
Extended Abstract: Shaperd: Easily Adoptable Real-Time Traffic
Shaper for Fully Encrypted Protocols

Sarah Wilson∗
University of Waterloo
s5wilson@uwaterloo.ca

Stella Tian∗
University of Waterloo
jy7tian@uwaterloo.ca

Sina Kamali
University of Waterloo

sinakamali@uwaterloo.ca

Abstract
Fully encrypted protocol-based tools (FEPs) are tools commonly
used to circumvent censorship in restrictive regions, valued for
their performance and security. However, in recent years, censors
have been able to block them using an array of attacks based on
passive traffic analysis and active probing. We propose Shaperd, an
easily adoptable and real-time traffic shaper designed specifically
to aid FEPs become more resilient to detection. Shaperd operates
directly on packet contents in real time, using a novel constraint
system to allow its users to generate traffic flows with any desired
features. Our preliminary results reveal Shaperd introducesminimal
overhead to the underlying system’s throughput.

1 Introduction
Over time, more countries are resorting to internet censorship in
times of political unrest, protests, or elections [2, 7]. This restriction
on the information flow results in the censor’s complete control over
the public’s perception of ongoing events, which could strongly
impact the outcome of the situation.

To thwart internet censorship attempts, users have to resort to
censorship circumvention (CC) systems. Many CC systems have
been proposed over the years, with various degrees of practicality,
effectiveness, and performance [10, 16]. These tools range from
solutions such as decoy routing [3], which are potentially effective
and resilient, but are hard to deploy, to data embedding solutions
such as multimedia protocol tunneling [6, 9, 11], which are consid-
ered secure, but lack the required performance for daily activities.

One of the most used and widely adopted CC systems are tools
based on fully encrypted protocols (FEPs) [5, 8]. FEPs function by
encrypting the entirety of the traffic payload, making the traffic ap-
pear as random bytes. This approach allows FEPs to effectively hide
traffic metadata, such as the underlying protocol and data length,
which enables them to avoid censoring tactics that rely on protocol
or domain blocklisting [15] as the censor cannot recognize them.
Doing so effectively makes the data sent by FEPs "look random" [4].
There are many examples of FEPs, with varying security guarantees,
including Shadowsocks [12] and VMess-based [18] systems.

Even though FEPs seem robust, they are easily recognizable
when used without additional security measures, as "looking like
nothing" is a standout feature. Recently, censors have been using
a variety of methods ranging from statistical analysis to active

∗Authors contributed equally to this work.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet 2025(2), 37–39
© 2025 Copyright held by the owner/author(s).

probing to detect and block commercial FEPs such as Shadowsocks.
Alice et al. [1] demonstrated how Shadowsocks can be detected
using the packet length and entropy. Later on, Wu et al. [22] high-
lighted the extent of the detectability of FEPs, and were able to shed
light on specific rules upon which FEPs are detected. They reveal
that packets are blocked based on ad-hoc rules such as the number
of printable ASCII characters, or the fact that the entropy of nor-
mal encrypted TLS packets is considerably lower than FEPs. These
rules are subject to frequent changes, so the rigid design of older
FEPs is unable to adapt to the updated detection rules. Additionally,
Fenske et al. [5] deliver an extensive study on available FEPs and
their features, highlighting their shortcomings, and revealing how
packet lengths and protocol inconsistencies can be a main source
of detection. They focus on fixing packet lengths using some primi-
tive packet length shaping but leave the how to shape the traffic
or shaping packet timings for future work. Although none of the
aforementioned work discusses the effects of packet timings on the
detection of FEPs, Wails et al. [21] showcase the general importance
of packet timings in detecting CC tools.

Fortunately, a solution for the challenges outlined above exists,
a FEP-specific traffic shaper. Traffic shapers exist in other domains
(e.g., IoT) to add a layer of privacy to the data in transit [23]. A
FEP-specific traffic shaper could in theory shape data so it evades
rule-based detection, helps normalize packet lengths, and control
packet timings to thwart all previously mentioned attacks. Some
prior work such as Proteus [20] discusses how traffic shaping could
help improve their tool’s privacy guarantees, and some such as
Fenske et al. [5] implement their own traffic shaper, but lack packet
timing shaping and are not designed for integration with other
solutions. Nevertheless, to the best of our knowledge, no prior
stand-alone FEP traffic shaper exists that can address our concerns.

In this paper, we introduce Shaperd, a real-time traffic-shaping
tool that can easily be integrated with any existing FEP. Shaperd
provides a novel constraint system, enabling its users to define the
features of the generated traffic, shaping both the packets lengths
and timings of a given traffic flow. Shaperd aims to be an inde-
pendent traffic shaper that is compatible with all prior FEPs, thus
addressing unobservability challenges highlighted byWu et al. [22].
The generality of Shaperd’s constraint system enables users to
generate traffic flows with any desired features, such as particu-
lar values for a packet’s entropy, to circumvent detection systems.
Moreover, this allows integration with previous FEPs detected using
such methods while incurring minimal performance overheads.

Our main contributions are as follows: a) Shaperd, a traffic-
shaping system that can easily be adopted by previous CC systems,
allowing them to overcome detection techniques, and b) a novel
constraint system that enables users to describe how they want to
shape their traffic, resulting in a flexible traffic flow.

37

https://orcid.org/
https://creativecommons.org/licenses/by/4.0/


Free and Open Communications on the Internet 2025(2) Wilson et al.

2 Technical Details
In this section, we introduce Shaperd and its innerworkings. Shaperd
is designed to be easily integrated with any existing or future FEP,
such as Shadowsocks [8]. Shaperd relies on its constraint system to
allow users to adapt to the ever-changing detection systems used
by the adversaries, such as the ad-hoc rules used by the censor
analyzed by Wu et al. [22]. Shaperd uses two simple but effective
methods to shape a packet’s content, which was designed with
constraint agnosticism in mind.
Workflow. The overall workflow of Shaperd is as follows. Alice, a
Shaperd user, has a set of constraints outlining her desired traffic
flow. This constraint set can either be created by her, received from
trusted sources (e.g., how bridge information is distributed [17]),
or a mix of both. Then, Alice starts a Shaperd instance with the
constraint set and routes her FEP through Shaperd. Data received by
Shaperd is stored in a traffic buffer prior to being shaped according
to the defined constraints. As a part of this process, the input traffic
goes through two separate systems before being sent out: the shaper
and timer threads.

The shaper thread constantly monitors the traffic buffer, directly
inspecting the contents of the buffered packets to generate new
valid packets as soon as the contents either exceed the maximum
capacity of a valid packet or a certain predefined period. Packets
are created using two main shaping methods: a) length reduction,
where a packet’s content length gets reduced until the constraints
are satisfied, and b) content padding, duringwhich potential packets
are padded with incremental byte values until a satisfying packet
is found. We are using naive padding, leaving the exploration of
more efficient heuristics for future versions (see a more detailed
discussion in Appendix A). Length reduction, although simple, has
proven to be more effective and performative in our preliminary
testing, so in our current version, content padding is used as a
fallback when length reduction fails. Finally, the shaper sends all
created packets to the timer thread.

The timer thread is in charge of deciding when packets are sent
out according to the preset timing constraints. These constraints
can denote the flow throughput, the minimum and maximum de-
lay between any two packets, or any other information regarding
packet timing. We note that the time thread is currently a work in
progress. Our goal is to support real-time shaping of packet timing
by enforcing user-specified constraints on delay and throughput.
We aim to finalize and test this feature in the near future. We discuss
the timer and its state more thoroughly in §3.
The constraint framework. We present the constraint frame-
work, a simple but effective system for defining content or timing-
specific conditions on packets in traffic flows. A content constraint
consists of four main components: a) the constraint function, a
function that calculates the metric to be assessed, b) a value in the
unit of the constraint function, which will be compared against, c)
a mode, that sets the comparison operator (e.g., equal, lower than,
or greater than), and d) a target, which denotes which packets this
constraint should affect. We can support any constraint on a value
expressible by a well-defined, deterministic function, however, con-
straints defined by non-computable functions, cannot be handled. A
practical example of valid constraint could be one of the proposed
rules described by Wu et al. [22], that there needs to be over 50%

of ASCII printable characters in a given packet. For this particular
example, our constraint function would be one that calculates the
percentage of ASCII printable characters in a given packet, the
value would be 50%, the mode would be equal to or greater than,
and the target could be all packets. Timing constraints, on the other
hand, are still a work in progress. We envision that users will be
able to define constraints such as minimum and maximum delay
between consecutive packets, fixed inter-packet intervals, or jitter
bounds. These constraints will guide the timer thread in determin-
ing when to release packets from the queue, enabling realistic and
tunable traffic shaping behavior.
Implementation. We have implemented a proof-of-concept of
Shaperd [13] and tested it using a mix of unit and real-time client-
server tests. We developed our prototype using Go with ∼1000
lines of code and implemented a client that generates random bytes
to act as the traffic generator in testing. In our tests, we mainly
used a simple entropy constraint on messages to evaluate Shaperd’s
overhead. Our preliminary results reveal aminimal overhead of 4.1%
over the input throughput. This overhead scales with the number
of additional constraints on the packets. Our evaluation revealed
that the first constraint added an overhead of 5.1% and the second
added 5.5% of overhead. We note that these values are subject to
change, based on how rigorous the chosen constraints are.
Usage scenarios. We believe Shaperd can prove useful by not only
helping widely deployed tools such as Shadowsocks and VMess-
based systems achieve a new strong layer of privacy but also the
development of new FEPs by shifting the concerns from traffic
shaping to the development of other features and improvements.

3 Discussion and Future Work
As suggested by §2, Shaperd’s performance has room for improve-
ment. There are several features that we are actively working on.
Constraint agnosticism. Shaperd’s constraint agnostic design
is both a strong point of our work and a major performance draw-
back. To accommodate this, we decided to keep our constraint
agnostic design, while adding an optional field named "type" to
our constraints. The type field can be used by the shaper to better
understand the constraint and satisfy it more efficiently.
Supported protocols. The current version of Shaperd only sup-
ports shaping TCP packets. We plan to add support for more proto-
cols in the future to allow a wider array of tools to be at the disposal
of our users and to allow more flexible traffic morphing strategies
for evading modern detection techniques.
Evaluation. Our current evaluation methodology uses a random
byte generator as the client. We aim to test Shaperd in combina-
tion with state-of-the-art academic tools such as Proteus [20], or
widely adopted open-source tools such as Shadowsocks and V2Ray.
Moreover, we plan to use sophisticated traffic fingerprinting tech-
niques [14, 22] to evaluate the effectiveness of our shaper.

To conclude, we introduce Shaperd, a CC-specific traffic shaper
designed for seamless integration with existing FEPs. By leveraging
a novel constraint system, our approach allows tool designers to
offload the complexity of traffic shaping. While Shaperd is still a
work in progress, we are committed to advancing its development
and capabilities.

38



Extended Abstract: Shaperd: Easily Adoptable Real-Time Traffic Shaper for Fully Encrypted Protocols Free and Open Communications on the Internet 2025(2)

References
[1] Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr. 2020. How china

detects and blocks shadowsocks. In Proceedings of the ACM Internet Measurement
Conference. 111–124.

[2] Simurgh Aryan, Homa Aryan, and J Alex Halderman. 2013. Internet censorship
in Iran: A first look. In 3rd USENIX Workshop on Free and Open Communications
on the Internet (FOCI 13).

[3] Cecylia Bocovich and Ian Goldberg. 2016. Slitheen: Perfectly imitated decoy
routing through traffic replacement. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1702–1714.

[4] Lucas Dixon, Thomas Ristenpart, and Thomas Shrimpton. 2016. Network traffic
obfuscation and automated internet censorship. IEEE Security & Privacy 14, 6
(2016), 43–53.

[5] Ellis Fenske and Aaron Johnson. 2024. Bytes to schlep? Use a FEP: Hiding
protocol metadata with fully encrypted protocols. In Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security. 1982–1996.

[6] Gabriel Figueira, Diogo Barradas, and Nuno Santos. 2022. Stegozoa: Enhancing
webrtc covert channels with video steganography for internet censorship cir-
cumvention. In Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security. 1154–1167.

[7] Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub Dalek, Jeffrey Knockel,
Pellaeon Lin, Bill Marczak, Masashi Crete-Nishihata, Phillipa Gill, and Michalis
Polychronakis. 2021. How Great is the Great Firewall? Measuring China’s {DNS}
Censorship. In 30th USENIX Security Symposium (USENIX Security 21). 3381–3398.

[8] Qingbing Ji, Zhihong Rao, Man Chen, and Jie Luo. 2022. Security analysis of
shadowsocks (r) protocol. Security and Communication Networks 2022, 1 (2022),
4862571.

[9] Watson Jia, Joseph Eichenhofer, Liang Wang, and Prateek Mittal. 2023. Voiceover:
Censorship-Circumventing Protocol Tunnels with Generative Modeling. Free
and Open Communications on the Internet (2023).

[10] Sheharbano Khattak,MohammadTariq Elahi, Laurent Simon, ColleenMSwanson,
Steven J Murdoch, and Ian Goldberg. 2016. SOK: Making sense of censorship
resistance systems. Water Treatment Technology 2016, 4 (2016), 37–61.

[11] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. 2012. Skypemorph: Protocol obfuscation for tor bridges. In Proceedings
of the 2012 ACM conference on Computer and communications security. 97–108.

[12] Shadowsocks org. 2025. Shadowsocks. https://shadowsocks.org.
[13] Shaperd. 2025. Shaperd. https://zenodo.org/records/15259131.
[14] Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu. 2023. Subvert-

ing website fingerprinting defenses with robust traffic representation. In 32nd
USENIX Security Symposium (USENIX Security 23). 607–624.

[15] Jonathan Spring and Leigh Metcalf. 2015. Domain Blocklist Ecosystem - A Case
Study. Carnegie Mellon University, Software Engineering Institute’s Insights
(blog). https://insights.sei.cmu.edu/blog/domain-blocklist-ecosystem-a-case-
study/ Accessed: 2025-Apr-19.

[16] Michael Carl Tschantz, Sadia Afroz, Vern Paxson, et al. 2016. Sok: Towards
grounding censorship circumvention in empiricism. In 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 914–933.

[17] Lindsey Tulloch and Ian Goldberg. 2023. Lox: Protecting the Social Graph in
Bridge Distribution. Proceedings on Privacy Enhancing Technologies 1 (2023),
494–509.

[18] Project V. 2025. VMess | Project V. https://www.v2ray.com/en/.
[19] Vecna. 2024. Troll Patrol: Detecting Blocked Tor Bridges. https:

//dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/2825c095-
3fbe-4b71-a8a7-2ae6b7e7eea8/content.

[20] Ryan Wails, Rob Jansen, Aaron Johnson, and Micah Sherr. 2023. Proteus: Pro-
grammable protocols for censorship circumvention. Free and Open Communica-
tions on the Internet (2023).

[21] Ryan Wails, George Arnold Sullivan, Micah Sherr, and Rob Jansen. 2024. On
precisely detecting censorship circumvention in real-world networks. In Network
and Distributed System Security.

[22] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson,
Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow.
2023. How the Great Firewall of China detects and blocks fully encrypted traffic.
In 32nd USENIX Security Symposium (USENIX Security 23). 2653–2670.

[23] Sijie Xiong, Anand D Sarwate, and Narayan B Mandayam. 2022. Network traf-
fic shaping for enhancing privacy in iot systems. IEEE/ACM Transactions on
Networking 30, 3 (2022), 1162–1177.

A Additional Discussion
Padding algorithm.We plan to use more prominent padding solu-
tions, as most of the current performance loss stems from our naive
padding system which tries to find proper padding bytes iteratively,
which scales exponentially the more padding bytes a flow requires.

This solution helps Shaperd’s flexibility but is inefficient. We plan
to use a heuristic-based padding system that selects padding bytes
more efficiently in the future.
Timing and blocking redirection. To better support adaptive
circumvention, we are exploring how Shaperd can detect and adapt
to blocking. For detection, we can use tools such as Troll Patrol [19],
which tackle various methods to detect endpoint blockages. Then,
to adapt to blocking, Shaperd can adopt alternate constraint sets to
alter packet patterns, thereby circumventing the block.

39

https://shadowsocks.org
https://zenodo.org/records/15259131
https://insights.sei.cmu.edu/blog/domain-blocklist-ecosystem-a-case-study/
https://insights.sei.cmu.edu/blog/domain-blocklist-ecosystem-a-case-study/
https://www.v2ray.com/en/
https://dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/2825c095-3fbe-4b71-a8a7-2ae6b7e7eea8/content
https://dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/2825c095-3fbe-4b71-a8a7-2ae6b7e7eea8/content
https://dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/2825c095-3fbe-4b71-a8a7-2ae6b7e7eea8/content

	Abstract
	1 Introduction
	2 Technical Details
	3 Discussion and Future Work
	References
	A Additional Discussion

