwirth. 2017. LUKS On-Disk Format Specification Version 1.2. http:

//cdn.kernel.org/pub/linux/utils/cryptsetup/LUKS_docs/on-disk-format.pdf [Ac-

cessed: (April 1st, 2024)].

Evkan Hiilya, Norman Lahr, Ruben Niederhagen, Richard Petri, Andreas Poller,

Philipp Roskosch, and Michael Troger. 2020. Security Evaluation of VeraCrypt.

Technical Report. Fraunhofer Institute for Secure Information Technology (SIT)

on behalf of the Federal Office for Information Security (BSI).

Louis-Henri Merino, Alaleh Azhir, Haogian Zhang, Simone Colombo, Bernhard

Tellenbach, Vero Estrada-Galifianes, and Bryan Ford. 2024. E-Vote Your Con-

science: Perceptions of Coercion and Vote Buying, and the Usability of Fake

Credentials in Online Voting. In 2024 IEEE Symposium on Security and Privacy

(SP).

Acting Commisioner of the US. Customs and Border Protection.

2018. US. CBP Directive for Border Search of Electronic Media.

https://www.cbp.gov/sites/default/files/assets/documents/2018-Jan/CBP-

Directive-3340-049A-Border-Search-of-Electronic- Media- Compliant.pdf

[Accessed: (Feb 28th, 2024)].

David A Patterson, Garth Gibson, and Randy H Katz. 1988. A case for redundant

arrays of inexpensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD

international conference on Management of data. 109-116.

André Pilarczyk. 2015. TrueCrypt Documentation. https://www.truecrypt71a.

com [Accessed: (Feb 25th, 2024)].

Sandeep Kiran Pinjala, Bogdan Carbunar, Anrin Chakraborti, and Radu Sion.

2023. INVISILINE: Invisible Plausibly-Deniable Storage. In 2024 IEEE Symposium

on Security and Privacy (SP). IEEE Computer Society, 18-18.

[16] James S Plank. 1997. A tutorial on Reed-Solomon coding for fault-tolerance in

RAID-like systems. Software: Practice and Experience 27, 9 (1997), 995-1012.

=

[10

(1]

[12]

[13]

[14]

[15]

62

Estrada and Milicevic

A SIMPLE ENTANGLEMENT CODES 101
A.1 Opened vs Closed Chain

ReCoCoDe uses open entanglements. An entanglement chain can
be, however, opened or closed. They both work in the same way: for
each data element, the encoder creates a parity element. Though,
the data element at the end of an opened chain, as shown in Figure 2,
is less protected than previous elements because its information is
not yet propagated. Thus, the benefit of a closed chain is to provide
better protection to the elements located at the end. A closed chain
creates a connection between the last and first elements of the
chain, by recomputing the second element of the chain. A closed
chain can be re-opened to continue incorporating more elements
to the chain. On the other hand the cost of closing the chain and
re-opening in the next write may be considerable. We opted for
open chains to optimize writing performance.

A.2 Space Efficiency

In terms of space efficiency, simple entanglements is a better ap-
proach than mirroring. In other words, simple entanglements can
recover more data using the same space overhead as duplication.

A.3 Repairs

Due to the properties of the XOR operation, recalculating (i.e. re-
pairing) elements is a simple step. For example, if d3 is corrupted,
we can recover it by computing p12 @ p23 according to Equation 1.
For corrupted parity elements, we have two potential equations.
Following with our example, assuming that py 3 is not available, we
can recover it using any of these two choices: either p; 2 ® da, or
d3 @ p3 4. After successfully recovering the parity, we can proceed
to recover ds.

A.4 Irrecoverable Failures

Simple entanglements have three irreducible fatal failure patterns
as shown in Figure 4. An irreducible fatal failure patterns is defined
with the minimum number of failed elements that causes data loss.
A recover process cannot recover data if those elements are missing.

o Type A refers to a failure pattern in which both the last data
and parity elements are missing or corrupted.

o Type B refers to a pattern in which two consecutive data
elements and the parity between them is unavailable. 2

e Type C is an extension of type B and describes the pattern
where two data blocks and all parity blocks between them
fail.

It is worth noticing that type A pattern can only appear at the
chain’s end while type B and C can appear at any place of the chain.
If any of these patterns appear, the repair algorithm cannot recover
the missing elements. They are gone forever.

B USAGE

Our RecoCoDe implementation does not have a user interface.
The module should be inserted into the kernel, with the insmod
command. The program can be run through the terminal by running

2We can refer to this pattern as as the sandwich parity.

https://codeberg.org/shufflecake/shufflecake-c/issues/67
http://cdn.kernel.org/pub/linux/utils/cryptsetup/LUKS_docs/on-disk-format.pdf
http://cdn.kernel.org/pub/linux/utils/cryptsetup/LUKS_docs/on-disk-format.pdf
https://www.cbp.gov/sites/default/files/assets/documents/2018-Jan/CBP-Directive-3340-049A-Border-Search-of-Electronic-Media-Compliant.pdf
https://www.cbp.gov/sites/default/files/assets/documents/2018-Jan/CBP-Directive-3340-049A-Border-Search-of-Electronic-Media-Compliant.pdf
https://www.truecrypt71a.com
https://www.truecrypt71a.com

RecoCoDe Free and Open Communications on the Internet 2024 (2)

the executable file, called entanglement app, with the following
commands as parameters:

e init: initializes the device 3, and opens it for the user to
use freely. Before actually writing files to this new device,
the user first has to create a filesystem and mount it. The
basic example would be to use the mkfs.ext4 [8] and mount
[9] commands.

e open: opens the device, loading all the necessary things such
as the entanglement into memory. At this point, the user can
just start writing files, because the device was already set up
beforehand.

e close: closes the device, removing it from the kernel. The
command also ensures that everything which is necessary
was persisted to storage before removing the device.

As additional parameters to these commands, the user should
specify the path to the underlying block device, and in the case of
the open command, whether or not the user wants to run a repair
on any potentially corrupted blocks according to the procedure
presented in Section 6.

3In this context, we refer to the new logical device created by the device-mapper target,
not the actual block device underneath

63

	Abstract
	1 Introduction
	1.1 Motivation 1: Cross-border Journalism
	1.2 Motivation 2: Coercive Control and Domestic Abuse
	1.3 The Data Corruption Problem
	1.4 Contributions

	2 Plausibly Deniable Storage
	2.1 TrueCrypt and VeraCrypt
	2.2 Shufflecake

	3 Data Corruption Problem
	3.1 Space Overcommitment
	3.2 Hidden Data Overwrites
	3.3 Burden of Responsibility
	3.4 Risk of Data Corruption
	3.5 Solution Proposal

	4 The RecoCoDe entangled Volume
	4.1 RecoCoDe Layout
	4.2 The Entanglement Algorithm

	5 RecoCoDe Implementation
	5.1 Overview
	5.2 The Device Mapper Framework
	5.3 Blocks I/O (bio) Requests
	5.4 RecoCoDe Device Mapper
	5.5 Block metadata

	6 Recovering from Hidden Data Overwrites
	6.1 Repairs

	7 RecoCoDe and Shufflecake
	7.1 Design Rationale
	7.2 RecoCoDe Integration with Shufflecake

	8 Evaluation
	8.1 Write Requests Performance

	9 Discussion
	9.1 The mdadm and RAID approach
	9.2 Append-only File System
	9.3 Metadata Protection
	9.4 Wear Leveling

	10 Related Work
	11 Conclusion
	Acknowledgments
	References
	A Simple Entanglement Codes 101
	A.1 Opened vs Closed Chain
	A.2 Space Efficiency
	A.3 Repairs
	A.4 Irrecoverable Failures

	B Usage

