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Abstract: This work proposes a new privacy-enhancing
system that minimizes the disclosure of information in
error reports. Error reporting mechanisms are of the
utmost importance to correct software bugs but, unfor-
tunately, the transmission of an error report may reveal
users’ private information. Some privacy-enhancing sys-
tems for error reporting have been presented in the past
years, yet they rely on path condition analysis, which
we show in this paper to be ineffective when it comes
to graphical-based input. Knowing that numerous appli-
cations have graphical user interfaces (GUI), it is very
important to overcome such limitation. This work de-
scribes a new privacy-enhancing error reporting system,
based on a new input minimization algorithm called
GUImin that is geared towards GUI, to remove input
that is unnecessary to reproduce the observed failure.
Before deciding whether to submit the error report, the
user is provided with a step-by-step graphical replay of
the minimized input, to evaluate whether it still yields
sensitive information. We also provide an open source
implementation of the proposed system and evaluate it
with well-known applications.
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1 Introduction
Most software products are released with errors that
pass undetected through the program’s testing phase.
Error reporting is an essential part of software mainte-
nance because it signals new errors that happen on soft-
ware deployed at the clients and provides maintenance
engineers with information on how to reproduce and,
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subsequently, investigate the error. Correcting software
errors is a hard and time-consuming task that repre-
sents several billion dollars per year worth of software
maintenance costs in Europe and the USA alone [1–3].
Consequently, error reporting has evolved to try to re-
duce the costs of software maintenance.

One of the main hindrances to error reporting is
the concern of privacy, especially when using applica-
tions that deal with confidential/sensitive information.
Nowadays, security breaches and identity theft are real
dangers, hence users are likely to take a hard look at
some information-gathering mechanisms on personal de-
vices [4]. Whether users are working on a confidential
document or have clicked/typed in personal information,
sensitive private data is likely to be included in the er-
ror report [5]. Since, nowadays, most computers include
error reporting systems, we believe that addressing the
privacy concerns in such systems is fundamental.

In the past years, some privacy-enhancing systems
were proposed based on the replacement of potentially
private information with alternative data, while still en-
suring the reproduction of the observed failure [5–10].
Given a log containing all user data input by a user
during an execution of the program, these systems re-
execute the application symbolically and obtain the set
of logical constraints on the user input (a.k.a. path con-
dition [11]) that leads to the failure. It is assumed that
the user input is the source of information that raises
the most privacy concerns. Once the path condition is
obtained, these systems resort to an SMT solver (Satis-
fiability Modulo Theories [12–15]) to obtain alternative
solutions that satisfy the path condition. Unfortunately,
these systems are unable to obfuscate graphical-based
input, for reasons that we explain and exemplify in this
paper (Sec. 3). Given that most modern applications
have graphical user interfaces, this is a critical flaw in
current systems. Learning which graphical components
were targeted by the user, may indeed reveal a substan-
tial amount of sensitive information, e.g. preferences se-
lected by mouse events in a confidential form.

We show in this paper that it is possible to minimize
the disclosure of private information by removing sub-
sets of graphical-based input that are unnecessary to
reproduce the observed failure. Unfortunately, the ex-
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isting input minimization systems (e.g. delta-debugging
systems [16]) do not cope with the structure of the
GUI, thereby causing a severe performance degradation,
which limits their usefulness in the context of GUI min-
imization. We propose a new error report minimization
system that relies on a new input minimization algo-
rithm called GUImin that takes into account the struc-
ture of the application’s GUI. This system is, to the best
of our knowledge, the first to address privacy concerns of
graphical input in error reports. This paper starts with
a brief description of previous systems in Sec. 2 and
examples exposing both their potentialities and limita-
tions in Sec. 3. Then, this paper presents the proposed
system in Sec. 4, and its contributions are organized in
the following way:
• Section 4.2 presents a new record and replay system
of graphical input that also logs the GUI structure;
• Section 4.3 presents a new input minimization algo-
rithm called GUImin that minimizes graphical input,
while respecting the structure of the GUI;
• Section 4.4 presents a new system that:
– Minimizes graphical input using GUImin;
– Provides integration capabilities with previous ob-

fuscation systems;
– Provides a graphical step-by-step demonstration/re-

play to the user of the minimized input, before ask-
ing for permission to transmit the error report;

– Provides the same demonstration to the developers,
if the error report was indeed transmitted;

– Is open-source.

Finally, Sec. 5 provides an evaluation of the proposed
system with a comprehensive set of real-world appli-
cations and bugs, before some concluding remarks pre-
sented in Sec. 7. It is also worth mentioning that this
paper includes appendices at the end of this document.

2 Related Work
This section presents some related work on privacy en-
hancing technologies for error reporting systems.

Error Reporting and Fault-Replication Systems.
Automatic error reporting systems automatically incor-
porate in error reports information about the final state
of a crashed application (e.g. stack trace, memory snap-
shot), before asking the user for permission to transmit
it. This information is often insufficient. Thus, error re-
ports can be complemented with fault-replication sys-
tems [17–20]. Fault-replication systems are record and

replay systems that monitor the user execution and log
sources of non-determinism (e.g. input, thread interleav-
ing) enabling maintenance teams to deterministically re-
play the observed failure.

Input Obfuscation Systems. The obfuscation of
fault-replication logs by replacing the user’s input with
an alternative input that induces the same failure was
first proposed by Castro et al. [5] and later extended by
other works [6–8]. These approaches re-execute the pro-
gram symbolically through the original execution path
that leads to the observed failure (i.e., using the origi-
nal user inputs) and record the sequence of logical con-
straints imposed by the logical tests performed on the
input (a.k.a. path condition [11]). Then an SMT solver
is used (e.g. Z3 [12]) to obtain an alternative input that
satisfies the same sequence of logical constraints. Later,
two systems were proposed that perform symbolic exe-
cution through execution paths other than the original
one: i) MPP [9] performs symbolic execution through all
execution paths that reproduce an observed failure; how-
ever this was demonstrated not to be scalable except for
micro-benchmarks; ii) REAP [10] performs only one ad-
ditional symbolic execution through an execution path
different from the original one.

Input minimization systems. A straightforward ap-
proach to address the privacy concerns in error reports
is to remove all privacy-sensitive data.
•Scrash. The Secure Crash System [21] removes all po-
tentially sensitive information, disregarding its potential
relevance to error reproduction. This raises two prob-
lems: i) it may amputate information necessary to locate
the causes of the observed failure from the error report,
making the error fixing task substantially harder and
sometimes impracticable; ii) it does not necessarily pro-
tect the users’ privacy and may mislead users to believe
that their data is safe when it may not be the case (e.g.
if the reported failure is reproduced only by a specific
and confidential input).
•Delta-debugging. To the best of our knowledge, delta-
debugging was proposed by Zeller and Hildebrandt [16]
and was created for debugging purposes. The idea is
to facilitate the task of the developers in finding the
cause of an observed failure, by providing them with a
smaller input that also reproduces the observed failure.
Other systems [22–25] have been presented in the past
years that extend the work of Zeller and Hildebrandt.
Unfortunately, none of the systems published so far have
been optimized for graphical-based input and for this
reason their performance is likely to be sub-optimal for
applications with GUIs.
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3 Motivation
This section details the most relevant state-of-the-art
privacy enhancing error reporting systems and explains,
using examples, why they are not suitable to address
the privacy concerns of graphical-based input.

3.1 Input Obfuscation Systems

Input obfuscation [5–8] replaces private information
rather than omitting it. Given an F-inducing user input
Iu (a sequence of input events e1, e2, ..., en that induce
an observed failure F), these approaches re-execute the
application symbolically, along the execution path orig-
inally traversed, in order to derive the set of logical con-
straints satisfied by Iu. This set of restrictions is called
a path condition [11] and we denote with PCu the path
condition satisfied by Iu. In short, the symbolic execu-
tion procedure of these systems is as follows:
1. Given the F-inducing input Iu, the application’s

symbolic execution starts with PCu = ∅;
2. Execute the next instruction. If F was induced, ter-

minate the symbolic execution and return PCu;
3. If the application reads an input value and assigns

it to a variable, mark this variable as symbolic;
4. If the current instruction is a logical test performed

on a symbolic variable, two new possible paths are
generated, one if the test returns true and another
if it returns false. Only one of them satisfies Iu,
so the symbolic execution engine follows that path,
adds the respective constraint to PCu and continues
in step 2;

In addition to the procedure described above, the REAP
framework [10] performs a second symbolic execution to
compute a second path condition PCa, thereby granting
the input space of the union PCu ∪ PCa.

The final step in all described obfuscation systems
is to use an SMT solver to draw an input from the set of
inputs that satisfy PCu, or from the set of inputs that
satisfy PCu ∪PCa if REAP is used. In both cases, their
effectiveness is explained next.

Effectiveness. The potential and limitations of path
condition analysis in input obfuscation systems is di-
rectly related to the number of solutions that satisfy
the computed path condition(s). An adversary may use
the same symbolic execution procedures to compute the
path condition(s) used to generate the alternative input
Ia. This means that the uncertainty of the adversary, in

terms of which was the original input Iu, is proportional
to the number of different inputs that satisfy the path
condition(s). The uncertainty is zero if only one input
is satisfiable and, oppositely, is complete if any input
satisfies the path condition.

3.1.1 Example: TV-Browser

The TV-Browser [26] application is a popular TV guide
that allows the user to subscribe over 1000 channels and
radio stations. Figure 1 depicts, on the left side, a rep-
resentation of the TV-Browser graphical user interface
and, on the right side, a code excerpt of a function that
filters, amongst all the available channels, those whose
names contain the word input by the user in the text
field “search”.

3.1.1.1 String Obfuscation
First, assume that the goal is to obfuscate the word
input by the user in the “search” text field of Fig. 1,
e.g. the string “cnn”. If the application starts by test-
ing, using the isSubSeq, function whether the channel
name “showtime” (parameter w2) contains the input
“cnn” (parameter w1), the path condition PCu is:
w1.charAt(0) 6=’s’ ∧ w1.charAt(1) 6=’h’ ∧ w1.charAt(2) 6=’o’ ∧
w1.charAt(0) 6=’h’ ∧ w1.charAt(1) 6=’o’ ∧ w1.charAt(2) 6=’w’ ∧
w1.charAt(0) 6=’o’ ∧ w1.charAt(1) 6=’w’ ∧ w1.charAt(2) 6=’t’ ∧
w1.charAt(0) 6=’w’ ∧ w1.charAt(1) 6=’t’ ∧ w1.charAt(2) 6=’i’ ∧
w1.charAt(0) 6=’t’ ∧ w1.charAt(1) 6=’i’ ∧ w1.charAt(2) 6=’m’ ∧
w1.charAt(0) 6=’i’ ∧ w1.charAt(1) 6=’m’ ∧ w1.charAt(2) 6=’e’
w1.charAt(0) 6=’m’ ∧ w1.charAt(1) 6=’e’

in which w1 was treated as symbolic and w2 was not.
It is straightforward to conclude that numerous inputs
satisfy PCu: the solver is able to pick an alternative PCu-
satisfying input Ia and an adversary cannot identify the
input of Iu amongst all possible inputs.

On the other hand, if the application tests whether
“cinemax” contains the input “cnn”, then PCu is:
w1.charAt(0) =’c’ ∧ w1.charAt(1) 6=’i’ ∧ w1.charAt(2) =’n’ ∧
w1.charAt(0) 6=’i’ ∧ w1.charAt(1) =’n’ ∧ w1.charAt(2) 6=’e’ ∧
w1.charAt(0) 6=’n’ ∧ w1.charAt(1) 6=’e’ ∧ w1.charAt(2) 6=’m’ ∧
w1.charAt(0) 6=’e’ ∧ w1.charAt(1) 6=’m’ ∧ w1.charAt(2) 6=’a’ ∧
w1.charAt(0) 6=’m’ ∧ w1.charAt(1) 6=’a’ ∧ w1.charAt(2) 6=’x’ ∧
w1.charAt(0) 6=’a’ ∧ w1.charAt(1) 6=’x’

in which the constraints are redundant due to the under-
lined ones. In this case, PCu is useless for obfuscation, as
it is only satisfied by the input “cnn” and consequently,
the uncertainty of the adversary is zero.

The REAP framework was created to address this
problem. By computing an alternative path condition
PCa, REAP is indeed an effective approach assuming
that PCu ∪ PCa permits a significant amount of inputs.
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List<Channel> searchChannels(String input) { 
1: List<Channel> results = new List<String>(); 
2: List<Channel> channels = … //get all channels 
3: for(Channel ch: channels) 
4:     if( isSubseq( input , ch.getName() ) )  
5:         results.add(ch); 
6:  return results; 
} 

boolean isSubseq(String w1, String w2) { 
7:     int count= 0; 
8:     for(int i=0;i<w2.length; i++) { 
9:          for(int j=0;j<w1.length &&  
                              j+i<w2.length; j++) { 
10:               if(w1.charAt(j) == w2.charAt(j+i)) 
11:                 count = count + 1; 
              }/*end for*/ 
12:        if(count == w1.length) 
13:             return true; 
14:        count = 0; 
         }/*end for*/ 
}/*end contains*/ 

Channel	  xxx2	  
Locale	  

F 

8 

Fig. 1. An illustrative example, in which the user subscribes channels in the Tv-Browser application [26]. The user inputs the events {1,
2, . . . 8} and events {4,5} trigger the code exposed in the right side of the picture. Finally, a click in the “locale" component, results in
an immediate failure, which was reported in 2008 [27].

/*class EventQueue*/ 
void dispatchEvent(AwtEvent e) { 
1:  Component src = getSource(e); 
2:  src.dispatchEvent(e); 
} 

Component getSource(AwtEvent e) { 
3:  for(int i=0;i<UI.getComponents().length; i++) { 
4:      Component comp = UI.getComponents()[i]; 
5:      if( comp.contains( e.getX() , e.getY() ) ) { 
6:           return comp; 
 }/*end for*/}/*end method*/ 

Fig. 2. Example of widget identification.

3.1.1.2 GUI Obfuscation
In short, obfuscation systems are not suitable privacy-
wise to obfuscate graphical-based input, because, as al-
ready mentioned, their effectiveness relies on the ex-
istence of path condition(s) satisfied by several inputs,
which is not the case in the context of graphical input.
In fact, when the goal is to conceal the graphical com-
ponents targeted by the user, each and every path con-
dition achievable is satisfied by only one sequence of
graphical components.

Using the above-described obfuscation systems to
obfuscate graphical-based input implies performing sym-
bolic execution in the GUI libraries. For example, in the
Java programming language, in order to detect which
graphical component was acted upon by a mouse event,
the EventQueue class verifies which graphical compo-
nent contains the coordinates of the current mouse
event, as exemplified by the code excerpt in Fig. 2.
Knowing that each pair of mouse coordinates fall within
only one of the widgets in the current visible window,
performing symbolic execution in GUI classes, would
generate a path condition with a structure similar to
the following:
ev1.X, ev1.Y ∈ Ci ∧ ev2.X, ev2.Y ∈ Cj ∧ . . .

in which ev∗.X, ev∗.Y are the coordinates of the mouse
event ev∗ and C∗ is the target component of the GUI.
There are two possible approaches to perform symbolic
execution in this context, which are described in the
following and ultimately result in the same problem.

• The coordinates are symbolic variables and the wid-
gets are not, which for the example of Fig. 1, would
generate a path condition PCu similar to:
ev1.X, ev1.Y ∈ Component<JMenu,“TV listings”> ∧

ev2.X, ev2.Y ∈ Component<JMenuItem,“add/rem”> ∧ . . .

• The coordinates are concrete variables and the widgets
are symbolic, consequently, PCu would be similar to:

(2, 10) ∈ Ci ∧ (3, 7) ∈ Cj ∧ (10, 7) ∈ Ck ∧ . . .

In both cases, PCu is limited by a problem similar to the
one exemplified in the second part of Sec. 3.1.1.1: a pair
of coordinates is contained by only one widget in the
current window. Therefore, there is only one sequence
of widgets that satisfies PCu and, since the goal is to
conceal which were the widgets targeted by the user,
prior obfuscation systems [5–8] based on path condition
analysis cannot be used to obfuscate graphical input.

REAP can go further than these systems, as it
achieves one additional path condition PCa, thereby
guaranteeing the solutions of the set PCu ∪ PCa. Un-
fortunately, for the exact same reasons, PCa is also sat-
isfied by only one sequence of widgets. Thus, because
the path conditions describing very concrete sequences
of widgets have each a very small input domain, the
union of these path conditions does not significantly en-
large the input domain and therefore does not provide
a significant privacy enhancement.

Furthermore, knowing that the boolean satisfiabil-
ity problem is NP-complete [28], an SMT solver may re-
quire from fractions of a second to several days to decide
whether the path condition output by the symbolic exe-
cution is satisfiable, depending on its size and complex-
ity. Knowing that a typical interaction between the user
and the GUI can easily generate thousands of events [29],
the SMT solver may take a substantial amount of time
to process the resulting path condition. This is further
aggravated in the case of REAP, as it requires multiple
invocations to the solver during the symbolic execution.
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4 Proposed Framework
In a typical interaction between the user and a GUI,
thousands of events are generated by the user and, in-
tuitively, a large subset of them is unlikely to be re-
lated to the observed failure F . Thus, privacy protection
can be achieved by subtracting from the recorded input,
which is an ordered list of events triggered by the user
Iu = {e1, e2, . . . , e|Iu|}, a subset of events that we find
not to be related to F . In other words, we propose in-
put minimization as a privacy protection technique for
GUI-based applications.

We start by introducing the baseline input min-
imization algorithm proposed by Zeller and Hilde-
brandt [16] and explain why it is not suitable to min-
imize graphical input, before presenting the proposed
system.

4.1 Baseline Comparison

The goal of input minimization is to achieve a (smaller)
F-inducing sublist Ia such that Ia ⊂ Iu. We can calcu-
late such a sublist by re-executing the application and
replaying (smaller) sublists of Iu, to test for F . Once
we find a smaller F-inducing input sublist of Iu, we con-
tinue minimizing Iu by repeating the procedure starting
from the newly achieved F-inducing sublist.

The ddmin algorithm. The first minimization algo-
rithm was ddmin, which was presented by Zeller and
Hildebrandt [16]. This type of approach is also known
as delta debugging and was created for debugging pur-
poses. The idea is to simplify the search for the causes
of F , by providing maintenance teams with a smaller F-
inducing input. The ddmin algorithm works as follows:
1. Start with Ia = Iu.
2. Split Ia into n sublists, of equal size if possible. Test

each sublist for F . If one of them induces F , then
it becomes Ia and resume the algorithm at Step 2.

3. Test the complement of each sublist. If any of them
induces F then it becomes Ia and the algorithm is
resumed at Step 2.

4. Attempt to split Ia into smaller partitions, 2n if
possible and resume at Step 2. If Ia cannot be split
into smaller sublists, the procedure is finished.

A practical hindrance. One of the main differences
between minimizing graphical input and minimizing a
file of any type, is the requirement that GUI inputs be
replayed interactively. In the case of file-based input, we

1	 2	 3	 4	 5	 6	 7	 8	
1	 2	 3	 4	

5	 6	 7	 8	
1	 2	

3	 4	
5	 6	

7	 8	
3	 4	 5	 6	 7	 8	

1	 2	 5	 6	 7	 8	

Δ1 
Δ2 
Δ1 
Δ2 
Δ3 
Δ4 

Yes. 
Feasible? 

F 

F 

1	 2	 3	 4	 7	 8	∇ 3 
∇ 2 
∇ 1 

Yes. 

Yes. 
No, 3 requires 2 
No, 5 requires 3 
No, 7 requires 3 
No, 3 requires 2 
No, 5 requires 3 

No, 5 requires 3 
ddmin(I) 

ddmin(     ) ∇ 3 

Increase 
granularity 

1	
2	
3	
4	
5	
6	
7	
8	
9	

Fig. 3. An illustration of the ddmin algorithm applied to the
motivational example of Fig. 1. Two thirds of the tests attempted
are infeasible due to dependencies imposed by the GUI.

can test a smaller version of a file for F simply by pass-
ing it as a parameter to the starting application. On the
other hand, to test a sublist of graphical events, one has
to re-execute the application and dispatch each event in
the GUI, individually, in the correct order and when the
target widget is available/visible. Consequently, testing
a sublist of graphical events is inevitably slower and each
new test performed adds a significant scalability cost.
Why not use ddmin to minimize graphical input?
The ddmin algorithm does not take into consideration
any type of application and/or input structure. Disre-
garding the structure of the input leads to a substantial
amount of unnecessary tests being performed, which in
turn causes severe performance degradation.

Consider the illustration in Fig. 3. If we split the
input Iu = {1, 2, 3, 4, 5, 6, 7, 8} uniformly into sublists
of size n, several will correspond to sequences of events
that are not viable input to the GUI application, mainly
because they include events that are meaningless at the
execution point where they are placed in the sublist.
For example, splitting Iu may create an input sequence
including a click event on a button that is not visible.
These tests are infeasible and they pollute and delay the
minimization process. For example, if we split this list
into two sublists of equal size, the sublist {5, 6, 7, 8} is
not feasible, because it contains events that occurred in
a specific window that becomes visible as a consequence
of some events within the first sublist. This problem is
aggravated if we perform finer-grained splits. Eventually,
ddmin minimizes Iu, however it requires an unreason-
able amount of testing and time, even if we consider
running it during the user device’s idle periods.

Next, we present a record and replay system for
GUI-based applications, before introducing a new input
minimization algorithm geared towards graphical input.
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4.2 A GUI-based Record and Replay
System

We require a recording system that monitors the user ex-
ecution and logs the interaction with the GUI. Further-
more, due to the hindrance described in Sec. 4.1, we also
require a replayer capable of reproducing each graphical
component, individually and in the correct order, for a
three-fold purpose: i) test sublists of Iu, during the min-
imization process; ii) to allow the user to visualize the
minimized input, before asking for permission to trans-
mit the error report; iii) to allow developers to visualize
the minimized F-inducing input.

Our system copes with the structure of the GUIs at
the record&replay level by recording the application not
just as a sequence of events but with additional context
information. The structure of the GUI is explored by
considering three properties of graphical-based input:

• A user input event ei is an action upon a target graph-
ical widget wi;
• Widgets are contained by other widgets also known
as containers;
• An input event ei may trigger the appearance of a
container.

The proposed record and replay system is for-
malized in Algorithm 1 and explained in Secs. 4.2.1
and 4.2.2. We believe that the proposed model is general
enough to be applied for most GUI frameworks.

4.2.1 Record

The user executes the application normally, while the
execution is monitored and the GUI input recorded, ac-
cording to the model formalized in Algorithm 1, illus-
trated in Fig. 4 and explained below.
• Users may interact with a single widget, triggering one
or more events in a row and we refer to such interaction
as a dialog. More specifically, when the user triggers one
or more events in a row within a single widget, we say
that it is a widget dialog. Furthermore, a continuous set
of widget dialogs within the same container, from the
moment it was opened until it was closed, is called a
container dialog.
• The recording procedure starts with the instance
chead of a data structure representing the main window,
that we call container dialog or CDialog.
• If the user performs one or more actions on a spe-
cific widget wi inside the current container, then we
create a new instance of the data structure widget di-

Algorithm 1: Pseudo code defining our record
and replay procedures.

Interface ItemLogged()

DataStructure CDialog implements ItemLogged(
1 WDialog whead, wtail;//first&last widgets
2 CDialog prev;)//container

DataStructure WDialog implements ItemLogged(
3 widget w;
4 List<εLogged> E;
5 WDialog next;)//widget

DataStructure εLogged implements ItemLogged(
6 Event ev;
7 CDialog next;)//event

Shared:
8 CDialog chead, ctail; //first&last recorded containers
9 Failure F ; //the observed failure

Record()
void
begin

10 while The application is running do
11 Wait for the next event ei triggered by the user;
12 RecordEvent(ei);
13 if The program fails then
14 F ←− catch the observed failure;
15 break;

RecordEvent(Event ei)
void
begin

16 if ctail = null then
17 ctail ←− initialize;
18 ctail.prev ←− null;
19 chead ←− ctail;
20 if ctail.wtail = null then
21 ctail.wtail ←− new empty WDialog;
22 ctail.wtail.w ←− target widget of ei

23 ctail.whead ←− ctail.wtail;
24 else if ctail.wtail.w 6= target widget of ei then
25 ctail.wtail.next ←− new empty WDialog;
26 ctail.wtail ←− ctail.wtail.next;
27 ctail.wtail.w ←− target widget of ei;
28 εLogged εi ←− new empty εLogged;
29 εi.ev ←− ei;
30 add εi to ctail.wtail;
31 if a new container became visible then
32 εi.next ←− new empty CDialog;
33 εi.next.prev ←− ctail;
34 ctail ←− εi.next;
35 else if ctail is no longer visible then
36 ctail ←− ctail.prev;

Replay(List<ItemLogged> noReplay)
Returns: true if F is reproduced; false otherwise
begin

37 return Replay(chead , noReplay, F);

Replay(CDialog cnext , List<ItemLogged> noReplay, F)
Returns: true if F is reproduced; false otherwise
begin

38 WDialog wi ←− cnext.whead;
39 while wi 6= null do
40 if wi 6∈ noReplay then
41 foreach εi ∈ wi.E ∧ εi 6∈ noReplay do
42 replay εi.ev;
43 if F was reproduced then
44 return true;
45 if εi.next 6=null then
46 if Replay(εi.next,noReplay)=true

then
47 return true;

48 wi ←− wi.next;
49 return false;
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Fig. 4. An illustrative example of the proposed GUI-structured
recording, applied to the example of Fig. 1.

alog or WDialog, which represents the widget, and
place those events inside that WDialog. The previous
WDialog (if any) of this CDialog, is linked to this new
WDialog, thereby forming a linked list within the cur-
rent CDialog.
• Additionally, every new event is logged in a new in-
stance of the εLogged data structure. If the current
event triggers the opening of a new container (e.g. a
new window is opened), then field next of the respective
εLogged instance, points to the newly created CDialog
instance that represents the newly opened container.
• Asynchronous events are recorded in the same order
as they occur, to assure total ordering of events.

4.2.2 Replay

The proposed replaying procedure is also exposed in Al-
gorithm 1 and complies with the following definition:

Definition 1. The function Replay(I∗,I∗∗,F) re-
plays I∗ \ I∗∗, requiring that I∗∗ ⊆ I∗. It returns the
boolean value true if F is observed or false otherwise.

The replaying procedure takes the first recorded con-
tainer dialog and iterates through the data structure,
reproducing each recorded event in the same order as it
was recorded. The Replay function is able to test any
sublist of the recorded input Iu, as the noReplay pa-
rameter indicates which events and/or widgets should

be ignored. Before presenting the proposed algorithm,
consider the following notation.
Notation. Given an input I∗, a list of events
I∗ = {e1, e2, . . . , e|I∗|}, we denote with E∗ the list of
εLogged E∗ = {ε1, ε2, . . . , ε|E∗|} such that ε1.ev = e1,
ε2.ev = e2, . . . , ε|E∗|.ev = e|I∗|. We denote as εi.next the
pointer to the container dialog corresponding to the con-
tainer that is opened by the event stored at εi.ev (as ex-
posed in the pseudocode). Furthermore, we denote with
W∗ = {w1, w2, . . . , w|W|} the list of WDialog such that
we obtain E∗ by concatenating wi.E : ∀wi ∈ W∗. We also
denote the function Replay(E∗, E∗∗,F) analogously to
the function Replay(I∗, I∗∗,F) of Definition 1.

4.3 The GUImin Algorithm

This section presents a new input minimization algo-
rithm called GUImin that acknowledges the structure
of the GUI, thereby avoiding infeasible tests and con-
sequently optimizing the minimization process. The
record and replay procedures presented in the previous
section play a relevant role in GUImin: the recorder cap-
tures Iu and F , whereas the replayer tests sublists of
Iu. We start by introducing the goals of GUImin in
terms of minimization capabilities. Then, before formal-
izing GUImin, we present an algorithm called LazyMin,
which is fundamental for the minimization procedure of
GUImin.

4.3.1 Minimization goals

Ideally, we would want to guarantee that the F-inducing
sublist found Ia is the smallest possible F-inducing one,
also known as a Global Minimum [16]:

Definition 2. Ia is a global minimum if Ia ⊂ Iu∧
Replay(Ia, ∅,F) = true and ∀Ii ⊂ Iu such that |Ii| <
|Ia| it must be that Replay(Ii, ∅,F) = false .

Unfortunately, to the extent of our knowledge, the only
minimization algorithms that guarantee finding a global
minimum resort to exhaustively testing all possible sub-
lists of Iu to check whether they are F-inducing. Unless
Iu is very small, the cost imposed by such algorithms is
prohibitive. On the other hand, ddmin guarantees that
a 1-minimal input is achieved:

Definition 3. Ia is 1-minimal if Replay(Ia, ∅,F) =
true and ∀ei ∈ Ia it must be that Replay(Ia, ei,F) =
false.
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To guarantee that the minimized sublist Ia is 1-minimal,
one has to test Replay(Ia, ei,F), for each and every
event ei in Ia to assure that F is not reproduced. This
kind of guarantee makes sense in scenarios in which
there are no dependencies amongst the inputs in Ia. As
already explained, this not the case for graphical-input
and would result in attempting infeasible tests. Know-
ing that subtracting an event ei from Ia may result in
an infeasible sublist, we are not particularly interested
in achieving a 1-minimal sublist. Instead we are more
interested in learning whether F is reproduced if we re-
move a single dialog from Ia, instead of a single event.
Therefore we introduce a new definition on minimality:

Definition 4. An input Ia is 1-dialog-minimal iff
Replay(Ea, ∅,F) = true ∧
∀wi ∈ Wa,Replay(Ea, wi.E ,F) = false ∧
∀εi ∈ Ea : εi.next 6= ∅,Replay(Ea, εi,F) = false

As we will demonstrate in this paper, the proposed algo-
rithm GUImin guarantees the achievement of a 1-dialog-
minimal sublist of Iu, as in Definition 4.

4.3.2 LazyMin

The LazyMin algorithm, exposed in Algorithm 2,
adopts the same binary search strategy of ddmin that
attempts to achieve an F-inducing sublist in logarithmic
time. To do so it resorts to the ∆Min algorithm, also ex-
posed in Algorithm 2, that is equivalent to the one used
by ddmin: the list L is split into sublists of size n, which
are tested for F one at a time. When a sublist li of L
induces F , the function Trim deletes L\ li permanently
and LazyMin resumes with li. LazyMin continues de-
creasing (exponentially) the size n of the lists, to test
finer grained lists and keeps invoking ∆Min as long as
it continues returning smaller F-inducing lists.

When ∆Min fails to return a smaller F-inducing
list, then LazyMin resorts to greedy∇Min (a ∇test is
the complement of a ∆test) to test the sublists’ comple-
ments. If the complement of a sublist li induces F , then
the function Trim deletes li and LazyMin resumes with
L\li. The main difference between LazyMin and ddmin
lies in greedy∇Min: i) it tests all complements of gran-
ularity n in one shot; ii) the testing of complements is
never repeated. The reason for choosing LazyMin over
ddmin lies in the worst-case time complexity. Consider-
ing, that we are not aiming at a 1-minimal sublist, it is
not necessary to incur in the worst case of |L|2 + 3|L|.
Instead, LazyMin has a worst case of 4|L| tests per-

Algorithm 2: Pseudo code defining a minimiza-
tion algorithm called LazyMin.

Shared:
CDialog chead;//the first recorded container

LazyMin(List<ItemLogged> L)
void
begin

1 int n←− |L|;
2 List<ItemLogged> L’;
3 do
4 n←− n

2 > 1 ? n
2 : 1

5 L’←−∆Min (L,n);
6 if L’6= ∅ then
7 L←− L’
8 else
9 L←−greedy∇Min(L,n);

while10 n > 1;

∆Min(List<ItemLogged> L , int n)
Returns: List<ItemLogged>
begin

11 List<List<ItemLogged>> L’←− split L in sublists of
size n;

12 foreach li ∈ L’ do
13 if Replay(L \ li) = true then
14 Trim(L \ li);
15 return li;

16 return ∅;

greedy∇Min(List<ItemLogged> L , int n)
Returns: List<ItemLogged>
begin

17 List<List<ItemLogged>> L’←− split L in sublists of
size n;

18 foreach li ∈ L’ do
19 if Replay(li) = true then
20 Trim(li);
21 L←− L \ li;

22 return L;

Trim(List<ItemLogged> trimList)
void
begin

23 Trim’(chead , li);

Trim’(CDialog cnext,List<ItemLogged> trimList)
void
begin

24 WDialog wi ←− cnext.whead;
25 while wi 6= null do
26 if wi ∈ trimlist then
27 wi−1.next←− wi+1;
28 else
29 foreach ei ∈ wi.E do
30 if ei ∈ trimList then
31 delete ei from wi.E;
32 if wi.E = ∅ then
33 wi−1.next←− wi+1

34 else if ei.next 6= null then
35 Trim’(ei.next,trimList);

36 wi ←− wi.next;

formed, which consists of failing to reproduce F in all
tests (2 + 4 + . . . + 2|L| = 4|L|). LazyMin on its own
does not provide any guarantees on minimality, as it is
meant to be used by the GUImin algorithm, which is
presented next.
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Fig. 5. The two possible tests of Wmin in the third container
of the example of Fig. 1. The second test reproduces F while
excluding the widget dialog w3. By excluding w3, its subsequent
container is also excluded, thereby minimizing events {3,4,5,6,7}.

4.3.3 GUImin

The GUImin algorithm is detailed in Algorithm 3. It
works in three phases: i) minimize widget dialogs using
the WMin procedure; ii) minimize the events within
the remaining widget dialogs using the WEMin proce-
dure; iii) guarantee that the minimized input is 1-dialog-
minimal as in Definition 4 (lines 3 to 8 of Algorithm 3).

GUImin starts by minimizing widget dialogs be-
cause it allows for trimming larger amount of dialogs
and events at a time: GUI events are triggered within
widget dialogs, including events that trigger the opening
of container dialogs (which in their turn contain more di-
alogs and events). Furthermore, the procedures WMin,
WEMin and CMin, invoke LazyMin one level at a time,
using the function GetDialogs, which also trims larger
amounts of input in fewer attempts. This is illustrated
in Fig. 5: as soon as WMin tests the input without the
widget dialog w3, it excludes all inputs unnecessary to
reproduce F .

In the next step, GUImin invokes WEMin to min-
imize events within the remaining dialogs. This is par-
ticularly useful to minimize the content of dialogs that
are most likely required to reproduce the failure. For ex-
ample, if a container dialog contains a form, whose sub-
mission induces F , and one/some of the text fields must
be filled to enable the submission button, then WMin
cannot trim those text fields from the widget dialogs,
but WEMin may be capable of removing large parts of
their content (e.g. the “name” text field can be left with
a single character).

Algorithm 3: Pseudo code defining the GUImin
algorithm.

Shared:
CDialog chead;//the first recorded container

GUImin()
void
begin

1 WMin();
2 WEMin();
3 do
4 int count ←− count events;
5 CMin();
6 WMin();
7 int count’ ←− count events;

while8 count’ < count;

WMin()
void
begin

9 List<ItemLogged> L←− ∅;
10 List<CDialog> C ←− chead;
11 do
12 L←− ∀wi ∈ C;
13 LazyMin(L); //minimize widgets;
14 C ←−GetDialogs(C);

while15 C 6= ∅;

WEMin()
void
begin

16 List<ItemLogged> L←− ∅;
17 List<CDialog> C ←− chead;
18 do
19 foreach wi ∈ C do
20 L←− wi.E;
21 LazyMin(L); //minimize events in widgets;
22 C ←−GetDialogs(C);

while23 C 6= ∅;

CMin()
void
begin

24 List<ItemLogged> L←− ∅;
25 List<CDialog> C ←− chead;
26 do
27 L←− ∀ei ∈ C : ei.next 6= null;
28 LazyMin(L); //minimize containers;
29 C ←−GetDialogs(C);

while30 C 6= ∅;

GetDialogs(List<CDialog> C)
Returns: List<CDialog>
begin

31 List<CDialog> C′ ←− ∅
32 foreach ci ∈ C do
33 WDialog wi = ci.whead;
34 while wi 6= null do
35 foreach ei ∈ wi.E do
36 if ei.next 6= null then
37 add ei.next to C′;

38 wi ←− wi.next;

39 return C′;

Finally, CMin and WMin are re-invoked in a loop,
to assure that Ia is 1-dialog-minimal. The idea is that if
the input size, after the invocation of CMin and WMin,
is exactly the same as before, then it must be that by
removing one (no matter which) dialog from Ia disables
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Ia from reproducing F , thereby taking us to the propo-
sition exposed next.

Proposition 1. The GUImin algorithm always
achieves a 1-dialog-minimal sublist Ia, such that
Ia ⊆ Iu, as in Definition 4.

In the best case scenario, GUImin performs as stated
by the following proposition:

Proposition 2. The best case time complexity of
GUImin is log2(|Wu|) + log2(|wi.E|) + 1.

In the worst case, GUImin has a O(n2) performance:

Proposition 3. The worst case time complexity of
GUImin is 4|Iu|2 + 12|Iu|.

The proofs of Propositions 1, 2 and 3 are exposed in
appendices A, B and C respectively.

4.4 Implementation and Interface

This section provides further insight on the proposed
system. We start by describing the overall architecture
of the proposed system as well as some implementation
details in Sec. 4.4.1. Then, in Sec. 4.4.2, we explain how
users interact with the proposed system and specifically
how users can verify the content of the error reports
before authorizing their transmission.

4.4.1 Architecture and Main Components

The overall architecture is depicted in Fig. 6. We im-
plemented a prototype of our work in Java for Java
programs with graphical user interfaces1. We provide
a description of its main components.

Recorder. While the user executes the application nor-
mally (step 1), the recorder is responsible for logging the
user input to the GUI (step 2), and for providing it to
the input minimizer if and when a failure occurs (step
3). The recorder was implemented using the EventLis-
tener interface of Java. The recorder includes an event
mask that can be configured to monitor only the types
of event and widget that the developer considers to be
relevant [30]. By default it records all. It is important

1 The prototype implementation of GUImin is available at
https://github.com/jgmatos/GUImin/

Recorder	  

Obfusca.on	  System	  
(op.onal)	  

Replayer	  
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Replayer	  

Applica.on	  

User Developer 

10:	  Patch	  

Applica.on	  

9:	  Replay	  

Fig. 6. Architecture of the proposed system.

to note that an over-restrictive event mask may exclude
events that are relevant for reproducing F . In a pre-
deployment stage, the developer is responsible for con-
figuring the event mask properly according to the nature
of the target application.

Replayer. The replayer starts by running the applica-
tion and dispatches each event in the respective widget,
as specified in algorithm 1. As already mentioned, the
replayer is used for three different jobs: i) for GUImin to
test the sublists of Iu for F ; ii) for the user to visualize
and verify the minimized input Ia before authorizing
(or not) the transmission of the error report; iii) for the
developers to visualize Ia just as the user did, while
searching for the causes of F .

Input Minimizer. The input minimizer receives the
event list Iu logged by the recorder and runs GUImin
(step 4), while resorting to the replayer to test each sub-
list. Once a 1-dialog minimal input Ia is achieved, op-
tionally, one may choose to use one of the obfuscation
systems presented in Sec. 3 to obfuscate textual-based
input that GUImin is not able to minimize (step 5). In
Sec. 5 we evaluate a practical example in which there
are advantages in integrating GUImin with input obfus-
cation systems.

Error Reporting System. If and when the user au-
thorizes the transmission of the error report (step 7), the
latter is sent to the maintenance team (step 8). Then
the maintenance staff may investigate the error (step 9)
and potentially patch the application (step 10).

4.4.2 Interface

User Interface. The user can execute the application
normally, without interacting with the proposed system,
until a failure occurs. When a failure F occurs, the

https://github.com/jgmatos/GUImin/
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recorded log is automatically moved to a folder dedi-
cated for logs that are not yet minimized. The minimiza-
tion procedure is meant to be executed in the background
during idle periods of the user’s machine, so that the
user is not required to wait for it to finish. When the
minimization procedure finishes, the minimized event
list Ia is recorded into a replayable file, which is moved
to a folder dedicated for logs that have been minimized.

Our system automatically opens a small dialog once
the minimization is finished. If the timing is not good
for the user, she may choose to verify the minimized
logs later. If the user accepts to verify the log(s), she is
presented with another window displaying a selectable
list of logs, from which she can select a log and, with a
single click, she may: i) decide to replay the selected log;
ii) either report or discard the selected log; iii) close the
window.

Privacy-wise error report verification. Quantify-
ing the achieved privacy can be very subjective. The
minimized input contains information that may be con-
sidered sensitive (or not) according to different interpre-
tations of its meaning. Amongst the different possible
interpretations, the only one that we consider relevant
is the user’s. For this reason, the user’s participation,
after the minimization process finishes, is paramount,
because she must ultimately decide whether she is com-
fortable with the information to be sent.

The only information sent in the error report is Ia.
We believe that a graphical demonstration of Ia, in a
step-by-step fashion, is arguably better than a textual
description of the input and, furthermore, we believe
it to be the best way to show the user exactly what is
sent in the error report. Once Ia becomes available the
system recommends that the user replay it and if the
user accepts to verify it:
– The system launches the above-described replayer

component;
– The replayer launches the application and its main

window becomes visible to the user;
– The replayer reproduces each event of Ia in the GUI

in the correct order, while the user can visualize
each event being triggered;

– The replayer introduces a small delay between each
event being reproduced, so that it becomes very easy
for the user to follow;

– When the failure is reproduced, the procedure ter-
minates.

Figure 7 illustrates the replaying of the minimized in-
put for the example of Fig. 1. Once the user visualized

TV-Browser: Main Window 
                                     Tools        Help        View       Go     

Update	  

Se)ngs	  

	  	  	  TV	  lis1ngs	  
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Plugins	  

Settings 

Locale	  

F 

Channels Settings 
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Fig. 7. Replaying the minimized input of the example in Fig. 1:
The user visualizes, step-by-step, the triggering of the three
events required to induce F .

each event in the error report, she can decide if there is
any reason for concern. The user is asked for permission
to transmit the error report to the maintenance team
and, of course, she may accept or reject the request. In
the latter case, the error report and respective log are
deleted.

Developer Interface. The developer is notified once
error reports are received, in which case she is presented
with the list of error reports received. The developer
may select any of the available logs and replay the re-
spective failure-inducing (and minimized) input, exactly
the same way the user did before authorizing the trans-
mission of the error report. It is also worth mentioning
that replaying Ia instead of Iu, also has the potential
of substantially facilitating the search for the causes of
the failure. In fact, input minimization was originally
created with this purpose [16]. Finally, after fixing the
software error, the developer archives the error report.

5 Evaluation
In this section we describe our experiments which ad-
dress the following research questions:
• In practice, how far is the 1-dialog-minimal input
achieved by GUImin from the global minimum?
• Is GUImin applicable to real applications containing
real (reported) bugs?
• Is it worth adopting a minimization algorithm that
takes into account the structure of the input?
• How many tests are required to produce a 1-dialog-
minimal solution as in Definition 4?
• Does GUImin minimize sensitive information and,
does sensitive information remain in the minimized in-
put? In line with the latter, can GUImin be comple-
mented with previous obfuscation systems?
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5.1 Test Subjects

This evaluation uses six different applications, selected
because they are used to manage user sensitive private
information, due to their high popularity and availabil-
ity of real bugs. Our testbed includes two text editors,
jEdit [31] (2366 classes, 115 kLOC) and Lexi [32] (156
classes, 6901 LOC) and two mail clients, Columba [33]
(3356 classes, 108 kLOC) and Pooka [34] (854 classes, 48
kLOC), with real reported bugs [6, 35–37]. Our testbed
also includes the TV-Browser [26] tv guide (2491 classes,
110 kLOC) of the motivational example of this paper
and JKeyring (3 classes,1225 LOC), a password man-
ager created and maintained by us. In its earlier phases
JKeyring contained a bug triggered by the use of special
characters when adding a new entry to the key chain.

5.2 Configuration

The experimental platform used in this study is a ma-
chine running the MacOS X Lion operating system, with
a 2.5 GHz Intel Core i5 processor and 4 GB of memory.
Event Filtering. As mentioned in Sec. 4, the develop-
ers are responsible for configuring the event mask of the
recorder. Thus, for this evaluation, we configured it to
filter several types of events that do not trigger any ap-
plication behavior. We analyzed each of the benchmarks
in this evaluation to determine which types of event do
not trigger any reaction in the respective GUIs. The rea-
son for this is that we do not want to pollute the mea-
surements that we are about to present, with events that
cannot possibly influence the triggering of a failure. For
example, the subjects described in Sec. 5.1, do not react
to events such as MouseMoved and, this type of event
fills the logs with millions of entries, even in short execu-
tions. The recording process of the execution scenarios
considered in this evaluation includes solely events that
contribute to the flow of the execution.
Log Size. The applications were used normally, while
monitored by the recorder, before the respective bugs
were triggered. For each of the six above-mentioned sub-
jects, the recorder logged approximately 1000 events.
The events logged are mostly MouseClicked and Key-
Typed events. Then we used GUImin to minimize the
content of the logs, in order to obtain a 1-dialog-minimal
input, as in Definition 4.
Repeated tests. If a test is equivalent to a previously
conducted one (the events to be replayed are the same),
it cannot possibly help the minimization process. For

example, if we split the input in two sublists of equal
size, the tests of ∆Min are the same as the tests of
greedy∇Min. Thus we uniquely identify each sequence
of events to be tested, to make sure that the same test
is not performed twice.

5.3 Results

In this section we present the results of the experi-
ments conducted. We start by assessing the minimality
of GUImin for the above-described subjects. Then, we
overview the performance of GUImin and compare it
against ddmin. Finally, we provide a quantitative and a
qualitative evaluation of the outputs of GUImin, in the
following sections.

5.3.1 Minimization Quality

In our experiments, we analyzed how far the 1-dialog-
minimal input achieved by GUImin is from the optimal
solution, that is, the global minimum. To do so, we man-
ually analyzed the bugs described in Sec. 5.1, at the
source code level, to understand how they are triggered.
Then, we calculated what the smallest possible list of
events is that can induce the respective failures. This en-
abled us to conclude that, in all of our experiments, the
1-dialog-minimal input achieved by GUImin coincided
with the global minimum. However, it is important to
note that GUImin guarantees a 1-dialog-minimal input
and not a global minimum input.

5.3.2 Scalability

Figure 8 presents the elapsed time of GUImin for the
scenarios specified in Sections. 5.1 and 5.2. The GUImin
algorithm took at most 45 minutes to complete. Further-
more, except for the TV-Browser subject, GUImin took
under 25 minutes to complete.

These results highlight the main difference between
minimizing graphical-based input and textual-based in-
put. To test a sequence of graphical input events, we
have to trigger each event at a time, in the correct
order. Furthermore, the target widget may require a
non-negligible time interval to become visible (e.g. if
it belongs to a different window). This is a different and
slower paradigm than minimizing textual based input,
and for this reason, GUImin requires minutes to com-
plete, instead of seconds. Nevertheless, as mentioned in
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Fig. 8. Time (in minutes) required by GUImin to minimize the
logs of 1000 events, of each benchmark presented in Sec. 5.1.
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Fig. 9. Comparing the elapsed time (in minutes) of GUImin
against ddmin, for each benchmark presented in Sec. 5.1 and
for smaller log sizes (100 events). The y-axis is in log scale.

Sec. 4, users are not required to wait for GUImin to fin-
ish because GUImin is meant to run during idle periods.
Therefore we consider these elapsed time results to be
reasonable.

The TV-Browser experiment was by far the most
time consuming. The graphical user interface of TV-
Browser has a lot fewer text areas than the other five
subjects. Therefore, in the TV-Browser’s experiment,
Iu is mostly composed of mouse events. As a conse-
quence, the recorder does not frequently group recorded
events, meaning that there are more widget dialogs with
fewer events, instead of fewer containing more logged
events. This also explains why the jEdit and Lexi took
the least amount of time. Knowing that these two sub-
jects are text editors, the widget dialog representing
the main text input area contains most recorded events.
Larger clustering of events logged within widgets, means
less widget dialogs (whereas the opposite is to have one
logged event for each widget dialog). Intuitively, if |Wu|
gets smaller, WMin works faster. This particularity is
analyzed with more detail further in Sec. 5.3.3.

We also performed a second experiment, on a
smaller scale, to compare GUImin against ddmin, for
graphical-based input. The goal was to validate our
claim that ddmin is likely not to scale in typical scenar-
ios. We performed this experiment for the same subjects
but with a substantially smaller input: approximately
100 events. This is because ddmin requires an unreason-
able amount of time to minimize inputs composed by

1000 events. The results are shown in Fig. 9. Note that
the y-axis is in log scale. The completion time of ddmin
is at least 1 order of magnitude greater than GUImin’s.
For example, in the Columba test, ddmin required more
than 3 hours to complete. Although the minimization
process is supposed to take place during idle periods
of the user’s machine, the completion time required by
ddmin may well exceed those periods if a larger amount
of input is recorded. The fact that ddmin required hours
to minimize such small logs, suggests that ddmin is not
suitable to minimize the usual large logs, composed of
thousands of events.

5.3.3 Quantitative evaluation

Figure 10 depicts, for all six benchmarks, the input size
reduction obtained as the sequence of tests progresses,
in order to demonstrate GUImin’s potential to minimize
error reports.

TV-Browser. This program required 78 tests to
achieve a 1-dialog-minimal input. The majority of the
minimized input was trimmed in the first 10 tests. Once
the first invocation of WMin finishes, there are no tests
for WEMin to perform. The vertical line represents the
beginning of the loop at lines 3 to 8 of Algorithm 3. The
TV-Browser was the subject that required more tests
and consequently was the subject for which GUImin
took more time. This is an example of a test case in
which |Wu| is closer to |Iu|. Thus, a larger and more
complex data structure is generated by the recording
procedure (see Algorithm 1).

Email Clients Executing an email client is likely to
generate a significant amount of key typed events, un-
like TV-Browser. Typically, a balance between mouse
operations and key events is expected. Mouse operations
are used to browse the application and the recipients,
whereas key events are used to compose messages.

Fewer tests are required to achieve a 1-dialog-
minimal input for these email applications. The Key-
Typed events that are used to compose the message con-
tent are grouped in the corresponding text area widget
dialogs. Thus WMin has less widget dialogs to minimize.
We can observe this by comparing it with the plot of TV-
Browser: the last phase of the minimization, highlighted
by the vertical line in the plots, starts a lot earlier for
the mail clients.

In the Pooka subject, no tests are performed in the
last phase. Hence, the vertical line in the plot of Pooka
coincides with the last test performed. This is because,
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Fig. 10. Plots showing the file size reduction with each test performed by GUImin, on all 6 benchmarks. The y axis is in log scale.
The x axis shows three scales: 0-15 for the leftmost plots; 0-30 for the middle plots; 0-80 for the rightmost plots. The points in each
plot, represent the tests in which the input size was reduced.

as mentioned earlier, our implementation of GUImin
keeps track of all tests already performed, which was
the case for the last phase of this experiment.

Text Editors These subjects are examples of scenarios
in which |Wu| is considerably lower than |Iu|. Thus they
are more likely to be less demanding to WMin. Given
that the bugs in these subjects are graphical based,
GUImin is able to complete its procedure resorting to
fewer tests, as we can see in the jEdit and Lexi plots
of Fig. 10. In both cases, a single test minimized 99%
of the input. Like in the case of Pooka, few or no tests
were executed in the last phase, for the same reasons.

F-inducing text area The JKeyring subject is impor-
tant in this evaluation, not only because of the poten-
tially sensitive input it manages, but also because it is
the only subject in our evaluation in which F is triggered
by the content of a text area. Consequently, WEMin is
required to minimize such content.

5.3.4 Qualitative Evaluation

The previous section shows that GUImin is capable of
minimizing up to 99% of the user input. However, it is
important to evaluate whether the minimized informa-
tion was indeed private information and, most impor-
tantly, whether Ia contains sensitive information.

We manually analyzed our 6 benchmarks to access
the information in the recorded logs that could be con-
sidered sensitive and we found the following types of
sensitive information:
– Identity Information (II);
– Credential Information (CI);
– Location Information (LI);
– Behavioral Information (BI);
– Confidential Data (CD).

II CI LI PBI CD
jEdit 21 0 12 0 1137
Lexi 21 0 12 0 1091

Columba 269 15 252 34 767
Pooka 62 15 36 14 891

TV-Browser 0 0 8 213 0
Jkeyring 271 676 0 0 0

Table 1. How many bytes of each category are found in the logs
of the user input Iu, for each benchmark.

II CI LI PBI CD
jEdit 0 0 0 0 0
Lexi 0 0 0 0 0

Columba 205 0 204 0 0
Pooka 0 0 0 0 0

TV-Browser 0 0 0 0 0
Jkeyring 0 1 0 0 0

Table 2. How many bytes of each category are found in the logs
of the user input Ia, for each benchmark.

Before Minimization. Table 1 shows the number of
instances of each type of information found within the
recorded logs of our subjects.
• The jEdit and Lexi applications were used to edit
a confidential (CD) text (1137 and 1091 bytes, respec-
tively), signed with the author’s name (II ) and affilia-
tion (LI ).
• It is normal for mail clients to be used to ex-
change messages and to include features such as address
books, calendars and mail server authentication proce-
dures, amongst others. The messages exchanged using
Columba and Pooka totaled 767 and 891 bytes of confi-
dential data, respectively. Behavioral information (BI )
was also found in the messages and in the interaction
between the user and the calendar. Furthermore, the
messages were also signed with the author’s name (II )
and affiliation (LI ) and the address book of Columba
loaded contacts from a csv file containing 205 bytes of
identifiable information and 204 bytes of location infor-
mation. Finally, the mail server authentication dialogs
discloses credentials of the user (CI ).
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• TV-Browser asks the user for her location (LI ) and
also for information such as favorite movies, shows, ac-
tors amongst others. The execution also involved the
subscription of channels, browsing TV shows schedules
and more, which totaled 213 bytes of behavioral infor-
mation (BI ).
• Finally, JKeyring manages user credentials, namely
<username , password> pairs. This test resulted in 271
bytes of Identity Information (II) and 676 bytes of Cre-
dential Information (CI).

After minimization. Table 2 clarifies whether the min-
imized input Ia still contains such types of information.
As mentioned in Sec. 5.3.1, GUImin achieves the global
minimum in these six test subjects, meaning that Ia

includes only the steps-to-reproduce F . In the test sub-
jects of jEdit, Lexi, Pooka and TV-Browser, the steps-to-
reproduce are completely innocuous, therefore GUImin
was able to minimize 100% of the sensitive information
in the logs. Unfortunately, Columba and Jkeyring re-
quire sensitive information to reproduce F and for this
reason GUImin was unable to minimize every byte of
sensitive information, leaving 30.59% of sensitive infor-
mation in the log of Columba and less than 1% in the
log of JKeyring.
• In the case of Columba, the bug is located in the
contacts import wizard: the user browses the file system
and selects a csv file containing her contacts. The bug is
triggered if that file is malformed. Knowing that the csv
file is external and is not graphical-based input, GUImin
is not used to minimize its content. The csv file contains
identity and location information, such as name, email
and street address.
• The JKeyring application attempts to estimate the
quality of the password inserted by the user, to in-
form her whether the password is strong. To do that,
JKeyring iterates the password and checks if the dec-
imal reference of each character is contained in pre-
determined ranges (e.g. if 48 ≤ c ≤ 57 then c is a digit),
thereby counting the occurrences of each type of char-
acter (uppercase/lowercase, digits, letters, special char-
acters) in the password. In earlier versions of JKeyring:
i) an uncaught exception is thrown if a character is not
contained in any of the pre-determined ranges; ii) the
ranges were too restrictive at first, causing JKeyring to
throw an exception when certain characters (that should
be valid) are inserted.

By inserting one “out of range” character: i) all di-
alogs between the user and JKeyring are minimized by
WMin except for the last; ii) WEMin minimizes every

character except for the F-inducing one. This means
that Ia reveals one character of the password.

In both of these cases, GUImin cannot be used to
minimize the remaining sensitive information. However,
our system allows for the integration with existing ob-
fuscation systems.

5.4 Integrating with Obfuscation Systems

We integrated GUImin with an obfuscation system, to
test whether they can complement each other: GUImin
minimizes plenty of sensitive graphical-based informa-
tion that obfuscation systems do not (see Sec. 3), and
obfuscation systems are capable of obfuscating the re-
maining input that may still include some sensitive in-
formation. The Columba and JKeyring subjects are par-
ticularly interesting for this part of the evaluation, con-
sidering that GUImin does not minimize the csv failure-
inducing file of Columba, nor the failure-inducing char-
acter left in a text field of JKeyring. On the other hand,
the state-of-the-art obfuscation systems [5–8, 10] have
the potential to obfuscate those inputs by replacing
them with alternative failure-inducing inputs.

Amongst all the systems described in Sec. 3 we chose
our previous work REAP [10]. To perform symbolic ex-
ecution on graphical-based applications we resorted to
JPF-AWT [38]. We created a module in our system that
automatically creates, after the minimization process,
the script file required to execute JPF-AWT. Given this,
we were able to integrate REAP with our system. We
configured REAP with the parameters that provided
the best results, privacy-wise, in the respective paper,
that is the REAP-BAG algorithm within an unbounded
search [10].

After GUImin minimized most sensitive informa-
tion in Iu, REAP was invoked to obfuscate: i) the con-
tent of the csv file; ii) the remaining character of the
last password inserted by the user. After the obfusca-
tion, there was no sensitive information left disclosed in
the logs. More specifically, there was no similarity (a.k.a.
residue [6]) between the original comma-separated val-
ues of the file and the values used to replace them and
the remaining character of the JKeyring test was suc-
cessfully replaced by an alternative F-inducing charac-
ter.

According to the leakage metric proposed by the
work of Castro et. al. [5], the amount of bits revealed
was less than 1%, for the Columba test case and less
than 5% for the JKeyring test.
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6 Discussion: Privacy and Utility
The proposed system guarantees that a 1-dialog-
minimal input is found but, as mentioned in the pre-
vious section, it does not quantitatively evaluate what
was minimized and what was left in the error report.
However, the proposed system ensures that the user can
verify, in a step-by-step fashion, each input that is be-
ing sent in the report, thereby visualizing exactly what
a person with access to the error report will visualize.
We believe that this enables the user to perform her
own qualitative evaluation of the information included
in the error report and consequently to decide whether
her information is safe. Note that the only data in the
error report is the replayable input Ia.

One important question is whether the proposed sys-
tem trades utility for privacy:
– By further informing the user on what information

is being sent in the error report, we may dissuade
her from submitting the error report, thereby com-
promising the system’s utility and consequently the
software’s maintenance. However, we argue that util-
ity should not be achieved at the cost of privacy loss.

– On the other hand, by further informing the user
on what information is in the error report, we may
show/assure the user that her data is safe, thereby
persuading her to authorize the transmission of the
error report, thus increasing system utility.

– Given an F-inducing input, the maintenance team’s
job is easier than if it had not been provided with
the steps to reproduce F as well as the minimized
input Ia (instead of Iu).

Similarly to all previous privacy enhancing error report-
ing systems, the proposed system regards only user in-
put. Although there may exist other sources of sensitive
information besides user input (e.g. GPS coordinates or
IP address). The system would have to be extended to
handle the programming calls that provide this informa-
tion to the applications.

Furthermore, in order to guarantee the reproduction
of the observed failure for all possible scenarios, one has
to log all sources of non-determinism besides the input
of the user. However, since we are solely concerned with
privacy, other sources of non-determinism besides user
input are generally not privacy sensitive and were not
considered.

7 Conclusions and Future Work
This work proposed a new privacy-enhancing system
that addresses the privacy concerns of error report-
ing systems. State-of-the-art systems do not cope with
graphical input. Consequently, a substantial amount of
private information may get included in the error re-
ports sent to the maintenance teams.

The proposed system minimizes the disclosure of in-
put in error reports of GUI-based applications. Previous
input minimization algorithms are likely to underper-
form when minimizing graphical-based input, as they
disregard the structure of the graphical user interface.
We presented a new input minimization algorithm, op-
timized for applications with graphical user interfaces.
The results of the conducted experimental study sug-
gest that GUImin is suitable to minimize input in GUI-
based applications. We also implemented integration ca-
pabilities that allow for input obfuscation systems to be
employed alongside our system. The proposed system
is scalable and the user is not required to wait for the
procedure to complete, as this system is meant to be
used during idle periods.

In the future we will explore the application of the
proposed system in mobile devices, as their interfaces
are purely graphical. Furthermore, we could even envis-
age a user interface for our system where pending error
reports and the corresponding user input can be shown
to the user and she can determine whether to let the
input minimization continue or whether the privacy ob-
tained so far is enough for the error report to be sent.
Our performance results below support this approach
since the biggest privacy gains are obtained in the ini-
tial phase of the minimization process.
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Appendices
A Proof of Proposition 1

Proof. The last two invocations of GUImin are
to CMin and WMin. These last two procedures end
(each) with an invocation to greedy∇Min with n =
1, performing Replay(Ea, wi.E ,F), ∀wi ∈ Wa and
Replay(Ea, εi,F),∀εi ∈ Ea : εi.next 6= ∅, respectively.
GUImin finishes when count’≥ count, which is only true
when:

Replay(Ea, εi,F) = false, ∀εi ∈ Ea : εi.next 6= ∅ (1)

Replay(Ea, wi.E ,F) = false, ∀wi ∈ Wa (2)

which follows Definition 4. ut

B Proof of proposition 2

Proof. The LazyMin has a best case scenario of

log2(|L|) (3)

in which L is the list passed as a parameter. The best
case scenario for GUImin is when the first invocation to
WMin reproduces F in all tests performed, thus total-
ing:

log2(|Wu|) (4)

tests performed, which leaves one widget dialog wi in-
side one container dialog. Then WEMin is invoked to
minimize the logged events held by wi and is successful
in every test:

log2(|wi.E|) (5)

The final verification invokes CMin that has no tests
to perform and WMin again, performing one successful
test, totaling:

log2(|Wu|) + log2(|wi.E|) + 1 (6)

ut

C Proof of Proposition 3
Remark. For a matter of simplicity, we denote with C∗

the set of all container triggering events in I∗. Each

recorded widget wi ∈ Wu contains at least one recorded
event εi ∈ Eu and each recorded event is contained by
only one widget wi ∈ Wu. Analogously, each container
opened by each εi ∈ Cu contains at least one recorded
widget wi ∈ Wu. Therefore, the following equation is
always valid:

|Iu| = |Eu| ≥ |Wu| ≥ |Cu| (7)

Proof. The worst possible cost of invoking any of the
algorithms CMin, WMin and WEMin is consistent with
the scenario in which every test fails to reproduce F ,
thereby totaling the amount of tests performed to:

2 + 4 + 8 + . . .+ 2|L| = 4|L| (8)

where L is the list passed as a parameter to LazyMin.
Therefore, the cost of lines 2 and 3 in Algorithm 3 is at
most:

4|Wu|+
i=1∑

i≤|Wu|

4|wi.E| (9)

Then, the proposed algorithm attempts to guarantee
1-Dialog-minimality. The worst possible scenario for
this phase is when CMin and WMin are unsuccessful
to minimize a single dialog except for the very last
εi complement test of WMin, such that εi.next 6= ∅:
Replay(Ea, εi,F) = true. Then, such scenario repeats
itself until we are left with only one widget dialog. If we
use Equation 7 to upper bound |Cu| to |Wu|, we get:

4|Wu|+
i=1∑

i≤|Wu|

4|wi.E|+
i=0∑

i<|Wu|

8(|Wu| − i) (10)

As already mentioned, we get E∗ by concatenating wi.E :
∀wi ∈ W∗, thus we can simplify to:

4|Wu|+ 4|Eu|+
i=0∑

i<|Wu|

8(|Wu| − i) (11)

Again we use Equation 7 to upper bound |Wu| to |Iu|:

4|Iu|+ 4|Iu|+
i=0∑

i<|Iu|

8(|Iu| − i) (12)

Finally, the rightmost component of Equation 12 is a
triangular number multiplied by 8, thus:

4|Iu|+ 4|Iu|+ 8 |I
u|(|Iu|+ 1)

2 (13)

that we can simplify to:

4|Iu|2 + 12|Iu| (14)

ut


