
Proceedings on Privacy Enhancing Technologies ; 2016 (2):155–174

Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian
XPIR : Private Information Retrieval for Everyone
Abstract: A Private Information Retrieval (PIR)
scheme is a protocol in which a user retrieves a record
from a database while hiding which from the database
administrators. PIR can be achieved using mutually-
distrustful replicated databases, trusted hardware, or
cryptography. In this paper we focus on the later set-
ting which is known as single-database computationally-
Private Information Retrieval (cPIR). Classic cPIR pro-
tocols require that the database server executes an algo-
rithm over all the database content at very low speeds
which impairs their usage. In [1], given certain assump-
tions, realistic at the time, Sion and Carbunar showed
that cPIR schemes were not practical and most likely
would never be. To this day, this conclusion is widely
accepted by researchers and practitioners. Using the
paradigm shift introduced by lattice-based cryptogra-
phy, we show that the conclusion of Sion and Carbunar
is not valid anymore: cPIR is of practical value. This is
achieved without compromising security, using standard
crytosystems, and conservative parameter choices.

Keywords: cPIR, Lattice-Based Cryptography

DOI 10.1515/popets-2016-0010
Received 2015-08-31; revised 2015-11-19; accepted 2015-12-02.

NOTE: XPIR is free (GPLv3) software and avail-
able at https://github.com/XPIR-team/XPIR and the
evolution of the underlying fast-lattice library at
https://github.com/quarkslab/NFLlib

1 Introduction
Homomorphic encryption has followed a curious path
in the history of cryptography. Since the very begin-
ning of public key cryptography, it has been presented
as a holy grail able to provide the most incredible and
powerful applications. Yet, even with the recent break-

Carlos Aguilar-Melchor: Univ de Toulouse, IRIT, France,
E-mail: carlos.aguilar@enseeiht.fr
Joris Barrier, Marc-Olivier Killijian: CNRS, Univ de
Toulouse, LAAS, France
Laurent Fousse: Univ de Grenoble, LJK, France

throughs due to lattice based cryptography, homomor-
phic encryption is almost never used in practice.

Among the potential applications of homomorphic
encryption, one of the oldest and most emblematic
is single-database computationally-Private Information
Retrieval. With such a protocol, a user can retrieve a
record out of n from a database, without having to
reveal which one to the database administrators (se-
curity being derived from computational hardness as-
sumptions). A trivial way to obtain such privacy is to
simply download the whole database and to dismiss the
elements the client is not interested in.

Private Information Retrieval (PIR) schemes aim
to provide the same confidentiality to the user (with re-
gard to the choice of the requested element) that down-
loading the entire database does, with sub-linear com-
munication cost. PIR was introduced by Chor, Goldre-
ich, Kushilevitz, and Sudan in 1995 [2]. They proposed
a set of schemes to implement PIR through replicated
databases that provide users with information-theoretic
security, so long as some of the database replicas do not
collude against the users.

Note, however, that PIR schemes do not ensure
database confidentiality: a user can retrieve more than
a database element using a PIR scheme without the
database being aware of it. A PIR scheme ensuring that
users retrieve a single database element with each query
is called a Symmetric PIR (or SPIR) scheme. Generic
transformations exist from PIR to SPIR but this is be-
yond the scope of this paper (see [3]).

Performance in initial PIR schemes was evaluated
when retrieving single-bit elements from a database.
All recent protocols [4–6] are evaluated when retrieving
multi-bit elements from a database. This setting was
initially called Private Block Retrieval [2] but nowadays
both terms are used interchangeably. All-or-nothing--
disclosure-ofsecrets (ANDOS) protocols (e.g. [7]) are
simply multi-bit SPIR protocols.

In this paper, we focus on PIR schemes that do
not need the database to be replicated, and whose se-
curity is based on the computational security of a cryp-
tographic algorithm, which are usually called single-
database computationally-Private Information Retrie-
val (cPIR) schemes. This replaces the assumption of
having replicas which do not collude by a computational
security assumption. However, this comes at a price.

https://github.com/XPIR-team/XPIR
https://github.com/quarkslab/NFLlib

XPIR : Private Information Retrieval for Everyone 156

1.1 Performance Issues in cPIR

A major issue with computationally-private information
retrieval schemes is that they are computationally ex-
pensive. In order to answer a query, a database must
process all of its entries. If a protocol does not process
some entries, the database will learn that the user is not
interested in them. This would reveal to the database
partial information on which entry the user is interested
in, and therefore, it is not as private as downloading the
whole database and retrieving locally the desired entry.
The computational cost for a server replying to a cPIR
query is therefore linear on the database size. More pre-
cisely, in [8], Lipmaa proves that using a particular rep-
resentation, this lower bound is slightly sub-linear (in
O(n/log(log(n))). Moreover, most of the schemes have
a very large cost per bit in the database, a multiplication
over a large modulus. This restricts both the database
size and the throughput shared by the users and thus,
limits their usage for many databases as well as for other
applications such as private keyword search [9].

In NDSS’07, Sion and Carbunar presented a paper
on cPIR practicality [1]. They showed that the existing,
number theory based, cPIR protocols were not prac-
tical and that it was always faster to send the whole
database than to compute a cPIR reply. Indeed, basing
the security of the underlying number theoretic encryp-
tion schemes on the hardness to factor a 1024 bit RSA
modulus, one could not expect a cPIR scheme to pro-
cess the database at more than a megabit per second.
Sending the whole database over most of the current
Internet connections is at least an order of magnitude
faster (and generally two orders of magnitude in local
area networks). They also argued that this performance
gap would continue as long as usual laws on computa-
tional power and bandwidth evolution do.
Focused issue. As in [1], we tackle the issue of prac-
tical usage of cPIR. The main performance metric we
use is the time needed for a client to retrieve an element
privately, supposing one or more clients are querying a
server with a commodity-CPU and can exchange data
with the server at various speeds (xDSL, FTTH, etc.).
We consider that the client is ready to pay a significant
overhead for privacy, and compare the time needed us-
ing different approaches (trivial full database download,
number-theory based cPIR, lattice-based cPIR).

1.2 Related Work

As number theoretic approaches failed to provide effi-
cient cPIR schemes, some alternatives were explored [4–

6], but all of them were based on non-standard problems
and have been broken [10–14].

The schemes of Aguilar et al. [5] and Trostle and
Parrish [6] represent the state-of-the-art in efficient pri-
vate information retrieval, allowing to reach processing
speeds of hundreds of megabits per second on high-end
CPUs and up to one gigabit per second on GPUs [15].
These works total about eighty citations, and have been
used as a fundamental building block (or as a bench-
mark) in major and recent venues such as Usenix Se-
curity [16] (2011), NDSS [17, 18] (2013, 2014), and
PETs [19–22] (2010, 2012, 2014). This paper presents
a potential replacement for them with some additional
features: security is based on a standard problem, Ring-
LWE [23], with conservative parameters choices; multi-
gigabit per second processing throughput on an average
CPU; and an auto-optimizer to simplify its usage by
non specialists.

A noteworthy exception to this list of schemes is
the cPIR scheme of Gasarch and Yerukhimovich [24]
which relies on a lattice-based standard encryption
scheme [25]. However, this underlying encryption
scheme has an extremely large expansion factor (large
ciphertexts encoding only a few bits) that compromises
the efficiency of the cPIR scheme.
Alternatives to cPIR. Oblivious RAM (ORAM) pro-
tocols, which are used to access (and write on) a
database privately, can handle efficiently databases of
many Terabits. However, ORAM and PIR protocols are
used for different applications and cannot be exchanged.
Indeed, in the ORAM setting the database content is en-
crypted data outsourced from the user. ORAM cannot
be used directly to privately download elements from a
public database which is the paradigm of PIR, for exam-
ple accessing a movie database à la Netflix. In ORAM
the data in the server is encrypted and user must know
this key to access the data and to hide their access pat-
terns. With PIR, no shared secret is needed, i.e. each
user has an independent key whose objective is just to
hide his own choice. ORAM is thus able to deal with
larger databases but can only be used in personal or
group-with-a-shared-key settings (e.g. for an encrypted
and shared filesystem in the cloud).

It is possible to transform an ORAM protocol into
a PIR protocol using a hardware module (e.g. see [26]).
When using a trusted hardware module is an acceptable
constraint, such protocols allow clients to send expres-
sive queries (interpretable by the module) to define the
elements to be retrieved and have very low overhead.

XPIR : Private Information Retrieval for Everyone 157

Instead of using a trusted hardware module, one can
build efficient PIR protocols using replicated databases
as shown by Chor, Goldreich, Kushilevitz, and Su-
dan [27] and by Olumofin and Goldberg [28]. If repli-
cating a database ont not colluding servers is an ac-
ceptable constraint, such protocols allow to retrieve data
privately with very small computational and communi-
cation overhead.

Interesting recent work by Devet and Goldberg [22]
uses replicated-database PIR and cPIR jointly to
achieve high performance results without compromising
security when databases collude. This paper requires the
database to be replicated, and therefore is very different
from our setting. The proposed protocol uses Aguilar et
al.’s cPIR scheme [5] as a building block, replacing it
with our protocol would result in a performance boost
and provide a secure instance of their construction.
Works considering only computational or com-
munication costs. In the Oblivious Transfer set-
ting [29], the objective is to limit the computational
cost for the user and the database without considering
communication efficiency. The whole database is sent
encrypted to the client together with some extra infor-
mation, with the added benefit that the server is guar-
anteed that the client can retrieve information about
one element only per query.

Some cPIR protocols focus only on communi-
cation efficiency without considering computational
costs. In [30], a communication efficient cPIR proto-
col, from an asymptotic perspective, is built based on a
fully-homomorphic scheme. The underlying encryption
scheme we use is just an additively-homomorphic build-
ing block in [30] but our objective is to allow users to re-
trieve elements faster than the trivial solution of down-
loading the entire database in realistic settings. This
implies taking into account computational and commu-
nication constraints.

In [31], an implementation of a fully-homomorphic
encryption based scheme is given. The contribution of
this scheme is on the communication overhead, which
they show to be very small in some settings (when
multiple database elements are retrieved). Computa-
tional costs are considered but this paper does not give
a contribution in this sense that the database is at
best processed at 20Kbits/s which is below the process-
ing throughput of classic, number-theory based, cPIR
schemes. As already noted, sending the whole database
can be done at a higher throughput in most settings
allowing to retrieve an element privately much faster.

Finally, in [32] Kiayias et al. present a new cPIR
scheme based on a number-theoretic homomorphic en-

cryption scheme. The communication performance is
extremely interesting, but again computational perfor-
mance is still an issue. Adapting such work to lattice-
based encryption schemes would be of great practical
and theoretical interest.

1.3 Contributions and Roadmap

First and foremost this paper shows that cPIR is a us-
able primitive in a large variety of settings, with stan-
dard security assumptions and conservative parameter
choices. Section 4 is dedicated to proving this asser-
tion. This contradicts the main result from Sion and
Carbunar [1], which was the reference on cPIR usabil-
ity. The analysis of Sion and Carbunar remains correct,
but one of their main assumptions (that cPIR would be
based on number-theoretic schemes) does not need to
be true any more, thanks to the arrival of lattice-based
homomorphic encryption schemes.

Second, we provide a highly efficient and usable
Ring-LWE cPIR implementation. From a fundamental
point of view our contribution is to show that Ring-
LWE operations required for reply generation bene-
fit extensively from pre-processing, using adequately
known techniques (Fast Fourier Transform-like rep-
resentation) and introducing new ones (Newton quo-
tient pre-computation). From a practical point of view
the implementation we provide offers multi-gigabit pro-
cessing throughput on a commodity CPU, and an
optimizer to automatically tune the system (hard-
ware/network/application/security).

In Section 2, we present the basic tools a reader
should be comfortable with in order to understand the
rest of the paper: homomorphic encryption, which al-
lows to compute over encrypted data; the objectives and
the classical approaches to obtain private information
retrieval protocols; and a special setting of cPIR called
private keyword searching, in which instead of retriev-
ing elements by their index as usually done in cPIR we
retrieve elements based on the keywords they are as-
sociated to. In Section 3, we first present an overview
of our protocol and describe the optimization process,
and then we present our fast Ring-LWE based cPIR, the
proposed algorithmic optimizations and performance re-
sults for the basic operations: query generation (encryp-
tion), database importation, reply generation, and reply
extraction (decryption). In Section 4 we present a more
high level performance analysis of our library. The ob-
jective of this section is twofold: show how our library
behaves on a large variety of settings and prove that

XPIR : Private Information Retrieval for Everyone 158

cPIR is better than trivial PIR in most cases, contra-
dicting the main result from Sion and Carbunar [1]. The
main part of the paper ends with a Conclusion.

2 Basic Tools

2.1 Homomorphic Encryption

Additively homomorphic encryption schemes are de-
fined by four algorithms: KeyGen, to generate keys; Enc
the encryption function; Dec the decryption function;
Add which takes as input two ciphertexts α1, α2 with
corresponding plaintexts db1, · · · , dbn and outputs a ci-
phertext α with corresponding plaintext db1 + . . .+dbn;
and Absorb which takes as input some data db and a
ciphertext of m and outputs a ciphertext of m ∗ db. If
m = 0, db is erased, and if m = 1 it is absorbed.

From the security point-of-view, one must achieve
indistinguishability against chosen-plaintext attacks
which corresponds to the highest security an homomor-
phic encryption scheme can achieve (see e.g. [33]). This
property offers strong guaranties on ciphertext secrecy
as proved by Goldwasser and Micali [34].

We use the Ring-LWE based homomorphic encryp-
tion scheme presented in [30]. We describe it below, in
order to justify some of our performance results. As
in [30] we present the symmetric version and then ex-
plain how an asymmetric scheme can be derived.
Notations: Zq denotes the set of relative integers mod-
ulo q. If S is a set x ← S represents a uniform sample
from S, for a distribution χ, x← χ represents a sample
following that distribution. Rq = Zq[X]/ < XN + 1 >
represents the polynomials with coefficients over Zq such
that after each operation they are reduced by division
modulo XN + 1. Note that we use uppercase N for the
polynomial degree (which is an unusual notation) to dis-
tinguish the polynomial degree from the number of el-
ements in the database we will be dealing with in the
cPIR protocol. Unless specified otherwise, all scalar op-
erations are mod q. For two polynomials a, b ∈ Rq, a+b

is the polynomial obtained by adding their coefficients,
a∗b is the usual polynomial multiplication reduced mod-
ulo XN + 1, and a ⊗ b is the polynomial obtained by
multiplying their coefficients coordinate-wise.

SKE.ParamGen takes as an input a security pa-
rameter k and a maximum number of additions ha

and outputs a set of parameters. For performance rea-
sons we force among the outputs of this function N ∈
{1024, 2048, 4096} and q to be a multiple of 60-bit or

A symmetric Ring-LWE encryption scheme

SKE.ParamGen(1k, ha):
Input: A security parameter k; A number of additions ha
Output: A modulus q; A polynomial degree n; A distribution χ

SKE.KeyGen(q,N):
Input: A modulus q; A polynomial degree N
Output: A polynomial in Rq = Zq [X]/ < XN + 1 >
1. Output: s← χ

SKE.Encrypt(s, db):
Input: A secret key s in the polynomial ring Rq ; A message db
in the polynomial ring Rq with coefficients in [0..t[
Output: A ciphertext (a, b) ∈ R2

q

1. a← Rq , e← χ

2. e′ = e⊗ tv + db where tv ∈ Rq has its coefficients set to t
3. b = (a ∗ s) + e′

4. Output: (a, b)

SKE.Decrypt(s, (a, b)):
Input: A secret key s ∈ Rq ; A ciphertext (a, b) ∈ R2

q

Output: A plaintext db ∈ Znt
1. e = b− (a ∗ s)
2. Output: db = e mod t

SKE.Add((a1, b1), (a2, b2)):
Input: Two ciphertexts, encryptions of db1 and db2
Output: A ciphertext that decrypts to db1 + db2 mod t
1. Output: (a1 + a2, b1 + b2)

SKE.Absorb(db, (a, b)):
Input: A polynomial m ∈ Rq with coefficients in {0..t − 1}; A
ciphertext (a, b) ∈ R2

q , encryption of a constant polynomial m
Output: A ciphertext which decrypts to db ∗m
1. Output: (db ∗ a, db ∗ b)

30-bit primes such that each prime is congruent to 1
modulo 2N in order to be able to use the NTT (see
Section 3.2.2). This function generates parameters fol-
lowing the approach of [35].

This scheme is exactly the public-key encryption
scheme presented in [28]. It ensures indistinguishability
against chosen plaintext attacks if the standard lattice
problem Ring-LWE is hard (Theorem 3 and Lemma 4
of [28]). The hardness of Ring-LWE is one of the major
assumptions used to build lattice-based cryptosystems,
and since its presentation at Eurocrypt’10, it has be-
come probably the most standard and used one.

As the scheme is randomized, ciphertexts must be
larger than plaintexts. We note F > 1 the associated
expansion factor (ciphertext bitsize divided by plaintext
bitsize). As a reference, Figure 1 below presents some

XPIR : Private Information Retrieval for Everyone 159

Our Ring-LWE public key encryption scheme

ParamGen(1k, ha) = ParamGen(1k, ha)
SKE.Decrypt(sk, (a, b)) = SKE.Decrypt(sk, (a, b))
Add((a1, b1), (a2, b2)) = SKE.Add((a1, b1), (a2, b2))
Absorb(db, (a, b)) = SKE.Absorb(db, (a, b))

KeyGen(q,N):
Input: A modulus q; A polynomial degree N
Output: Three polynomials in Rq = Zq [X]/ < XN + 1 >
1. sk ← SKE.KeyGen(q,N)
2. pk = (pk1, pk2)← SKE.Encrypt(s, 0)
3. Output: ((pk1, pk2), sk)

Encrypt(pk = (pk1, pk2),m):
Input: A public key pk = (pk1, pk2) with pk1, pk2 in the poly-
nomial ring Rq ; A message db in the polynomial ring Rq with
coefficients in [0..t[
Output: A ciphertext (a, b) ∈ R2

q

1. Define χ′ as χ with a variance multiplied by N logN
2. u, e← χ, e′ ← χ′

3. Define tv ∈ Rq with all its coefficients set to t
4. a = pk1 ∗ u+ e⊗ tv
5. b = pk2 ∗ u+ e′ ⊗ tv + db

6. Output: (a, b)

plaintext and ciphertext sizes for different parameters
of our Ring-LWE based encryption scheme.

2.2 Private Information Retrieval

The basic security model for cPIR protocols is to ensure
an indistinguishability (i.e. semantic security) property.

Definition 1 (cPIR Protocol). A (Single-Database)
Computationally-Private Information Retrieval Proto-
col is a probabilistic polynomial-time (PPT) algo-
rithm Γ, that for input k outputs the description of
a polynomial-time randomized algorithm Q(·, ·) (the
query generator), and two polynomial-time determinis-
tic algorithms, R(·, ·) (the reply generator), and X(·, ·)
(the reply decoder), with the two following properties:
(Correctness) For any number of elements n, index i,
and database contents {db1, ..., dbn}, and any (q, s) ←
Q(i, n), X(R(q, {db1, ..., dbn}), s) outputs dbi.
(Privacy) For any positive integers n > i1 > i2, any
polynomial-time probabilistic attacker A, there exists a
negligible function (i.e. asymptotically smaller than any
inverse polynomial) in k, ε such that,

Pr(A(α, i1, i2,Ppir) = i|Q← Γ[k]; (α, s)← Q(i, n)) < 1/2+ε(k)

i being randomly chosen among {i1, i2}, and Ppir be-
ing the set of all the public information about the PIR
protocol.

Parameters Max Sec Plaintext Ciphertext F

(1024,60) 97 ≤ 20Kbits 128Kbits ≥ 6.4
(2048,120) 91 ≤ 100Kbits 512Kbits ≥ 5.12
(4096,120) 335 ≤ 192Kbits 1Mbit ≥ 5.3

Fig. 1. Parameter sets for our Ring-LWE encryption scheme.
Ciphertexts are made of two polynomials. The first parameter
defines the number of coefficients per polynomial and the sec-
ond the number of bits per coefficient (stored in 64bit registers).
From these values, ciphertext sizes can be easily deduced. Max-
imum theoretical security is only attained if enough noise is in-
cluded in the ciphertexts and the noise generator matches this
security. Plaintext size is slowly (logarithmically) reduced if we
want to do a lot of Sum operations. Similarly, the expansion fac-
tor stays very close to its optimum.

In this paper, we use a simple cPIR protocol whose ba-
sic idea is the one of [27], using the performance im-
provements on multi-bit database elements of [7] (but
without taking into account the zero-knowledge proof
ensuring symmetric privacy that is also proposed in [7]),
described hereafter. It can be used with any additively
homomorphic encryption scheme. The protocol can be
formally described as follows:

Security is defined with an indistinguishability
game: no attacker can in practice distinguish queries
for any two database elements. When used for a cPIR
protocol, an encryption scheme with indistinguishabil-
ity against plaintext attacks ensures that two queries for
two different elements of a database are indistinguish-
able, using a standard hybrid argument (see [7] for a
formal definition and proof).

With this simple approach, query size is n times the
size of a ciphertext and reply is roughly ` × F , F be-
ing the expansion factor of the encryption scheme used.
To reduce query size it is possible to aggregate them
by groups of size α and obtain a database with dn/αe
elements of size `×α. It is also possible to use this pro-
tocol recursively. Due to space restrictions the recursive
version of this algorithm is presented in the Appendix.
In practice, recursion takes as parameter an integer d
called dimension and results in a scheme in which the
client only needs to send d × n1/d query elements (ci-
phertexts) and the reply will be of size (roughly) F d×`.
For example if F = 2 and we have a database with one
million elements, it is possible to: send a query of 106

ciphertexts and get the database element with an ex-
pansion factor of 2 (d = 1, no recursion); send a query
of 2 × 1000 ciphertexts and get the database element
with an expansion factor of 4 (d = 2); send a query of

XPIR : Private Information Retrieval for Everyone 160

Basic cPIR Protocol
Setup (user):
1. Set up an instance of the cryptosystem with k security bits

Query Generation to retrieve element i0:
1. For i from 1 to n generate the i-th query element qi as

- A random encryption of zero if i 6= i0
- A random encryption of one if i = i0

2. Send the ordered set {q1, · · · , qn} to the database

Reply Generation:
1. Note dbi the database elements, ` the bit size of the dbi and

`0, the bits that can be absorbed in a ciphertext
2. For i from 1 to n

- Split dbi in chunks of `0 bits noted dbi,j for j ∈
[1..ceil(`/`0)]

3. For j from 1 to ceil(`/`0)
- Compute Rj := Sumni=1Absorb(dbi,j , qi)

4. Return R = (R1, . . . , Rceil(`/`0))

Reply extraction:
1. Decrypt the coordinates of the reply vector R and recover

dbi0 as the concatenation of the decrypted chunks

3 × 100 ciphertexts and get the database element with
an expansion factor of 8 (d = 3); etc.

The reader is referred to [7] for a more elaborated
description of these techniques and a justification of cor-
rectness. It is possible to make different choices on how
the database is split and to change the cryptographic pa-
rameters used on each level to improve the performance
of recursion. For a complete description, generalization
and optimization of this process, the reader is referred
to [36] which proposes many interesting variants. In our
library, we have decided to stick to the basic approach
for recursion although it would be interesting to develop
other optimizations, such as those proposed in [32, 36].

2.3 Private Searching

The basic idea of private keyword search [37] is that the
database can arrange its elements by grouping them us-
ing keywords. With this technique, users can get, using
a cPIR protocol, all the database elements that match
a given keyword. In this case, the query size is propor-
tional to the amount of possible keywords D (Dictio-
nary size) and the computational cost for the server may
change as a database entry that is associated to multiple
keywords will be copied once in front of each keyword.
Thus, the computational cost will be the database size
times the average amount of keywords a database ele-
ment matches.

It is also possible to use this to filter streamed
data based on private criteria [38]. The idea is to build
ephemeral keyword-based databases for each message
passing. These databases have null elements everywhere
except in front of the keywords that the passing message
matches. The computational cost to process a packet
is therefore its size times the number of keywords it
matches (null elements cost nothing to process). With
such an approach it is possible to build a filter that out-
puts for every passing message an encryption of zero
when the message does not match the keyword and an
encryption of the message when it does.

We use this approach to build a sniffer over a giga-
bit link in Section 4 that is only interested in messages
corresponding to a given IP address. In this sniffer, the
streamed messages are the packets on the network, the
keywords are the set of IP addresses used in a local area
network, and a packet matches the IP-keyword corre-
sponding to its source and destination address. The snif-
fer’s code includes a cPIR query selecting the IP that is
being observed and thus even analyzing the code of the
sniffer it is not possible to learn which is the IP address
as the chosen keyword is hidden in the cPIR query.
Important note: After processing an input, the filter al-
ways outputs a ciphertext and it is not possible to dis-
tinguish useful outputs from encryptions of zero. If we
store all these results we will do not better than a trivial
PIR based equivalent (which would store unencrypted
all the input data). The main interest of using cPIR, is
that it is possible to compress the output so that encryp-
tions of zero are packed and useful outputs preserved,
even if it is not known which of the outputs are useful.
These techniques are beyond the scope of this paper
(see [39] for the most recent proposal on the subject),
but it is possible to have efficient filters which have only
a small overhead with respect to an unencrypted filter
that would store only the keyword-matching data.

3 Proposed protocol

3.1 Overview and auto-optimization

An overview of the proposed protocol is described be-
low. We say we are in server-driven mode if the server
enforces a given set of PIR parameters (aggregation
and recursion depth) and encryption parameters. In this
case, only steps 1 (conditional jump on server-driven
mode), 4 (choice of the element) and 5 (retrieval) of the
protocol are executed. By opposition, if we are in client-

XPIR : Private Information Retrieval for Everyone 161

PIR client-server protocol (overview)

Input: Recursion range (d1, d2), Aggregation range (α1, α2), en-
cryption parameters list EncParams, upload/download usable
bandwidth (U,D), target optimization function ftarget, index of
the element to retrieve i (pot. undefined), boolean serverDriven
Output: Chosen database element
1. If serverDriven is true

- Server: Send mandatory parameters to the client
- Client: Check if the parameters give enough security
- Jump to step 4

2. If performance results do not exist for all parameters in
EncParams

- Client and Server: Run the Performance cache algorithm
→ Performance results

3. If multiple PIR and encryption parameters are possible
given the input constraints

- Client and Server: Run the Optimization algorithm
Else use the only possible choice
→ Optimal parameters for this setting given the constraints

4. If i is undefined
- Client and Server: Run the Choice algorithm
→ Chosen index i

5. If the chosen encryption algorithm is no cryptography
- Client: Download database, keep element of index i

Else
- Client: Run the Query gen. algorithm and send result
- Server: Run the Reply gen. algorithm and send result
- Client: Run the Reply extraction algorithm and return

result
→ Chosen database element

driven mode, the client will make an optimization to de-
termine the best possible parameters given the setting
and input constraints (steps 2-3), and use them (steps 4-
5). By default we suppose that optimal parameters have
already been found and we are in server-driven mode.

The algorithms run in this protocol have self ex-
planatory names but for completeness they are infor-
mally described in the appendix.

In XPIR there is a set of predefined encryption
schemes: no cryptography (trivial PIR with a full
database download), Paillier [40], and Ring-LWE (see
Section 2.1). Each of the encryption schemes has a pre-
defined list of possible parameters for security varying
from 80 to 256 bits (following NIST recommendations
for factoring-based cryptography for Paillier and [35] for
lattice-based schemes).

By default, the target function for optimization
is the round-trip time of the retrieval which, us-
ing self-explanatory variable names, is given by the
function max(queryGenerationT ime, querySending-
T ime) + max(replyGenerationT ime, replySending-
T ime, replyDecryptionT ime). This is due to the fact

that query generation and sending are pipelined, then
the server waits until it has the complete query and
reply generation, sending and decryption are pipelined.
We have pre-defined some other target functions such
as minimum ressources (which takes the sum of all
the values) and a weighted equivalent called cloud cost
(which gives a dollar value to each CPU millisecond
and a to each bit transmitted and gives the cost of the
operation). The target function can be chosen on the
command-line.

3.2 Fast Ring-LWE based cPIR

Our contribution on performance is focused on two
points: an efficient NTT-CRT (see Section 3.2.1) rep-
resentation and associated transforms; and the usage of
Newton quotients for query elements (see Section 3.2.2).

The idea is that most of the computational costs in
query generation, reply generation, and reply extraction
come from polynomial multiplications. For example, for
reply generation, computational costs are overwhelm-
ingly concentrated on the absorption phase of the basic
cPIR protocol described in Section 2.2. With our Ring-
LWE scheme this phase can be written as follows.

For j from 1 to ceil(`/`0)
Compute Rj = (

∑n
i=1 dbi,j ∗qi,1,

∑n
i=1 dbi,j ∗qi,2)

noting qi,1, qi,2 the two polynomials forming the
query elements and all sums and products being in Rq

(polynomials reduced modulo Xn + 1 and coefficients
modulo q).

In NTT-CRT representation, the computational
cost of multiplying two polynomials passes from O(n2×
log2 q) to O(n× log q). Such a representation is not new
and our contribution is on performance as the time re-
quired to get the NTT-CRT representation is divided by
a factor 10 and the time required to compute the poly-
nomial products once in that representation is divided
by a factor 2 to 3.

We are not aware of the usage of pre-computed New-
ton coefficients in lattice-based cryptography. The idea
is that when multiplying two polynomials, the associ-
ated scalar products must be reduced mod q which
increases the computational cost of these basic oper-
ations considerably. In the reply generation algorithm
the products are always of the form “some data trans-
formed into a polynomial” times “a query element”.
Thus, query elements are used in many multiplications.
Pre-computed Newton quotients for re-used multipli-
cands (such as the query scalars) allows to replace the

XPIR : Private Information Retrieval for Everyone 162

usual “multiply and divide by the modulus” by a specific
modular multiplication algorithm with two integer mul-
tiplications and a conditional subtraction (eliminating
thus the costly division).

3.2.1 The NTT-CRT representation and transforms

In XPIR we use a mixed NTT-CRT representation to
reduce computational costs: Number-Theoretic Trans-
form (NTT) for polynomials [41] and Chinese Remain-
der Theorem (CRT) for integers. We call the part of
XPIR allowing to apply the transforms and compute
efficiently on this representation NTTTools. The homo-
morphic encryption library of Halevi and Shoup [42] im-
plements the encryption scheme of Brakerski, Gentry
and Vaikuntanathan [43]. They provide an object they
called Double-CRT which provides NTT and CRT rep-
resentation of polynomials as NTTTools does. We will
compare to this work in this section.

Using the NTT and the CRT to accelerate polyno-
mial multiplications is not new and will not be described
in detail in this paper, we will just focus on the impact
of their usage. The reader is for example referred to [42].
Using an NTT representation allows to compute poly-
nomial multiplications with a linear cost in N instead
of quadratic for the trivial algorithm. Transforming a
polynomial into NTT form and back can be done in
quasi-linear speed (in O(N logN)). The CRT represen-
tation ensures that the multiplication cost is also lin-
ear in log p, instead of quadratic for a trivial algorithm.
Transforming an integer into CRT representation and
back has a quadratic cost in log p.

Figure 2 illustrates pre-processing performance,
which corresponds to importing data into NTT-CRT
form polynomials, and processing, which correspond to
fused multiply and add (FMA) operations. The data
splitting and CRT (if done) operations are pretty fast,
and the main performance bottleneck in pre-processing
is computing the NTT in our polynomial ring. Tests cor-
respond to the same laptop that will be used in Section 4
using all of its cores with multi-threading.
Implications on cPIR performance These values
have an impact in cPIR reply generation. Pre-processing
corresponds to database element importation and pro-
cessing to reply generation. When launching a server,
database elements can be imported into RAM in NTT-
CRT form at roughly 5Gbits/s. After importation, the
database is processed during the reply generation phase
at roughly 20Gbits/s. If data is quickly obsolete (e.g.

Parameters (1024, 60) (2048, 120) (4096, 120)
Input size (per poly) 20Kbits 100Kbits 192Kbits

Pre-processing (per poly) 4.2us 19us 38us
Pre-processing (PIR tput) 4.8Gbps 5.2Gbps 5Gbps
Processing (per poly) 0.57us 2.3us 4.8us
Processing (PIR tput) 18Gbits/s 22Gbits/s 20Gbits/s

Fig. 2. PIR pre-processing and processing time and throughput
on a MSI GT60 laptop with a Core i7-3630QM 2.67GHz, for dif-
ferent crypto parameters. Input sizes are the maximum plaintext
sizes given in Figure 1. Pre-processing of a polynomial corre-
sponds to NTT and CRT transforms, the main operation during
database importation. Inverse transforms give similar results. Pro-
cessing corresponds to a fused multiply and add (FMA), the main
operation during reply generation. This operation’s throughput
will vary a lot depending on memory saturation: in this setting,
if all operands and result change on each operation, processing
time is multiplied by three with respect to the given values. Here
we used the same memory transfers as in our PIR scheme: for a
given thread only one operand varies most of the time. Through-
put is given with respect to input data: in pre-processing for each
polynomial (Input size) bits are treated; in processing two polyno-
mials must be processed to deal with (Input size) bits.

IPTV streams) the main bottleneck is getting the data
into NTT-CRT form and processing is limited by the
importation phase to roughly 5 Gbits/s. For compar-
ison purposes, using a Paillier based cPIR the same
computer is able to process the database at 1Mbit/s
(for a modulus of 2048 bits giving 112 bits of secu-
rity). Again, for comparison purposes, in trivial PIR (i.e.
full database download) processing a bit corresponds
to sending it to the client and thus the database is
processed at the available download throughput (e.g.
a 100Mbit/s FTTH line). Thus trivial PIR will gener-
ally be faster than Paillier based cPIR but slower than
our Ring-LWE implementation.
Comparison with [42] The Double-CRT object pro-
posed in [42] is much more elaborated than NTT-
Tools, has many supplemental functions needed for
fully-homomorphic encryption and is more flexible as
polynomial degrees. On the other side, the simplicity
of our setting allows some interesting choices. First we
use Harvey’s NTT algorithm [44] which is very fast but
requires polynomials degrees to be powers of two. The
primes potentially forming the moduli are defined stati-
cally enabling various compile-time optimizations. And
Double-CRT is built over NTL which in turn is built
over GMP, whereas we have built our library without
using any external library which results in a big perfor-
mance improvement.

XPIR : Private Information Retrieval for Everyone 163

Parameters (1024, 60||44) (2048, 120||132)

Pre-processing (Double-CRT) 178us 1100us
Pre-processing (NTTTools) 16us 78us
Processing (Double-CRT) 5us 27us
Processing (NTTTools) 2.3us 9.6us

Fig. 3. Pre-processing (NTT and CRT) and processing (multi-
ply and add) times with Double-CRT and NTTTools. Modulus
size must be a multiple of 44 in Double-CRT (this allows them
to do double precision floating point operations for modular re-
ductions). We chose moduli sizes to be the closest possible. Tests
are on a single-core (as Double-CRT gave a segmentation fault
with openmp) of a MSI GT60 laptop with a Core i7-3630QM
2.67GHz. Pre-processing is much faster with NTTTools (x10),
mainly due to Harvey’s NTT algorithm (which is usable as we
restricted ourselves to powers of two for polynomial degrees). In
processing the gap is smaller (between x2 and x3) but NTTTools
still performs better.

HElib supposes that the user defines the homomor-
phic computations he needs to do and then a routine
defines a complete FHE context for him. In particular
the user cannot choose to just use one or two primes, so
we had to tweak the code to do comparable tests.

Performance for polynomial multiplications is no-
ticeably improved (between x2 and x3) with NTTTools,
as Figure 3 shows. The gap is larger for pre-computation
(x10). The reason for this is our choice to restrict poly-
nomial degrees to powers of two, which opens up the
usage of nice algorithms such as the one in [44].

Finally, memory usage is much lower with NTT-
Tools, which is not surprising given that we are in a
simpler setting. For polynomials of degree 1024 and 60-
bit coefficients, the memory footprint in NTTTools is of
8 Kbytes by default and twice that with pre-computed
quotients. Using Double-CRT it is harder to evaluate
the footprint as some data (such as the FHE context)
is shared, but for large amounts of Double-CRT objects
memory usage increases linearly at 40Kbytes per object.

NTTTools and the schemes we developed over it
will thus be an interesting replacement of Double-CRT
for those looking for fast basic polynomial computation
on the ideal setting or simple homomorphic operations.
Those looking for more advanced operations should use
Double-CRT.

3.2.2 Pre-computing Newton Coefficients

The basic scalar operations in XPIR are done modulo
a 60-bit integer. To multiply two 60-bit integers mod-

Parameters (1024, 60||44) (2048, 120||132)

Double-CRT 3.4us 20.2us
NTTTools-noQuotients 29us 115us
NTTTools 1.8us 7.3us

Fig. 4. Multiplication times in seconds for different parameters
(see Figure 3), on a single-core of a MSI GT60 laptop with a
Core i7-3630QM 2.67GHz. Note that Double-CRT has much
better performance without quotient pre-computation. This is
due to the choice of 44-bit moduli which allows floating point
and rounding based modular multiplications. With quotient pre-
computation we have x2 to x3 better performance with NTT-
Tools. Without quotient pre-computation performance would very
bad as we cannot use floating point operations as DoubleCRT
can do for 44 bit moduli, but in our protocol we always manage
to have such quotients.

ulo a given p, one option is to use a 64 × 64 to 128-bit
multiplication (which is not a basic operation in usual
64-bit instruction but has a reasonable cost) and then
retrieve the remainder of the division by p. As the prod-
uct is in a 128 bit variable, this integer division is pretty
costly. In [44], David Harvey attributes to Shoup a very
interesting approach to modular multiplications when
the same multiplier is used many times.

The idea is to pre-compute Newton quotients for
specific operands that are used many times. Thus, we
compute for a given y a scaled approximation to y/p.
This is done in our setting by putting y in a 128 bit
variable, multiplying it by 264 (with the shift operator
<<) and doing a costly integer division by p. This will
give us y′, the first 64 bits of y/p (multiplied by 264). The
idea is that the costly operation from the multiplication
(the integer division) is pre-computed once and then,
when we need to do a multiplication xy mod p we will
use a special algorithm taking as input x, y, y′ which
gives us the result at a lesser cost. The algorithm is
pretty simple.
1. q = xy′/264

2. r = xy − qp mod 264

3. ifr > p : r = r − p

This algorithm requires just two integer multipli-
cations a shift and a conditional subtraction which is
extremely fast when compared to the usual integer di-
vision required. Of course if y is used only once there
is no gain as one more integer multiplication than in
the trivial algorithm is done and an integer division is
done during the pre-computation. However if y is used in
many multiplications the speedup is considerable. Cor-
rectness is proven in [44].

XPIR : Private Information Retrieval for Everyone 164

NTTTools provides functions to pre-compute the
data needed for this algorithm for a polynomial. When
such data is available, polynomial multiplications are
done in 2n (normal) integer multiplications instead of n
modular multiplications. Of course the performance of
an application depends on how often the same operands
are used. The encryption scheme we built over NTT-
Tools, only needs to do two polynomial multiplications
to encrypt, and a single polynomial multiplication to de-
crypt, always using the same multipliers: the secret and
public keys. In the cPIR protocol, the reply is generated
by constantly multiplying database element chunks with
query elements. In most settings, each query element is
multiplied many times by different chunks. Both the se-
cret key and the queries use the pre-computation mech-
anism. In practice, there is not a single multiplication in
our code which does not pass through this process and
in almost every case pre-computation is amortized tens
or hundreds of times.

3.2.3 Encryption and Decryption Performance

Note that the homomorphic encryption scheme result-
ing from the modifications we propose in this section is,
from a security point of view, equivalent to the scheme
described in Section 2.1 as all the modifications are pub-
lic and reversible for attackers.

The basic idea is that the polynomials that usually
describe the inputs (secret key, randomness, messages)
are pre-processed by transforming them into NTT-CRT
representation. With such a transformation, encryption
and decryption operations can be done by coordinate-
wise multiplication and additions which leads to very
high performance results.

Describing how each algorithm is transformed by
the usage of the NTT-CRT representation is of little in-
terest and pretty straightforward. There are only two
important points. The first is that each time there is
an uniform polynomial in the encryption scheme algo-
rithms we do not need to do change the representation.
Indeed the NTT, CRT and inverse NTT, inverse CRT
are one-to-one functions that map a finite space to itself
and thus are permutations of their domain. Thus taking
a uniform element and changing the representation to
NTT-CRT is exactly the same as just taking a uniform
element. The second is that each time there is a prod-
uct to compute, one of the two terms is long-lived (the
secret key, the public key, or a constant). It is therefore
always possible to use rapid modular multiplications us-
ing pre-computed Newton quotients.

 102
 231

 500

 1000

 1500

 2000

 2500

60 120 180 240

T
im

e
 (

u
s)

Modulus bitsize

Enc
Dec

Fig. 5. Encryption and decryption times for polynomial degree
4096 and varying modulus size, on a MSI GT60 laptop with a
Core i7-3630QM 2.67GHz. Note that encryption costs increase
linearly in the modulus size but also the size of the associated
ciphertexts and plaintexts. The large jump in decryption costs
comes from the usage of GMP for moduli strictly above 60 bits.

Having these two ideas in mind it is easy to see that
encryption requires only the computation of three NTT-
CRT transformations and some basic operations. This
is specially true as all the arithmetic operations we do
are coordinate-wise and use a CRT representation al-
lowing to handle numbers through the basic instruction
set. This is not true for decryption. At first sight, the
most costly operation in decryption will be the inverse
NTT. It is, if we use a modulus of 60 bits, but not for
larger moduli. Indeed, it is important to notice that all
the arithmetic operations use the basic instruction set
except the separation of the noise and the message in
the decryption function. If we are using more than one
modulus, in order to separate the noise and the mes-
sage, we need to get the value of each coordinate in non
CRT representation (in CRT representation there is no
simple euclidean division). This is done by multiplying
the elements of the CRT tuple by what we call lifting
coefficients. This operation is done without modulus re-
duction and requires a few multiplications of log2 q bits
elements. For this operation we need to use a multi-
precision library. In practice the decryption cost is mul-
tiplied by a factor 10 as soon as we start using such a
library. Figure 5 shows this evolution.

This is the only point in which we use GMP on
the NTTLWE object (by using the poly2mpz function
of NTTTools). In practice this results in a very signif-
icant performance drop. Note however that for a mod-
ulus of 60 bits, performance is surprisingly high. We
are able to generate a query at 700Mbits/s and decrypt

XPIR : Private Information Retrieval for Everyone 165

an incoming reply at 5Gbits/s. This is quite indepen-
dent of the polynomial degree as the costs of encryption
and decryption increase linearly in it but ciphertext and
plaintext size too. In practice, a laptop can send queries
and receive and decrypt at max available bandwidths in
all settings, using a single core. With a modulus of 120
bits, encryption scales well as it is possible to generate
a query at 850Mbits/s, but decryption suffers from the
CRT lifting and the reply can "only" be decrypted at
710Mbits/s.

In practice, decryption is only the bottleneck for
very large moduli (e.g. 480 bits) or if we are on special
settings such as connected through a Gigabit line. Small
moduli (at most 120 bits) are however generally chosen
by the optimizer because of query size. Indeed, for mod-
uli beyond 120 bits the increase in query size (that must
be sent on a limited bandwidth line), adds more time
to the round-trip time (or total ressources spent) than
what is gained in reply expansion factor or cPIR reply
generation throughput.

4 Performance and Use-Cases
In this section, we analyze the performance of XPIR
using two metrics: latency and user-perceived through-
put. The latency measurement is the round-trip time
from the moment the client starts generating the cPIR
query to the moment it has finished to decrypt the reply.
User-perceived throughput is the throughput (measured
in bits per second) at which the user is able to get the
requested element after decryption.

We will consider two types of settings for our
databases: static databases in which pre-processing
of the database elements can be done; and dynamic
databases whose contents are ephemeral (TV Streams,
sensor data, etc.) and which cannot be pre-processed
ahead of time. Pre-processing is independently executed
for each element at speeds that vary from 5Gbps (for a
high-end laptop) to 10Gbps (for a high end server) as
shown in Section 3.2.1. A database is thus considered
static if the life-time of an element is well larger than
its conversion time (e.g. 1-2 seconds for a 10Gbit movie)
and the elements are known early enough with respect
to the first cPIR transaction in which they will be used.
Use-cases To illustrate the versatility of our library, we
highlight performance values with four use-cases com-
bining dynamic/static settings and throughput/latency
goals. For high throughput applications we use a Netflix-
like server (relatively static data) and a sniffer that ob-

fuscates what he is interested in (dynamic data). For
low latency applications we use a Match.com-like on-
line dating database server (relatively static data) and a
stock-market information service (dynamic data).Note
that finding the best application for a fast cPIR
protocol is beyond the scope of this paper. The
presented use-cases are chosen because they give stress-
ful settings for cPIR, not because cPIR is the only or the
best choice to solve privacy issues in these settings. Our
goal is to show that cPIR is better than trivial PIR and
that using it is feasible in huge databases with strong
constraints on client obtained throughput.

4.1 Experimental setting

To show that our library is usable by everyone for many
applications we use commodity hardware in almost all
the settings. Our cPIR Server runs on a MSI GT60
laptop with a Core i7-3630QM 2.67GHz (mobile), and
8GB of DDR3 RAM. As our library is able to process
database content very fast, the data storage medium
considerably influences performance, specially if this
data is pre-processed. In our evaluation, we use two me-
dia: RAM (100Gbit/s access), or an OCZ Vertex 460
SSD (4Gbit/s access). The contiguous read speed of our
SSD is sufficient to feed the server in all of the dynamic
data settings. If data is static, we are able to process
it quite faster than what a usual SSD disk can offer.
If the database is in RAM this is of course not an is-
sue, but in some applications such as the Netflix-like
server, the database is huge and does not fit in RAM.
We discuss this issue in the associated Section. FTTH
and ADSL lines were simulated by introducing appro-
priated waiting timers in the client and server which are
in fact connected by a gigabit line.
Security In most of our performance results, the opti-
mizer found that the best parameters for the Ring-LWE
scheme were (2048, 120) or (1024, 60). According to the
parameter generation presented in Section 2.1, the for-
mer set of parameters is able to provide 91 bits of secu-
rity, and the latter 97. To generate randomness for our
scheme, we use Salsa20/20 [45] (Salsa20/20 is able to
provide up to 256 bits of security), and thus even if a
set of parameters for Ring-LWE is able to provide theo-
retically more security, 256 is thus an upper bound (this
is the standard maximum security usually considered).

Security scales extremely well in lattice-based cryp-
tography. For a constant moduli, security (in attacker
operations) increases exponentially with the polynomial
degree and computational costs increase only (almost)

XPIR : Private Information Retrieval for Everyone 166

linearly. For example, if we use parameters (4096, 120)
(instead of (2048, 120)), the theoretical security can go
up to 335 bits. Again, in our implementation security
is bounded to 256 bits. In such a high security setting,
query generation, reply pre-computation, reply gener-
ation, and reply decryption have a cost that is just
increased by a factor 2 (more precisely 2.18 for pre-
computation and 2 for the rest). With such parameters,
each ciphertext can contain more data (almost twice),
and thus the security increase comes at very little cost.
We will present the costs with the high security (4096,
120) parameter set in the first figure, and then let the
optimizer choose the best parameters, with a minimum
security set to 91 bits to be able to use the (2048, 120)
parameters which are a good compromise between ci-
phertext size, reply generation throughput and security.
Paillier The results presented in this section correspond
to cPIR with Ring-LWE and trivial PIR (to show the
interest of cPIR over full database download). Using
Paillier always gave worse performance, and therefore
does not appear on the different figures.

4.2 High Throughput on Static Databases

High-throughput applications (i.e. applications requir-
ing a high user-perceived reception throughput) only
make sense if the database elements are big enough, if
they are very small and quickly sent we consider the
essential issue is latency which will be studied in Sec-
tion 4.4. We therefore consider here only databases with
files going from 10Mbit and up. Our experimental re-
sults showed user-perceived throughput is independent
of file sizes when they were in that range, henceforth
the lines in this Figure are valid for any file size greater
or equal to 10Mbit.

Figure 6 shows the user-perceived throughput
achieved using our library on the experimental setting
laptop. The red line shows performance when no re-
cursion is done (i.e. when query size is proportional to
n). This line was obtained using the best parameters
for throughput (which were given by the optimizer): no
recursion, no aggregation, and Ring-LWE cryptography
with parameters (2048, 120). With these parameters, ci-
phertext size (and thus query element size) is 500Kbits
and the expansion factor of encryption is F ' 5. There-
fore, in order to get an element at a user-perceived
throughput of 2Mbits/s actually 10Mbits/s of band-
width will be used. This setting is the most favorable
from a throughput point of view, but query size can be
a problem when the number of elements n grows, as we

100000

1e+06

1e+07

1e+08

1e+09

1e+10

10 100 1000 10000 100000

T
hr

ou
gh

tp
ut

(b
/s

)

n number of files in the db

128kbps-mp3
400kbps-720p/30fps

800kbps-720p/60fps

2Mbps-1024p

d=1
d=2

d=1 256-bit sec.
Trivial FTTH PIR

Fig. 6. User-perceived throughput of XPIR streaming static data
on a MSI GT60 laptop with a Core i7-3630QM 2.67GHz. Triv-
ial PIR over a 100Mbits/s FTTH line (thick black line) is be-
tween ten and two hundred times slower than cPIR. The red
filled (91 bits security) and green dash-and-dotted (256 bits
security) lines give throughput when no recursion is done (i.e.
database is processed as a one dimension array) and the blue
dashed line with one level of recursion (i.e. database is processed
as a two dimension array). The horizontal lines correspond to the
needed throughput to see a movie in 1024p (2Mbps), 720p 60Hz
(800Kbps) and 720p 30Hz (400Kbps), or to listen to a 128Kbps
audio file. Performance on a server with a better processor (e.g.
ten-core Xeon E7-4870) roughly doubles and caps at that level as
RAM bandwidth is saturated.

will see in Figure 7. Note that this line is pretty close to
the straight line defined by 15/n Gbps (more precisely
values slowly drift from 19/n Gbps to 14/n Gbps for
large n values).

The green line shows the same results as the red line
in a higher security setting (256 bits security). As noted
previously this has almost no impact on processing but
doubles the size of each ciphertext and query size (as we
will see in Figure 7). Note that the scale is logarithmic,
and thus even if the difference with the red line is very
small, in this setting performance is roughly 10% worse.

The blue line shows performance with one level
of recursion (i.e. when the database is seen as a two-
dimensional

√
n ×
√
n array and query size is propor-

tional to 2
√
n). Recursion results in a significant compu-

tational overhead for small databases as the database is
processed a first time resulting in an intermediate data-
base of size F

√
n, that we have to process again before

getting the final reply. In our implementation the cost of
processing this database is roughly ten times the usual
cost. If

√
n >> 10F computation over this intermediate

database is negligible as it is small enough with respect
to the initial database. Indeed, the Figure shows that
the overhead of a level of recursion fades out as n grows.

XPIR : Private Information Retrieval for Everyone 167

0.01

0.1

1

10

100

1000

10000

100000

1e+06

10 100 1000 10000 100000

La
te

nc
y

(s
)

n number of files in the db

ADSL 1/20 Mbps - d=1
ADSL 1/20 Mbps - d=2

ADSL - d=1 256-bit sec.
FTTH 100/100Mbps - d=1
FTTH 100/100Mbps - d=2

FTTH - d=1 256-bit sec.

Fig. 7. Initial latency before the user starts to receive streaming
data (mainly due to query generation and transmission time to
the server). There is no initial latency for trivial PIR. Thin lines
are for ADSL and thick lines for FTTH. Colors and line styles
are associated to the same settings as in Figure 6. The results
highlight that latency grows linearly in n in dimension 1 and in√
n in dimension 2, and that the main bottleneck is the available

upload bandwidth.

Initial latency: Even if obtaining the best user-perceived
throughput is the goal of an application, an important
parameter is how much the user will have to wait un-
til he starts receiving the requested stream. Figure 7
highlights the benefit of using a level of recursion for
databases with many elements. This is specially true
when n ≥ 1000 as we have seen that this implies almost
no computational overhead in this case. On a FTTH
line, latency will be below ten seconds (if we use d=2
for n ≥ 1000). An ADSL line has limited upload band-
width, henceforth latency ranges from 5 to 500 seconds.
Therefore, in such a case, one level of recursion should
definitely be used, even if it implies a significant over-
head for the reply generation. The strange behaviour of
the FTTH lines for a small number of elements comes
from the fact that we use TCP sockets to transmit the
queries and for very small time values, buffering and
windowing gets in the way. It is possible to tune the
low level sockets or to use UDP to have a more linear
behaviour if needed.
The Netflix Use-case The Netflix movie database is
composed (more precisely was composed in 2009 ac-
cording to the Wikipedia page for Netflix) of 100.000
movies that are stored as static files and can thus be
pre-processed for performance improvement. H.265 -
High Efficiency Video Coding (HEVC) is the forthcom-
ing standard for video-streams compression[46, 47]. The
attained compression levels with this codec enable to
watch 720p streams at bit-rates between 400Kb/s for
30fps and 800Kb/s for 60fps and 1024p at 2Mb/s. A

typical bit-rate for audio streams is 128Kbps for quality
MP3s. These levels (128, 400Kbps, 800Kbps and 2Mb/s
are represented by horizontal lines on Figure 6). Please
note that we use this use-case as a simple example. For
the reader interested in an in-depth study of a private
Netflix-like application, please refer to [48].

Given the results of Figure 6, a Netflix-like server
based on XPIR allows a user to privately receive a
streamed movie with different trade-offs between pri-
vacy and quality. If the user is willing to receive a
720p-30fps video stream he can hide his choice
among 35K movies from the server. Of course a
computational trade-off is also possible, with 8K movies
and 720p-30fps eight percent of the server’s CPU is used
and thus it is possible to handle 12 users per processor.
Medium Access Issues: Obtaining experimental results
with databases of up to 10 Gbits was simple as they fit
in RAM. To obtain performance results with the largest
databases, we processed them in large chunks that did
fit in our RAM removing the disk transfer times for each
chunk. If we use our SSD disk to access the data and
take into account the transfer times, disk access is the
bottleneck and thus we obtain as performance result a
straight line at 2/n Gbps (our disk allows 4 Gbps ac-
cess and pre-computed data is twice larger than the ini-
tial data). In the use-case described, this would mean
that the maximum amount of movies among which the
choice is hidden would be reduced by a factor seven for
a given resolution. We consider though that in applica-
tions requiring large databases and throughput, such as
the Netflix use-case, the provider has high performance
disks. In order to match the computational performance
of our library it is possible to use for example two OCZ
Vertex RevoDrive PCIe SSD in RAID 0 which delivers
30Gbps read throughput, at roughly a cost of 1000$.
Multiple Users: Note that if data is accessed syn-
chronously for concurrent users, disk access
costs do not increase, so scalability is not an is-
sue. Thus, if for example if 12 users hide their choice
among 8K movies with quality 720p-30fps the server can
access the database at just eight percent of its process-
ing speed 15 ∗ 8/100 = 1.2Gbits/s so a commodity hard
disk is enough. For an excellent analysis of a private
Netflix use-case, the related CPU and I/O performance
trade-offs, see [48]. We also further discusses this in the
conclusion.

XPIR : Private Information Retrieval for Everyone 168

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

10 100 1000 10000 100000

T
hr

ou
gh

tp
ut

(b
/s

)

n number of files in the db

128kbps

400kbps

2Mbps

d=1
d=2

Trivial FTTH PIR

Fig. 8. User-perceived throughput of XPIR streaming dynamic
data on a MSI GT60 laptop with a Core i7-3630QM 2.67GHz.
Trivial PIR over a 100Mbits/s FTTH connection (thick black
line) is between five and fifty times slower than cPIR. The red
line gives throughput when no recursion is done (i.e. database is
processed as a one dimension array) and the blue line with one
level of recursion (i.e. database is processed as a two dimension
array). The horizontal lines correspond to the needed through-
put to see a movie in 1024p (2Mbps), 720p-60fps (800Kbps) and
720p-30fps (400Kbps), or to listen to a 128Kbps audio file. Per-
formance on a server with a better processor (e.g. ten-core Xeon
E7-4870) can be two to three times higher.

4.3 High Throughput on Dynamic Data

At first sight, dynamic databases are similar to static
ones apart that data cannot be pre-processed offline,
such as it is the case with IPTV for example. However,
they can have a large span of shapes and contents and
are not always a simple extension of static databases to
"infinite size" files. An exhaustive analysis of dynamic
databases is beyond the scope of this paper, but we
show two different settings : IPTV and a private sniffer.

The first setting is pretty simple : usual data
streams that cannot be pre-processed such as for IPTV.
Figure 8 presents the same results as 6 but with dynamic
data. As one can see, the user-perceived throughput is
roughly divided by six. For an IPTV like application,
a single processor can handle one hundred 720p-30fps
streams for 50 simultaneous clients (e.g. classical TV),
or five thousand such streams for a single client (e.g. a
large set of distant IP web cameras). The second setting
is more tricky, as the dynamic data elements are most
of the time null, and the non nulls can be very small.
We describe this setting in our second use-case.
The Private Sniffer Use-Case In this use-case we
suppose someone creates a sniffer that stores all the
packets that have a given source IP address, but wants
to ensure that nobody that would find the sniffer and
analyze its code could learn which IP the sniffer is inter-

ested in. Of course, it is possible to store every message
(as with trivial PIR) but, as described in Section 2.3,
using cPIR the storage is much more compact.

With this approach, a cPIR query is generated and
each query element is associated to a given source IP.
The first question we can ask is: how large can be the
IP range? Suppose we use either (1024, 60) parameters
or (2048, 120) parameters with Ring-LWE encryption.
Each query element is 128Kbit long in the former case
and 512Kbit in the latter. If we aim to cover a class B
network range (65535 addresses) the query size will be
1Gbyte in the former case and 4Gbytes in the latter.1

It is important to note that this query size is not some-
thing that must be sent regularly, for most sniffers it
will define how it behaves (it is an encrypted part of
the sniffing program) and used to store large amounts
of results in a local hard drive before being retrieved (of
course results can also be sent through the network).
This size does not affect performance either, as our re-
sults on processing throughput have proven to be inde-
pendent of how many elements the query has, as long is
it fits in RAM, which we assumed to be true.

For every packet the sniffer intercepts, he builds a
database such that each query element is associated to
a null element, except the query element corresponding
to the source IP of the intercepted packet which is asso-
ciated to the packet. Then the sniffer generates a cPIR
reply storing the reply in the disk using the compres-
sion techniques described in Section 2.3. The dynamic
database is thus pretty special as it is almost null and
the element to process will be often much smaller (be-
tween 320 bits and 12Kbits) than what can be absorbed
in a ciphertext (roughly 20Kbits for the smaller param-
eters and 90Kbits for the larger ones). A trivial imple-
mentation will thus not use all the power our library
can provide in other settings.

The red line in Figure 9 gives the throughput at
which the sniffer is able to process the intercepted pack-
ets. As packets are much smaller than classical plaintext
size, we chose the smallest cryptographic parameters
possible, i.e. (1024, 60). We consider that, after absorp-
tion, the ciphertext can undergo up to one thousand
sums (for operations such as insertion on a bloom filter,
etc.). Given the internal structure of our cryptosystem,
this implies a plaintext size of 15Kbits. If we generate

1 In fact, the IP range can be arbitrarily large if we associate
multiple IPs, or a hash of the IP to each query element. In that
case we will obtain packets from different IP sources and the size
of the query will determine the efficiency of the filtering done.

XPIR : Private Information Retrieval for Everyone 169

1

10

100

1G

10G

40 300 600 900 1500

T
hr

ou
gh

tp
ut

(M
b/

s)

Packet size

Buffered
paper distribution (no ACK)

paper distribution
Fixed packet sizes

Fig. 9. Packet processing throughput for the sniffer use-case
using XPIR on a MSI GT60 laptop with a Core i7-3630QM
2.67GHz. Trivial PIR performance does not make sense in this
setting. The red line, measures performance each packet size, in
bytes in the x-axis, independently (i.e. measuring performance
just processing 40 bytes packets, then measure performance
for 80 bytes packets etc.). The green line gives the processing
throughput when the traffic follows a classic bi-modal distribution
such as found in [49]. The purple line gives throughput for a traf-
fic for which we ignore packets of size below 60 bytes (basically
ACKs). The blue line gives performance if we wait for traffic to
fill buffers and only generate cPIR replies when enough informa-
tion has been collected to fill a ciphertext.

a cPIR reply for each 40 bytes incoming packet, most
of the space available in the resulting ciphertext will be
lost, but the cPIR reply generation operation will not
cost less (for null elements the operation is free, but
for small elements the operation costs as much as for
a complete plaintext). Thus, if we deal with packets of
400 bytes instead of 40, the cPIR reply generation costs
the same, but we process ten times more information.
As even for the largest sizes (we consider usual packet
sizes, up to the standard MTU (aximum Transmission
Unit), i.e. 1500 bytes), a packet always fits a plaintext,
the processing throughput is linear on the packet size.

If we consider a classic bi-modal distribution
(40% very small packets, 40% close to MTU packets,
20% in-between packets) such as those described in [49],
the sniffer is able process a link at 600Mbps (pur-
ple line). If we consider the sniffer is not inter-
ested in very small packets (ACKs mostly), it
can process a link at slightly over 1Gbps (green
line). If we buffer packets and do not generate a cPIR
reply until we have enough data from a given source IP
address to fill a plaintext, we can do much better. In
this case we can choose parameters giving better pro-
cessing speeds such as (2048, 120). In such a setting we
can process a link at roughly 3Gbps (blue line), for
parameters (2048, 120) if we buffer 90Kbits of data for

a given IP source before generating a cPIR reply (using
the higher security parameters we get almost the same
performance but with a query twice larger).

Of course, implementing a complete private search-
ing prototype would imply looking into other concerns,
such as making sure that other aspects (packet inter-
ception, compression function such as Bloom filters on
the output, etc.) are able to cope with this throughput,
but this is beyond the scope of this paper.

4.4 Latency on Static/Dynamic Databases

In this Section, we want to evaluate XPIR latency, i.e.
round trip time (RTT), in settings where data is static
or dynamic. Figure 10 shows the RTT achieved with
static data and Figure 11 with dynamic data. The x-axis
represents the size of the database ranging from 1Mb to
1Tb. The green line shows the request processing time
(RP), the red line shows the RTT with no network (i.e.
the client on the same machine as the server), and the
various blue lines represent the RTT with a FTTH net-
work for different values for n. While, when considering
throughput, the request processing and data importa-
tion were the most striving parameters, when looking
at RTT, performance results of a balance between reply
processing time and upload/download times.

It is very important to note that usual techniques in
cPIR such as aggregation and recursion (see Section 2.2)
are mandatory to keep RTT low. In Figure 10 we used
parameters (1024, 60) for the Ring-LWE cryptosystem
and thus query element size is 128Kb and F ' 6. For
n = 10000 and l = 1Mb, if no aggregation and no re-
cursion is used, sending the query (10000 ∗ 128Kb) over
the FTTH link takes 12.8 seconds and sending the re-
ply (6*1Mb) takes 0.06 seconds while generating the
query (at 2.2 Gbps) takes 0.05 second, processing it
(at 10 Gbps) takes 0.1 second and decrypting the reply
(at 5.6Gbps) takes about 1ms. Using recursion divides
query sending time by a factor 50 and has little impact
on the other times so it is clearly beneficial.

Using aggregation and recursion, when beneficial,
the optimizer can set the cPIR parameters in order to
transform the shape of a database with a high n value
into a database with a smaller n. This is why, on both
Figures, the higher is n the lower is the RTT. Indeed, the
shape of the database is transformed in order to lower
this parameter if a smaller n is more favorable. As one
can observe, the high n lines tend to approach the RTT
limit which is the RP line. The only difference between
static and dynamic databases lies in the request process-

XPIR : Private Information Retrieval for Everyone 170

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1M 10M 100M 1G 10G 100G 1T

T
im

e
(s

)

n.l size of the db

RP
RTT no network
RTT FTTH n=1

RTT FTTH n=10
RTT FTTH n=100

RTT FTTH n=1000
Trivial FTTH PIR

Fig. 10. Round-trip time (RTT) and request processing (RP)
times of XPIR serving static data on a MSI GT60 laptop with a
Core i7-3630QM 2.67GHz on a FTTH network (database sizes
are in bits). Trivial PIR (from top to bottom the second filled
line) is faster than cPIR for databases under ten elements, which
is natural as cPIR has a reply expansion factor around five. For
databases with more elements, cPIR can be up to fifty times
faster. When the client is local, RTT (red thick dashed line)
matches RP (green thick filled line), specially for large databases.
Each thin blue line gives RTT for a fixed n and varying database
sizes. For large databases reply size is the limiting factor, which
explains why performance is closer to ideal RTT as n grows
(when n grows for a fixed database size ` shrinks). For small
databases, query size is the limiting factor. RTT does not grow as
fast as n because the optimizer uses aggregation.

ing speed that is impacted by the need to pre-process
the data in the dynamic case. One can observe the dif-
ferent values of request processing (red dashed lines on
both Figures). Henceforth, with dynamic databases, the
high n lines will tend towards the RP line later, i.e. with
larger databases. This implies that in most networked
situations RTT will be similar for static and dynamic
databases, except for the largest ones.
Match.com Use-Case In this use-case we consider
that an online dating database server wants to provide a
paying private keyword search mechanism to its clients.
When using this system, users can define some pub-
lic criteria, such as the city in which they would like
to meet people (which is anyways probably revealed
by their IP). This set of public parameters will reduce
the database size over which a second search, based on
private criteria, will be done. The users can then do
a cPIR-based keyword search (see Section 2.3) to get
the profiles matching a set of private keywords. If we
suppose the database has one million profiles, each of
one megabit, the complete database will be of one Ter-
abit. We must also take into account that each profile
may match a set of keywords and that reply generation
costs are multiplied by the average number of match-
ing keywords in a private keyword search. If we sup-

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1M 10M 100M 1G 10G 100G 1T

T
im

e
(s

)

n.l size of the db

RP
RTT no network
RTT FTTH n=1

RTT FTTH n=10
RTT FTTH n=100

RTT FTTH n=1000

Fig. 11. Round-trip (RTT) and request processing (RP) times
of XPIR serving dynamic data on a MSI GT60 laptop with a
Core i7-3630QM 2.67GHz on a FTTH network (database sizes
are in bits). Trivial PIR has been masked for clarity as the same
remarks as most comments on Figure 10 also apply. As data is
not already pre-processed, request processing time is higher, but
upload/download times do not change. This explains why blue
lines are almost identical except for the fact that the gap to reach
ideal RTT is smaller. In practice this implies that RTT is not
affected much by pre-processing except for very large databases.

pose that the average profile has five keywords, using
the RTT given in Figure 10 a user would have to wait
for ten minutes before having a reply which is probably
too much for a web experience. Using the public key-
word pre-filtering we described we can hope to divide
the size of the database by a factor 10 to 100 (if users
are distributed in various cities and public keywords are
specific enough) which would lower the waiting time to
6-60 seconds, a much more reasonable time for a search.
Of course if we consider Match.com 5 Millions users (ac-
cording to Wikipedia’s page which cites 2014 sources)
and profiles of multiple megabytes, public filtering will
have to be much more efficient. But the fact that we are
able to grasp having usable cPIR protocols in such large
social networks was unthinkable not that long ago.
NYSE Use-Case In this last use-case, we are in-
terested in using XPIR on dynamic streams with
the lowest latency possible. The New-York Stock Ex-
change (NYSE) Secure Financial Transaction Infras-
tructure (SFTI) high-end service serves 5-10Gbps of
data concerning various worldwide stock markets. The
Bloomberg “snooping” scandal is a good illustration of
why one would want to keep private the financial infor-
mation one is interested in. One can see two different
type of usages with this application: oriented towards
throughput or towards latency. In the first case, a client
may want to register to a given set of streams of informa-
tion, and get served with all the information concerning
the associated companies coming from stock markets,

XPIR : Private Information Retrieval for Everyone 171

analysts, etc. with a constant stream of up to date in-
formation. In such a case, the application is very similar
to an IPTV service where the data-stream concerns fi-
nancial information instead of a TV stream. Refer to
Section 4.3 for performance results.

In the second case, a client wants to retrieve as fast
as possible the last bunch of information concerning a
company. In this case, the stock market service can be
seen as collecting data generated by remote sensors and
giving access to this dynamic data to its clients on a
per request basis. The most striving question is thus
how long does it take for the client to retrieve the infor-
mation on a given company, in other words, how fresh
is the data? For example, suppose a user wants to grab
some information from the last 100ms (we cannot ex-
pect to get much more recent data given the underlying
network RTTs). In the SFTI 5Gbit stream the amount
of data corresponding to 100ms should be 500Mbits. As
such data is composed of many elements we can expect
that latency will be close to the optimal line in Fig-
ure 11 and thus the user should get the information in
roughly 100ms, which is a reasonable waiting time for
information that already is old of 100ms.

4.5 Other cryptosystems

As noted before, in almost all situations the Ring-LWE
based cPIR is chosen by the optimizer, as it gives the
best results. In some extreme cases however, the opti-
mizer chooses to do a Paillier based cPIR or a trivial
(full-database download) PIR. The Paillier based cPIR
will be chosen for extremely small bandwidths in which
case the cPIR reply generation throughput is not impor-
tant as most of time is spent sending the reply and reply
expansion factor is the most important parameter. On
the opposite side, trivial PIR will be of course the natu-
ral choice when available bandwidth is higher than our
database processing throughput. The limit should there-
fore be not very far of 20Gbps for static pre-processed
databases, and 5Gbps for dynamic databases. Other ex-
treme settings in which trivial PIR will be the natural
choice exist. An example is for database with two to
four elements. In this case a cPIR reply with our Ring-
LWE scheme will be larger than the database itself due
to our encryption scheme’s expansion factor. Another
example is for very small databases in which query size
may be larger than database size. For example, using an
ADSL connection (1Mbps upload / 20Mbps download)
on a 10Mbit database with ten elements, sending a Ring-
LWE query will take at least 1 second, whereas the full

database download only needs half a second (note that
using aggregation to reduce query size does not solve the
issue). Of course, such settings may in some situation
correspond to real life situations, but only scarcely.

5 Conclusion
Lattice based cryptography brought groundbreaking ad-
vances on worst-case to average-case reductions and on
fully-homomorphic encryption. However it has been for
a long time seen as impractical, despite its excellent
asymptotic results. This field of research has matured a
lot. The arrival of the ideal lattice setting, and the de-
velopment of many performance tweaks has completely
changed attainable performances in a non-asymptotic
sense. cPIR has often been considered as an impratictal
protocol [1] but lattice-based cryptography brings a real
overhaul on this, as cPIR becomes feasible even without
a high-end server. We have shown that our protocol can
be used to process a wide range of databases in a few
seconds, even for 100Gb databases.

These experiments would have taken thousands of
seconds with a number theory cryptosystem as Paillier,
which would have processed the database at 1Mbit/s.
Sending the database, even over a 100Mbit/s link would
have increased by a factor one hundred the times we pre-
sented in our experiments. The results presented in this
paper were obtained on a commodity laptop, using a
high end server in a multi-core setting can only increase
this difference further. However this is not our purpose,
what we wanted to highlight is that lattice-based cryp-
tography has transformed the utterly impractical into
something feasible by everyone. As we want to show
that it is feasible by everyone, we have included the
auto-optimize tools that will allow anybody to use our
library without being an expert on cryptography. We
are eager to hear from these people’s experiences.

Finally it is important to note that even if we have
shown that cPIR can be used with very large databases,
in practice, as databases grow, cPIR can be used as a
building block combined with other techniques to im-
prove scalability. A nice example of that is Popcorn [48]
which cleverly combines cPIR and ITPIR to provide a
much more efficient Netflix-like private streaming ser-
vice than the simple example we used. Another exam-
ple is the communication and computationally efficient
ORAM protocols that use cPIR as a building block. We
also hope that XPIR will increase the span of applica-
tions that use cPIR as an (efficient ,) subroutine.

XPIR : Private Information Retrieval for Everyone 172

References
[1] R. Sion and B. Carbunar, “On the Computational Practical-

ity of Private Information Retrieval,” in 14th ISOC Network
and Distributed Systems Security Symposium (NDSS’07),
San Diego, CA, USA, 2007.

[2] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Pri-
vate Information Retrieval,” in 46th IEEE Symposium on
Foundations of Computer Science (FOCS’95), Pittsburgh,
PA, USA, pp. 41–50, IEEE Computer Society Press, 1995.

[3] W. Gasarch, “A Survey on Private Information Retrieval,”
Bulletin of the European Association for Theoretical Com-
puter Science, vol. 82, pp. 72–107, Feb. 2004. Columns:
Computational Complexity.

[4] A. Kiayias and M. Yung, “Secure Games with Polynomial
Expressions,” in ICALP: Annual International Colloquium on
Automata, Languages and Programming, 2001.

[5] C. Aguilar Melchor and P. Gaborit, “A Fast Private Informa-
tion Retrieval Protocol,” in The 2008 IEEE International
Symposium on Information Theory (ISIT’08), Toronto,
Ontario, Canada, pp. 1848–1852, IEEE Computer Society
Press, 2008.

[6] J. T. Trostle and A. Parrish, “Efficient computationally
private information retrieval from anonymity or trapdoor
groups,” in ISC (M. Burmester, G. Tsudik, S. S. Magliveras,
and I. Ilic, eds.), vol. 6531 of Lecture Notes in Computer
Science, pp. 114–128, Springer, 2010.

[7] J. P. Stern, “A New Efficient All-Or-Nothing Disclosure of
Secrets Protocol.,” in 13th Annual International Conference
on the Theory and Application of Cryptology & Information
Security (ASIACRYPT’98), Beijing, China, vol. 1514 of
Lecture Notes in Computer Science, pp. 357–371, Springer,
1998.

[8] H. Lipmaa, “First cpir protocol with data-dependent compu-
tation,” in Proceedings of the 12th International Conference
on Information Security and Cryptology, ICISC’09, (Berlin,
Heidelberg), pp. 193–210, Springer-Verlag, 2010.

[9] R. Ostrovsky and W. E. Skeith III, “Private Searching on
Streaming Data,” in Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005, Pro-
ceedings, vol. 3621 of Lecture Notes in Computer Science,
pp. 223–240, Springer, 2005.

[10] D. Bleichenbacher, A. Kiayias, and M. Yung, “Decoding
of Interleaved Reed Solomon Codes over Noisy Data,” in
Automata, Languages and Programming, 30th International
Colloquium, ICALP 2003, Eindhoven, The Netherlands,
June 30 - July 4, 2003. Proceedings (J. C. M. Baeten, J. K.
Lenstra, J. Parrow, and G. J. Woeginger, eds.), vol. 2719 of
Lecture Notes in Computer Science, pp. 97–108, Springer,
2003.

[11] D. Coppersmith and M. Sudan, “Reconstructing curves in
three (and higher) dimensional space from noisy data,” in
Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, STOC’2003 (San Diego, California, USA,
June 9-11, 2003), (New York), pp. 136–142, ACM Press,
2003.

[12] S. Arora and R. Ge, “New algorithms for learning in pres-
ence of errors,” in Automata, Languages and Programming,

30th International Colloquium, ICALP 2003, Eindhoven, The
Netherlands, June 30 - July 4, 2003. Proceedings, pp. 403–
415, Springer, 2011.

[13] J. Bi, M. Liu, and X. Wangi, “Cryptanalysis of a homomor-
phic encryption scheme from isit 2008,” in Information The-
ory Proceedings (ISIT), 2012 IEEE International Symposium
on, pp. 2152–2156, 2012.

[14] T. Lepoint and M. Tibouchi, “Cryptanalysis of a (some-
what) additively homomorphic encryption scheme used in
pir,” in WAHC’15 - 3rd Workshop on Encrypted Computing
and Applied Homomorphic Cryptography, 2015.

[15] C. Aguilar Melchor, B. Crespin, P. Gaborit, V. Jolivet, and
P. Rousseau, “High-speed Private Information Retrieval
Computation on GPU,” in Second International Conference
on Emerging Security Information, Systems and Technolo-
gies (SECURWARE’08), Cap Esterel, France, pp. 263–272,
IEEE Computer Society Press, 2008.

[16] P. Mittal, F. G. Olumofin, C. Troncoso, N. Borisov, and
I. Goldberg, “Pir-tor: Scalable anonymous communication
using private information retrieval.,” in USENIX Security
Symposium, 2011.

[17] R. Henry, Y. Huang, and I. Goldberg, “One (block) size fits
all: Pir and spir with variable-length records via multi-block
queries,” Proceedings of NDSS, 2013.

[18] T. Mayberry, E.-O. Blass, and A. H. Chan, “Efficient private
file retrieval by combining ORAM and PIR,” in Proceedings
of Annual Network & Distributed System Security Sympo-
sium, pp. 1–11, Citeseer, 2014.

[19] E.-O. Blass, R. Di Pietro, R. Molva, and M. Önen, “Prism –
privacy-preserving search in mapreduce,” in Privacy Enhanc-
ing Technologies (S. Fischer-Hübner and M. Wright, eds.),
vol. 7384 of Lecture Notes in Computer Science, pp. 180–
200, Springer Berlin Heidelberg, 2012.

[20] F. Olumofin, P. Tysowski, I. Goldberg, and U. Hengartner,
“Achieving efficient query privacy for location based ser-
vices,” in Privacy Enhancing Technologies (M. Atallah and
N. Hopper, eds.), vol. 6205 of Lecture Notes in Computer
Science, pp. 93–110, Springer Berlin Heidelberg, 2010.

[21] F. Olumofin and I. Goldberg, “Privacy-preserving queries
over relational databases,” in Privacy Enhancing Technolo-
gies (M. Atallah and N. Hopper, eds.), vol. 6205 of Lecture
Notes in Computer Science, pp. 75–92, Springer Berlin Hei-
delberg, 2010.

[22] C. Devet and I. Goldberg, “The best of both worlds: Com-
bining information-theoretic and computational pir for com-
munication efficiency,” in Privacy Enhancing Technologies,
pp. 63–82, Springer, 2014.

[23] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal
lattices and learning with errors over rings,” in EURO-
CRYPT’2010, vol. 6110 of Lecture Notes in Computer Sci-
ence, pp. 1–23, Springer, 2010.

[24] W. Gasarch and A. Yerukhimovich, “Computational in-
expensive PIR,” 2006. Draft available online at http:
//www.cs.umd.edu/~arkady/pir/pirComp.pdf.

[25] O. Regev, “New lattice based cryptographic constructions,”
Journal of the ACM, vol. 51, no. 6, pp. 899–942, 2004.

[26] S. W. Smith and D. Safford, “Practical server privacy with
secure coprocessors,” IBM Systems Journal, vol. 40, no. 3,
pp. 683–695, 2001.

http://www.cs.umd.edu/~arkady/pir/pirComp.pdf
http://www.cs.umd.edu/~arkady/pir/pirComp.pdf

XPIR : Private Information Retrieval for Everyone 173

[27] E. Kushilevitz and R. Ostrovsky, “Replication is not needed:
Single database, computationally-private information re-
trieval (extended abstract),” in FOCS: IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 364–373,
1997.

[28] F. Olumofin and I. Goldberg, “Revisiting the computa-
tional practicality of private information retrieval,” in Fi-
nancial Cryptography and Data Security (G. Danezis, ed.),
vol. 7035 of Lecture Notes in Computer Science, pp. 158–
172, Springer Berlin Heidelberg, 2012.

[29] Gilles Brassard and Claude Crépeau and Jean-Marc Robert,
“All-or-Nothing Disclosure of Secrets,” in CRYPTO (A. M.
Odlyzko, ed.), vol. 263 of Lecture Notes in Computer Sci-
ence, pp. 234–238, Springer, 1986.

[30] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic
encryption from ring-lwe and security for key dependent
messages,” in Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, vol. 6841, p. 501, 2011.

[31] Y. Doröz, B. Sunar, and G. Hammouri, “Bandwidth efficient
pir from ntru,” in 2nd Workshop on Applied Homomor-
phic Cryptography and Encrypted Computing - WAHC’14,
pp. 195–207, Springer, 2014.

[32] A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and
Q. Tang, “Optimal rate private information retrieval from
homomorphic encryption,” PoPETs, vol. 2015, no. 2,
pp. 222–243, 2015.

[33] D. Pointcheval, “Le chiffrement asymétrique et la sécurité
prouvée,” Habilitation à diriger des recherches, Université
Paris VII, 2002.

[34] S. Goldwasser and S. Micali, “Probabilistic encryption,”
Journal of Computer and System Sciences, vol. 28, no. 2,
pp. 270–299, 1984.

[35] R. Lindner and C. Peikert, “Better key sizes (and attacks)
for lwe-based encryption,” in CT-RSA (A. Kiayias, ed.),
vol. 6558 of Lecture Notes in Computer Science, pp. 319–
339, Springer, 2011.

[36] H. Lipmaa, “An oblivious transfer protocol with log-squared
communication,” in 8th Information Security Conference
(ISC’05), Singapore, vol. 3650 of Lecture Notes in Computer
Science, pp. 314–328, Springer, 2005.

[37] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Key-
word Search and Oblivious Pseudorandom Functions,”
vol. 3378 of Lecture Notes in Computer Science, pp. 303–
324, Springer, 2005.

[38] R. Ostrovsky and W. E. Skeith III, “Private searching on
streaming data,” J. Cryptology, vol. 20, no. 4, pp. 397–430,
2007.

[39] M. Finiasz and K. Ramchandran, “Private Stream Search
at the same communication cost as a regular search: Role
of LDPC codes,” in Information Theory Proceedings (ISIT),
2012 IEEE International Symposium on, pp. 2556–2560,
2012.

[40] P. Paillier, “Public-key cryptosystems based on compos-
ite degree residuosity classes,” in 18th Annual Eurocrypt
Conference (EUROCRYPT’99), Prague, Czech Republic,
vol. 1592 of Lecture Notes in Computer Science, pp. 223–
238, Springer, 1999.

[41] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and
S. Huss, “On the design of hardware building blocks for
modern lattice-based encryption schemes,” in Cryptographic

Hardware and Embedded Systems – CHES 2012 (E. Prouff
and P. Schaumont, eds.), vol. 7428 of Lecture Notes in
Computer Science, pp. 512–529, Springer Berlin Heidelberg,
2012.

[42] S. Halevi and V. Shoup, “Design and implementation of a
homomorphic-encryption library,” 2013.

[43] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled)
fully homomorphic encryption without bootstrapping,” in
Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference, ITCS ’12, (New York, NY, USA),
pp. 309–325, ACM, 2012.

[44] D. Harvey, “Faster arithmetic for number-theoretic trans-
forms,” J. Symb. Comput., vol. 60, pp. 113–119, 2014.

[45] T. Güneysu, T. Oder, T. Pöppelmann, and P. Schwabe,
“Software speed records for lattice-based signatures,” in
Post-Quantum Cryptography (P. Gaborit, ed.), vol. 7932
of Lecture Notes in Computer Science, pp. 67–82,
Springer-Verlag Berlin Heidelberg, 2013. Document ID:
d67aa537a6de60813845a45505c313, http://cryptojedi.org/
papers/#lattisigns.

[46] ISO/IEC, “High efficiency coding and media delivery in het-
erogeneous environments – part 2: High efficiency video
coding,” Tech. Rep. ISO/IEC 23008-2:2013, International
Standards Organization Publication, 2013.

[47] J. Ohm, G. Sullivan, H. Schwarz, T. K. Tan, and T. Wie-
gand, “Comparison of the coding efficiency of video coding
standards;including high efficiency video coding (hevc),” Cir-
cuits and Systems for Video Technology, IEEE Transactions
on, vol. 22, pp. 1669–1684, Dec 2012.

[48] T. Gupta, N. Crooks, S. Setty, L. Alvisi, and M. Walfish,
“Scalable and private media consumption with popcorn.”
Cryptology ePrint Archive, Report 2015/489, 2015. http:
//eprint.iacr.org/.

[49] R. Sinha, C. Papadopoulos, and J. Heidemann, “Internet
packet size distributions: Some observations,” Tech. Rep.
ISI-TR-2007-643, USC/Information Sciences Institute, May
2007. Orignally released October 2005 as web page http:
//netweb.usc.edu/~rsinha/pkt-sizes/.

http://cryptojedi.org/papers/#lattisigns
http://cryptojedi.org/papers/#lattisigns
http://eprint.iacr.org/
http://eprint.iacr.org/
http://netweb.usc.edu/~rsinha/pkt-sizes/
http://netweb.usc.edu/~rsinha/pkt-sizes/

XPIR : Private Information Retrieval for Everyone 174

A Algorithms

Algorithms for the PIR client-server protocol

Performance cache generation (Client and Server):
Input: Set of parameters for encryption schemes
Output: Set of performance results for these parameters
1. Client: For each set of parameters of each encryption scheme

- Evaluate encryption and decryption throughput
- Store the resulting values for this set of parameters

2. Server: For each set of parameters of each encryption
scheme
- Evaluate precomputation and reply generation through-
put
- Store the resulting values for this set of parameters

Optimization (Client and Server):
Input: Recursion range (d1, d2), Aggregation range (α1, α2), po-
tential encryption parameters list EncParams, upload/download
usable bandwidth (U,D), target optimization function ftarget
Output: Best crypt and PIR parameters taking ftarget as a mea-
sure
1. Server: Send optimization information

- The database shape (n and `)
- The server performance cache

2. Client: If U or D are null do a bandwidth test to redefine
them

3. Client: Optimize
For every encryption scheme parameters in EncParams

For every dimension d between d1 and d2
For every aggregation value α between α1 and α2

- Estimate queryGenerationTime with the perfor-
mance cache

- Estimate querySendingTime with the upload band-
width

- Estimate replyGenerationTime with the perfor-
mance cache

- Estimate replySendingTime with the download
bandwidth

- Estimate replyDecryptionTime with the perfor-
mance cache

- Give a performance measure applying ftarget to
these values

4. Client: Output the parameters with the best performance
measure

Choice (Client and Server):
Input: Database
Output: Index of the element chosen by the user
1. Server: For each file send a description and an associated

index or a global description of the set of files
2. Client: Present the catalog to the user, and return the cho-

sen index

Query generation (Client):
Input: PIR parameters (n, `, α, d), crypto parameters

Enc.Params, chosen index i
Output: Query
1. Redefine n = ceil(n/α) and note n1 = · · · = nd =

ceil(n1/d)
2. Define (i1, . . . , id) the decomposition in base ceil(n1/d) of i
3. For j in [1..d] generate a query Qj with the Basic cPIR pro-

tocol for retrieving an element of index ij in a database of nj
elements using an encryption scheme based on Enc.Params

4. Return Q = (Q1, . . . , Qd)

Reply generation (Server):
Input: PIR parameters (n, `, α, d), crypto parame-
ters Enc.Params, query (Q1, . . . , Qd), database elements
(db1, . . . , dbn)
Output: PIR reply
1. Redefine n = ceil(n/α) and note n1 = · · · = nd =

ceil(n1/d)
2. For j ∈ [1..n] redefine bj as the aggregation of dbjα+k for

k ∈ [1..α]
3. For j ∈ [1..n]

- Note (j1, . . . , jd) the decomposition of j in base
ceil(n1/d)

- Define db(j1,...,jd) = dbj
4. For j ∈ [1..d]

For each tuple (ij+1, . . . , id) in [1..nj+1]× · · · × [1..nd]
- Compute using the cPIR basic algorithm a PIR reply

using
(db(1,ij+1,...,id), . . . , db(nj ,ij+1,...,id)) as a database

and Qj
- Define with this PIR reply db(ij+1,...,id) if j < d or

RES if j = d

5. Return RES

Reply extraction (Client):
Input: PIR parameters (n, `, α, d), crypto parameters
Enc.Params, chosen index i, PIR reply
Output: Element of index i in the database
1. Decrypt the d encryption layers of the reply to get α ele-

ments
2. Return the element corresponding to index i and drop the

others

Remark (convexity): If α1 = 1, α2 = n and n is large
(say 109) the optimizer may have to do a lot of tests
before reaching the best result. To lower the amount of
tests we used a convexity assumption to do a dichotomy
when looking for the best α. When α grows, query size
is reduced and reply size increased. Using this monotony
it is reasonable to assume that the target functions we
use are close to convex. In practice the optimizer always
returned very reasonable results and was able to run in
a few milliseconds for any database.

