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ABSTRACT

Virtual Private Networks (VPNs) are increasingly being used to
protect online users’ privacy and security. However, there is an
ongoing arms race between censors that aim to detect and block
VPN usage, and VPN providers that aim to obfuscate their services
from these censors. In this paper, we explore the feasibility of a
simple, protocol-agnostic VPN detection technique based on identi-
fying encapsulated TCP behaviors in UDP-based tunnels. We derive
heuristics to distinguish TCP-over-UDP VPN traffic from plain UDP
traffic using RFC-defined TCP behaviors. Our evaluations on real-
world traffic show that this technique can achieve a false positive
rate (FPR) of 0.11%, an order of magnitude lower than existing ma-
chine learning-based VPN detection methods. We suggest defenses
to evade our detection technique and encourage VPN providers to
proactively defend against such attacks.
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1 INTRODUCTION

Virtual Private Networks (VPNs) are widely used to protect online
privacy and bypass censorship [34]. Despite their popularity, the ef-
fectiveness of VPNs continues to be challenged by Internet Service
Providers (ISPs), advertisers, and governments that seek to monitor,
tamper with, or block network traffic [5, 11, 16, 19, 20, 26, 38, 43].
These entities are known to employ strategies such as IP tracking,
VPN provider blocking, and deep packet inspection (DPI) to detect
and block VPN usage [15, 27]. In response, users and providers
alike have countered with techniques to prevent detection, includ-
ing rotating IP addresses [8], using non-default ports [21], and
obfuscating VPN traffic [22, 25, 30]. However, even commercial
obfuscated VPN services that are touted as robust to detection have
been shown to be straightforward for censors and ISPs to block
using protocol fingerprinting [42].

While a large body of work has emerged on how to detect VPN
traffic using machine learning (ML) [4, 10, 17, 18, 24, 36], in practice,
VPN detection methods used by real-world censors still rely on sim-
pler heuristics like protocol fingerprints, the fraction of set bits, and
the number, fraction, and position of ASCII characters [40]. Building
on this observation, we take an adversarial perspective and explore
a simple yet understudied protocol-agnostic approach to VPN detec-
tion that exploits the leakage of tunneled (inner) protocol behaviors
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in the observed (outer) VPN connection. Specifically, we consider
whether the RFC-defined characteristics of the TCP transport pro-
tocol inadvertently leak that a UDP connection is being used to
tunnel traffic. Our approach is based on a fundamental feature of
VPNs—the encapsulation of one protocol within another—and uses
detection heuristics that are grounded in the intrinsic behaviors of
TCP. This method avoids biases from empirical heuristics derived
from particular VPN/non-VPN traffic datasets, which allows for a
more generalizable method.

We find that several fundamental aspects of TCP behavior (e.g.,
the presence of TCP three-way handshakes and acknowledgement
packets) can be detected via simple threshold-based heuristics de-
rived from RFC specifications. We evaluate the effectiveness of
our approach on real traffic from a large university campus net-
work. Our results suggest that TCP-over-UDP VPN detection is
feasible with a false positive rate (FPR) of 0.11%, which is an or-
der of magnitude lower than those of proposed ML-based VPN
detection techniques [4, 10, 18]. Our findings motivate that when
building future VPN protocols, the security community needs to
actively consider how to mask the protocol characteristics of inner
transport-layer and application-layer protocols.

2 RELATEDWORK

VPNDetection. Numerous VPN detectionmethods have been pro-
posed in prior work, which range from using information databases
to identify known VPN providers and proxies [13] to ML-based
classification of flow statistics [4, 10, 17, 18, 24, 36]. While ML-
based VPN detection research has grown in popularity, many of
these ML-based classifiers are evaluated on synthetic datasets [6]
in offline settings, and few have demonstrated practical usage in
real-world environments [42]. Indeed, sophisticated censors like the
Great Firewall (GFW) have been shown to apply “crude but efficient
heuristics” to detect and block encrypted traffic, rather than relying
on more complex and less interpretable ML-based strategies [40].

We build upon prior works that use simple and lightweight VPN
detection methods. Webb et al. [39] proposed the use of network
delay measurements to distinguish proxy and VPN traffic from
direct traffic, which relies on the assumption that the round-trip
time (RTT) of proxied connections are different from those of direct
connections. Xue et al. [42] demonstrated the ability to fingerprint
OpenVPN connections using byte patterns, packet sizes, and server
responses, achieving negligible false positive rates. Xue et al. [41]
further demonstrated a protocol-agnostic approach to VPN/proxy
detection by fingerprinting encapsulated TLS handshakes. In our
work, we expand on this idea of detecting encapsulated features,
instead focusing on more general encapsulated TCP characteristics.
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Obfuscated VPNs. As ISPs and censors have improved at VPN
detection, some VPN providers have begun to offer “obfuscated”
VPN services that can supposedly bypass censorship [22, 25, 30].
However, many of these obfuscation techniques primarily defend
against deep packet inspection (DPI) and are not designed to protect
against attacks that exploit packet size and timing characteristics.
Xue et al. [42] investigated 20 obfuscated VPN configurations de-
ployed by 14 VPN providers, and found that most of these tunnels
do not add random padding to packet payloads. As a result, many
obfuscated VPN variants are susceptible to traffic analysis attacks.

3 TCP-OVER-UDP VPN DETECTION

Our VPN detection method identifies the presence of TCP traffic
tunneled within UDP-based VPN connections. This approach con-
siders that RFC-mandated TCP characteristics can leak into the
outer VPN connection. In particular, TCP connections, even when
wrapped inside an encrypted UDP tunnel, can exhibit distinct and
easily measurable patterns in the size, direction, and timing of pack-
ets. By identifying UDP connections that exhibit strong TCP-like
behavior, we can infer the presence of tunneled TCP traffic that is
likely to be indicative of VPN usage. While this technique is lim-
ited to UDP-based VPNs tunneling TCP traffic, we note that many
popular VPN services (e.g., ExpressVPN, NordVPN, Surfshark, and
Private Internet Access) use UDP-based protocols because the outer
tunnel does not need to provide any TCP features [1, 9, 12, 31].

The advantages of our approach are threefold: (1) it relies on
characteristics of traffic tunneling, a fundamental feature of VPNs,
and thus eliminates the need to fingerprint or account for specific
VPN protocols or providers, (2) its use of intrinsic, RFC-mandated,
traits of TCP avoids biases that may be present in particular datasets
used to train ML-based VPN detection systems, and (3) many TCP
behaviors are easily recognizable, even when packet payloads are
encrypted. We choose three distinguishing characteristics of TCP
that are required by RFC 9293 (Transmission Control Protocol) [33]:

• 3WHS: The presence of a three-way SYN, SYN-ACK, ACK
handshake to open the connection (RFC 9293, Section 3.5).

• 500msACK: The presence of an ACK packet generated with-
in 500 ms of the arrival of a data segment (RFC 9293, Section
3.8.6.3).

• 2RMSS: The presence of an ACK packet generated after
the receival of 2×RMSS bytes of data, where RMSS is the
maximum segment size (MSS) specified by the TCP endpoint
receiving the segments (RFC 9293, Section 3.8.6.3).

While RFC 9293 lists multiple TCP requirements that “must” or
“should” be implemented, we select these characteristics for their
ease of inference using only the size, direction, and timing of packets
in a connection. For instance, the presence of exponential backoff,
slow start, and congestion avoidance can also be strong indicators
of TCP, but are less trivial to detect without access to TCP sequence
numbers. Additionally, connection closing behaviors may be less
practical to use since they only occur at the end of the connection.

3.1 Practical Heuristics

A passive observer of VPN traffic cannot access unencrypted TCP-
header fields (e.g., whether a packet has the ACK flag set) within the
VPN tunnel, so we derive threshold-based heuristics for each of our

three TCP characteristics that take VPN encapsulation into account.
We evaluate the efficacy of our derived heuristics in Section 4.

Encapsulated 3WHS. Since TCP flags are not visible inside en-
crypted tunnels, we propose a heuristic for the presence of a 3WHS
based on the size, direction, and sequence of packets in the outer
UDP connection. We consider an encapsulated 3WHS to be a se-
quence of three packets in alternating directions with non-increas-
ing size, with the first packet having a UDP payload size of 60–
160 bytes (indicating no TCP payload). This size is derived from
lower and upper bounds on the size of IP headers, TCP headers,
and VPN metadata [41], and confirmed through empirical analysis
of anonymized, real-world TCP handshakes captured on a large
university campus network. 1 Because some VPN protocols send
initial connection establishment packets that are not part of the
tunneled connection, we loosen the requirement of the presence
of a 3WHS to occur within the first 20 packets of the outer UDP
connection.

Encapsulated 500msACK. We approximate a TCP data segment
as any UDP packet with size greater than the estimated size of
tunneled packets that do not contain a TCP payload. We consider
one instance of 500msACK as the observation of a packet sent in
one direction within 500 ms plus the RTT after observing a packet
containing a TCP payload sent in the opposite direction. RTT is
estimated by the time elapsed during the 3WHS, or a default 500 ms
if a handshake is not detected.

Encapsulated 2RMSS. Since passive observers are unable to view
the MSS values specified in the inner TCP connection, we define a
default RMSS based on the maximum transmission unit (MTU) that
standard Ethernet supports. We consider one instance of 2RMSS
as the observation of a packet sent in one direction within the esti-
mated RTT after observing 2×RMSS bytes of TCP data sent in the
opposite direction. TCP data length is computed as the difference
between the size of the outer UDP packet and the size of the headers
and VPN metadata. The size of the headers and VPN metadata is
estimated by the size of the first 3WHS packet, or a default 160 bytes
if a handshake is not detected.

3.2 VPN/Non-VPN Classifier

We use these heuristics to build a simple classifier that distinguishes
between TCP-over-UDP VPN traffic and plain UDP traffic. To clas-
sify an observed UDP connection as VPN, we require (1) the pres-
ence of an encapsulated 3WHS, and (2) a rate of compliance with
encapsulated 500msACK and 2RMSS of least 𝑡 , where 𝑡 is a tunable
threshold. Rate of compliance is defined as the number of times
an expected acknowledgement packet is observed divided by the
number of times an acknowledgement packet is expected.

Similar to prior research on the practical detection of VPN and
proxy traffic [41, 42], we only observe the first𝑊 packets of the
connection (the observation window) before making a decision. As
in recent work on detecting OpenVPN traffic [42], we evaluate our
classifier at𝑊 = 100. However, note that we do not need to observe
all 100 packets if the absence of an encapsulated 3WHS suggests

1From 19,468 successful real-world TCP handshakes captured on a large university
campus network, we observe that 97% of handshakes do not contain data and have
non-increasing packet sizes across the three packets.
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that it is not a VPN connection prior to the full observation window.
Our choice to use a threshold-based classifier is based on previous
work demonstrating that even advanced censorship systems rely
on simple heuristics [40].

4 EVALUATION

We evaluate our classifier and compare its performance to alter-
native VPN detection techniques. We demonstrate that the iden-
tification of encapsulated TCP behaviors in UDP traffic can be an
effective technique for VPN detection.

4.1 Dataset

We collected a dataset of VPN and non-VPN traffic to evaluate our
classifier. Unfortunately, we found that existing public VPN/non-
VPN datasets were not suitable for our evaluation. Most notably,
the popular ISCXVPN2016 dataset [6] contains discrepancies that
indicate the network was tapped prior to packets going through
the VPN client.2 Therefore, these traces may not be representative
of VPN traffic a real-world censor might observe.

VPN (TCP-over-UDP). We generate and collect VPN traffic across
three different traffic categories: web browsing (Chrome), file trans-
fer (SCP and SFTP), and remote access (SSH). These categories are
informed by other VPN traffic datasets [6, 14]. We connect to a
VPN server managed by ExpressVPN using the default OpenVPN
(UDP mode) configuration. To generate file transfer traffic, we up-
load/download random text files to/from a remote server using
either SCP or SFTP. To generate SSH traffic, we randomly choose
commands to remote execute from a list of 13 shell commands
(listed in Table 1 in Appendix A). To generate web browsing traf-
fic, we use Puppeteer to send requests to the top 1,000 websites,
as defined by Google CrUX [29] on Github [7], one website per
packet trace. Per Ruth et al., this accounts for about 60% of website
requests [28]. We note that the web browsing VPN traffic is mul-
tiplexed, as it could include multiple TCP streams as well as DNS
traffic. This is representative of real-world web browsing traffic, and
is useful in evaluating the robustness of our classifier to connection
multiplexing. We collect 10,000 packet traces for each category of
traffic, resulting in a total 30,000 VPN flows for classification. All
packet traces are at least 85 packets in length.

Non-VPN (Plain UDP). For non-VPN traffic, we capture anony-
mized real-world UDP traffic from a large university campus net-
work using Retina [35]. Some of the UDP traffic we capture may
be VPN traffic, but we minimize this by filtering out flows on ports
commonly associated with VPNs (e.g., 1194/1195 for OpenVPN).
However, there still could be VPN connections within this UDP
dataset, so our reported false positive rates are upper bounds, and
true positive rates are lower bounds. We parse the collected UDP
traffic into individual flows, defining a single UDP flow as a unique
combination of source IP address, source port, destination IP ad-
dress, and destination port. Additionally, we only consider flows
that have 20 or more packets. In total, we collect 27,382 UDP flows.
2We downloaded a portion of the ISCXVPN2016 dataset and found that the packet
traces were majority TCP traffic, despite the dataset website [23] stating that OpenVPN
(UDP mode) was used to capture traffic. Jorgensen et al. [14] also came to the same
conclusion that the network may have been tapped prior to the packets going through
the VPN client.

Figure 1: Classifier Results (𝑡 = 1.00, 0.90, 0.80; 𝑊 = 100).
The TPR against the FPR of our classifier (broken down by traffic
category) and alternative VPN detection methods. Our protocol-
agnostic classifier achieves a FPR an order of magnitude lower than
ML detection techniques.

4.2 Results

Overall Classifier Results. We classify 27,382 UDP connections
and 30,000 TCP-over-UDP VPN connections. Figure 1 presents
the true positive rate (TPR) against the false positive rate (FPR),
broken down by traffic category, under varying rate-of-compliance
thresholds 𝑡 = 1.00, 0.90, 0.80. We omit results for 𝑡 < 0.80, as
𝑡 = 0.80 achieves within 1% of the maximum TPR our classifier
can achieve, given that it requires the detection of an encapsulated
3WHS to be classified as VPN, regardless of the value of 𝑡 . The TPR
is calculated as the number of true VPN flows classified as VPN
divided by the total number of VPN flows; the FPR is calculated
as the number of non-VPN flows classified as VPN divided by the
total number of non-VPN flows.

Figure 1 also shows the TPR versus FPR for alternative VPN
detection methods. We note that we do not use the same dataset
for evaluation, and even among the prior work, different datasets
are used. For a more meaningful comparison, we show the best
results, defined by the lowest FPR, reported by the following works:
gradient boosting trees (GBT) [4], bidirectional LSTM network with
attention mechanism [10], flow statistic-based classification using
a multi-layered perceptron neural network [18], and OpenVPN
fingerprinting [42]. OpenVPN fingerprinting is a threshold-based
classifier; all other classifiers areML-based.We note that the FPRs of
the ML-based classifiers (1.4–5.5%) are greater than the estimated
FPR of the inferred algorithm used by the GFW to block fully
encrypted proxies as of 2023 (0.6%) [40], indicating their limited
practicality for a real-world censor. OpenVPNfingerprinting reports
a lower FPR (0.0039%) but is limited to OpenVPN-based connections.

Our classifier achieves a FPR of 0.11–0.29%. This FPR is an order
of magnitude lower than the FPRs of proposedML-based techniques
(1.4–5.5%) and is on par with the estimated FPR of the inferred algo-
rithm used by the GFW (0.6%) [40]. The TPR, broken down by traffic
category, is as follows: for SSH traffic, 99.43–99.56%; for file transfer
traffic, 83.95–99.73%; and for web browsing traffic, 32.35–42.44%.
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The significantly lower TPR for web browsing traffic is due to failure
in detecting an encapsulated 3WHS in many of the web browsing
VPN flows. On investigation of these traffic flows prior to being
encapsulated by the VPN client, we found that many of the 3WHSs
were interrupted by DNS queries, a symptom of multiplexing multi-
ple connections within a single VPN tunnel. This demonstrates that
connection multiplexing does impact the accuracy of our classifier,
and therefore, could be an effective defense.

Feature Importance. We perceive the presence of a 3WHS based
on our heuristic in only 0.33% of plain UDP flows, compared to
80.59% of VPN flows (and 99.65% of VPN flows not including mul-
tiplexed web browsing traffic). Notably, this feature on its own
can distinguish between non-VPN and VPN traffic with a FPR of
0.33%. We measure plain UDP and VPN flow compliance with our
500msACK and 2RMSS heuristics per flow length (in packets). Our
results are shown in Table 2 in Appendix A. Although the distin-
guishing power of both features increase with flow length, even
at 500 packets, neither of these features on their own would be
sufficient to effectively differentiate between TCP-over-UDP and
UDP traffic. However, they are useful in negating false positives
and including them in our classifier results in a 67% reduction in
false positives for 𝑡 = 1.0 (89 false positives to 29 false positives).

Robustness of 3WHS. Because we find the presence of an encap-
sulated 3WHS to be a strong distinguishing feature of encapsulated
TCP traffic, we investigate its robustness if it is modified to ac-
count for two potential VPN detection defense tactics: random
padding and connection multiplexing. To account for connection
multiplexing, we modify the encapsulated 3WHS feature to allow
for disruption of the handshake. The packets of the handshake
are not required to be sequential; they are only required to occur
within 500 ms. To account for random padding, we consider a sim-
ple padding scheme used by some proxy protocols (e.g., vmess [32]),
adding between 0 and 63 bytes to each packet. We modify the
encapsulated 3WHS feature to not require the three handshake
packets to have non-increasing sizes, and increase the maximum
expected size of a TCP packet without data by 100 bytes. Table 3
in Appendix A presents the results for our classifier using these
modified encapsulated 3WHS features. As expected, both TPR and
FPR increase with our modified heuristics, but we observe that
only using random padding or multiplexing does not significantly
increase the FPR (0.11% to 0.15% for random padding, and 0.11% to
0.53% for multiplexing). However, a combination of these defenses
increases the FPR more significantly (0.11% to 2.57%).

5 DISCUSSION

Limitations and Future Work. Our work focuses on detecting
UDP-based VPNs tunneling TCP traffic. We do not evaluate TCP-
based VPNs or UDP-based VPNs tunneling other types of traffic.
However, our results provide evidence that this style of attack—
detecting the presence of tunneled connections based on protocol-
agnostic, RFC-mandated behaviors—may be an effective method
of VPN detection. Additionally, although we expect that our attack
would generalize to other VPN protocols besides OpenVPN, we
leave this to future work. Finally, we recognize that our dataset is
not necessarily representative of the distribution of VPN/non-VPN

traffic in the real world and is relatively small compared to the
volume of traffic a censor must analyze. If VPN traffic accounts
for a small percentage of the total traffic, even a low FPR of 0.11%
(Section 4.2) could block more legitimate traffic than VPN traffic.We
leave a full-scale evaluation of the practicality of our methodology
for real-world censors to future work.

Suggested Defenses. We urge VPN providers that aim to bypass
censorship to proactively defend against attacks that exploit encap-
sulated traffic behaviors. Our work confirms the findings of prior
work [41] that while random padding slightly increases the diffi-
culty of encapsulated-behavior attacks, multiplexing shows more
promise to be a robust defense. In the short term, we suggest VPN
providers at the very least add random padding and timing obfusca-
tion to increase the difficulty of traffic metadata attacks. Drawing
packet sizes from certain distributions, similar to the obsf4 [2] proxy
protocol, would likely offer a more robust defense against attacks
that exploit packet size analysis. Connection multiplexing in tun-
nels can further increase the difficulty of these types of attacks, and
is a natural form of timing obfuscation that does not artificially
insert delays between packets. However, as Xue et al. [41] noted,
multiplexing and random padding could introduce other detectable
behavior (e.g., a larger than “normal” packet size distribution). As
another potential defense to obscure distinctive encapsulated pro-
tocol characteristics, VPN providers could consider transporting
packets from the same flow on different random ports to make flow
analysis more difficult, a strategy used by the VPN tool GoHop [37].

Ethical Considerations. There is a risk that real-world adversaries
could implement our attack. We note that prior work has already
proposed the use of encapsulated TLS handshakes to detect proxy
traffic, and alludes to the potential of encapsulated TCP handshakes
for obfuscated VPN detection [41]. We emphasize that the ultimate
goal of our work is to better understand the feasibility of such an
attack, and more importantly, provide insight into how it could
be defended against. To minimize risk to users, our campus traf-
fic analysis was performed in coordination with our university’s
privacy and security office. Investigations into anonymized net-
work traffic unrelated to user behavior has been determined by
our campus IRB as being non-human subjects research. We im-
mediately anonymized all IP addresses with format-preserving IP
encryption [3], and zeroed all packet payloads. Our experiments
only involved the packet sizes and timings within connections.

6 CONCLUSION

In this work, we showed the efficacy of identifying RFC-defined
TCP behavior within UDP connections as a means of detecting VPN
tunnels. Our simple, protocol-agnostic classifier achieved a FPR as
low as 0.11% on production network traffic, which is an order of
magnitude lower than those of proposed ML-based VPN detection
techniques. We emphasize that the methodology of detecting the
presence of encapsulated protocols based on RFC specifications
could be adapted to detect other types of tunneled traffic and we
encourage VPN providers to consider this type of attack when
developing protocols to be robust against passive analysis.
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A APPENDIX

Table 1: Shell commands used to generate SSH traffic. We
generate SSH VPN traffic by randomly choosing commands to run
from the list below until our packet trace is sufficiently long (at
least 85 packets).

ls
touch myfile.txt
cat myfile.txt
rm myfile.txt
mkdir mydir
cd mydir
cd ..
echo "this is a command"
clear
pwd
grep "hello" myfile.txt
echo "hello" > myfile.txt
date

Table 2: VPN/non-VPN compliance with encapsulated

500msACK and 2RMSS heuristics (𝑡 = 0.99). The percentages
represent the percent of flows that complied with the heuristic at
least 99% percent of the time.We observe that both features increase
in distinguishability as flow length increases. However, neither of
these features on their own would be sufficient to distinguish be-
tween TCP-over-UDP and UDP traffic.

20 packets 100 packets 500 packets

UDP 500msACK 81.5% 77.4% 70.9%
2RMSS 97.6% 72.3% 56.1%

VPN 500msACK 89.4% 88.3% 97.6%
2RMSS 100% 89.4% 81.5%

Table 3: Robustness of 3WHS (𝑡 = 1.00;𝑊 = 100). TPRs are
averaged across all VPN traffic categories. Modifying the 3WHS fea-
ture to be robust to multiplexing (MUX) or simple random padding
results in a FPR that may be practical for a real-world censor. Mod-
ifying the 3WHS feature to be robust to both of these defenses
combined results in a FPR likely too high to be practical.

Modification FPR TPR

N/A (original) 0.11% 71.84%
Account for MUX 0.53% 93.36%
Account for random padding 0.15% 72.42%
Account for random padding & MUX 2.57% 93.40%
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