
Hidden Links: Analyzing Secret Families of VPN Apps
Benjamin Mixon-Baca
ASU/Breakpointing Bad
bmixonba@asu.edu

Jeffrey Knockel
Citizen Lab / Bowdoin College

jeff@citizenlab.ca

Jedidiah R. Crandall
Arizona State University
jedimaestro@asu.edu

ABSTRACT
Ownership transparency in the VPN ecosystem allows users to
make informed decisions about who they trust with their data.
Researchers have recently begun investigating the relationships
between seemingly distinct providers and who operates them, but
such analysis is currently limited to a small sample of providers in
the VPN ecosystem. One known family of providers, Innovative
Connecting, Autumn Breeze, and Lemon Clove, has been previously
scrutinized by two research efforts linking them to the People’s
Liberation Army.

In our work, we identify and analyze three families of VPN pro-
viders. Combined, their download counts on the Google Play Store
exceed 700 million. Similar to previous research, we use information
from business filings and Android APKs to link distinct providers
together. However, we build upon past work by introducing new
methods for revealing how VPN providers are connected, show-
ing that they even share VPN servers’ cryptographic credentials,
including Shadowsocks passwords that are hard-coded into their
APKs. Hard-coded Shadowsocks passwords allow an attacker to
decrypt the traffic of these providers’ clients, compromising the
security claimed by these providers. Therefore, our analysis reveals
that these apps share not only common ownership but a common
set of security issues. As such, these apps’ providers are not merely
misleading their users about their ownership but about the extent
of their security properties as well.

1 INTRODUCTION
To ensure the security and privacy of their network communica-
tions, users must know who develops, owns, and operates their
Virtual Private Network (VPN) services because VPN operators
may observe all communications transmitted by or to each client.
VPN providers obfuscating their ownership interferes with users’
ability to make informed decisions about who to trust with their
data. Furthermore, any deception on the part of the providers un-
dermines user trust and may suggest other problems such as with
privacy and security practices of the provider in question.

In this paper, we analyze the privacy and security of VPN apps
whose providers intentionally disguise their ownership. We use
hidden relationships between supposedly distinct VPN providers
as an indirect indicator of deceptive behavior. We then search for
VPN-specific security issues in the deceptive providers’ apps to
uncover shared flaws. These shared flaws themselves serve as a
signature by which to map relationships between providers.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet 2025(2), 18–27
© 2025 Copyright held by the owner/author(s).

VPN Pro was the first to widely report on hidden provider rela-
tionships [36]. They identified seemingly obfuscated relationships
between Innovative Connecting, Autumn Breeze, and Lemon Clove.
According to VPN Pro’s research, these providers claimed to be
based in Singapore but were owned by a Chinese national and sub-
ject to Chinese law. VPN Pro linked these providers together using
information collected from WHOIS records and resources in the
binary the providers distributed through the app stores. Recently,
the Tech Transparency Project (TTP) uncovered links between
these VPN providers (and multiple other providers) and Chinese
computer security firm Qihoo 360, a company the United States
government sanctioned on June 2020 for its connection to the Peo-
ple’s Liberation Army (PLA) [28]. Their findings were based on
legal documents such as mergers and acquisitions filings. These
reports together reveal concerning details about ownership trans-
parency in the VPN ecosystem andmotivated us to ask the following
questions: To what extent do VPN providers provide inaccurate or
incomplete corporate-ownership information on the Google Play
Store? Using analysis of legal filings, APK artifacts, and network
communications, can seemingly distinct VPN apps be clustered
into common-operator families? Which forensic signals are most
reliable for that clustering? Within each detected family, to what
extent are code bases, server infrastructure and cryptographic mate-
rials reused, and how does such reuse contribute to exposing users
to widespread security issues?

To answer these questions, we created a list of seemingly distinct
VPN providers and their respective applications. We collected in-
formation about the providers from their Google Play pages, APKs,
websites, domain registration information, business filings, their
social media presence, and social media posts on Google, GitHub,
Reddit, Twitter/X, and LinkedIn. We used this information to look
for VPN providers that appear to be obfuscating their ownership
information and using deceptive business practices.

We identified three distinct families of VPN providers. We ana-
lyzed each for security issues, finding that, in addition to sharing
other code similarity features, each family of apps also shared prob-
lematic security properties. For two of the families we identified
hard-coded Shadowsocks passwords shared by their VPN clients.
We also confirmed we could decrypt their traffic when these apps
were using the Shadowsocks protocol. An attacker can use these
credentials to decrypt all of the traffic for all of the clients of these
providers. These families alone have over 700 million Google Play
Store downloads. Therefore, these issues put the traffic of large
numbers of users at risk.

The remainder of this paper is structured as follows. In § 2,
we provide background on VPN technologies and their previously
known weaknesses. § 3 covers the methodology we used for VPN
selection and our analysis. § 4 details our findings, the implications
of which we discuss in § 5 as well as potential remedies.

18

https://creativecommons.org/licenses/by/4.0/


Hidden Links: Analyzing Secret Families of VPN Apps Free and Open Communications on the Internet 2025(2)

2 BACKGROUND
VPN apps implement a variety of tunneling protocols, which can
operate on either the network layer or the application layer of the
OSI model. In this section, we provide a brief summary of the se-
curity issues we look for in each app depending on its supported
protocol(s). We then conclude the section by summarizing previ-
ous research identifying hidden connections between distinct VPN
providers.

2.1 VPN Protocols
VPNs are not defined by a single protocol. Rather, a VPN is an
abstract model of networking that many unique protocols satisfy.
The protocols of interest in this work operate at either the network
layer or the application layer, and this fact has security implications
specific to it.

2.1.1 Network Layer VPNs. Network Layer VPNs are truly VPNs
in that they create a network layer connection between the VPN
client and VPN server. Examples of network layer VPNs include
OpenVPN [27], WireGuard [8], and IPsec [13]. When a client trans-
mits a packet, the packet is routed through a tuntap (OpenVPN,
IPsec) or wg (WireGuard) interface. The packet, including all net-
work and transport layer headers, is encrypted, encapsulated into a
payload of a new packet destined for a VPN server, and then routed
to it. When the VPN server receives the packet, the VPN server
program decapsulates and decrypts the packet, then routes it to
the original destination. The VPN server is acting, essentially, as a
network address translation (NAT) layer for clients. Encryption is
typically intended to protect the payload from eavesdroppers be-
tween the VPN client and VPN server, and the NAT obfuscates the
client’s public IP address. These are the purported security features
of VPNs. The detail that makes these protocols implement truly
virtual private networks is the inclusion of network and transport
layer headers and the reliance on the underlying operating system’s
network stack, routing tables, and firewall hooks to facilitate NAT
and routing.

2.1.2 Network Layer VPN Weaknesses. Several security issues
have been discovered that are specific to modern network layer
VPNs [23, 34, 39].

Blind In/on-path Attacks. Blind in/on-path attacks are a class
of attack where an in/on-path attacker, while unable to observe
the traffic inside of the tunnel (i.e., blind), can still tamper with the
inner connection [34]. This attack comes in two flavors, client-side
and server-side. The client-side attack permits an attacker to infer
active connections between a VPN client and an external server
to which the client is communicating through the VPN tunnel.
The server-side attack permits an attacker between the VPN client
and server to infer active connections or inject packets into the
connection and take it over.

This client-side attack assumes the attacker is on the local net-
work, such as a shared WiFi network at a conference venue. The
attacker spoofs packets to the client, setting the destination IP to
the IP of client’s tuntap/wg interface’s and source IP to the web
server’s IP. If the source and destination ports match and the TCP
sequence number is in-window, the target responds with a chal-
lenge ACK through the VPN tunnel. The attacker will infer the

ACK based on its size, implying an active connection despite the
tunnel encryption. Source address validation (i.e., strict rp_filter
in Linux) mitigates this threat, although mobile phones default to
loose source address validation.

The server-side attack works even when the attacker is not on
the local network, such as a router/ISP between the VPN server and
client. Instead of spoofing a packet to the client directly the attacker
spoofs packets to the VPN server. If the spoofed packet matches
the connection, then it will reach the VPN client. The client will
respond with a challenge ACK or process the attacker’s packet as
if it is a legitimate packet. There is no known mitigation for the
server-side attack because the root cause is fundamental to VPN
architecture (IP sharing).

Port Shadow Vulnerabilities. One limitation of blind in/on-path
attacks is the on-path requirement because it is a privileged location.
The port shadow vulnerability permits attackers without that access
to achieve it by allowing the attacker to escalate from adjacent
(i.e., the attacker and client connect to the same VPN server) to
in-path [23]. The port shadow vulnerability affects VPN servers
specifically and exploits the operating system’s connection tracking
framework to cause the VPN connection request to be routed to
the attacker instead of being handled by the VPN server. In this
work, however, we did not find any VPNs vulnerable to this attack,
primarily due to the VPNs’ use of network layer protocols that
happen to not be vulnerable, such as IPsec, or application layer
protocols, which are never vulnerable, such as Shadowsocks.

2.2 Application Layer VPNs
The only application layer VPN we consider in this work is Shadow-
socks. Shadowsocks operates similarly to network layer VPNs in
that a client sends a packet to an intermediary (the VPN/proxy
server) that then forwards the packet to the client’s intended desti-
nation. The major difference is that application layer VPNs do not
operate on the layer 3 and layer 4 network layers the way network
layer VPNs do.

2.2.1 Shadowsocks. Shadowsocks is an application layer proxy
designed explicitly to circumvent the Great Firewall of China [5].
Its use is offered by many VPN providers, including those featured
in this study. Shadowsocks is a Fully Encrypted Protocol [10] (FEP)
meaning it attempts to look completely random. Shadowsocks oper-
ates similarly to SOCKS5 proxies and adds symmetric encryption to
implement its FEP.When a user visits a website in their browser, the
application layer data is sent through the proxy using the SOCKS5
protocol.

Application layer VPNs must take additional steps to route all
TCP, UDP, and ICMP traffic through the proxy. To facilitate this,
libraries such as REDSOCKS [9] and tun2socks [21] intercept outgo-
ing packets and route them to a SOCKS proxy that can then operate
on the packets as required. This operation is similar to network
layer VPNs in that the operating system’s connection tracking
framework intercepts and routes outgoing packets through the
proxy. A service listens for and completes connections at layer 4
with the service sending the packets to the Shadowsocks proxy.
The application layer data is then encapsulated using the SOCKS5
protocol and sent to the proxy server.

19



Free and Open Communications on the Internet 2025(2) Benjamin Mixon-Baca, Jeffrey Knockel, and Jedidiah R. Crandall

2.2.2 ShadowsocksWeaknesses. Providerswho claim that a Shadow-
socks-based VPN offers confidentiality or integrity are misleading
their users because, although Shadowsocks uses (symmetric) en-
cryption, it was not designed specifically to satisfy these or any
other security properties [11]. Therefore, we are concerned with
two weaknesses, decryption oracle attacks when using deprecated
ciphers and hard-coded passwords. In addition to these problems,
a Shadowsocks client that uses REDSOCKS or tun2socks is suscep-
tible to the client-side blind in/on-path attack due to interaction
with the connection tracking framework.

Decryption Oracles. Shadowsocks originally offered a “stream
ciphers” suite for encryption. In 2020, Zhiniang Peng discovered
that the packets lacked an integrity check, leading to a decryption
oracle. An attacker could use this attack to decrypt client traffic
when those ciphers are used [11], resulting in their deprecation.
Among the ciphers in the suite, only the AEAD [6] one is still rec-
ommended. For example, if the VPN application contains a static
configuration file, then this weakness can be identified by locating
this file and identifying the cipher that the file specifies.

Hard-coded Passwords. Symmetric encryption uses the same
key to encrypt and to decrypt. Therefore, after having extracted
a hard-coded Shadowsocks password in a VPN app, from which a
symmetric key is deterministically derived, a network eavesdrop-
per can decrypt all traffic for all clients of the affected application.
Identifying this weakness is the same as the decryption oracle —
find the static information and record the key. An implementation
facilitating private connections would use non-hard-coded keys.

2.3 Identifying Hidden VPN Provider Relationships,
Ownership, and Deception

Before summarizing the previous research on uncovering obfus-
cated ownership and hidden relationships between providers, we
define what we mean by “link”, “provider linkage”, and “deception”.

2.3.1 Provider Linkage. By distinct provider, we mean the name a
user sees when in the developer details of an application’s Google
Play page or in the terms of service or privacy policy documents
served on the provider’s website. “Link” means, given two distinct
providers, e.g., Innovative Connecting and Lemon Clove, a single
entity operates both services. The process of “linking” or “provider
linkage” is using information, such as business records, information
within APKs, or shared VPN servers, to deduce that a single entity
operates both providers.

2.3.2 Deception. It is not uncommon for VPN providers to ap-
pear to be distinct but actually be operated by a single entity. For
example, Kape Technologies operates multiple VPN services includ-
ing ExpressVPN and Private Internet Access. Kape discloses this
fact on their website so as to not be deceptive. When we speak
of “deception”, we mean that the relationship between providers
requires uncovering the relationship by reviewing legal documents,
domain registration information, decompiled APK files, and other
sources beyond where an average user would look to find it, e.g.,
the provider/app’s website or Google Play page.

2.3.3 Previous Research. The most convincing reports linking pro-
viders together and uncovering deceptive practices have leveraged
business records. Research by Tech Transparency Project linked

Innovative Connecting, Autumn Breeze, Lemon Clove, and several
other providers to Qihoo 360 [28]. Their investigation linked these
providers together and to Qihoo 360 by comparing multiple sources
of data, including merges and acquisitions records. Qihoo 360 is
based in mainland China, meaning that the operator is subject to the
laws and regulations of that country which require censorship and
surveillance of the Internet. Another concerning detail, revealed by
VPN Pro and corroborated by TTP, was the apparent lengths the
providers went to hide the fact that they were owned by a Chinese
national. This detail is not apparent when viewing the Google Play
Store pages of any of these VPNs, nor is it on any website. Instead,
these apps state they are Singapore-based.

Much of the work linking providers depends on business filings,
and, while researchers have identified and localized various types of
hosts and services (e.g., proxies) [2, 4, 15, 37, 38, 40], similar methods
have not been applied to linked VPN providers. Researchers have
linked providers together by identifying potentially shared infras-
tructure [1, 16, 29], identifying similarities between provider VPN
clients, or performing text comparisons with privacy policies [36],
but definitive proof of such relationships typically remains elusive.

In our own study, we realized the inherent limitations of using
privacy policy comparisons or code comparisons to infer links. A
developer taking shortcuts might copy and paste the privacy policy
of a competitor. Two providers might employ the same software
developer without knowing. Therefore, while such comparison
techniques are a good start, shared infrastructure is more com-
pelling as evidence. In our study, we improve upon the previous
understanding of relationships between VPN providers by using the
cryptographic credentials from one provider to establish a tunnel
with the servers of a different provider. These shared, hard-coded
credentials will also prove to be a shared security defect.

3 METHODS
Our methodology consists of three steps: collecting developer and
app names for 100 VPN providers, filtering this list down to 50
providers by excluding providers who were based in the USA, and
identifying the subset of VPNs that appear deceptive.

3.1 VPN Selection
We selected the 100 most downloaded VPN apps according to Sen-
sorTower [31] and AppMagic [17], who both provide aggregated
metadata about mobile applications for market research. We com-
bined the datasets by comparing the download counts for each
dataset and selecting the larger value reported when they differed.
The initial list was filtered down to 50 by including only apps whose
providers were based outside of the United States. We prioritized
Singapore-based providers because of the previous research that
observed deceptive providers incorporating in Singapore [36]. We
then collected information about the providers from their Google
Play page, website, domain registration information, GitHub, Git-
Lab, Gitee, and the providers social media pages. We identified 13
potentially related and deceptive providers for security analysis
and to search for more definitive evidence of deception via infras-
tructure connections (see Table 1 for their aggregated download
counts).

20



Hidden Links: Analyzing Secret Families of VPN Apps Free and Open Communications on the Internet 2025(2)

Table 1: The number of Google Play Store downloads for each app
analyzed (see § 4 for family identification).

Family Provider Name VPN Name # Downloads
Innovative Connecting Turbo VPN 100,000,000+
Innovative Connecting Turbo VPN Lite 50,000,000+
Innovative Connecting VPN Monster 10,000,000+
Lemon Clove VPN Proxy Master 100,000,000+
Lemon Clove VPN Proxy Master - Lite 10,000,000+
Autumn Breeze Snap VPN 50,000,000+
Autumn Breeze Robot VPN 10,000,000+

A

Autumn Breeze SuperNet VPN 1,000,000+
MATRIX MOBILE PTE LTD Global VPN 10,000,000+
MATRIX MOBILE PTE LTD XY VPN 100,000,000+
Super Z VPN (Privacy & Proxy) Super Z VPN 10,000,000+
The Tool Tech Touch VPN-Stable & Secure 50,000,000+
Fruit Security Studios VPN ProMaster-Secure your net 50,000,000+
Fruit Security Studios 3X VPN - Smooth Browsing 100,000,000+
WILDLOOK TECH PTE. LTD. VPN Inf 10,000,000+

B

WILDLOOK TECH PTE. LTD. Melon VPN - Secure Proxy VPN 50,000,000+
FreeConnectedLimited X-VPN 50,000,000+C Fast Potato ptd ltd Fast Potato VPN 10,000,000+
Miczon LLC Tetra VPN 1,000,000+
Super VPN Inc VPN - Super Unlimited Proxy 100,000,000+Other
Secure Signal Inc Secure VPN Safer Internet 100,000,000+

Total 13 Providers 21 Apps 972,000,000+

In the remainder of this section we summarize our collection
and analysis methodology for these sources below. Overall we
found that analysis of providers’ websites, business filings, and
apps’ source code were the most useful for linking providers and
identifying deception.

3.1.1 Websites. For each selected application, we collected the
developer name, address/location, and website and privacy pol-
icy link from the Google Play Store and downloaded the APK
onto our analysis device. We then reviewed the website, privacy
policy, terms of service, and APK code and built a search terms
list to search Google, Twitter/X, Reddit, LinkedIn, Telegram, Face-
book/Instagram, YouTube, GitHub, GitLab, and Gitee. When we
decompressed the APKs, we noted the asset and shared library
names, and searched the decompiled code for email addresses, URLs,
and similar terms that we added to our search term list. A sample
of the list of search terms that we used is provided in Table 2 in
Appendix A.

3.1.2 Business Filings. We used the provider name identified on
the Google Play Store and mentioned in each provider’s privacy
policy and terms of service documents as search terms in OpenCor-
porates to find business records for each provider. OpenCorporates
is a London-based NGO that aggregates business records, like tax
and copyright records, of companies around the world to promote
transparency [26]. An example search result is provided in Figure 1.

We found 10 providers with records in OpenCorporates and 3
that did not. We then reviewed available business records, such as
copyright filings.We cross-referenced addresses in these documents
with addresses listed on websites and Google Play pages and noted
inconsistency. We found 10 providers had addresses listed in China
but allegedly operating out of Singapore.

3.1.3 Social Media. We searched for and noted VPN providers
and apps that had social media profiles on Facebook/Instagram,

Figure 1: Innovative Connecting Pte LTD linked to Beijing through
copyright filings with USPTO.

Twitter/X, Reddit, Telegram, Discord, and YouTube. We did not find
any information useful for provider linkage or identifying deception
for our study. We also searched GitHub, GitLab, and Gitee for any
repositories the VPN providers might maintain, but we failed to
locate any of such repositories.

3.1.4 DNS Records. We collected DNS records using dig and
WHOIS. In all cases, the VPN providers either redacted all infor-
mation from their WHOIS records or used a domain registrar, such
as Domain Protection Services or Domain by Proxy, to anonymize
this information. Thus, domain-related information was largely not
useful for making an association between distinct VPN providers.

3.1.5 APKs. We downloaded the APK for each application onto
our analysis device (detailed in § 3.2). We used the strings com-
mand to search for specific file paths and email addresses. We found
shared libraries were the most productive source linking VPN pro-
viders together. For example, pictured in Figure 2, VPN applications
from Innovative Connecting, Autumn Breeze, and Lemon Clove
each had strings in libopvpnutils.so explicitly linking the VPN
applications for each provider together.

3.2 Security Analysis
Our analysis goals are twofold, to identify VPN-specific threats and
to uncover deception via provider linkage. All applications were
loaded onto a rooted Google Pixel 7a device for testing. We used a
laptop as a WiFi hotspot and connected the mobile device to the
hotspot to collect packet captures using the laptop.

3.2.1 Finding VPN-specific Security Issues . We searched for the
VPN-specific security issues outlined in § 2. During dynamic analy-
sis, we recorded packet captures to identify VPN server IP addresses
and connections to APIs to which the VPN app made calls. We also
configured the device to proxy traffic through mitmproxy [7] to
search for API connections if the app used TLS outside the VPN
tunnel for such connections.

21



Free and Open Communications on the Internet 2025(2) Benjamin Mixon-Baca, Jeffrey Knockel, and Jedidiah R. Crandall

Figure 2: strings output showing references to the multiple VPN applications from supposedly distinct VPN providers.

Static Analysis. For our static analysis, we compared the file-
names and SHA256 hashes of files in the assets and lib/arm64
directories. We used the GNU strings command to extract strings
from shared libraries. We then performed consistency checks of file
types by comparing file extensions (e.g., .png) with the file type
reported by the file command and recorded instances when file
reported data file types and the file extension is either missing or of
types for images (e.g., png, jpg, etc.) and common text files formats
(e.g., .txt, json). We used jadx [32] to decompile .dex files and
Ghidra [25] to decompile native code libraries.

Dynamic Analysis. For dynamic analysis, we focused on identi-
fying credentials like WireGuard configuration files, OpenVPN and
IPsec certificates, or Shadowsocks passwords. We used Frida [30]
to trace the execution of specific libraries and functions we identi-
fied during static analysis and fridump [24] to extract objects like
credentials from process memory. We noted instances when the
app appears to use anti-reverse-engineering countermeasures. Fi-
nally, we used mitmproxy to view the APIs VPN apps call during
execution.

4 RESULTS
We identified three families, which we call Families A, B, and C,
containing three, five, and two providers, respectively. Three of
the VPN providers that we analyzed did not appear to have any
similarities with the other VPNs, which we assign to an “other”
catch-all group.

In the remainder of this section, for each family identified, we
summarize the signatures that led us to cluster the family’s pro-
viders together. For each family, we also summarize the results of
our security analysis. For Families A and B, we performed a full
security analysis, and, for Family C, we performed a partial analysis
that did not consist of analyzing the apps’ cryptography. For these
families we describe each of the security issues we identified, but
leave analysis of their cryptography to future work.

4.1 Family A
Family A consists of the providers Innovative Connecting, Autumn
Breeze, and Lemon Clove, who collectively operate eight VPN ap-
plications. Other researchers [28, 36] have linked more apps to
Lemon Seed, the holding company, but we could only confirm the
shared infrastructure for these three providers. Each application
contained nearly identical decompiled Java code, shared libraries,
and assets. The overt copy-and-pasting suggests a single developer
implemented all of the apps and reused significant portions of code.
While it is plausible that someone could have copied their APK
and added their own code, given the signatures, weaknesses, and
shared infrastructure, this seems unlikely.

4.1.1 Signatures. We found consistent patterns across the apps’
protocols, software implementations, and code obfuscation meth-
ods.

Protocols. Each app supported at least the IPsec and Shadow-
socks protocols. IPsec was implemented in part by libcharon.so,
libstrongswan.so, and libipsec.so, whereas Shadowsocks was
implemented in part by libsslocal.so, libredsocks.so, and
libtun2socks.so. In the case of Robot VPN, Snap VPN, SuperNet
VPN, TurboVPN, and VPN Monster, the settings menu contained a
radio button for OpenVPN, but it was not selectable at the time of
analysis.

Code Signatures. We found significant code overlap both at the
Java and native level, and within the assets. Each app contains
four characteristic files: aaa_new.png, cert.pem, proxy.builtin,
and server_offline.ser.

Defense Mechanisms. The code appeared to be designed to de-
ceive analysts or automated security checks. For example, in some
apps (e.g., VPN Monster) the file aaa_new.png contains bytes that
are read into a helper function that decrypts it and uses it for IPsec
configuration. The key used to decrypt this file is also built dynami-
cally in native code. These characteristics were present in all of the

22



Hidden Links: Analyzing Secret Families of VPN Apps Free and Open Communications on the Internet 2025(2)

apps in this family. We successfully extracted the IPsec and Shadow-
socks configuration parameters using Frida during execution and
from memory using fridump.

4.1.2 Security. We confirmed multiple security deficits shared by
this family of VPN providers, which we summarize below.

Blind In/on-path attacks. All eight applications were susceptible
to client-side blind in/on-path attacks. We found the underlying
issue to be in libredsocks.so, which uses the operating system’s
firewall (Netfilter for Android) to divert all packets through the
Shadowsocks tunnel. This design enables a client-side attack that
lets an adversary interfere with active connections.

Location Information. We configured the devices to proxy their
communication through mitmproxy. We found that the VPNs call
APIs to, for example, download VPN config files, public keys, and
upload user telemetry. Even when the VPN did not request the
location permission, it requested the zip code of the user’s public
IP from ip-api.com, which it subsequently uploaded to a Firebase
endpoint. The apps’ privacy policies all claim they do not collect
user addresses (personal or business), yet we observed them to do so.

Weak Encryption. The Shadowsocks configuration files use rc4-md5
for encryption and specifies “plain” for the obfuscation technique.
rc4-md5 is one of several deprecated ciphers supported by Shadow-
socks. The Shadowsocks implementation does not discard the first
512 bytes of keystream prior to encryption, which is recommended [22,
35], making a confirmation attack possible. Fortunately, the initial
MD5 hashing, use of a longer IV, and construction of key material
protect against key-recovery attacks such as FMS [12], WPA style
attacks [3, 33, 35].

Hard-coded Keys. The apps contain a hard-coded password for
Shadowsocks configuration in the file assets/server_offline.
ser. This file is encrypted using AES-192-ECB. When the app first
connects to a Shadowsocks server, it attempts to download a config
file from a remote server, although we never observed the app suc-
cessfully download a remote config. If or when that fails, the app
then calls the native function, NativeUtils.getLocalCipherKey,
implemented in the library libopvpnutil.so. This function deter-
ministically builds the secret key used to decrypt the configuration
file. The key built depends on which VPN app is calling the func-
tion (e.g., VPN Monster and TurboVPN build the same key but
VPN Monster and Snap VPN do not). We confirmed that server_-
offline.ser is the same file across different geographic locations
and devices. Figure 3 depicts the Shadowsocks password shared
by every user who has downloaded VPN Monster, TurboVPN, or
TurboVPN Lite, and Figure 4 demonstrates how knowledge of such
a password can decrypt their traffic. Another consequence of the
hard-coded password is that anyone who downloads the app can
“freeload” off of the VPN service by establishing a Shadowsocks
tunnel from a laptop using the extracted parameters.

We used libopvpnutil.so as a search term in Google and
GitHub. We found some instances of files with this name. How-
ever, the newly discovered instances lacked a feature present in the
apps that are part of our study. The instances of libopvpnutil.so
found in the apps in our study reference the various VPN apps dis-
tributed by these providers. This was one of the ways we connected
them together. The versions on GitHub have no such signature. It
appears whoever developed these apps used the version on GitHub

as a template for integrating custom native code.
Server Enumeration. Another consequence of the hard-coded

password is that an attacker can enumerate additional VPN servers
operated by the same entity. We tested this by selecting IP addresses
in the same /24 as a VPN server confirming that we could connect
to other servers on that /24. We use this capability to confirm that
supposedly different VPN providers share server infrastructure.

Cross-provider Infrastructure Sharing. We used the above “freeload”
capability to test whether the providers share the same servers. To
do this, we established tunnels to VPN servers using each app and
recorded the VPN server IP to which we connected. We then con-
nected to each of them using the same hard-coded credentials to
confirm that Innovative Connecting, Autumn Breeze, and Lemon
Clove share infrastructure.

4.2 Family B
Family B consists of the providers MATRIX MOBILE PTE LTD,
ForeRaya Technology Limited, WILDLOOK TECH PTE LTD, Hong
Kong Silence Technology Limited, and YoloMobile Technology Lim-
ited. MATRIX MOBILE PTE LTD develops Global VPN and XY VPN
and ForeRaya Technology Limited develops Super Z VPN. Notably,
both these apps’ privacy policies explicitly reference Innovative
Connecting.

4.2.1 Signatures. The patterns we saw across these apps consisted
of the particular protocols they support and their implementations,
identifying strings we found in the code, a particular form of code
obfuscation that we observed, and the sharing of VPN server IP
addresses.

Supported Protocols. All five apps appear to support only Shadow-
socks, facilitated by libsslocal.so. They both also use libredsocks.so
and libtun2socks.so to build the proxy.

Code Signatures. There is a mixture of similarities and differ-
ences with these apps.While XY VPN and Super Z VPN have similar
code structures, they are different from Global VPN. Global VPN
and Super Z VPN reach out to the same Shadowsocks service at
149.28.197.166:443 but XY VPN does not. None of these apps
are similar to Family A. For example, they use libsslocal.so
whereas Family A uses libss-local.so. All of the apps contain
the file libcore.so which contains explicit references to the APK
files for these eight VPN clients.

Defense Mechanisms. XY VPN and Super Z VPN are obfuscated
at the Java level by concatenating real words together for package
and function names to appear legitimate and even informative, e.g.,
RingAdaptorDecrypted, but do not reflect functionality.

4.2.2 Security. We confirmed multiple security deficits shared by
this family of VPN providers, which we summarize below. Blind
In/on-path attacks These applications are susceptible to connec-
tion inference attacks using client-side blind in/on-path attacks be-
cause of the libredsocks.so and libtun2socks.so dependencies.
Weak Encryption The VPN clients contain obfuscated passwords
in the shared library libcore.so. Similarly to Family A, the app
decrypts a Shadowsocks config based on which APK is executing
and uses a hard-coded password to connect to Shadowsocks servers.
Each app offers 33 built-in servers. Each server has 19 open ports,

23



Free and Open Communications on the Internet 2025(2) Benjamin Mixon-Baca, Jeffrey Knockel, and Jedidiah R. Crandall

(A)

(B)

Figure 3: VPNMonster: Shadowsocks passwords are present in both the frida-trace (top) taken during execution and the memory dump for
the VPNMonster process (bottom).

Figure 4: Hard-coded keys in VPN Proxy Master enable a network eavesdropper decrypt traffic. Upper: the original, encrypted traffic; lower,
encircled in red: decrypted traffic.

each running a Shadowsocks process. Depending on the app’s pack-
age name, one of these ports and one of 14 hard-coded passwords
are selected.

Server Enumeration. This family of providers appears to use a
smaller set of servers compared to Family A, and we were unable
to enumerate servers beyond those specified in the apps’ config
files. All of Family B’s VPN servers are hosted by a single company,
GlobalTeleHost Corp. (gthost).

Cross-provider Infrastructure Sharing. We collected IP addresses
for each VPN and were able to confirm that the VPN apps connected
to the same set of IP addresses, though as we note earlier they do
so on different ports.

4.3 Family C
Family C consists of the providers Fast Potato Pte. Ltd and Free
Connected Limited, who distribute Fast Potato VPN and X-VPN,
respectively. Fast Potato has no business filings according to Open-
Corporates. Free Connected Limited is based in Hong Kong and
has business records.

4.3.1 Signatures. We found multiple patterns across these pro-
viders, including a shared, proprietary protocol implementation,
identifying file names and strings, and in their code organization.

Protocols. Based on their packet captures, the apps appear to
use a custom tunneling protocol and make connections to servers

on port 53 (DNS). None of the content in the application layer pay-
loads was valid DNS and was instead obfuscated. This is possibly
to bypass firewall rules permitting DNS on port 53.

Code Signatures. The decompiled code of these two VPNs is
structurally and functionally similar. Both contain the same hard-
coded, pre-shared key value in the variable psk. Both import the
same shared library, libxjp6xdkbew.so. This library is the source
of a second psk value. Both load the library in the same class
named wcyybbcujkCs. Both utilize identically named resource files,
assets/jsd5xcyjr5w587dk5usn though their exact contents vary.
Neither the name of the shared library nor the asset file yield results
when searching VirusTotal, Google, Brave, GitHub, Reddit, Twitter,
or other sources, indicating that these names are specific to these
VPN clients.

Defense Mechanisms. Both apps implement the same obfusca-
tion and anti-reverse engineering countermeasures. At the Java
level, there is minimal code outside of imports for advertising and
analytics. Most of the functionality is implemented in native code.
At the native code level, each contains the single, shared library
mentioned above. The tunnel functionality is contained within this
library along with anti-reversing countermeasures.

4.3.2 Security. Both applications are susceptible to connection
inference attacks using the client-side blind in/on-path attacks. We
localized the issue to the applications’ dependency on Netfilter to

24



Hidden Links: Analyzing Secret Families of VPN Apps Free and Open Communications on the Internet 2025(2)

reroute packets through the tun interface. The cause for these apps
is their libredsocks.so dependency. We tested each application
to confirm by using the method outlined in § 2.

4.4 Other VPNs
The “Other” group of providers consists of VPN Super Inc., Miczon
LLC, Secure Signal Inc. which distribute VPN Super Inc, TetraVPN,
and Secure VPN - Safer Internet, respectively. They appear to have
no links to other VPNs. We briefly summarize their most notable
characteristics below.

VPN Super Inc. The application does not appear to employ much
obfuscation beyond ProGuard, and there are no anti-reverse engi-
neering counter-measures present. The application supports Open-
VPN and IPsec (IKEv2). We tested both and were able to extract
memory dumps confirming there appear to be public keys and con-
figuration parameters consistent with these protocols.

TetraVPN. TetraVPN has no anti-reversing counter-measures
except for ProGuard obfuscation and contains no assets. Only
the WireGuard protocol is supported and it contains configura-
tion files, which are shared by anyone who downloads the app, at
res/raw/uk_client.conf and res/raw/japan_client.conf.

Secure VPN - Safer Internet. This application uses ProGuard
obfuscation. The core functionality is implemented in native code
in libchannel.so, which is obfuscated.

5 DISCUSSION
We identified three classes of problematic security and privacy
issues with varying impacts on users. The undisclosed location
collection issue is a major violation of user trust and privacy given
the provider explicitly stated they did not collect such information.
The client-side blind in/on-path attacks allow an attacker to infer
with whom a VPN client is communicating. Most critically, on many
of the VPNs we analyzed, a network eavesdropper between the
VPN client and VPN server can use the hard-coded Shadowsocks
password to decrypt all communications for all clients using the
apps. These weaknesses nullify the privacy and security guarantees
the providers claim to offer. These issues are even more concerning
when accounting for the fact that the providers appear to be owned
and operated by a Chinese company and have gone to great lengths
to hide this fact from their 700+ million combined user bases.

The issues we identified affect users, providers, and app stores.
At a minimum, VPN users who value privacy should avoid us-
ing Shadowsocks, including the apps from these developers, as
Shadowsocks was not designed to facilitate privacy, merely cen-
sorship circumvention [11]. App store operators like Google face
major challenges identifying and verifying ownership of apps on
the Play Store, as well as ensuring Play Store apps are secure. Own-
ership identity verification and app security auditing is currently
labor intensive and would require sophisticated, automated tools
to achieve at scale. Google currently offers a security audit badge
for VPN apps. Whether a similar badge for verified identity makes
sense is debatable because there are valid reasons why a VPN pro-
vider might not want to reveal that information as it could expose
them to legal or digital attack from a country or entity that opposes
VPNs. Finally, VPN providers should avoid offering Shadowsocks to
users or carefully explain the risks. The Shadowsocks protocol has

no built-in asymmetric cryptography and requires the insecure use
of hard-coded passwords, from which symmetric keys are deter-
ministically derived, or for VPN providers to devise and implement
a system for the secure distribution of these passwords. Prior work
has found that home-rolled cryptographic systems commonly con-
tain major flaws [18–20]. Thus, if not devised and maintained by
experts, such a password distribution system would be liable for the
introduction of additional security issues, and it may increase one’s
vulnerability to network censorship if not carefully implemented.

We have several unresolved questions based on our findings.
First, it is unclear why a single entity would split their user base
across multiple distinct providers and multiple VPN apps the way
these providers appear to have done. One thought is that doing
so isolates reputational damage to a single provider. Second, it is
unclear why they did not also segment their code, credentials, or
server infrastructure considering they went through the trouble
of segmenting the legal side of their business. Simple explanations
include cost, ease of execution, and/or management. It costs less
to pay one developer to make one app and repackage it than to
pay for multiple different apps. It is also easier and cheaper to have
one app use the same credentials and infrastructure as one only
needs to pay a single team to manage that infrastructure. Third,
it was counterintuitive to find deprecated ciphers and hard-coded
passwords in these apps, given that they are security-sensitive apps
and many of their providers are owned by Qihoo 360, a major
Chinese cybersecurity firm.

For the time being, users should, if possible, avoid using Shadow-
socks from these particular providers unless and until they imple-
ment mitigations, if not Shadowsocks operators writ large. Hard-
coded Shadowsocks passwords counterproductively increase the
exposure of users’ communications to eavesdroppers compared
with using no VPN at all. Shadowsocks was designed to be cen-
sorship resistant, not private. Therefore, VPN providers need to be
upfront with their users about the risks if they use Shadowsocks
with only symmetric cryptography.

App stores like the Play Store are in a challenging position given
the scalability limitations around vetting developers and identifying
software with misleading security properties in their store. Google
offers a security audit badge for VPN apps, but making such a badge
mandatory for VPN apps and offering an identity verification badge
for developers who go through an identity verification process
might provide users additional information and protection. Google
is potentially exposing its brand to reputational damage by hosting
and profiting from deceptive and insecure apps like the ones we
investigated.

While increased requirements for identity verification may help
to keep users safe, such requirements must be balanced with the
rights of developers to anonymously distribute software. In the
censorship circumvention space in particular, developers can be
especially at risk of legal jeopardy and transnational repression [14].
However, whilewe recognize the importance of developer anonymity,
we also note that anonymity is distinct from deception, and soft-
ware distributors could respect authors’ anonymity while still tak-
ing action against those who have misrepresented their corporate
associations.

25



Free and Open Communications on the Internet 2025(2) Benjamin Mixon-Baca, Jeffrey Knockel, and Jedidiah R. Crandall

ACKNOWLEDGMENTS
The authors would like to thank Stephanie Forrest for the initial
inspiration for this work. This material is based upon work sup-
ported by the National Science Foundation under Grant Number
CNS-2141547 and ICFP funding from the Open Technology Fund.

REFERENCES
[1] Anna Ablove. 2022. VPNalyzer: Researching VPN Vulnerabilities on a Large

Scale. Technical Report. University of Michigan.
[2] Genevieve Bartlett, John Heidemann, and Christos Papadopoulos. 2007. Under-

standing passive and active service discovery. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement (San Diego, California, USA)
(IMC ’07). Association for Computing Machinery, New York, NY, USA, 57–70.
https://doi.org/10.1145/1298306.1298314

[3] Nikita Borisov, Ian Goldberg, and David Wagner. 2001. Intercepting mobile
communications: the insecurity of 802.11. In Proceedings of the 7th Annual
International Conference on Mobile Computing and Networking (Rome, Italy)
(MobiCom ’01). Association for Computing Machinery, New York, NY, USA,
180–189. https://doi.org/10.1145/381677.381695

[4] Shinyoung Cho, ZacharyWeinberg, Arani Bhattacharya, Sophia Dai, and Ramsha
Rauf. 2024. Selection of Landmarks for Efficient Active Geolocation. In 2024
8th Network Traffic Measurement and Analysis Conference (TMA). 1–9. https:
//doi.org/10.23919/TMA62044.2024.10559002

[5] Clowwindy. 2012. 发一个自用了一年多的翻墙工具 shadowsocks. https:
//web.archive.org/web/20120422191812/http://www.v2ex.com/t/32777

[6] Clowwindy. 2012. ShadowSocks: Stream Ciphers. https://shadowsocks.org/doc/
stream.html

[7] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. 2010–.
mitmproxy: A free and open source interactive HTTPS proxy. https://mitmproxy.
org/ [Version 11.1].

[8] Jason A Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel.
In NDSS. 12 pages.

[9] Leonid Evdokimov. 2011. REDSOCKS. https://darkk.net.ru/redsocks/ Accessed
on: April 20, 2025.

[10] Ellis Fenske and Aaron Johnson. 2023. Security notions for fully encrypted
protocols. In Free and Open Communications on the Internet. 7 pages.

[11] David Fifield. 2023. Comments on certain past cryptographic flaws affecting
fully encrypted censorship circumvention protocols. Cryptology ePrint Archive,
Paper 2023/1362. https://eprint.iacr.org/2023/1362

[12] Scott Fluhrer, Itsik Mantin, and Adi Shamir. 2001. Weaknesses in the Key Sched-
uling Algorithm of RC4. In Selected Areas in Cryptography, Serge Vaudenay and
Amr M. Youssef (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 23 pages.

[13] Sheila Frankel and Suresh Krishnan. 2011. IP Security (IPsec) and Internet Key
Exchange (IKE) Document Roadmap. https://www.rfc-editor.org/info/rfc6071

[14] gfw report. 2023. Many Popular Censorship Circumvention Tools Deleted or
Archived since November 2, 2023. https://github.com/net4people/bbs/issues/303
Accessed: 20 June 2025.

[15] Manaf Gharaibeh, Anant Shah, Bradley Huffaker, Han Zhang, Roya Ensafi, and
Christos Papadopoulos. 2017. A look at router geolocation in public and com-
mercial databases. In Proceedings of the 2017 Internet Measurement Conference
(London, United Kingdom) (IMC ’17). Association for Computing Machinery,
New York, NY, USA, 463–469. https://doi.org/10.1145/3131365.3131380

[16] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne,MohamedAli
Kaafar, and Vern Paxson. 2016. An Analysis of the Privacy and Security Risks
of Android VPN Permission-enabled Apps. In Proceedings of the 2016 Internet
Measurement Conference (Santa Monica, California, USA) (IMC ’16). Association
for Computing Machinery, New York, NY, USA, 349–364. https://doi.org/10.
1145/2987443.2987471

[17] AppMagic Inc. 2024. AppMagic. https://appmagic.rocks/ Accessed on: June 7,
2025.

[18] Jeffrey Knockel, Adam Senft, and Ronald Deibert. 2016. Privacy and Secu-
rity Issues in BAT Web Browsers. In 6th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 16). USENIX Association, Austin,
TX, 7 pages. https://www.usenix.org/conference/foci16/workshop-program/
presentation/knockel

[19] Jeffrey Knockel, Mona Wang, and Zoë Reichert. 2023. “Please do not make it
public”: Vulnerabilities in Sogou Keyboard encryption expose keypresses to
network eavesdropping. Technical Report. The Citizen Lab.

[20] Jeffrey Knockel, MonaWang, and Zoë Reichert. 2024. The Not-So-Silent Type: Vul-
nerabilities in Chinese IME Keyboards’ Network Security Protocols. In Proceed-
ings of the 2024 ACM SIGSAC Conference on Computer and Communications
Security (Salt Lake City, UT, USA) (CCS ’24). Association for Computing Machin-
ery, New York, NY, USA, 1701–1715. https://doi.org/10.1145/3658644.3690302

[21] Jason Lyu. 2019. tun2socks. https://github.com/xjasonlyu/tun2socks Accessed
on: 12 June 2025.

[22] Ilya Mironov. 2002. (Not So) Random Shuffles of RC4. In Proceedings of the
22nd Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO ’02). Springer-Verlag, Berlin, Heidelberg, 304–319.

[23] Benjamin Mixon-Baca, Jeffrey Knockel, Diwen Xue, Tarun Ayyagari, Deepak
Kapur, Roya Ensafi, and Jedidiah R Crandall. 2024. Attacking connection track-
ing frameworks as used by virtual private networks. Proceedings on Privacy
Enhancing Technologies 2024 (2024), 109–126. Issue 3.

[24] Nightbringer21. 2016. fridump. https://github.com/Nightbringer21/fridump
Accessed: 21 June 2025.

[25] National Security Agency (NSA). 2019. Ghidra - Software Reverse Engineering
Framework. https://ghidra-sre.org/ Accessed: April 20, 2025.

[26] Open Corporates team. 2025. Open Corporates. https://opencorporates.com/
Accessed on April 21, 2025.

[27] Inc. OpenVPN Technologies. 2002. OpenVPN. https://openvpn.net/community-
resources/ Open-source VPN software.

[28] Broken Promises. 2025. Apple Offers Apps With Ties to Chinese Mili-
tary. https://www.techtransparencyproject.org/articles/apple-offers-apps-with-
ties-to-chinese-military Accessed on: April 20, 2025.

[29] Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and Roya Ensafi. 2022. VPNa-
lyzer: systematic investigation of the VPN ecosystem. In Network and Distributed
System Security, Vol. 10. 16 pages.

[30] Ole André V. Ravnås and Håvard Sørbø. 2014. Frida - Dynamic instrumentation
toolkit for developers, reverse-engineers, and security researchers. https:
//frida.re/ Accessed: April 20, 2025.

[31] SensorTower. 2024. SensorTower. https://sensortower.com/ Accessed on: June
7, 2025.

[32] Skylot. 2025. JADX - Dex to Java decompiler. https://github.com/skylot/jadx
Accessed: April 20, 2025.

[33] Erik Tews and Martin Beck. 2009. Practical attacks against WEP and WPA.
In Proceedings of the Second ACM Conference on Wireless Network Security
(Zurich, Switzerland) (WiSec ’09). Association for Computing Machinery, New
York, NY, USA, 79–86. https://doi.org/10.1145/1514274.1514286

[34] William J. Tolley, Beau Kujath, Mohammad Taha Khan, Narseo Vallina-Rodriguez,
and Jedidiah R. Crandall. 2021. Blind In/On-Path Attacks and Applications to
VPNs. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 3129–3146. https://www.usenix.org/conference/usenixsecurity21/
presentation/tolley

[35] Mathy Vanhoef and Frank Piessens. 2015. All Your Biases Belong to Us: Breaking
RC4 in WPA-TKIP and TLS. In 24th USENIX Security Symposium (USENIX Secu-
rity 15). USENIX Association, Washington, D.C., 97–112. https://www.usenix.
org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef

[36] Dovydas Vėsa and Justė Kairytė Barkauskienė. 2019. Who owns your VPN? 105
VPNs run by just 24 companies. https://vpnpro.com/blog/hidden-vpn-owners-
unveiled-97-vpns-23-companies/ Accessed on: April 20, 2025.

[37] Zachary Weinberg. 2019. Toward Automated Worldwide Monitoring of Network-
level Censorship. (1 2019). https://doi.org/10.1184/R1/7571876.v1

[38] Zachary Weinberg, Shinyoung Cho, Nicolas Christin, Vyas Sekar, and Phillipa
Gill. 2018. How to Catch when Proxies Lie: Verifying the Physical Locations
of Network Proxies with Active Geolocation. In Proceedings of the Internet
Measurement Conference 2018 (Boston, MA, USA) (IMC ’18). Association for
Computing Machinery, New York, NY, USA, 203–217. https://doi.org/10.1145/
3278532.3278551

[39] Nian Xue, Yashaswi Malla, Zihang Xia, Christina Pöpper, and Mathy Vanhoef.
2023. Bypassing Tunnels: Leaking VPN Client Traffic by Abusing Routing Tables.
In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,
Anaheim, CA, 5719–5736. https://www.usenix.org/conference/usenixsecurity23/
presentation/xue

[40] He Yan, Ashley Flavel, Zihui Ge, Alexandre Gerber, Dan Massey, Christos Pa-
padopoulos, Hiren Shah, and Jennifer Yates. 2012. Argus: End-to-end service
anomaly detection and localization from an ISP’s point of view. In 2012 Proceed-
ings IEEE INFOCOM. 2756–2760. https://doi.org/10.1109/INFCOM.2012.6195694

A SUPPLEMENTARY MATERIAL ON
METHODOLOGY

Table 2 contains a curated table of search terms we entered into
Google, Github, and the other services from which we collected
data.

26

https://doi.org/10.1145/1298306.1298314
https://doi.org/10.1145/381677.381695
https://doi.org/10.23919/TMA62044.2024.10559002
https://doi.org/10.23919/TMA62044.2024.10559002
https://web.archive.org/web/20120422191812/http://www.v2ex.com/t/32777
https://web.archive.org/web/20120422191812/http://www.v2ex.com/t/32777
https://shadowsocks.org/doc/stream.html
https://shadowsocks.org/doc/stream.html
https://mitmproxy.org/
https://mitmproxy.org/
https://darkk.net.ru/redsocks/
https://eprint.iacr.org/2023/1362
https://www.rfc-editor.org/info/rfc6071
https://github.com/net4people/bbs/issues/303
https://doi.org/10.1145/3131365.3131380
https://doi.org/10.1145/2987443.2987471
https://doi.org/10.1145/2987443.2987471
https://appmagic.rocks/
https://www.usenix.org/conference/foci16/workshop-program/presentation/knockel
https://www.usenix.org/conference/foci16/workshop-program/presentation/knockel
https://doi.org/10.1145/3658644.3690302
https://github.com/xjasonlyu/tun2socks
https://github.com/Nightbringer21/fridump
https://ghidra-sre.org/
https://opencorporates.com/
https://openvpn.net/community-resources/
https://openvpn.net/community-resources/
https://www.techtransparencyproject.org/articles/apple-offers-apps-with-ties-to-chinese-military
https://www.techtransparencyproject.org/articles/apple-offers-apps-with-ties-to-chinese-military
https://frida.re/
https://frida.re/
https://sensortower.com/
https://github.com/skylot/jadx
https://doi.org/10.1145/1514274.1514286
https://www.usenix.org/conference/usenixsecurity21/presentation/tolley
https://www.usenix.org/conference/usenixsecurity21/presentation/tolley
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://vpnpro.com/blog/hidden-vpn-owners-unveiled-97-vpns-23-companies/
https://vpnpro.com/blog/hidden-vpn-owners-unveiled-97-vpns-23-companies/
https://doi.org/10.1184/R1/7571876.v1
https://doi.org/10.1145/3278532.3278551
https://doi.org/10.1145/3278532.3278551
https://www.usenix.org/conference/usenixsecurity23/presentation/xue
https://www.usenix.org/conference/usenixsecurity23/presentation/xue
https://doi.org/10.1109/INFCOM.2012.6195694


Hidden Links: Analyzing Secret Families of VPN Apps Free and Open Communications on the Internet 2025(2)

Family Search Term Term Location
A aaa_new.png assets directory
A b1bbceaffd6c52a2 assets directory
A cert.pem assets directory
A proxy.builtin assets directory
A server_offline.ser assets directory
A libopvpnutil.so shared library
A free.vpn.unblock.proxy.turbovpn lib/arm64-v8a
A free.vpn.unblock.proxy.vpnmaster lib/arm64-v8a
A free.vpn.unblock.proxy.vpnpro lib/arm64-v8a
A free.vpn.unblock.proxy.vpn.master.pro lib/arm64-v8a
A free.fast.vpn.unlimited.proxy.vpn.master.pro lib/arm64-v8a
A free.vpn.unblock.proxy.freenetvpn lib/arm64-v8a
A free.vpn.unblock.proxy.vpnmonster lib/arm64-v8a
A free.vpn.unblock.fast.proxy.vpn.master.pro.lite lib/arm64-v8a
A free.vpn.unblock.proxy.turbovpn.lite lib/arm64-v8a
A unlimited.free.vpn.unblock.proxy.supernet.vpn lib/arm64-v8a
A 43a41a300d06092a864886f70d01010505003 lib/arm64-v8a
B libcore.so lib/arm64-v8a
B co.infinitevpn.free.proxy libcore.so
B com.free.neo.vpn libcore.so
B com.free.turbo.unlimited.touch.vpn libcore.so
B com.free.unblock.melon.vpn libcore.so
B com.free.unlimited.lemon.vpn libcore.so
B com.smart.nord.global.vpn libcore.so
B com.vpnbottle.melon.free.unblock.fast.vpn libcore.so
B com.vpncapa.vpnmaster.free.unblock.vpn libcore.so
C libxjp6xdkbew.so lib/arm64-v8a
C jsd5xcyjr5w587dk5usn assets directory
C XgS6aaUmMB0WtOkrzrTr/5-S1jSxiFu-pCAZan12C/pvsm0pA_cUa7oAzrYvGl/uJ9H4qB7ojPP2slohjpM libxjp6xdkbew.so
C z93emquwpbdk9qvqfkfc8z552vaf52szsvzbmvd6qjdynmxm7yh6nq23c9yw4drs libxjp6xdkbew.so
C kshpqn53ps libxjp6xdkbew.so

Table 2: Curated list of search terms for each APK, focusing on terms that were useful for linking providers.

27


	Abstract
	1 Introduction
	2 Background
	2.1 VPN Protocols
	2.2 Application Layer VPNs
	2.3 Identifying Hidden VPN Provider Relationships, Ownership, and Deception

	3 Methods
	3.1 VPN Selection
	3.2 Security Analysis

	4 Results
	4.1 Family A
	4.2 Family B
	4.3 Family C
	4.4 Other VPNs

	5 Discussion
	Acknowledgments
	References
	A Supplementary Material on Methodology

