
(P)KT-IEE: Secure Key Transparency Protocols for Interoperable
End-to-End Encrypted Message Systems
Neenu Garg

School of Informatics, University of Edinburgh
United Kingdom
ngarg2@ed.ac.uk

Tariq Elahi
School of Informatics, University of Edinburgh

United Kingdom
t.elahi@ed.ac.uk

ABSTRACT
End-to-End-Encrypted (E2EE) messaging services are a key pri-
vacy enhancing technology enabling free and open speech on the
Internet. They are widely deployed and very popular with large
userbases. E2EE relies critically on the trustworthy distribution and
storage of users’ public keys. To that end, Key Transparency (KT)
has been deployed by popular platforms (such as Whatsapp) and
many designs and refinements have been proposed. However, KT
in the interoperable E2EE setting has not yet been investigated.
We address the challenge of distributing and trusting keys across
platform boundaries and propose a Secure Key Transparency Pro-
tocol for Interoperable End-to-End Encrypted Message Systems
((P)KT-IEE). We also present a privacy preserving variant of our pro-
posed protocol. This work is timely since the EU’s Digital Markets
Act obliges E2EE messaging platforms to allow users from different
services to be able to communicate with each other. Our security
and performance analysis show that our protocols are secure, pri-
vate, resist local surveillance, and practical (allowing for trade-offs
between light-weight and privacy preservation).

KEYWORDS
key transparency, interoperability, end-to-end encryption, key dis-
tribution, message service provider systems

1 INTRODUCTION
Platform interoperability between end-to-end encrypted (E2EE)
messaging services will enable a user of one E2EE service provider
(SP) to communicate with a user of another E2EE service provider,
for example Whatsapp and Signal, without the need to create ac-
counts on both services. The European Union’s Digital Markets Act
(𝐷𝑀𝐴) came into force in November 2022, and Article 7 obligates
gatekeepers (service providers of large message platforms) to allow
interoperability of number-independent interpersonal communi-
cations services [1]. There are a number of benefits: eradicating
platform monopolies, supporting smaller platforms and thus choice,
and empowering users to use SPs of their own choosing and not
because of social and market pressures to go where other users
are. Indeed, platform interoperability will contribute to freedom of
speech by enabling users to form communities online irrespective
of censorship in their countries for certain messaging apps [9].

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet 2024 (2), 68–76
© 2024 Copyright held by the owner/author(s).

E2EE messaging depends on the security and authenticity of
users’ secret and public keys. When Alice wants to communicate
with Bob on the same platform, she depends on the platform to
securely provide Bob’s authentic public key. Both Alice and Bob
have to trust that their platform is acting honestly.

Key Transparency is a mechanisms that has recently been
adopted by platforms, like Whatsapp, to provide this trust to their
own users. To realize interoperability in E2EE messaging platforms
a “key” challenge is how to design transparent mechanisms for
distributing and authenticating users’ public keys across SP bound-
aries. Our proposed protocols, (P)KT-IEE, allow users of one SP to
verify the authenticity of the public keys of users of another SP
with trade-offs between performance and privacy.

Our Contributions. In this work, we present KT-IEE, a secure 𝐾𝑇
protocol, and its private variant PKT-IEE, which are, to the best
of our knowledge the first for interoperable end-to-end message
service provider systems. Below, we elaborate our contributions:

• A comprehensive problem description of the KT challenge
in interoperable communication systems,
• The KT-IEE protocol design,
• An extension, PKT-IEE, that provides sender-recipient pri-
vacy unlinkability where the sender’s SP does not learn the
identity of the recipient on another SP,
• A security analysis shows resilience against potential secu-
rity breaches,
• A discussion on performance of KT-IEE shows that there
is not a significant computation overhead for clients and
servers.

2 BACKGROUND AND RELATEDWORK
2.1 E2EE and Key Transparency
E2EE ensures that communications between an SP’s users remain
private, and no one, not even the SP can eavesdrop on them. The
public/private keys are the essence of E2EE messaging service.
When a new user registers with an E2EE message service system,
the user’s device generates public/private key pairs. The public key
is sent to the SP where it is stored in a secure key-store server. The
private key never leaves the user’s device and is stored in a secured
area on the device.

When a user wishes to send a message to another user for the
first time, the message is encrypted on the sender’s device by first
retrieving the recipient’s public key from the SPs key-store server.
When the message reaches the recipient’s device, it is decrypted
using the private key which is stored locally on recipient’s device.

68

https://creativecommons.org/licenses/by/4.0/

(P)KT-IEE: Secure Key Transparency Protocols for Interoperable End-to-End Encrypted Message Systems Free and Open Communications on the Internet 2024 (2)

This encryption process establishes a secure communication chan-
nel that safeguards sensitive information. To reply, the recipient
performs the same steps as above.

In a way, the secure encrypted communication in messaging ser-
vices completely rests on trusting the service provider to provide
the correct public keys. A compromised SP (either maliciously or
through legal or coercive pressure) could replace a user’s public
key by one created by the service provider (i.e. the private key
is known to them and can decrypt messages). This undermines
trust in E2EE platforms, and as a response numerous solutions for
Key Transparency have been proposed by researchers and industry.
However, there has been little attention towards the trust issues
regarding public key storage and distribution in interoperable E2EE
messaging systems. While there are a myriad of challenges to in-
teroperability in E2EE messaging, ranging from standardization to
spam abuse and content moderation to market competition [1], we
focus on providing trust for public keys through key transparency
across service providers.

We first provide brief technical details of CONIKS [7], on which
(P)KT-IEE is based and then we discuss closely related literature.

2.1.1 CONIKS. CONIKS is an end-user key verification service
for sensitive communication systems that obviates the need for a
global third party auditors thereby allowing the clients to efficiently
monitor their key bindings for consistency. In this section we will
highlight the core data structure design and key look-up operations
in CONIKS. Interested readers may refer to the technical paper [7]
for further details.

Core Data Structure. In CONIKS, clients’ ids (usernames, phone
numbers, or other unique identifier) are bound to their private
keys in a key-value directory. This directory is realized as a Merkle
prefix tree [8] of all registered id-key bindings. This binary tree has
three different types of nodes: interior, empty, and leaf, where the
contents of each are hashed values using some collision-resistant
hash function H(). The leaf node is a cryptographic commitment
that binds the name (id) and public key data together. The root of
the tree is signed with the private signing key of the SP and this
signed tree root (the 𝑆𝑇𝑅) is stored at a publicly accessible location.
A new 𝑆𝑇𝑅 is regenerated whenever there is a change to the tree
(either when it is rebuilt or when an item is inserted).

Key Validation. Once Alice creates an account with an E2EE messag-
ing platform (say xyz.com), her public key is sent to the SP where it
is inserted into the KT directory (Merkle prefix tree in the case of
CONIKS) thus registering the name-to-key binding. To validate that
her key was correctly inserted into the tree, Alice requests a proof
from the SP’s directory. This proof is composed of the 𝑆𝑇𝑅 and an
authentication path (or 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ) from the leaf node for Alice’s
id-key binding to the root. The 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ is a list of hash values of
the interior nodes. The particular interior nodes that are required
depend on which leaf node to be verified, where each interior node
provides the hash value required to calculate the value of the node
higher up the tree. Alice thus calculates 𝑆𝑇𝑅′ and if 𝑆𝑇𝑅′ = 𝑆𝑇𝑅
then she is, with high probability, sure that her key has been cor-
rectly inserted into the tree and the public 𝑆𝑇𝑅 is linked to it. Alice
continues to validate her keys periodically through this process.
Please see the Appendix A for details of this operation.

Key Look-up. When Bob wants to communicate with Alice (both
on xyz.com), he performs the following steps:

• Bob looks up Alice’s public key by her username at xyz.com
directory. He receives Alice’s public key along with the
𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ for that key. Using the same validation steps as
Alice above, he verifies the proof of inclusion for Alice’s key
using the 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ provided and the 𝑆𝑇𝑅.
• If validation is successful, Bob uses the provided public key
for Alice to encrypt his message to her and then sends the
message.

2.2 Related Work
The authenticity of public keys is of critical importance not only to
E2EE messaging but also to e-commerce. The roll out of SSL/TLS
and the certificate authorities that play a part in the distribution
architecture for public key cryptography enabled merchants and
customers to conduct transactions without fearing eavesdroppers
stealing credit card and other sensitive information. However, the
authenticity of the public keys that SSL/TLS depend on is suscep-
tible to rogue or compromised certificate authorities, with cases
of fraudulently issued certs (i.e. public keys) allowing MITM and
other attacks. To mitigate that threat, Certificate Transparency Logs
(𝐶𝑇) [5] is the public, auditable, append-only certificate log. It cre-
ates an untrusted log of all certificates (i.e. public key to domain
name bindings) issued that is cryptographically verifiable. Anyone
may check that certificates exists in the log, and web servers can
monitor the log for any discrepancies for certificates issued for their
own domains. The security of the log and its hosts is critical hence
distributing it across several locations and jurisdictions mitigates
the threat of a single point of failure. Another approach [5] is to
write the CT to an append-only distributed ledger (aka blockchain)
that adopts X.509 certificate registration and validation methodol-
ogy for SSL/TLS. It augments the chain-of-trust model by providing
support for multi-layer scrutiny of the entire existing certificate
system. Furthermore, it drops seamlessly into existing SSL/TLS
protocols and is much simpler than other existing public log-based
approaches.

Certificate logs allow anyone to enumerate every domain with
a certificate in the log. This is a privacy issue in the E2EE setting
because the size, membership, and system identifiers (e.g. phone
numbers or real names) of the user-base of a platform is sensi-
tive information. CONIKS [7] was the first protocol that avoids
those privacy issues in key transparency. Like certificate logs, key
transparency logs also require secure storage, thus [4] extends
CONIKS by adopting append-only distributed ledger technology to
reach consensus on the state of the key logs built by a key server,
thus reducing collusion and single-point-of-failure risks. Another
blockchain-based solution [2] relies on the Ethereum [11] proto-
col, which is a decentralized platform in which it is possible to
reach consensus also about the state of some code using the smart
contract paradigm.

Chase et al. [3] propose 𝑆𝐸𝐸𝑀𝑙𝑒𝑠𝑠 , which provides a more rig-
orous security analysis than the prior work and can be seen as an
extension to CONIKS. They introduce a primitive called verifiable
key directory (𝑉𝐾𝐷) with definitions of the required security prop-
erties and proofs of correctness of the underlying scheme. Their

69

Free and Open Communications on the Internet 2024 (2) Garg et al.

implementation relies on local 𝑅𝐴𝑀 storage to store all of the data
required for key transparency. Parakeet [6], aims to overcome the
scalability challenges of prior academic work that limit their use-
fulness for real-world E2EE messaging applications. Their ordered
Zero-Knowledge Set (𝑜𝑍𝐾𝑆) cryptographic construction allows
more efficient 𝑉𝐾𝐷 with storage improvements of up to an order
of magnitude over prior work.

Len et al. formally analyse and produce a mapping from the DMA
to an abstract API to capture functionality for interoperable E2EE.
They then use this high-level API to propose a possible design for an
interoperable E2EE service. Our work is thus complementary and
can be seen as fitting into their high-level service name discovery
component with KT-IEE as a concrete design incorporating KT into
E2EE, thus augmenting their retrieve key material functionality.

Our proposed protocols, (P)KT-IEE, based on CONIKS, are a con-
crete first step towards enabling trustworthy cross-platform E2EE
communications.

3 SYSTEM MODEL
There are four entities involved in KT-IEE:

(1) E2EE message service providers X (𝑆𝑃𝑋) and Y (𝑆𝑃𝑌): Each
service provider runs its own instance of a key transparency
directory.

(2) Alice (𝐶𝑎): Alice is a client of 𝑆𝑃𝑋 . Alice’s device periodically
validates her key bindings at 𝑆𝑃𝑋 ’s KT directory and can
alert her in case of any unexpected keys found bound to her
username.

(3) Bob (𝐶𝑏): Bob is a client of 𝑆𝑃𝑌 . Bob’s device periodically
validates his key bindings at 𝑆𝑃𝑌 ’s KT directory and can
alert him in case of any unexpected keys found bound to his
username.

𝑆𝑃𝑋 and 𝑆𝑃𝑌 relay messages and distribute public keys among their
own clients. They also distribute public keys of their clients to other
service providers when requested.

3.1 Problem Statement
When 𝐶𝑏 wants to communicate with 𝐶𝑎 , he needs her public key
for secure E2EE communications.𝐶𝑏 does a key look-up request for
𝐶𝑎 ’s username (or some other unique identifier used by her service)
at 𝑆𝑃𝑋 via 𝑆𝑃𝑌 . 𝐶𝑏 receives a response from 𝑆𝑃𝑋 via 𝑆𝑃𝑌 . There is
a need of a protocol, initiated by 𝐶𝑏 ’s device 𝑏𝑑 , to satisfy 𝐶𝑏 that
the response is authentic and the public key it receives actually
belongs to 𝐶𝑎 .

3.2 Assumptions
In this section, we outline the assumptions for service providers
and their clients.

3.2.1 Service Provider Assumptions.

• Service providers have a reputation to protect and do not at-
tack their clients in a publicly detectable manner. To provide
assurances to their clients they enable KT mechanisms that
allow their clients to self-verify the public keys of clients be-
longing to other message service provider systems by using
KT-IEE.

• We assume the existence of a PKI whereby each service
provider can distribute their public encryption and verifica-
tion keys to users of their own platform and users of other
platforms. One way to achieve this is to “bake-in” keys into
client software.
• Service providers act as “proxies” for communications be-
tween their users and those of other platforms. In other
words, clients do not directly connect to each other’s devices
over the network. A consequence of this is that censorship
cannot be targeted against particular pairs of users by a
network adversary.
• We assume that both service providers are able to be accessed
by both their own users and also each other. In the case that
one service provider is accessible, but the other is not (due to
censorship for example), we assume that the service provider
that is accessible is hosted outside the sphere of influence
of the adversary such that that adversary cannot observe or
block connection between the two providers.

3.2.2 Client Assumptions.

• Compromised client devices that report arbitrary results of
the validation protocol or do not adhere to the E2EE protocol
itself are out-of-scope.
• Clients validate their own keys frequently with their service
provider and report any discrepancies in a public manner
(i.e. so that other users do not trust the results of key look-up
from that provider). This could be done over an out-of-band
channel but, like other works in the literature, a solution is
out of scope of this present work.
• Each client is registered with their SP and their public keys
have been added (via KT) to the key directory and their
devices hold their private key.

4 THREAT MODEL
We assume that E2EE messaging systems employ secure channels
between client devices and servers operated by the service provider
as well as between service providers’ servers. Hence, third party
interference of the secure channel is detectable and does not impact
the confidentiality or integrity of the communications. We assume
that the service providers may observe all messages in the proposed
protocol and can create or drop messages but are unable to break
the encryption and signature schemes employed to protect the
confidentiality or integrity of messages. Further, they may change,
drop, or create any unprotected information in the protocol mes-
sages. The adversary can also observe the contents of the key-value
storage data structure but is not interested in compromising it if
the key transparency functionality it enables.

The service provider desires to remain reputable but may deviate
from honestly running the protocol if it is undetectable. A service
provider may act maliciously due to either its own volition or due
to external threats like coercion by law enforcement or repressive
regimes. However, client devices, and the messaging app itself, are
considered secure and honest.

4.1 Adversary Goals
The aim of the adversary is to convince a client of another service
provider that a key the adversary controls is actually the key of

70

(P)KT-IEE: Secure Key Transparency Protocols for Interoperable End-to-End Encrypted Message Systems Free and Open Communications on the Internet 2024 (2)

some honest user on its platform and vice versa (convince its own
user about a key from a user on another platform). KT-IEE aims to
prevent this situation, assuming the KT functions of each service
provider are operating correctly.

If the adversary is successful in achieving its goal of convincing
a user that a fake key is authentic then they may use that ability
to eavesdrop on conversations (Meddler-in-the-middle, MITM) or
fabricate messages (or whole conversations) with honest users
(Impersonation).

We next describe KT-IEE and discuss how it prevents attacks in
Section 6.

5 THE KT-IEE PROTOCOL
The objective of KT-IEE is to provide a secure, practical and consis-
tent public key transparency mechanism to the users in an interop-
erable E2EEmessaging scenario. In Table 1, we describe the notation
used in the description of our proposed protocol. The schematic of
all phases of KT-IEE: setup, key look-up in cross platform, response
generation and response verification phases is depicted in Figure 3.
The proposed protocol is defined in four phases described below.

Table 1: Notations and Descriptions

Notation Description

𝑆𝑃𝑋 Service Provider X
𝑆𝑃𝑌 Service Provider Y
𝐶𝑎 Alice, client of 𝑆𝑃𝑋
𝐶𝑏 Bob, client of 𝑆𝑃𝑌

𝑎𝑑 , 𝑎𝑖𝑑 𝐴𝑙𝑖𝑐𝑒′𝑠 device and unique identity
𝑎,𝑔𝑎 𝐴𝑙𝑖𝑐𝑒′𝑠 private and public keys
𝑏𝑑 , 𝑏𝑖𝑑 𝐵𝑜𝑏′𝑠 device and unique identity
𝑏,𝑔𝑏 𝐵𝑜𝑏′𝑠 private and public keys

(𝑃𝐾𝑋 , 𝑆𝐾𝑋) Encryption and decryption keys of 𝑆𝑃𝑋
(𝜎 , _ = 𝑔𝜎) Signing and verification keys of 𝑆𝑃𝑋
(𝑃𝐾𝑌 , 𝑆𝐾𝑌) Encryption and decryption keys of 𝑆𝑃𝑌
(𝛼 , 𝛽 = 𝑔𝛼) Signing and verification keys of 𝑆𝑃𝑌

5.1 Setup Phase
5.1.1 Client. The process starts when the messaging apps are in-
stalled by clients on their devices. Registration of 𝐶𝑎 and 𝐶𝑏 with
𝑆𝑃𝑋 and 𝑆𝑃𝑌 is shown in Figure 1 and details for𝐶𝑎 are given in this
section. Similar steps are taken by 𝐶𝑏 ’s device while registration
and is not shown here. The Setup phase is described below.
• LetG be a prime order (𝑞) groupwith𝑔 being generator of the
group. Let Let 𝐻 : {0, 1}∗ → Z∗𝑞 be a secure cryptographic
hash function. Here Z∗𝑞 is a multiplicative group of integers
modulo 𝑞.
• Let 𝑎 be an arbitrary variable such that 𝑎 ∈ Z∗𝑞 .
• 𝑎𝑑 generates a public key 𝑔𝑎 .
• 𝑎𝑑 communicates 𝑔𝑎 to her service provider 𝑆𝑃𝑋 .
• 𝑎𝑑 stores secret key 𝑎 in its secure local storage.

5.1.2 Service Provider. 𝑆𝑃𝑋 generates a Merkle prefix tree with all
the name to-key bindings [10] of its registered clients. 𝑆𝑃𝑋 creates
a Schnorr signature (𝑠, 𝑅) for the root of the public key directory

𝐶𝑎

4○Verify validity of
𝑔𝑎 and 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ
consistent with STR

𝑆𝑃𝑋

1 ○
𝑔
𝑎
,𝑎
𝑖𝑑

2 ○
𝑆
𝑇
𝑅
,𝑎
𝑢
𝑡ℎ

_𝑝
𝑎
𝑡ℎ

𝑆𝑇𝑅

3○Pub
lish

es 𝑆
𝑇𝑅

Figure 1: Steps taken when Alice registers with 𝑆𝑃𝑋

tree that we’ll refer to as the Signed Tree Root (𝑆𝑇𝑅). Details follow:
𝑆𝑃𝑋 selects a random value 𝑘 and generates a signature value 𝑅:

𝑅 = 𝑔𝑘

The value of 𝑠 is:

𝑠 = 𝑘 − (𝐻 (𝑆𝑇𝑅 | |𝑅) .𝜎) = 𝑘 − 𝐸.𝜎

Here, 𝐸 = 𝐻 (𝑆𝑇𝑅 | |𝑅) and | | denotes the concatenation and 𝐻 de-
notes a secure cryptographic hash function. Thus, the signature on
𝑆𝑇𝑅 is (𝑠, 𝑅). 𝑆𝑃𝑋 publishes (𝑆𝑇𝑅, (𝑠, 𝑅)) to a publicly accessible
location. The generation of new 𝑆𝑇𝑅s by service providers happens
at regular intervals (whenever the tree is updated with new and
updated keys).

5.1.3 Client-side Inclusion Validation. In response to a validation
request, 𝑆𝑃𝑋 returns the full authentication path (𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ) for
𝐶𝑎 ’s binding in the Merkle prefix tree. The 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ is a proof
of inclusion which reveals that an index exists in the directory
corresponding to 𝐶𝑎 . Recalling [7], the leaf nodes are not plaintext
public keys, they are a cryptographic commitment to the name
and key data. To prove inclusion of the full name-to-key binding,
𝑆𝑃𝑋 provides the opening of the commitment in addition to the
authentication path. In the final step, 𝐶𝑎 recomputes the root of
the tree using the 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ and checks that the computed root
is consistent with the public 𝑆𝑇𝑅. 𝐶𝑎 should periodically perform
this auditing to ensure the consistency of her public keys.

5.2 Cross Platform Key Look-up
Figure 2 depicts the steps taken when 𝐶𝑏 wants to communicate
with𝐶𝑎 .𝐶𝑏 sends a key look-up query, 𝑄 (𝑎𝑖𝑑 , 𝑏𝑖𝑑), to 𝑆𝑃𝑋 via 𝑆𝑃𝑌
(step 1 and 2 in the figure).

5.2.1 Response Generation. In order to generate the response, 𝑆𝑃𝑋
first:
• Computes a string 𝑍 ← 𝑎𝑖𝑑 | |𝑔𝑎 | |𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ.
• Then using Schnorr signatures, 𝑆𝑃𝑋 signs 𝑍 with its signing
key tomake sure that the recipient can verify the authenticity

71

Free and Open Communications on the Internet 2024 (2) Garg et al.

𝐶𝑏𝐶𝑎

Verify validity of
𝑔𝑎 and 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ
consistent with STR

𝑆𝑃𝑋 𝑆𝑃𝑌

1 ○
Q
(𝑎
𝑖𝑑
,𝑏
𝑖𝑑
)

4 ○
Lo

ok
-u
p
re
sp
on

se
(𝑍

,𝑍
′)

2○Q(𝑎𝑖𝑑 , 𝑏𝑖𝑑)

3○ Look-up response (𝑍 , 𝑍 ′)

5○ receives m, via 𝑆𝑃𝑌 and 𝑆𝑃𝑋

Figure 2: Steps taken when Bob looks up for public key of
Alice

of response received. To sign Z, let 𝑘 be any random value
∈ Z∗𝑞 , compute:

𝑅 = 𝑔𝑘

Compute 𝐸 = 𝐻𝑎𝑠ℎ(𝑍 | |𝑅). The value of 𝑠 is:
𝑠 = 𝑘 − 𝜎.𝐸

Thus, the signature 𝑍 ′ = (𝑠, 𝐸).
• 𝑆𝑃𝑋 sends the response (𝑍 , 𝑍 ′) to 𝑆𝑃𝑌 which forwards it to
𝐶𝑏 (steps 3 and 4).

5.3 Response Verification
𝐶𝑏 receives (𝑍, 𝑍 ′) from 𝑆𝑃𝑌 and first verifies the signature 𝑍 ′. Let
𝑅𝑣 = 𝑔

𝑠_𝐸 and 𝐸𝑣 = 𝐻𝑎𝑠ℎ(𝑅𝑣 | |𝑍). If 𝐸𝑣 = 𝐸, then the signature is
verified. In detail,

𝑅𝑣 = 𝑔
𝑠_𝐸 = 𝑔𝑘−𝜎.𝐸𝑔𝜎.𝐸 = 𝑔𝑘 = 𝑅

Hence, 𝐸𝑣 = 𝐻𝑎𝑠ℎ(𝑅𝑣 | |𝑍) = 𝐻𝑎𝑠ℎ(𝑅 | |𝑍) = 𝐸. After the success-
ful verification of 𝑍 ′, from the string 𝑍 , 𝑏𝑑 recovers 𝑎𝑖𝑑 , 𝑔𝑎 and
𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ and 𝐶𝑏 confirms 𝑎𝑖𝑑 was the one sent in key look-up
query message. 𝑏𝑑 regenerates 𝑆𝑇𝑅 using the information in the
𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ. It then proceeds to verify the consistency of publicly
available signed 𝑆𝑇𝑅 with the generated root tree as follows:

• Let 𝑅𝑣 = 𝑔𝑠_𝐸
• Let 𝐸𝑣 = 𝐻𝑎𝑠ℎ(𝑅𝑣 | |𝑆𝑇𝑅)

If 𝐸𝑣 = 𝐸, then the signature is verified. If the signature is verified,
Bob is certain about the consistency of public key of Alice because
𝑆𝑇𝑅 represents that a service provider is maintaining a linear his-
tory of public keys of Alice. Bob can now encrypt its message using
𝐴𝑙𝑖𝑐𝑒′𝑠 public key and can then send the message. If the signature

is not verified, it is possible that the 𝑆𝑃𝑋 has generated a fork in
𝐴𝑙𝑖𝑐𝑒′𝑠 𝑆𝑇𝑅 history or there has been a change in 𝐴𝑙𝑖𝑐𝑒′𝑠 public
key due to device loss or any other reasons.

5.4 E2EE Message exchange
Once the public key 𝑔𝑎 is successfully verified by 𝐶𝑏 , he can send
the encrypted message to 𝐶𝑎 . Let𝑚 be the message that 𝐶𝑏 wishes
to send to 𝐶𝑎 (via 𝑆𝑃𝑌 and 𝑆𝑃𝑋 ; step 5). 𝐶𝑏 creates:

𝑀 = ((𝐸𝑛𝑐𝑃𝐾𝑋 (𝐸𝑛𝑐𝑔𝑎 (𝑚,𝑏𝑖𝑑)), 𝑎𝑖𝑑), 𝑆𝑃𝑋)

and sends it to 𝑆𝑃𝑌 who, seeing that it is destined for 𝑆𝑃𝑋 , forwards
just the encrypted part of the tuple. 𝑆𝑃𝑋 decrypts the message
and sees that the inner encrypted data is for 𝐶𝑎 and sends her
𝐸𝑛𝑐𝑔𝑎 (𝑚,𝑏𝑖𝑑). 𝐶𝑎 can then, using her private decryption key 𝑎,
recover𝑚 and also see the message is from 𝑏𝑖𝑑 . To reply, she can
now execute key look-up using KT-IEE to recover the public key of
𝐶𝑏 from 𝑆𝑃𝑌 using 𝑏𝑖𝑑 .

6 SECURITY ANALYSIS
We now discuss the security of KT-IEE and its resistance to an
adversary that wishes to convince an honest user (e.g. Bob) that a
key the adversary controls is actually that of another honest user
(e.g. Alice).

Let us first consider the case that Bob’s service provider, 𝑆𝑃𝑌 ,
attempts this attack. Let’s assume that the adversary has gener-
ated a private/public key pair 𝑦,𝑔𝑦 . Then, when the key look-up
response, (𝑍, 𝑍 ′), is received from 𝑆𝑃𝑋 , the adversary may try to
replace𝑔𝑎 with𝑔𝑦 . If Bob accepts this change and uses𝑔𝑦 to encrypt
messages meant for Alice, then 𝑆𝑃𝑌 can read these messages and
can forward them encrypted with the correct key 𝑔𝑎 . This is the
meddler-in-the-middle (MITM) attack and 𝑆𝑃𝑌 may (selectively)
use it to compromise Bob’s communications. However, Bob will not
accept this change because 𝑆𝑃𝑌 will not be able to produce a valid
signature (𝑍 ′) since it does not have access to 𝑆𝑃𝑋 ’s private signing
key 𝜎 to sign the changed original response 𝑍 .

Let’s now assume that 𝑆𝑃𝑌 creates an account on 𝑆𝑃𝑋 ’s platform
with the identifier 𝑦𝑖𝑑 and key pair 𝑦,𝑔𝑦 , and that the binding
𝑦𝑖𝑑 , 𝑔

𝑦 has been registered in 𝑆𝑃𝑋 ’s KT directory. Then in the look-
up request issued by Bob, 𝑆𝑃𝑌 can replace 𝑎𝑖𝑑 with 𝑦𝑖𝑑 . 𝑆𝑃𝑋 will
respond with (𝑍 = 𝑦𝑖𝑑 | |𝑔𝑦 | |𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ, 𝑍 ′). Bob will not accept this
response since 𝑏𝑑 checks if the identifier in the request matches the
one in the response. Here they do not since 𝑎𝑖𝑑 ≠ 𝑦𝑖𝑑 . 𝑆𝑃𝑌 can also
not replace 𝑦𝑖𝑑 with 𝑎𝑖𝑑 because once again it cannot then produce
a valid 𝑍 ′ on the changed 𝑍 since it does not have access to 𝑆𝑃𝑋 ’s
private signing key. Hence, it is not possible for 𝑆𝑃𝑌 to conduct a
MITM attack on its own users when they communicate with users
from another service.

Now, let’s consider that 𝑆𝑃𝑋 wants to MITM communications
initiated by Bob. We will note here that unlike before, signatures
do not provide any protection from 𝑆𝑃𝑋 since it has access to the
signing key 𝜎 . Instead, we will depend on the security properties
of 𝑆𝑃𝑋 ’s KT scheme.

Let’s assume that 𝑆𝑃𝑋 generates a private/public key pair 𝑥, 𝑔𝑥
and inserts it into its KT under the identity 𝑥𝑖𝑑—it cannot register
it under 𝑎𝑖𝑑 without invalidating its KT security since Alice is fre-
quently checking her key bindings. Then, instead of responding

72

(P)KT-IEE: Secure Key Transparency Protocols for Interoperable End-to-End Encrypted Message Systems Free and Open Communications on the Internet 2024 (2)

𝐶𝑎 𝑆𝑃𝑋 𝑆𝑃𝑌 𝐶𝑏

GenEncKeyPair()

(𝑔𝑎 , 𝑎)

GenEncKeyPair()

(𝑃𝐾𝑋 , 𝑆𝐾𝑋)

GenEncKeyPair()

(𝑔𝑏 ,𝑏)

GenEncKeyPair()

(𝑃𝐾𝑌 , 𝑆𝐾𝑌)

GenSignKeyPair()

(𝛼 , 𝛽)

GenSignKeyPair()

(_, 𝜎)

(𝑔𝑎 , 𝑎𝑖𝑑) (𝑔𝑏 ,𝑏𝑖𝑑)

GenDirectoryTree() GenDirectoryTree()

(𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ, 𝑆𝑇𝑅) (𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ, 𝑆𝑇𝑅)

VerifyKey(𝑔𝑏 , 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ, 𝑆𝑇𝑅)VerifyKey(𝑔𝑎 , 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ, 𝑆𝑇𝑅)

Setup PhaseSetup Phase

Q(𝑎𝑖𝑑 ,𝑏𝑖𝑑)

Q(𝑎𝑖𝑑 ,𝑏𝑖𝑑)

Key look-up queryKey look-up query

Z=(𝑎𝑖𝑑 ,𝑔𝑎 , 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ); Z’=𝑆𝑖𝑔𝜎 (𝑍)

(Z, Z’)

(Z, Z’)

Response GenerationResponse Generation

𝑏𝑑 recover 𝑎𝑖𝑑 ,𝑔
𝑎,𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ

Generate root of directory tree and Verify root with 𝑆𝑇𝑅

Key VerificationKey Verification

Figure 3: Sequence diagram of KT-IEE

73

Free and Open Communications on the Internet 2024 (2) Garg et al.

with 𝑎𝑖𝑑 | |𝑔𝑎 | |𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ it sends back 𝑎𝑖𝑑 | |𝑔𝑥 | |𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ′, where
𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ′ is correct for 𝑥𝑖𝑑 . However, Bob will not accept this
response since the KT verification step will not complete success-
fully since (𝑎𝑖𝑑 , 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ′) will cause a failure. If, instead, in the
response 𝑎𝑖𝑑 is replaced with 𝑥𝑖𝑑 then, like before, 𝑏𝑑 will stop
here since the identifiers in the request and response do not match.
In effect, 𝑆𝑃𝑋 cannot attack users of other services without also
compromising its own KT, which we have assumed is not desirable.

In real life it may be argued that 𝑆𝑃s have reputations to uphold
and that collusion would likely be risky and may lead to reputa-
tion loss. However, if it is undetectable then both 𝑆𝑃𝑋 and 𝑆𝑃𝑌
may collude to compromise Bob’s communications with Alice. This
means that now 𝑆𝑃𝑋 ’s signatures are no protection from 𝑆𝑃𝑌 since
𝑆𝑃𝑋 can share 𝜎 . This situation reduces to the case above where
𝑆𝑃𝑋 is malicious, and again the security of the scheme rests on the
security of 𝑆𝑃𝑋 ’s KT protocol. In other words, even if both service
providers collude, they cannot convince Bob to accept a malicious
key without also compromising the integrity of 𝑆𝑃𝑌 ’s KT directory.
In other words, they cannot collude to compromise each other’s
userbase while at the same time maintaining an illusion of safety
to satisfy their own userbases.

7 (P)KT-IEE: PRIVATE INTEROPERABLE KEY
TRANSPARENCY

In the request and response messages between Bob and 𝑆𝑃𝑋 above
it is possible for 𝑆𝑃𝑌 to observe which user Bob wants to talk with,
i.e. Alice. Indeed, this is a privacy issue not only for Bob but also
since it may potentially reveal to 𝑆𝑃𝑌 the user identifiers and total
number of users of 𝑆𝑃𝑋 . KT schemes like CONIKS protect these
pieces of information from users in their own platforms. We next
describe (P)KT-IEE, an extension of our proposal that provides the
same privacy protection in the interoperable context, at the cost of
additional cryptographic operations.

Let’s say that Bob wants to communication with a user on 𝑆𝑃𝑋 ’s
platform. Our extension uses Diffie-Hellman key exchange between
Bob and 𝑆𝑃𝑋 to establish a shared secret key 𝑘 . Bob uses the one-
sided authenticated version of DH using 𝑆𝑃𝑋 ’s public encryption
key so that 𝑆𝑃𝑌 cannot interfere and succeed in MITMing this
exchange. After the successful completion of the DH exchange,
Bob’s look-up requests are now:

𝐸𝑛𝑐𝑘 (𝑄 (𝑎𝑖𝑑 , 𝑏𝑖𝑑)),
and the 𝑆𝑃𝑋 ’s look-up responses are:

𝐸𝑛𝑐𝑘 (𝑍).
After decrypting these messages both 𝑆𝑃𝑋 and Bob may proceed
as before. Notice that the signature, 𝑍 ′, is no longer needed since
𝑆𝑃𝑌 cannot interfere in this response.

Note that 𝑆𝑃𝑋 still learns that Bob wishes to talk with Alice. In
the same vein, in order to reply to Bob’s messages, Alice will request
Bob’s key from 𝑆𝑃𝑌 , which will reveal to 𝑆𝑃𝑌 that Alice is communi-
cating with Bob. Further, the timing of look-up requests may allow
SPs (without colluding) to infer likely communicating partners, for
example, Alice may look-up Bob very soon after Bob’s message to
her and so 𝑆𝑃𝑌 may infer that Alice and Bob are communicating.
Even if Alice never looks up Bob, 𝑆𝑃𝑋 may collude with 𝑆𝑃𝑌 and
share information about look-up requests it sees.

As mitigation the look-up request from Bob for Alice’s key is
changed to 𝐸𝑛𝑐𝑘 (𝑄 (𝑎𝑖𝑑)). Notice from Section 5.4 that 𝑏𝑖𝑑 is in-
cluded in every E2EE toAlice so she will knowwhose key to look-up
to use with her reply. By symmetry, Alice’s look-up request hides
her identity from 𝑆𝑃𝑌 , and both Alice and Bob can communicate
with each other without revealing to their own SP which user on
the other platform they are communicating with. Furthermore, the
look-up requests do not reveal information about each platform’s
userbase. It should be noted that (P)KT-IEE is incentive compatible
in that the SP that employs it enjoys privacy for their userbase.

However, traffic correlation is still possible since SPs can collude
to share information about times messages are sent and received to
infer which users are talking with each other. This is outside the
threat model since E2EE messaging does not protect against this
type of attack. A possible avenue would be to investigate schemes
that integrate mix networks that provide protection against timing
attacks and other meta-data attacks, however this is left as future
work.

8 PERFORMANCE
We now discuss the relative cost of our schemes as compared to
our reference CONIKS [7]. We provide an analytic look at the costs
to clients and identify the additional overhead our schemes impose
over the baseline in terms of number of operations.

8.0.1 Key Validation. In CONIKS [7], to monitor the consistency
of its own key binding in KT directory, a client downloads the STR
(64 bytes) and the 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ. Assuming 𝑁 registered clients, the
𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ will be log2 𝑁 hashes long, where each hash is 32 bytes.
The total is 64+ log2 𝑁 × 32 bytes. The computational costs are one
signature verification for the STR, and log2 𝑁 hash and compare
operations.

8.0.2 Key Look-up and Validation. A look-up and validation of
another user on the same service is the same as above for KT-IEE.
However, to do a cross-platform look-up under KT-IEE, the client
needs to download the same amount as above and an additional
signature 𝑍 ′. This will result in one more signature verification
operation than above to verify the authenticity of response message
and a constant-time user_id comparison operation—to check if the
ids in the request and response match.

In (P)KT-IEE, the Diffie-Hellman key exchange protocol is in
addition to the above, with one less signature 𝑍 ′ to download
and verify. There is also the computational overhead of the secret
key encryption and decryption operations at the server and client
respectively.

An implementation of KT-IEE is on our roadmap, however, to
provide expected concrete figures, we refer to the empirical results
reported in the CONIKS [7] paper. From those results we can see
that, on a 2 GHz Intel Core i7 laptop, for a directory with 10million
users, verifying the authentication path for a single key binding
required on average 159`s (sampled over 1000 runs, with 𝜎 = 30).
Signature verification averaged 400`s, dominating the cost of au-
thentication path verification. Thus a KT-IEE implementation, will
impose an additional 400`s for signature verification, or an increase
of 41% than [7]. From the user’s perspective, DH key exchange may
be completed in less than a second and comparable hardware as

74

(P)KT-IEE: Secure Key Transparency Protocols for Interoperable End-to-End Encrypted Message Systems Free and Open Communications on the Internet 2024 (2)

above, as evidenced by the unnoticeable delay when loading web-
pages. Thus, while it may be a few orders of magnitude more costly
than the baseline protocol, it provides privacy as a trade-off, which
the service provider can reason about.

9 DEPLOYMENT CONSIDERATIONS
Interoperability in E2EE messaging raises many technical and so-
ciotechnical challenges and issues to resolve before it sees wide-
spread deployment. Our proposal addresses the technical challenges
of trust and privacy of key transparency in this setting.

Trust Between SPs. It is likely the case that different E2EE service
providers use different implementations of a KT scheme. Further-
more, it may also be the case that the KT schemes are based on
different designs. These differences may result in different prop-
erties and differing degrees of trustworthiness. It is outside the
scope of this proposal to provide guidance on which schemes or
implementations SPs should adopt or how they rank in terms of
security or privacy features. It is up to an SP to decide whether
it will interoperate with another SP given what it knows about
the other provider and its trustworthiness and whether there is a
benefit to using PKT-IEE versus KT-IEE in that setting. In addition,
users of both may also exercise their will by deciding if they will
communicate across this "peering” path. In fact, the SP’s choice
to use the private or non-private version of the proposed schemes
may also play a part in users’ decision making.

Nonetheless, both (P)KT-IEEmay be deployed in a heterogeneous
setting provided that each instance of the KT directory provide a
reliable and unique public 𝑆𝑇𝑅 that is available to the userbases of
the SPs and that each SPs KT look-up service forwards messages
to its counterpart’s KT look-up service.

Interoperability Obligations. While the DMA applies to a specific
region of the world and the SPs that operate within it, it is possible
that an SP (due to market control or other business reasons) tries to
avoid interoperating with other SPs. It may cite technical reasons
(like those described earlier in this section) or (unfounded) trust
concerns. Furthermore, a global SP (operating in many regions,
some covered by DMA) may decide to provide interoperability for
only those users covered by the DMA and not to the rest of its user
base. While such a partitioning of the userbase may not be "good
for business", these kinds of issues do highlight the impact on user
freedoms and censorship inherent to the E2EE space. The DMA,
with (P)KT-IEE as a concrete piece, provide an impetus to further
normalize interoperability to the wider public.

Client Software. To realize deployment, SPs that decide to interop-
erate would need to provide enabling software on their client-side
devices. To use the proposed schemes, SPs would implement the
(P)KT-IEE protocols to communicate between SPs and also the verifi-
cation checking algorithms required by the other SPs KT scheme. In
effect, each client will have the ability to interact with not only their
own KT directory but also that of SPs that their SP has agreed to
interoperate with. While it may seem like a duplication of function-
ality and code, absent standardization, it is modular such that SPs
can decide which particular other SPs (and the required algorithms)
to incorporate into their own client software.

Spam Protection. Spam is a challenging issue even within a single
SP. Moderation and abuse are even more challenging. We do not
propose robust solutions to these latter two problems, but point to
how our two proposed schemes may provide some spam protection
and the trade-offs between the two. In KT-IEE every look-up request
presents the𝑢𝑠𝑒𝑟_𝑖𝑑 of the requester which both SPs can observe. It
is then feasible to monitor users for problematic usage, e.g. looking
up many usernames, sending unusually high amounts of traffic,
excessive traffic to specific targets. An SP could enforce rate controls
and could in the extreme opt not to respond to look-up requests
from such abusive users. Of course, an SP should exercise caution
and hold a high bar to banning users. Also, a user may direct its SP
to only respond requests from its known contacts (which may be
known from another mechanism, such as used by E2EE apps for
contact discovery).

In contrast, PKT-IEE makes it impossible for a service provider to
know the identity of the user from the other SP from the messages,
since 𝑏𝑖𝑑 is no longer included or visible. This also means that
restricting messages to known contacts is also not possible. In that
event, the user, on their own device, could filter out such abusive
users (i.e. drop messages at the device). This is the trade-off of
heightened privacy and is an additional consideration for an SP to
interoperate with another SP. Furthermore, a malicious user or SP
may try to get specific users on another service banned, or, through
spurious key discrepancy reports, aim to lower the trust of a target
SP. Both of these issues depend on the robustness of the reporting
process (of both spam and key discrepancy). There are mechanisms
in the literature like message franking and user reporting features,
some privacy-preserving, that could be incorporated, however, we
do not analyze these in the context of our proposal and leave as
future work.

10 CONCLUSIONS
We proposed two schemes, one light-weight (KT-IEE) and the other
relatively heavier but still practical with privacy properties (PKT-
IEE), to address the problem of key transparency in the interoperable
E2EEmessaging setting. This work is the first of its kind, as far as the
authors are aware, to address this challenge. With these schemes,
we make progress towards enabling E2EE messaging platforms
to meet the legal requirements as defined by the Digital Markets
Act to allow the users of platforms to communicate across service
boundaries. Our security and performance analysis show that both
of our schemes are feasible to deploy, modulo clients being updated
to speak our protocols and to be able to perform verification checks
on other SPs’ KT directories. PKT-IEE ensures that cross-platform
surveillance is mitigated at a cost of additional computation (while
remaining practical). Indeed, cross-platform user communications
are more private than same-platform communications since the SP
cannot see who the recipient of messages is on the other platform,
however it does not attempt to resist traffic analysis by colluding
SPs. We identify resistance to traffic analysis and (private) user
reporting in this setting as promising lines of research.

REFERENCES
[1] Jenny Blessing and Ross Anderson. 2023. One Protocol to Rule Them All? On

Securing Interoperable Messaging. Number 174-192. Springer.

75

Free and Open Communications on the Internet 2024 (2) Garg et al.

[2] Joseph Bonneau. 2016. EthIKS: Using Ethereum to audit a CONIKS key trans-
parency log. In International Conference on Financial Cryptography and Data
Security. Springer, 95–105.

[3] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. 2019.
SEEMless: Secure End-to-End Encrypted Messaging with less Trust. In Proceed-
ings of the 2019 ACM SIGSAC conference on computer and communications security.
1639–1656.

[4] Alessandro Gattolin, Cristina Rottondi, and Giacomo Verticale. 2018. Blast:
Blockchain-assisted key transparency for device authentication. In 2018 IEEE 4th
International Forum on Research and Technology for Society and Industry (RTSI).
IEEE, 1–6.

[5] Ben Laurie. 2014. Certificate transparency. Commun. ACM 57, 10 (2014), 40–46.
[6] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha Ghosh, Ercan

Oztürk, Kevin Lewi, and Sean Lawlor. 2023. Parakeet: Practical key transparency
for end-to-end encrypted messaging. Cryptology ePrint Archive (2023).

[7] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and
Michael J Freedman. 2015. CONIKS: Bringing key transparency to end users.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, 383–398.

[8] Ralph C Merkle. 1980. Protocols for public key cryptosystems. In 1980 IEEE
Symposium on Security and Privacy. IEEE, 122–122.

[9] Beatriz Pinheiro, Carmen Moutela, Juliana Silva, Maria Leonor Ferreira, and
Manuel Au-Yong-Oliveira. 2022. Social Media in China and Portugal and “digital
Bubbles” of Political Information. Springer, 562–575.

[10] Claus-Peter Schnorr. 1991. Efficient signature generation by smart cards. Journal
of cryptology 4, 3 (1991), 161–174.

[11] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151 (2014), 1–32.

A AUTHENTICATION PATH GENERATION
AND VALIDATION

To use (P)KT-IEE we assume that KT directories are constructed as
Merkle binary trees, as in CONIKS [7], which additionally intro-
duces the notion of private prefixes to avoid revealing usernames
in the data structure. We provide a brief overview here, for further
details and explanations please refer to the original paper.

Each node in the tree represents a unique prefix 𝑖 . Each branch
of the tree adds either a 0 (left node) or a 1 (right node) to the prefix
of the parent node. Every node other than a leaf node is hashed as
follows:

ℎ = 𝐻 (ℎ𝑙 .0 | |ℎ𝑟 .1)
Here 𝑙 is the left node and 𝑟 is right node. Leaf nodes are hashed as
follows:

ℎ𝑙𝑒𝑎𝑓 = 𝐻 (𝑑𝑒𝑣𝑖𝑑 | |𝑘𝑒𝑦 | |𝑅𝑛)
Here, 𝑅𝑛 is a random nonce. In order to provide a proof of inclusion
of Alice’s key in the directory, the complete authentication path
between Alice’s leaf node and the root is generated by 𝑆𝑃𝑋 . This is
a pruned tree containing the prefix path to the requested index as
shown in Figure 4. All green leaf nodes in the tree represents other
clients in the directory tree. The nodes in red have been included
in the 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ sent by 𝑆𝑃𝑋 to Bob in the response to the key
look-up request. In our example, Alice’s leaf node is:

ℎ𝑎 = 𝐻 (𝑎𝑖𝑑 | |𝑔𝑎 | |𝑅𝑛)
and the 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ is:

𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ = {ℎ𝑎, ℎ𝑐 , ℎ′′, ℎ′}.
Since, for privacy reasons, ℎ𝑎 is a commitment and not (𝑎𝑖𝑑 | |𝑔𝑎),
the opening for the commitment, 𝑅𝑛 , is also sent in the response
allowing ℎ𝑎 to be recalculated and compared for equality with that
in the 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ. If that is successful, 𝑏𝑑 , using the 𝑎𝑢𝑡ℎ_𝑝𝑎𝑡ℎ,
recalculates the value of the root of the directory tree:

𝑆𝑇𝑅′ = (𝐻 (𝐻 (𝐻 (ℎ𝑐 | |ℎ𝑎) | |ℎ′′) | |ℎ′))

Root = (𝐻 (𝐻 (𝐻 (ℎ𝑐 | |ℎ𝑎) | |ℎ′′) | |ℎ′))

ℎ𝑐

0

ℎ𝑎

1

0

h”0 1

1

0
h’

0 1

0

0 1

1

1

Figure 4: An authentication path from 𝐴𝑙𝑖𝑐𝑒′𝑠 public key to
the root node of the Merkle tree. Assuming 𝐴𝑙𝑖𝑐𝑒′𝑠 index,
𝑖𝐴𝑙𝑖𝑐𝑒 is "001"

It then performs following steps:
• Get the latest available public 𝑆𝑇𝑅.
• Checks the signature on the public 𝑆𝑇𝑅.
• If 𝑆𝑇𝑅 = 𝑆𝑇𝑅′, then encrypt message using Alice’s public
key, otherwise alert Bob of validation failure.

76

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 E2EE and Key Transparency
	2.2 Related Work

	3 System model
	3.1 Problem Statement
	3.2 Assumptions

	4 Threat Model
	4.1 Adversary Goals

	5 The KT-IEE protocol
	5.1 Setup Phase
	5.2 Cross Platform Key Look-up
	5.3 Response Verification
	5.4 E2EE Message exchange

	6 Security Analysis
	7 (P)KT-IEE: Private Interoperable Key Transparency
	8 Performance
	9 Deployment Considerations
	10 Conclusions
	References
	A Authentication Path Generation and Validation

