
A case study on DDoS attacks against Tor relays
Tobias Höller

Johannes Kepler University
Linz, Austria

hoeller@ins.jku.at

René Mayrhofer
Johannes Kepler University

Linz, Austria
rm@ins.jku.at

ABSTRACT
Being the victim of DDoS attacks is an experience shared by many
Tor relay operators. Despite the prevalence of this type of attack,
the experiences and lessons learned after such attacks are rarely
discussed publicly. This work provides a detailed description of a
DDoS attack against two Tor relays operated by the authors. By
sharing experiences on how an attack was analyzed after it hap-
pened and what mitigation mechanisms would have been capable
of stopping it, this work tries to support a discussion on guidelines
for relay operators on how to properly and securely run their re-
lays. In addition to that, the included attack analysis investigates
why the attack took place in the first time, what the attackers were
trying to achieve, the amount of resources they had to expend and
how the attack actually worked. Hopefully, this information will
be useful in future discussions on how to make the Tor network as
a whole more resilient against this kind of attack.

KEYWORDS
Tor, DDoS, Networks, Anonymity

1 INTRODUCTION
Distributed Denial of Service (DDoS) attacks — overloading a single
system with a large amount of requests from many other systems —
are common occurrences in today’s Internet. Anonymity networks
like Tor are impacted by this kind of attack in many different ways.
First, attackers can launch their attacks via the network to conceal
their identity. This approach is somewhat limited because the Tor
network has limited exit bandwidth, so attacks launched in this
way only work against systems that are relatively easy to overload.
Second, attackers can target systems within the Tor network to dis-
rupt individual services or the entire network. This kind of attack is
especially problematic because most common defense mechanisms
cannot be applied. Dropping traffic early is infeasible because ev-
ery node only knows the next hop, not the ultimate destination so
they cannot make any decisions about which packets to keep and
which to drop. Similarly, just blocking the entire network an attack
is coming from is either not possible because their IP addresses
are hidden or not desirable because this would allow attackers to
prevent other users on their network from connecting to Tor.

Attackers are obviously also aware of this problem and have a
history of abusing it. A fairly recent type of attack started in July
of 2022 [3, 6], where attackers began to overload regular relays
by flooding them with large amounts of traffic/connections. The

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet 2024 (2), 64–67
© 2024 Copyright held by the owner/author(s).

attacks have slowed down after several months but they did not
stop completely and the motivations of the attackers have never
been fully understood.

This work focuses on a recent (2024-02-14) DDoS attack targeting
some of the Tor relays operated by the authors. Since other relay
operators reported similar attacks at the same time1, we believe
that a thorough investigation of such attacks has value for the
entire Tor community. Our contribution consists of documenting
our process of investigating this attack, the useful information
sources we identified, the estimated effort required to execute this
attack and its consequences for the Tor network we hope to narrow
down the potential motivations of the attackers. Hopefully, this
information can be augmented by other Tor relay operators to
extend our understanding of DDoS attacks against the Tor network.
Without this understanding, it is impossible to have a productive
debate on effective countermeasures against this kind of attack.

2 ATTACK DESCRIPTION
Understanding this attack would have been impossible without
logging information. This analysis is based on three information
sources:

(1) The system log of the underlying Linux OS,
(2) data logged via Tor’s metrics port, and
(3) network flow data collected at the perimeter firewall of our

university.
Note: We also considered the log written by the Tor process itself as a
potential information source, but at log level INFO the Tor process did
not log any information related to the attack.

2.1 Targeted Environment
The targeted relays:
relay1 = C5BACF269EFDC7FE91356F2A98ADDAA49BD82EC, and
relay2 = 746BE16C31791C9A7D15461F734F0C017DDC55EE

are part of a family consisting of 50 relays in total operated for a
research project on the hidden service directory (HSDir). Since those
relays are running to join the HSDir, they do not advertise enough
bandwidth to qualify as Guard nodes and they do not volunteer
to become Exit nodes either. In order to qualify for the HSDir the
relays advertise a bandwidth of 105 KiB and try to keep their uptime
above 24 hours.

2.2 What happened
Based on the available information sources, it was possible to re-
construct significant parts of the attack. An overview over the most
important aspects is provided in Table 1. Relay1 came under attack
at 14:26:38 CET when the first attacking host opened a connection

1https://flokinet.social/@frelsisbaratta/111974050182432141
64

https://orcid.org/0000-0002-0132-6817
https://orcid.org/0000-0003-1566-4646
https://creativecommons.org/licenses/by/4.0/


A case study on DDoS attacks against Tor relays Free and Open Communications on the Internet 2024 (2)

Table 1: Overview: Attack Metrics

Metric Relay1 Relay2

Packets Received 99 M 36 M
Bytes Received 4,7 GiB 1,8 GiB
TCP Sessions 338.351 251.920
Packets/s 790 474
Packets/session 315 176
Attack Start 14:26:38 14:54:33
Attack End 15:20:55 15:22:50

to the target relays OR port. The attack continuously ramped up
over 16 minutes until a total of 46 hosts were flooding the relay with
338.351 TCP connections sending in total about 4.7 GiB of traffic
over about an hour. While the attackers did manage to temporarily
saturate our network link, this only happened during short spikes
and should not have disrupted our relay. As a matter of fact, some
other relays running on the same physical machine did not expe-
rience any disruptions during the attack indicating that network
saturation was not the intention of this attack.

Nevertheless, the attack was successful as the targeted relay
restarted at 14:45:13 CET after being killed by the Linux out-of-
memory killer (OOM-Killer). Unfortunately, we have no concrete
data on our relay’s memory consumption, but considering the avail-
able memory and the OOM-Killers configuration the victim relay
had to allocate more than 4 GiB of memory before this event could
happen. The attack ended abruptly at 15:20:27 CET when all 45
attacking hosts stopped creating new connections within just 19
seconds.

The attack on relay2 started at 14:54:34 CET, while the first attack
was still ongoing. The same 46 hosts responsible for attacking relay1
started connecting to relay2 as well. What was different however
was the ramp up time, which reduced from 16 minutes to only 12
seconds. This combined attack managed to quickly exhaust our
systems resources again causing both relay2 and relay1 to reboot at
15:00:10 and 15:00:57 CET. Attacks against relay2 continued until
15:22:34 when attacks ended within just 17 seconds.

After 15:22:51 no further connection attempts from the attacking
hosts were logged, indicating that the hosts were either disabled or
moved on to other targets.

3 ATTACK ANALYSIS
This section presents which conclusions we could make about the
attack and what information enabled us to do so:

3.1 Attacker Identification
The first task was to identify the hosts responsible for overloading
our system. In this regard the fact that both relay1 and relay2 are
only used as middle nodes in Tor circuits is really useful because
this means that incoming TCP connections should mostly come
from other relays in a currently valid consensus. The only exception
would be Bridges who can also work as guard nodes and are not
included in the consensus. Therefore we filtered the list of hosts
with active connections to our relays by two criteria:

(1) No IP addresses included in the Tor consensus.

(2) No IP addresses creating less than 1000 TCP connections per
hour.

These criteria resulted in the final list of 46 hosts whose congruent
timing behavior discussed in section 2 strongly indicates that they
were all operated by the same entity. Another noteworthy point
of congruency is that all 46 relays seemed to be hosted at Linode2
based on their reverse DNS entries.

3.2 Attacker Intention
With the attacking hosts identified, the next question to answer
is if this attack was intentional or unintentional. Since the num-
ber of attacking hosts was relatively low, it is possible that this
was not an attack at all, but instead an experiment gone wrong
or a configuration error in a cloud deployment. Without any in-
formation about the actual data sent by the attacking hosts, it is
difficult to provide a definite answer to this question, but there are
some relevant indicators. First, the network flow shows that the
communication appeared valid to the relays. On average (mean)
about 250 packets were exchanged for every TCP connection. If the
attackers were not at least trying to complete a valid handshake,
the relays would have dropped the connection without accepting
so many incoming packets. This observation combined with the
fact that our relays were sending responses to the attackers leads
us to conclude that the attackers were using the Tor protocol and
therefore intentionally targeting Tor relays. We cannot definitively
rule out that this attack was the result of a failed Tor experiment,
but the fact that the individual(s) responsible for it have not reached
out to the Tor network or affected relay operators strongly supports
the assumption that this attack was intentional.

3.3 Attacker Motivation
Working with the assumption that the attack was executed inten-
tionally, the main question to answer is what attackers were trying
to achieve. There are many possible goals attackers could be trying
to achieve by launching DoS attacks. For this analysis we considered
the following potential motivations:

(1) Worsening the user experience of Tor users
(2) Selectively de-anonymizing Tor users
(3) Disabling specific onion services
(4) Manipulating the hidden service directory

3.3.1 Worsening user experience. This option can be dismissedwith
very high confidence. Attackers trying to disrupt the Tor network
would focus their attention on guard and exit relays as they are
usually the limiting factor for traffic within the Tor network. The
fact that both attacks were stopped after a relatively short time also
supports this conclusion. The attackers were apparently content
with forcing a reboot of the relay, they had no interest in keeping
it continuously unable to partake in the Tor network. This leads us
to conclude that the reboot of the system was what the attack was
intended to do.

3.3.2 Selective de-anonymization. Rebooting a relay stops all cur-
rently active circuits forcing other clients to rebuild their circuits
with other middle nodes. If an attacker controls the guard node of

2https://www.linode.com/
65

https://www.linode.com/


Free and Open Communications on the Internet 2024 (2) Hoeller et al.

a specific Tor user, they could be trying to reboot the middle nodes
chosen by their target until they select a middle node also under
the control of the attacker. The delayed attack against relay2 could
be a hint for this being the case, but at the same time it seems more
likely that an attacker going for this goal would cease the attack
against relay1 immediately after the victim builds a new circuit.
Without more information on which and how many other relays
were targeted by the attackers, it is impossible to rule this out but
we do not consider this option very likely.

3.3.3 Disabling specific onion services. Disrupting active circuits
also stops a relay from acting as introduction point for an onion
service. The attackers might have intended to disrupt access to
an onion service by attacking its introduction points. This type
of attack would circumvent the DDoS protections introduced by
Tor in 2023 [11] but it requires an attacker to constantly adapt to
the currently used introduction points to remain effective. The fact
that two of our 50 relays were targeted by the attackers makes
this scenario quite unlikely but since onion services can pick up
to 20 introduction points and many onion services are mirrored
and available with multiple different onion addresses, it cannot
be ruled out. Again, without additional information about which
other relays were attacked, this theory can neither be confirmed
nor dismissed.

3.3.4 Manipulating the hidden service directory. Another conse-
quence of forcing a reboot is changing the uptime of a relay, which
is relevant for the assignment of two different flags: The HSDir flag
is only assigned to relays with an uptime of more than 96 hours
and the Guard flag where the uptime must be higher than the me-
dian uptime of other familiar routers. Forcing a reboot effectively
removes both of these flags from the targeted relays for at least 96
hours. In our case, both of our relays lost their HSDir flag because of
this attack. In theory, an attacker could have used this to influence
which HSDir relay is responsible for different service descriptors.
However, the HSDir is highly redundant and relays joining and
leaving the HSDir with every new consensus is to be expected, so
the potential value gained by attackers would be quite limited. At
most, they could estimate how many users an onion service has
and deny access to a fraction of its users.

3.4 Attack Method
Based on the assumption that the memory exhaustion and conse-
quent reboot of our Tor relays was intended by the attacker, the
question remains how the attackers managed to increase a relays
memory consumption so significantly. While our data provides no
answer to this question, we can make a few observations worth
noting. First, the DDOS metrics reported by the Tor metrics port
did not show anything indicating an attack, so the attack was not
using a well-known method.

Second, the number of active circuits tracked via the Tor met-
rics port did not increase on our attacked relays. While there is
a mechanism within Tor that mitigates DDoS attacks [9] by lim-
iting the amount of TCP connections a single address is allowed
to make (currently set to 50 connections), at least 2300 (46 hosts *
50 connections) additional connections should have been logged.
A potential explanation for this could be that the attack created

incomplete connections which already required the Tor process
to allocate memory but were not yet counted as connections by
Tor. This had the negative side effect that the attack is invisible to
everyone relying on the information provided by the Tor process
itself.

Third, all attacking hosts across all TCP connections consis-
tently kept a packet size of exactly 50 bytes. This is noteworthy be-
cause Tor exchanges all messages in cells which have a fixed size of
514 bytes, so our attackers were not transmitting complete cells, but
at most fractions of cells. The low Bytes-per-packet rate becomes
even more significant when taking into account that mandatory
IP [1] and TCP [2] headers already use up 40 of the available 50
bytes reducing the effective payload left for the Tor client to at
most 10 bytes. At this rate transmitting just a single Tor cell would
require at least 52 different TCP packets. This renders any form
of communication extremely inefficient because the majority of
network traffic is used for metadata not for actually relevant pay-
loads. It seems unlikely that attackers preparing a targeted DDoS
attack against multiple Tor relays would use a configuration that
slows their systems down, unless the low packet size is a necessary
component of the attack.

This leads us to theorize that the Tor client exhibits performance
issues when dealing with very small packets, possibly contain-
ing highly fragmented cells. If the inbuilt DoS defense in Tor had
worked as intended, the vast majority of these connections should
have been dropped immediately. Instead, the attackers were able
to send on average more than 100 packets per connection. Either
the small packet size just allowed the attackers to send this many
packets before the connection was torn down or the attackers ac-
tually managed to craft a payload that delayed the teardown of
a connection and were therefore able to send so many packets.
Unfortunately, we have no data on how the payload sent by the
attackers looked like — as this information was not logged by our
Tor relays — but the fact that our relays were sometimes responding
to the attacking hosts leads us to speculate that they were actually
sending valid packets, but in a highly fragmented way to delay
the Tor process’ decision whether to drop the connection or not.
The memory exhaustion experienced by our relays indicates to
us that either the connections were never dropped and consumed
memory despite not resulting in active circuits or the connections
were dropped but not without freeing all the memory allocated
for them in the first place, resulting in a continuous increase of
memory consumption. More research is needed to find out what
the actual cause for the exploding memory consumption is. Based
on our analysis, the attack seems to be surprisingly efficient. Con-
sidering that only 4.7 GiB of data were sent to relay1, and the relays
memory consumption was beyond 4 GiB before it rebooted for the
first time, it seems like the attackers could allocate almost 1 byte
of memory on our relay for every byte they transferred over the
network.

3.5 Attack Costs
Another question our analysis can answer is about the financial
capabilities required to execute this attack. As discussed in section 3
all 46 attacking hosts were hosted at Linode and their pricing model

66



A case study on DDoS attacks against Tor relays Free and Open Communications on the Internet 2024 (2)

is public3. Assuming that the attackers worked with simple virtual
machines with dedicated CPU’s, they attackers had to spend at least
0.054 $ per hour. The attack against our relay (46 attacking hosts
for 56 minutes) cost the attackers less than 2.5 $. However, since
our logs show that the 46 relays were attacking multiple relays in
parallel, the actual costs per attack were probably even lower.

4 LESSONS LEARNED
With our current understanding of the attack we feel confident
to say that properly configured firewall rules that deny too many
concurrent connections from other hosts would have stopped this
attack. There are community curated lists of firewall rules for relay
operators [4, 6, 10] making it easy to implement this and make
Tor relays more resilient against attacks. Unfortunately, applying
these rules is not an official recommendation by the Tor project
for relay operators, so a lot of relay operators are likely unaware
of this option leaving a large part of the Tor network susceptible
to this kind of attack. Integrating counter-DDoS measures like
the deployment of firewall rules directly into the standard Tor
relay installation process would significantly reduce the number of
vulnerable relays within the Tor network.

As a prerequisite for a discussion about effective counter-DDoS
measures, we need a better understanding of the reasons behind
these attacks. The flow data collected about our relay proved ex-
tremely valuable for our analysis, but is again most likely not avail-
able to most other Tor relays. In contrast, the data logged via Tor’s
metrics port did not even show that an attack was taking place.
Consequently, our relays never reported themselves as overloaded
to the Tor network, making this attack invisible to observers rely-
ing on the information gathered by the Tor network [7, 8]. This
is frustrating because it makes it impossible to accurately gauge
which or how many other relays were targeted by the attackers
and as discussed in section 3.2 this information is critical to narrow
down what an attacker might have been trying to achieve with
their attacks. However, collecting more information about attacks
on relays without compromising the privacy of Tor users is not
trivial and requires further work.

A final lesson we would like to share is that DDoS attacks against
Tor relays also have a negative impact on how organizations view
the operation of Tor relays. Our research institution was previously
supportive of our operation of Tor relays, but the attack on February
14th had side effects that impacted other parts of our organization—
overloading our perimeter firewall and disabling Internet access for
everyone— and preventing such issues by discontinuing the opera-
tion of Tor relays was one of the solutions immediately suggested.
If the operation of Tor relays becomes to associated with being
targeted by DDoS attacks, recent efforts to get more organizations
to support the Tor network [5] are unlikely to succeed. Making
Tor relays in general more resilient against such attacks would be
the easiest way to reduce the amount of DDoS attacks attempted
against running relays and reduce the risk of side effects of these
attacks impacting the organizations responsible for running them.

3https://www.linode.com/de/pricing/

ACKNOWLEDGEMENTS
Special thanks go to Stefan Kronawithleitner and the entire net-
works department of JKU for providing us with the flow data es-
sential to this paper. This work has been carried out within the
scope of Digidow, the Christian Doppler Laboratory for Private Dig-
ital Authentication in the Physical World. We gratefully acknowl-
edge financial support by the Austrian Federal Ministry of Labour
and Economy, the National Foundation for Research, Technology
and Development, the Christian Doppler Research Association, 3
Banken IT GmbH, ekey biometric systems GmbH, Kepler Univer-
sitätsklinikum GmbH, NXP Semiconductors Austria GmbH & Co
KG, and Österreichische Staatsdruckerei GmbH.

REFERENCES
[1] 1981. Internet Protocol. RFC 791. https://doi.org/10.17487/RFC0791
[2] 1981. Transmission Control Protocol. RFC 793. https://doi.org/10.17487/RFC0793
[3] Roger Dingledine. 2022. reports that relays not obeying DoSConnectionMax-

ConcurrentCount. The Tor Project. https://gitlab.torproject.org/tpo/core/tor/-
/issues/40636

[4] Enkindu-6. 2022. tor-ddos. Tor Tor community. Retrieved 2024-04-06 from
https://github.com/Enkidu-6/tor-ddos

[5] Thorin Klosowski. 2024. Announcing the Tor University Challenge. Electronic
Frontier Foundation. https://www.eff.org/de/deeplinks/2023/08/announcing-
tor-university-challenge

[6] Georg Koppen. 2022. Provide a recommended set of iptables/nftables rules to help in
case of DoS attacks. The Tor Project. https://gitlab.torproject.org/tpo/community/
support/-/issues/40093

[7] Karsten Loesing, Steven J. Murdoch, and Roger Dingledine. 2010. A Case Study
on Measuring Statistical Data in the Tor Anonymity Network. In Proceedings of
the Workshop on Ethics in Computer Security Research (WECSR 2010) (Tenerife,
Canary Islands, Spain) (LNCS). Springer.

[8] The Tor Project. 2010. Tor Metrics. Tor Tor Project. Retrieved 2024-04-06 from
https://metrics.torproject.org/

[9] The Tor Project. 2018. Tor network parameters. Retrieved 2024-04-12 from
https://spec.torproject.org/param-spec.html#dos

[10] toralf. 2022. torutils. Tor Tor community. Retrieved 2024-04-06 from https:
//github.com/toralf/torutils

[11] Pavel Zoneff. 2023. Introducing Proof-of-Work Defense for Onion Services. The
Tor Project. Retrieved 2024-04-05 from https://blog.torproject.org/introducing-
proof-of-work-defense-for-onion-services/

67

https://www.linode.com/de/pricing/
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC0793
https://gitlab.torproject.org/tpo/core/tor/-/issues/40636
https://gitlab.torproject.org/tpo/core/tor/-/issues/40636
https://github.com/Enkidu-6/tor-ddos
https://www.eff.org/de/deeplinks/2023/08/announcing-tor-university-challenge
https://www.eff.org/de/deeplinks/2023/08/announcing-tor-university-challenge
https://gitlab.torproject.org/tpo/community/support/-/issues/40093
https://gitlab.torproject.org/tpo/community/support/-/issues/40093
https://metrics.torproject.org/
https://spec.torproject.org/param-spec.html#dos
https://github.com/toralf/torutils
https://github.com/toralf/torutils
https://blog.torproject.org/introducing-proof-of-work-defense-for-onion-services/
https://blog.torproject.org/introducing-proof-of-work-defense-for-onion-services/

	Abstract
	1 Introduction
	2 Attack Description
	2.1 Targeted Environment
	2.2 What happened

	3 Attack Analysis
	3.1 Attacker Identification
	3.2 Attacker Intention
	3.3 Attacker Motivation
	3.4 Attack Method
	3.5 Attack Costs

	4 Lessons Learned
	References

