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Abstract: We present an efficient method for answer-
ing one-dimensional range and closest-point queries in
a verifiable and privacy-preserving manner. We consider
a model where a data owner outsources a dataset of key-
value pairs to a server, who answers range and closest-
point queries issued by a client and provides proofs of
the answers. The client verifies the correctness of the
answers while learning nothing about the dataset be-
sides the answers to the current and previous queries.
Our work yields for the first time a zero-knowledge pri-
vacy assurance to authenticated range and closest-point
queries. Previous work leaked the size of the dataset
and used an inefficient proof protocol. Our construction
is based on hierarchical identity-based encryption. We
prove its security and analyze its efficiency both the-
oretically and with experiments on synthetic and real
data (Enron email and Boston taxi datasets).
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1 Introduction
In this work, we consider the problem of verifiably an-
swering range queries on a key-value store D while hid-
ing the rest of D’s content. That is, a range query [a, b]
on D has the following requirements:
– it returns the answer D′ and a proof of its correct-

ness, i.e., D′ ⊆ D and there is no (k̄, v̄) ∈ D ∩ D′
such that k̄ ∈ [a, b]; and
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– it reveals nothing beyond D′, i.e., proofs are zero-
knowledge and reveal nothing about D\D′ (e.g., not
even its size).

Range queries are fundamental search queries that have
applications in a variety of fields, including data analyt-
ics, network security, geographic information systems,
and environmental sensing. A variety of privacy and in-
tegrity issues for range queries have been investigated in
the literature in models that span data management sys-
tems (e.g., [27, 41]) and sensor networks (e.g., [13, 40]).
We consider a few concrete practical scenarios where
both integrity and privacy of range queries are crucial:
Audit Digital records are often subject to audit inspec-

tions or authorized investigations where an analyst
is given partial access to the records (e.g., emails in
case of a dispute or suspicious activity). Kamara [23]
recently proposed the MetaCrypt model for han-
dling such authorized checks via a query protocol
between the owner of digital content and an analyst
(i.e., an authorized party). In this model, it is essen-
tial that the protocol lets the analyst verify authen-
ticity of answers about the records and at the same
time reveals nothing about the content outside of
the authorized region. (For example, an authoriza-
tion could be given only to emails that were sent
during a certain time period.)

Access Control Consider another scenario where a
data owner uploads her data to a cloud server and
delegates the processing of client queries to the
server while enforcing access control policies on the
data. Outsourcing of medical records indexed by pa-
tient’s visit date/date of birth/dosage of some med-
ication is one such example. It is likely that not all
the data should be accessible to everyone among the
medical staff.

Partial Release of Credentials A government
agency or some other trusted entity certifies various
records about an individual. At a later point in
time, this person can reveal a subset of these
authenticated records to a third party and provide
a proof of them. For example, entries and exits
into/from a country by border control can be used
by a traveler to prove she was abroad in a certain
time frame, e.g., during jury duty or elections,
without having to reveal all the details of her trips.
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These examples motivate the problem of performing
range queries in a three-party model where a trusted
owner uploads D to an untrusted server and clients in-
teract with the server to execute range queries on D.
Besides providing security guarantees, we also want to
devise a system with low overhead for each party.

The correctness of the server’s answer can be triv-
ially achieved using, for example, proofs from a Merkle
Hash tree [29] built on top of the items of D ordered
by keys, where root digest is signed by the owner. How-
ever, our zero-knowledge privacy requirement makes the
problem challenging since proofs from a hash tree, by
construction, reveal the rank of the keys and the size
of D. As another attempt, the owner could sign every
key in the universe of keys, U : namely sign (k, v) for
every (k, v) ∈ D and (k,⊥), otherwise. The proof for a
range [a, b] would then consist of b− a+ 1 signed pairs.
This solution, while providing the desired privacy guar-
antee, incurs a very high overhead in terms of server
storage, proof size, and client verification time.

Previous work.
In 2004, Ostrovsky, Rackoff and Smith [33] explored
the above problem in the two party setting: a prover
commits to D and a verifier sends range queries to the
prover. The authors also pointed out the hardness of
this problem: “This seems to be a fundamental prob-
lem with privacy of Merkle-tree commitments: revealing
the hash values reveals structural information about the
tree, and not revealing them and instead proving con-
sistency using generic zero-knowledge techniques kills
efficiency.” To this end, the authors relaxed the privacy
guarantees by revealing the size of D as well as all previ-
ously queried ranges on D to the verifier. The resulting
scheme uses cut-and-choose techniques to prove com-
mitment consistency in a variant of the Merkle tree.

The solution of [33] can be directly employed to
support queries in the three party model by letting a
trusted owner execute the prover’s setup algorithm and
a malicious server execute the prover’s query algorithm.
We discuss it in detail in Section 2. Unfortunately, the
resulting scheme does not meet the privacy and perfor-
mance goals of a desired solution. First, this scheme does
not have full privacy guarantees since it reveals infor-
mation beyond answers to queries. Second, this scheme
cannot be used by multiple mutually distrusting clients
(verifiers) since clients need to learn all queries to the
system to verify the correctness of their own results.
Finally, the performance of this scheme suffers from a
proof size quadratic in the security parameter that con-

tinues to grow with number of queries. A latency of 5
rounds of interaction between the client and server also
makes this scheme unsuitable for most practical appli-
cations.

Our contributions.
In this paper, we show that there is an efficient solution
to answer range queries and prove the correctness of the
answers in zero-knowledge, where the proofs do not re-
veal anything beyond the query answers. We propose an
efficient scheme where the proof size is independent of
the number of previous queries (for a detailed compari-
son with [33] see Section 2). Our gain in performance is
due to a proof technique based on identity based encryp-
tion and a relaxation of the model in [33]. The addition
of the owner to the model lets us make use of a trusted
setup phase with a digest that can later be used by
clients (verifiers) to verify server’s (prover’s) proofs. Ar-
guably, the three party model fits better in the setting
where data is produced by an honest party who wishes
to delegate query answering to another party.

As an application of range queries, we show how to
verifiably answer closest point queries without revealing
any information on proximity to other points.

Our constructions can be easily augmented with ad-
ditional security properties such as data privacy and
controlled disclosure. In particular, the data owner can
encrypt the value field of every record in D and release
decryption keys to clients selectively.

In summary, our contributions are the following:
– Formalizing the problem of zero-knowledge veri-

fiable range queries in the same model as [32].
This threat model has received considerable at-
tention because of applications to DNS security
(see [20, 25, 26, 32] for more details). We empha-
size that in this model, zero-knowledge is a property
of the proofs (as in the context of zero-knowledge
sets, lists [12, 19] and primary secondary resolver
systems [32]) and not of the protocol.

– Providing an efficient and provably secure construc-
tion that significantly improves over the best known
solution in terms of rounds of interaction, proof
complexity, query and verification times. Moreover,
our scheme is stateless and achieves stronger privacy
guarantees.

– Implementing our construction and conducting ex-
periments to evaluate the performance overhead in
practice.

– Simulating the scenario of third party audits and
measuring the cost of query and verification on two
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real-world datasets, namely, Enron email dataset
and Boston city taxi dataset.

2 Related Work
In this section we give an overview of existing techniques
(both privacy-preserving and not) for data verification
in general and then zoom into the literature for range
queries specifically. We note that range query is not to
be confused with range proof [8] where the goal is to
prove that the committed value lies in a specified integer
range without revealing it.

Authenticated data structures (ADS) [14, 21, 35,
36, 38, 42] are often set in the three party model with
a trusted owner, a trusted client and a malicious server;
the owner outsources the data to the server and later
the client interacts with the server to run queries on
the data. The security requirement of such constructions
is data authenticity for the client against the server.
Since the client is trusted, the privacy requirement of
our model is usually violated by the ADS proofs. For
example, authenticated set union in [37] lets a client
learn information about the sets beyond the result of
the union (e.g., content of each set).

Zero knowledge sets [10, 12, 28, 30] and zero knowl-
edge lists [19] provide both privacy and integrity of the
respective datasets in the following model. A malicious
prover commits to a database and a malicious verifier
queries it; the prover may try to give answers incon-
sistent with the committed database, while the verifier
may try to learn information beyond query answers. Os-
trovsky et al. [33] studied range queries in the same
model and this is the closest to our work. We discuss [33]
in detail later.

Constructions that guarantee privacy and integrity
in the slightly relaxed three-party model (where the
committer is “honest” and the (malicious) prover is dif-
ferent from the committer) considered in this paper
have been studied for positive membership queries on
dataset [5, 6, 43], dictionary queries on sets [18, 20, 32],
order queries and statistics on lists [9, 11, 17, 19, 25, 26,
39] and set algebra [18].

Papadopoulos et al. [34] studied range queries in
the traditional ADS setting where privacy is not con-
sidered. For example, completeness proof in [34] reveals
elements of the database that are outside of the queried
range. The integrity of range queries in conjunction with
protecting data content from the server has been con-
sidered in [13, 40]. However, the proof of completeness

(i.e., that no data has been withheld by the server) re-
veals information about elements of the database that
are outside the queried range. Recall that in our model,
we focus on protecting privacy of data against clients
who should not have access to this data.

Attribute-based encryption for range queries [41]
enforces access control by designing encryption schemes
that lets one decrypt data only if it lies within a queried
range. These mechanisms provide no way of proving if
the output of a range search is correct and complete.
This is particularly tricky when the search result is
empty.

Comparison with Ostrovsky et al. [33].
As noted in the introduction the closest to our work
is the scheme by Ostrovsky et al. We contrast the two
schemes in terms of the models, privacy guarantees as
well as performance.

The model of [33] consists of two parties, the prover
and the verifier. The prover commits to a data set in the
setup phase and then answers queries from the verifier
in the query phase. The prover and the verifier are non-
colluding. This adversarial model is stronger than our
three party model since this supports an “untrusted”
committer whereas we support a “trusted” committer.
The relaxation of the model of [33] lets us use primitives
with a trapdoor (signatures and identity based encryp-
tion) as opposed to trapdoorless hash and commitments
and generic zero-knowledge proofs. As a result, we ob-
tain better performance.

The protocol of [33] requires the prover to maintain
a state between the queries. Furthermore, the transcript
of all old queries has to be incorporated in every sub-
sequent query response. Such a scheme, clearly, can be
used only by a single client or in a trusted environment.
That is, the owner cannot enforce different access con-
trol policies across clients.

In terms of privacy, the construction of [33] reveals
the size of the database to the verifier whereas we of-
fer perfect zero-knowledge (i.e., the interaction between
the client and the server, can be simulated using only
answers to client’s queries).

In terms of performance, the protocol by Ostro-
vsky et al. requires 5 rounds of communication and has
O((t + m) log(n)lλ2) proof complexity, where n is the
number of keys in the database D, l is length of each
key in D, λ is the security parameter, t is the number of
queries before the current query and m is the size of the
result to the current query. This two party scheme can
be used in our three party setting if prover’s setup algo-
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rithm is executed by a trusted party. Then the schemes
can be compared directly with each other; our protocol
requires only one round of communication and has proof
complexity of O(ml2). In Section 7, we experimentally
show that our server’s protocol is orders of magnitude
faster than even a substep of the query protocol in [33].

3 Preliminaries
Adversarial Model.
Our three party model closely follows the model de-
scribed in [19] and [32]. The trusted data owner uploads
data D to the server and goes offline. The server answers
range queries on D from the client(s) on behalf of the
owner. Both the server and client(s) are malicious but
non-colluding. The server may attempt to tamper with
D and give incorrect answers i.e., answers inconsistent
with the owner generated D. On the other hand, clients
may try to learn more about D than what they are al-
lowed to learn, i.e., information about D beyond what
can be inferred from answers to their queries. For ex-
ample, they may collect and analyze authenticity proofs
they have received so far and carefully choose their sub-
sequent queries. Note that privacy is compromised if the
server and the clients collude since the server knows the
database.

Notation.
Let λ ∈ N be the security parameter of the scheme.
Without loss of generality (wlog) we assume that all the
keys in the databaseD are l-bits long where l = poly(λ)1.
(One can view l as revealing a trivial upper bound on
n since the clients know the value of l and can deduce
that there can be at most 2l key-value pairs in D2.)

Hierarchical Identity Based Encryption.
HIBE allows one to efficiently derive encryption and de-
cryption keys respecting access control based on a hier-

1 Note that this is not a limiting assumption since keys shorter
than l-bits can be padded up.
2 While describing the scheme we assume each (key,value) pair
is unique and hence the number of keys equals the number of el-
ements in the database. In case of multiple values per key, a hash
chain can be used per key. As we show in our experiments with
real data sets in Section 8, the number of collisions is negligibly
small compared to the database size.

archy of identities. Messages can be encrypted under a
public key of any identity in the hierarchy but decrypted
only by the following subset of these identities. Given
a hierarchy of identities arranged in a tree, an identity
that corresponds to some node in the tree should be
able to decrypt the cipheretexts intended for it and its
descendants only. This property is achieved through a
key generation algorithm, that, given a node ID and its
secret key, can derive decryption keys for its descen-
dant identities ID∗. HIBE consists of the following algo-
rithms [7].

Setup(1λ, l) takes in the security parameter λ and the
depth of the hierarchy tree l. It outputs a master
public key MPK and a master secret key MSK.

KeyGen(SKID, ID∗) derives a secret key SKID∗ for a de-
scendent of ID, ID∗. The SK for ID∗ can be generated
incrementally, given a SK for the parent identity.
Notice that SK for any identity can be derived from
the master secret key MSK, since it is the SK for the
root of the tree.

Encrypt(MPK, ID,M) encrypts M intended for ID as ci-
pherext C using MPK.

Decrypt(SK,C) decrypts C and returns M where SK is
a secret key for a prefix of C’s ID. Note that MSK
can decrypt ciphertexts intended for any ID in the
hierarchy tree.

The selective-security of HIBE is defined as follows.

Definition 1 (HIBE Security [7, 16]).

Pr[ID∗ ← Adv(1λ); MPK,MSK← Setup(1λ, l);

M0,M1 ← AdvKeyGen′,(MSK,·),Decrypt′(MSK,·)(1λ,MPK);
b← {0, 1}; C← Encrypt(MPK, ID∗,Mb);

b′ ← AdvKeyGen′(MSK,·),Decrypt′(MSK,·)(1λ,MPK,C) :
b = b′] ≤ ν(λ)

where KeyGen′ acts as KeyGen except that it does not
accept any ID that is either equal to ID∗ or its prefix.
Similarly, Decrypt′ does not decrypt under ID∗ or any
prefix of it.

For estimating the running time of our algorithms
and in our experiments we use HIBE instantiation
from [16] which relies on bilinear map pairing and a
cryptographic hash function that maps bit strings to
group elements; the construction is secure under the Bi-
linear Diffie-Hellman assumption. Setup runs in constant
time; KeyGen requires O(l) additions in the group and
constant number of hashes; Encrypt requires O(l) group
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multiplications and O(l) hashes; and Decrypt needs O(l)
group multiplications and bilinear map computations
and 4 hashes. As is standard, we assume each group
action and hash function computation takes unit time
for asymptotic analysis. We note that in a more recent
work [7], a HIBE scheme is proposed where MPK is of
size l and the ciphertext size is O(1) as opposed to the
O(1) size MPK and O(l) size ciphertexts in [16].

Hierarchical Identity Based Signature.
A HIBS scheme allows one to derive verification and
signing keys based on a hierarchical relation. In terms of
algorithms HIBS shares Setup and KeyGen with a HIBE
scheme. However, instead of Encrypt and Decrypt it uses
the following two algorithms.
MSign(MPK,SK,M) takes the master public key MPK,

the secret key SK for the signer’s ID and a message
M and outputs a signature s on m.

MVerify(MPK, ID,M, s) takes the master public key
MPK, the ID of the signer, a message and a signature
and returns accept/reject.

As noted in [16], a HIBE scheme can be easily converted
to a HIBS scheme.

Signature Scheme.
Our construction relies on a classical signature scheme
Sig = (KeyGen,Sign,Verify) where KeyGen(1λ) re-
turns signing key SigSK and verification key SigPK.
Sign(SigSK,M) returns a signature σM on a message
M and Verify(SigPK,M, σM ) returns 0/1 depending on
whether the signature on M is verified using the verifi-
cation key or not.

4 Model
We assume the owner has a database D of key-value
pairs of the form (k, v). A range query q consists of an
interval [a, b] and the answer aq,D to this query consists
of all the key-value pairs of D whose keys are enclosed
in the given interval. More generally, let (D,Q, Q) be a
triple where D is a set of valid databases, Q is a set of
valid queries and Q is a rule that associates an answer,
aq,D = Q(q,D) with every valid database query pair,
q ∈ Q,D ∈ D.

We propose a privacy-preserving authenticated
range query system RQ = (Setup,Query) that consid-
ers the adversarial model of Section 3. Our model is a

OWNER  SERVER

 CLIENTS

σD

D

σs

DD, σs

Fig. 1. Model RQ: The owner runs Setup on database D to
produce database digest signature, σD, and a digest for the
server, σS . Every party has access to σD, but only the server
has access to D and σS . Query protocol is executed between the
client and the server.

generalization of the primary-secondary resolver model
in [32]. The trusted owner prepares her data D and re-
leases authenticated information σS for the server and
a digest σD for the clients. The client later queries the
server on D. Since the server is a malicious party she
needs to return an answer to a client’s query and run
a (possibly interactive) protocol with the client to con-
vince her of the authenticity of the returned answer. We
denote this protocol as Query. Wlog we assume the up-
per bound on the key length l is a public parameter. We
represent our model using a simple diagram in Figure 1
for the ease of exposition.
σD, σS ← Setup(1λ,D) This algorithm (run by the

owner) takes the security parameter λ and a valid
database D as input. It produces a short database
digest signature, σD, and a digest for the server, σS .

answer← Query(D, q, σD, σS) This is an interactive pro-
tocol executed between the client and the server.
The client’s input consists of σD and a query q. The
server’s input is D, σD and σS . The protocol re-
turns answer = Q(q,D) if the client is convinced by
the server in its validity, answer = ⊥, otherwise.

4.1 Security Properties

A secure RQ scheme for answering queries has three
security properties.
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Completeness.
This property ensures that for any valid database D
and for any valid query q, if the owner and the server
honestly execute the protocol, then the client will always
be convinced about the correctness of the answer.

Definition 2 (Completeness). For all D ∈ D and all
valid queries q ∈ Q,

Pr[(σD, σS)← Setup(1λ,D);
answer← Query(D, q, σD, σS) : answer = Q(q,D)] = 1

Soundness.
This integrity property ensures that once an honest
owner generates a pair (σD, σS) for a valid database D,
a malicious server can convince the client of an incorrect
answer with at most negligible probability.

Definition 3 (Soundness). For all PPT algorithms
Adv, for all databases D ∈ D and all queries, q ∈ Q,
there exists a negligible function ν(.) such that:

Pr[(D, q)← Adv(1λ); (σD, σS)← Setup(1λ,D);
answer← Query′(D, q, σD, σS) :

answer 6= Q(q,D)] ≤ ν(λ)

where Query′ is an interactive query protocol executed
between an honest client with input σD and q and the
adversary Adv with input D, σD, σS. The honest verifier
acts exactly as in Query, while the adversarial server Adv
may deviate from the protocol arbitrarily.

Zero-Knowledge.
This property captures that even a malicious client can-
not learn anything about the database (and its size) be-
yond what she has queried for. Informally, this property
involves showing that there exists a simulator that can
mimic the behavior of the honest parties, i.e., a hon-
est owner and a honest server who know D, using only
oracle access to D. We model the indistinguishability
based on the sequence of messages View that the ma-
licious client Adv sends and receives while running RQ
protocol on a database and queries of her choice.

Definition 4 (Zero-Knowledge). The real and ideal
games are defined as:
Game RealAdv(1λ):
Setup: Adv picks a database D. The real challenger runs

(σD, σS)← Setup(1λ,D) and sends σD back to Adv.

Query: Adv runs the interactive query protocol Query
with the challenger by adaptively choosing queries.

Game IdealAdv,Sim(1λ):
Setup: Adv first picks a database D. The simulator cre-

ates a fake σ by running (σ, stateS) ← Sim(1λ, l)
(stateS is the simulator’s internal state) and re-
turns σ to Adv.

Query: Adv runs the interactive query protocol with Sim
which has oracle access to D, i.e., it can only get the
values that answer adversary’s queries.

Let Viewreal and Viewideal be the sequence of all mes-
sages that Adv sends and receives in the real and ideal
game. RQ is zero-knowledge if there exists a PPT algo-
rithm Sim such that for all malicious stateful adversaries
Adv, there exists a negligible function ν(.), such that: the
probability that Adv distinguishes between Viewreal and
Viewideal is at most ν(λ).

5 Our Construction
We begin this section with some definitions that we use
in our construction for range queries. We give our con-
struction and show how to answer closest point queries
efficiently using it.

Auxiliary Definitions.
Let Tl denote a full binary tree with l + 1 levels, where
the root (level 0) is labeled ⊥, the nodes at the ith level
are i-bit strings from 0i to 2i − 1, and the leaves are
l-bit strings from 0l to 2l − 1. A range w.r.t. Tl is a
contiguous set of leaves and is represented using two
leaves, the left end point and the right end point of the
range. For example, the range represented by [a, b] is
{a, a+ 1, . . . , b− 1, b}.

The canonical covering of a range [a, b] is the min-
imal set of nodes, P , of Tl such that (1) each node in
the range [a, b] is a descendant of one of the nodes in P
and (2) for every node x ∈ P , the subtree rooted at x
has it leftmost child xleft and rightmost child xright in-
side the range [a, b], i.e., a ≤ xleft, xright ≤ b. Note that
the canonical covering of a range wrt Tl is unique.

Example 1. Let us consider T3 with the leaves
{000, 001, . . . , 111}. Given the range [001, 100], its
canonical covering in T3 is P = {001, 01, 100}. Note
that 00 /∈ P because its leftmost child 000 < 001. Also,
P 6= {001, 010, 011, 100} since this covering is not mini-
mal.
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Our construction uses method GetRoots(l, [a, b],K[a,b])
to find the canonical covering of a set of ranges. This
method takes as input the height l of tree Tl, a range
[a, b], and a subset of keys from range [a, b] denoted
as K[a,b] = {k1, . . . , km}. It returns a set of nodes R
that represent the union of the canonical coverings of
the ranges [a, k1 − 1], [k1 + 1, k2 − 1], . . . , [km + 1, b]. Us-
ing a simple search procedure, this method takes time
O(ml) where m is the number of elements in K[a,b].

5.1 Range Query Construction

Our construction for authenticated privacy-preserving
range queries builds on a signature scheme and a HIBE
scheme. Informally, it uses the signature scheme to prove
that key-value pairs returned as an answer to a range
query are indeed present in D. It then uses HIBE key
generation to prove that there are no other key-value
pairs in D that belong to the queried interval.

Membership proofs using signatures are straightfor-
ward: the owner generates a signature for every key-
value pair in D along with a nonce µ, sends them to the
server and publishes the verification key of the signature
scheme and µ to clients. The nonce µ is a unique iden-
tifier for D and the signature on (key, value, nonce) ties
the (key, value) pair with a particular D. Later, when a
client queries for a range [a, b] of D, the server simply re-
turns key-value pairs (k1, v1), (k2, v2), . . . , (km, vm) of D
lying in this interval along with the corresponding sig-
natures. For every (k, v) in the answer, the client makes
sure that a ≤ k ≤ b and checks the signature on (k, v, µ).

Proving the completeness of the answer returned
by the server is less trivial due to the privacy require-
ment (Definition 4). For example, traditional techniques
for proving non-membership based on signing adjacent
pairs of key-value pairs fail to preserve privacy.

Example 2. Let {1, 2, 5, 6, 9} be the keys present in D
and [3, 7] be the query. If privacy is not a requirement,
a proof for the answer 5,6 would consist of signatures
on pairs (2,5) and (6,9) showing that the keys 3,4 and
7,8 are not in D. But this reveals that key 8 is not in
D and key 9 is in D, though these elements are outside
the queried range.

A secure but extremely inefficient way to solve the prob-
lem would be to accumulate all elements in D, for ex-
ample, using a zero-knowledge accumulator [18]. Then,
for every element excluded from the answer to a range
query the client is supplied with a non-membership

proof. Unfortunately, in this approach the proof size
grows proportionally to the size of the key domain and
not query answer. That is, the range could cover ex-
ponential number of elements requiring as many proofs
(e.g., the range query [0, 2l−1] would require 2l proofs).

Hence, our proof technique cannot directly rely on
the elements present in D. On the other hand, building
a technique that relies on all the keys in the universe U
that are not present in D is extremely inefficient for all
the three parties (in fact, impossible for parties running
in time polynomial in the security parameter λ since
|U| ≈ 2λ). Intuitively, we wish to develop a technique
that succinctly captures ranges of keys non present in
D and not each key individually (since |D| � |U|).

HIBE provides us exactly with the technique we
need. Recall that a secret key at a given node of the
hierarchy captures secret keys of all the nodes in the
subtree rooted at this node, i.e., node’s secret key can
be used to decrypt a message encrypted using any of
the keys in the subtree.

Setup.
Recall that Tl is the tree on the universe U of all l-bit
strings (Tl is used for illustration purposes only and is
never explicitly built). Let D be a database of size n
whose keys are of length l and let K = {k1, . . . , kn} be
the set of keys present in D, i.e., |K| = n. The owner uses
GetRoots(l, [0, 2l − 1],K) procedure to get a set of nodes
root1, root2, . . . , roott. Recall that these nodes represent
the canonical covering of the empty ranges in Tl created
by K and that t = O(nl) [31]. The owner generates a
HIBE secret key for each of these roots and sends them
to the server, while releasing the HIBE master public
key. We describe the setup algorithm in more detail in
Figure 2.

Query and Verification.
We now describe how the client verifies the completeness
of the answer received from the server for query [a, b].
Given the answer (k1, v1), (k2, v2), . . . , (km, vm), the
client wants the server to prove to her that there are
no elements of D in the ranges [a, k1−1], [km+ 1, b] and
[ki+1, ki+1−1] for i = 1 . . .m−1. Using HIBE, the server
proves knowledge of the secret key of subtrees that cover
the above ranges as follows. The client and the server in-
dependently run GetRoots(l, [a, b], {k1, . . . , km}) and ob-
tain a set of roots R = {root∗1, . . . root∗t′}. The client’s
challenge is a sequence of ciphertexts that a server has
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Fig. 2. Algorithm (σD, σS) ← Setup(1λ,D) run by the owner on
input database D with n key-value pairs.

Step 1: Run HIBE.Setup(1λ, l) to obtain
pubic-secret key pair (MPK,MSK) and
run Sig.KeyGen(1λ) to get signing keys
(SigSK,SigPK).

Step 2: K be a set of keys present in D. The owner
uses GetRoots(l, [0l, 2l − 1],K) to obtain the set
of roots root1, . . . , roott of the forest F obtained
from Tl by deleting the paths corresponding the
the leaves in K.

Step 3: For every rooti, generate its secret key:
SKrooti ← HIBE.KeyGen(MSK, rooti).

Step 4: Pick a random µ
$←− {0, 1}poly(λ), which is

unique for D. For every (k, v) ∈ D, generate
σ(µ,k,v) ← Sig.Sign(SigSK, µ, k, v).

Step 5: Set σS to
({rooti,SKrooti}1≤i≤t, {σ(µ,k,v)}k∈D).

Step 6: Set σD = (MPK,SigPK, µ).
Step 7: Return (σD, σS).

to decrypt. The client chooses random messages and en-
crypts them for the roots in R.

The server can successfully decrypt the ciphertexts
generated by the client by deriving the required secret
key as long as the server did not cheat while returning
the (ki, vi) pairs. That is, every range challenged by the
client should be a subrange of the empty ranges gener-
ated by the owner during the setup (or equal to it). In
other words, root′j ∈ R is a node in the subtree rooted at
one of rooti’s. Hence the server should be able to derive
secret key for each root in R. We describe this algorithm
in more detail in Figure 3.

Non-interactive Query protocol.
During Setup the owner proceeds as before except she
uses HIBS (instead of HIBE) to generate secret keys for
the nodes in the set GetRoots(l, [0, 2l − 1],K).

In the Query phase, upon receiving a query [a, b]
from the client, the server first retrieves signatures of
every key-value pair in D whose key falls in the queried
range (i.e., the first round in Figure 3). Then, she
uses HIBS to derive the secret keys for the nodes in
R← GetRoots(l, [a, b], {k1, . . . , km}) and signs each node
id using the corresponding secret key. She sends back to

Fig. 3. Interactive protocol answer ← Query(D, q, σD, σS) run by
the client with input q = [a, b] and σD and the server with input
D and σS

C → S: The client sends q to the server.
C ← S: The server returns {(k1, v1), . . . , (km, vm)}

and σ(µ,ki,vi) for i ∈ [1,m].
C → S: The client verifies all signatures σ(µ,ki,vi)

using SigPK. If they do not verify, the
client returns ⊥. Otherwise, the client ob-
tains the set R = {root∗1, . . . root∗t′} us-
ing GetRoots(l, [a, b], {k1, . . . , km}). She then
picks t′ random messages M1, . . . ,Mt, encrypts
them using the HIBE scheme as Croot∗

j
←

HIBE.Encrypt(MPK, root∗j ,Mj) for 1 ≤ j ≤ t′

and sends Croot∗1 , . . . ,Croot∗
t′

to the server.
C ← S: The server independently runs

GetRoots(l, [a, b], {k1, . . . , km}) to obtain
R = {root1, . . . roott′} . For each root∗j the
server finds SKrooti s.t., rooti is a prefix of
root∗j . She then uses HIBE.KeyGen to generate
a secret key for root∗j and runs HIBE.Decrypt
to decrypt Croot∗

j
. She sends plaintexts for all

ciphertext challenges back to the client.
C: The client outputs answer =

[(k1, v1), . . . , (km, vm)] iff she receives a
decryption of each of her challenge messages
Mj . Otherwise, she outputs ⊥.

the client (in a single round) signatures for the key-value
pairs in the answer and HIBS signatures of the nodes in
R.

The client uses signatures to verify membership of
the received key-value pairs. For non-membership, she
runs R← GetRoots(l, [a, b], {k1, . . . , km}) and verifies the
signature of each node in R with the corresponding pub-
lic key in HIBS. This eliminates the second round of
interaction.

We note that Naor and Ziv [32] used HIBE (and
HIBS) to prove non-membership queries on a set. Hence,
our technique can be seen as a generalization of [32].

5.2 Closest Point Query

Using our construction (either interactive or non-
interactive one), we can answer closest point query in
zero-knowledge as follows. For a given query point k,
let k̂ be the closest point to k present in the database.
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The server returns k̂ and its signature. Wlog, let us
assume k̂ lies to the right of k. Then, the client chal-
lenges the server to prove that intervals [k + 1, k̂ − 1]
and [2k − k̂, k − 1] are empty.

5.3 Complexity Analysis for RQ

We analyze the complexity of each party involved in our
instantiation of RQ using HIBE below. The asymptotic
analysis of the HIBS construction is equivalent except
query phase becomes non-interactive. Recall that l is
the key size, n is the size of owner’s dataset D, and m is
the size a query answer.
Owner. The owner’s running time is dominated by
HIBE.KeyGen in Setup which generates O(nl) keys. As
we described in Section 3, each encryption (and decryp-
tion) takes time O(l). Hence, the run-time and space are
proportional to O(nl2).
Server. The server requires O(nl2) space for storing the
dataset and the secret keys obtained from the owner.
During the query phase, in round 1, the server returns
elements in the queried range and a signature of ev-
ery element (which are precomputed by the owner). In
round 2, the server receives O(ml) challenge ciphertexts
and generates a key for each ciphertext ID (to decrypt)
using HIBE which in the worst case (when an empty
range is just one element) takes O(l) time. Hence, the
total run time and space during the query phase is dom-
inated by O(ml2).
Client. The client needs to verify m signatures and then
encrypt and check equality of at most O(ml) messages.
As discussed in Section 3, the time required to encrypt
each message is O(l). So the time is upper bounded by
O(ml2). The space requirement is O(ml2).

We summarize the security properties and asymp-
totic performance of our construction in Theorem 1.
and present security proofs in the next section.

Theorem 1. The construction of Section 5 satisfies
the security properties of completeness (Definition 2),
soundness (Definition 3), under the security of the HIBE
scheme and unforgeability of the underlying signature
scheme, and zero-knowledge (Definition 4). The con-
struction has the following performance, where n is the
number of elements of a database D of key-value pairs,
with keys being l-bit values, and m is the size of the
answer to a range query:
– The owner executes the setup phase in O(nl2) time
and space.

– The server uses O(nl2) space and runs in O(ml2)
time during the query protocol.

– The client runs in O(ml2) time and space during the
query protocol.

– The query protocol has a single round of interaction
in the HIBE instantiation and is non-interactive in
the HIBS instantiation.

Corollary 1. The construction of Section 5 can be used
to answer closest point queries with the same security
properties as for range queries. In the resulting construc-
tion, the client and server each run in O(l2) time during
the query protocol.

Multiple values per key in a dataset.
Our construction can be easily extended to support
datasets where a single key k is associated with more
than one value. This can be done by mapping each key
to a chain of values instead of a single value. In this
case all values of the chain have to be signed and veri-
fied (additive cost). However, the proofs of empty ranges
are not affected as they involve only the keys. (In our
experiments on real datasets we observed small chain
lengths that added a negligible overhead: a subset of
the Boston taxi dataset, 54,152 records, had no colli-
sions since location coordinates, used as a key, were all
distinct, while the maximum chain length in the Enron
dataset, 54,152 records, was 36 when email timestamp
rounded to minutes was used as a key).

6 Security Analysis
In this section, we prove that RQ construction based on
HIBE is secure according to definitions in Section 4.

6.1 Proof of Soundness

We prove that our construction in Section 5 is sound
according to Definition 3.

Let Adv be the adversary that breaks our construc-
tion and outputs a forgery as per Definition 3. Given
Adv, we construct an adversary B that either breaks
HIBE selective security or the unforgeability of the un-
derlying signature scheme.

Let D∗ and q∗ = [a∗, b∗] be the arguments on which
Adv will forge and Q(q∗,D∗) = {(k1, v1), . . . , (km, vm)},
i.e., the keys present in D∗ within [a∗, b∗].



Efficient Verifiable Range and Closest Point Queries in Zero-Knowledge 382

Adv can output two types of forgeries. First she
could return answer with at least one (k, v) 6∈ D∗. To do
that, she needs to forge a signature on (k, v), thereby
breaking the unforgeability of the underlying signature
scheme. The second type of forgery is to omit an ele-
ment from answer s.t. there exists at least one (k, v) s.t.
(k, v) ∈ D∗ and a∗ ≤ k ≤ b∗ but (k, v) 6∈ answer. We
show that if Adv does the latter, using Adv we build B
to break selective security of HIBE (Definition 1).

Given D∗ and q∗ = [a∗, b∗], B picks one of (ki, vi) ∈
Q(q∗,D∗) randomly (i.e., she guesses that this is the key-
value pair that Adv will omit in her forgery). B chooses
a node ID∗ w.r.t. ki such that ID∗ satisfies the following:
(1) ID∗ is a prefix of ki but not of ki−1 and not of ki+1,
and (2) the leftmost and the rightmost child of the sub-
tree (w.r.t. Tl) rooted at ID∗ are completely contained
within [a∗, b∗]. B announces ID∗ as the ID it will forge
on, to the HIBE challenger.

The first condition ensures that if Adv forges a non-
membership proof for ki, then the forgery will be either
w.r.t. ID∗ or some prefix of it, but never its suffix. The
second condition is to avoid picking an ID∗ which Adv
will never forge on.
B proceeds by computing a set of roots R us-

ing GetRoots(l, [0l, 2l−1],D). She then runs HIBE.KeyGen
to generate all the secret keys for the roots in R.
HIBE.KeyGen will return ⊥ for secret key queries for ID∗

or its prefixes. By construction no node in R is a prefix
of ID∗, hence, B can generate secret keys for all nodes in
R using its HIBE.KeyGen oracle. B then generates nonce
µ and forwards it, along with R and corresponding se-
cret keys and the master public key from the HIBE chal-
lenger, to Adv.

Wlog we assume Adv outputs a forgery answer such
that there exists a key-value pair in D∗ that is not
present in answer. (Recall that, if answer contains mem-
bership proof for some key-value pair not in D∗, then
the unforgeability of the underlying signature scheme
can be broken.)

Given a forgery [a∗, b∗] B does the following. She
runs R′ ← GetRoots(l, [a∗, b∗], answer) to check if ID∗ ∈
R′. If not, he aborts. Otherwise, she picks two random
messages M0,M1 and sends them to the HIBE chal-
lenger. She receives back the challenge ciphertext C and
uses it as a challenge for ID∗ root. For encryption under
the rest of the nodes in R′, she picks random messages
and encrypts them appropriately. Once Adv returns de-
cryptions of these messages, B checks if C was decrypted
toM0 orM1 and sends the corresponding bit to its HIBE
challenger.

The number of nodes that can cover ki is the num-
ber of prefixes of ki, which can be at most the height
of the tree l. Therefore the probability that the reduc-
tion does not abort, i.e., the reduction correctly guesses
ID∗ is 1/ml: B first guesses the key ki from m possi-
ble choices and then guesses its prefix from l possible
choices. Hence, if Adv succeeds with probability ε, then
the reduction succeeds in the HIBE game with proba-
bility ε/ml.

6.2 Proof of Zero-Knowledge

In this section we show how to build a simulator for
the protocol in Section 5 to show that it has the zero-
knowledge property as defined in Definition 4.

Recall that View contains the client digest if D and
all the messages exchanged between the client and the
owner in the Setup phase and all messages between the
client and the server during the query phase. In partic-
ular, during the Setup phase the client receives λ, l and
σD = (MPK,SigPK, µ). Hence, the view contains these
four messages. During the query phase, for every query
q, the view is augmented with the query parameter [a, b],
m elements returned as answer to q, m signatures, t ci-
phertexts and their decryptions.

We now show how to build Sim to create a view in-
distinguishable from the one the adversarial client (Adv
in Definition 4) has when interacting with an owner and
the server who have access to D.

Setup phase.
Sim runs HIBE.Setup(1λ, l), Sig.KeyGen(1λ) and sets µ $←−
{0, 1}poly(λ). It sends σD = (MPK,SigPK, µ) to Adv. and
saves µ,MSK and SigSK.

Query phase.
On query q = [a, b], Sim queries the oracle on D for an
answer to q. Let {(k1, v1), . . . , (km, vm)} be the elements
in the answer it receives from the oracle. It signs every
key-value pair as σ(µ,ki,vi) ← Sig.SignSigSK(µ, ki, vi) and
sends σ(µ,k1,v1), . . . , σ(µ,km,vm) to Adv.

In the next round, Adv sends t ciphertexts
Croot∗1 , . . . ,Croot∗t . Sim first generates the roots itself by
running GetRoots. For each root∗t Sim uses HIBE.KeyGen
to generate SKrooti . (Recall that the root key MSK lets
Sim generate a key for any node in the tree.) Sim de-
crypts the challenge ciphertexts and sends back the cor-
responding messages.
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All messages generated by Sim are generated us-
ing the same algorithms as those by the owner and
the server: the public keys of the signature and HIBE
schemes, the random nonce µ and signatures on mes-
sages in the query answer. Hence, these messages in the
View come from the same distribution as those in the
real game. Sim can always decrypt ciphertexts in the
challenge since it has the root key of HIBE. Since chal-
lenge ciphertexts are generated by Adv using the pub-
lic key of HIBE, the ciphertexts and the corresponding
plaintext values also come from the same distribution
as in the real game.

7 Experiments on Synthetic Data
In this section, we measure the cost of each step of
the protocol described in Section 5. The goal of our
experiments is to determine how parameters such as
database size, database clustering and range query size
influence the storage overhead and the running times
of the setup, query and verification algorithms. We also
compare our results with our estimates of the query cost
in the method of [33]. Finally, we measure the perfor-
mance of our approach on closest point queries.

The experiments are run on a machine with 3 GHz
Intel Core i7 processor and 16 GB 1600 MHz DDR3
memory, running OS X Yosemite version 10.10.5. Our
implementation is in Java and builds on the HIBE li-
brary used in [22] that the authors made available to
us. The security level in all our experiments is λ = 512
bits. The numbers reported here are averaged over 10
runs for each invocation unless indicated otherwise.

7.1 Data

We have generated and made publicly available sev-
eral synthetic datasets [4] using the following approach.
Given a parameter l and the corresponding 2l upper
bound on the database size, we choose several synthetic
databases with sizes n ≤ 2l. Consider a range of keys
from 0 to 2l − 1. (Recall that we represent the im-
plicit full binary tree with leaves 0 to 2l − 1 as Tl.) The
value n determines the number of “non-empty” keys in
this range. In order to capture how close or far these
n keys are from each other in the range, we generate
datasets with different key clustering levels. Low cluster-
ing level suggests many “empty” keys between the keys
of D, while high clustering level suggests that D has mul-

tiple subsequences of consecutive keys k, k+ 1, k+ 2, . . ..
Low clustering creates many empty ranges, which, in
turn, requires more work for all three parties (e.g., the
server has to prove that no keys were omitted in many
ranges). As we will see in Section 8, real-world datasets
often exhibit high clustering.

We use datasets with the following clustering levels:
D$: the n keys are chosen at random;
Dx: The keys in this dataset can be split into clusters

of sequential keys with at most x keys in each clus-
ter, such that in total, the dataset contains n keys.
We generate the clusters as follows. Recall that l
denotes the maximum bit length of the keys in the
dataset. We create each cluster by choosing a seed
and setting the first l−dlog xe bits to random values
and the remaining dlog xe bits to 0’s. Let seed be
the resulting integer. Then the cluster is populated
with binary representation of the following x keys
seed, seed + 1, . . . , seed + x− 1. In our experiments
we used datasets with x set to 16, 128, and 2048.
To give a concrete example, let n = 10, l =
6 and x = 8. There can be at most two clus-
ters in D8. Let 0 and 32 be the two seeds.
Then we generate two clusters: one with 8 keys
and one with 2, and set D8 to their con-
tent. Hence, the resulting dataset contains keys
[000000, 000001, 000010, 000011, 000100, 000101,
000110, 000111, 100000, 100001].

7.2 Setup Phase

The setup phase is the preprocessing step run by the
owner once in order to prepare data for uploading to
the server. In Table 1, we consider 15-bit and 16-bit
keys and show the impact of the database size, n, and
the clustering parameter, x, on the setup cost.

Table 1. Setup time (in seconds) for the owner on datasets of
varying size n (from 102 to 104), key length l (15 bits and 16
bits) and clustering level.

n
Clustering level

l D$ D16 D128 Dn

102 15 80 1.2 0.8 0.8
16 95 1.4 0.9 0.9

103 15 519 1.7 1.3 0.4
16 1172 1.9 1.4 0.6

104 15 1742 6 2.7 0.5
16 5200 16.6 5.9 0.7
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As expected, the setup time grows proportionally
to nl2 which matches the theoretical bounds.

Now let us look at the dependency on with effect of
clustering. We observe that higher proportion of clus-
tered keys incur a smaller cost since there are fewer
empty ranges for which the owner has to derive the mas-
ter secret keys using HIBE.

7.3 Range Query Phase

In this section, we analyze the query cost for the client
and the server. The numbers reported here are averaged
over 100 runs for each invocation. Additionally, we re-
port the standard deviations (SD) for each invocation.

Recall that the query protocol is interactive; The
client sends a range query, receives the answer, sends ci-
phertext challenges, gets back their decryptions and ver-
ifies that they are correct. The server receives a query,
sends elements that answer the query and signatures of
each of these elements (a simple lookup). Given a ci-
phertext, the server derives HIBE key and decrypts it.

In Table 2 (left), we report the client’s time to
create challenge ciphertexts. We note that the rest of
the client’s time consists of running m equality checks,
which is a cheap operation, and two roundtrips to the
server. In Table 2 (right), we report the server’s time
to decrypt challenge ciphertexts. This table does not
include the cost of looking up m signatures, which is
relatively cheap (the server simply uses the signatures
provided by the owner).

The running times for each setting vary across 100
runs as can be observed from standard deviation (re-
ported as a percentage of the mean within “( )”). High
variance is explained by the different sizes of the canoni-
cal cover resulting from each range query. In particular,
consider dataset Dn, which has the highest variation.
Since Dn consists of a single cluster, a random queried
range can either completely fall within this cluster or
fall partially/completely outside. In the former case, no
covering is needed and the computation is very fast.

With observations similar to those made for the
setup phase, we note that the number of empty ranges
in the query answer as well as in D w.r.t. Tl influences
the cost. Our approach is very efficient for datasets with
key locality (either low or high); even queries returning
5000 elements require at most 4 seconds for the client
to generate challenges for clustered datasets. In partic-
ular, if the answer to the query contains sequential keys
(e.g., keys are clustered as x, x+1, x+2, . . .) then the cost
for the client and the server is smaller than in the case

when there are missing keys (e.g., keys in the answer
are x, x+ 345, x+ 1741, . . .). The latter case requires the
client to challenge the server (and the server to prove)
on the canonical covering of every empty range created
by the keys in the answer.

It is important to note that the difference in query
execution time between datasets (e.g., between D$ and
Dn) does not leak any additional information to the
client beyond what the client can learn from the query
answer, as, the client can determine the number of
empty ranges to verify based on Tl (l is public) and the
answer, which is not affected by the rest of the elements
in D.

Let us look closer at the cost of individual opera-
tions performed by the client and the server. The time
at the client is split in (1) generating roots for the
empty ranges to check (i.e., their canonical covering),
and (2) encrypting challenge messages. The cost of (2)
significantly dominates that of (1). For example, for a
database of size n = 104 (with l = 16 and D$), the cost
of encryption for an answer of size 1000 is 262s, whereas
the cost of generating canonical coverings is 0.11s. The
time at the server is split in (1) generating roots for
the empty ranges that need to be proved, (2) deriving
keys for the roots from the stored secret keys, and (3)
decrypting challenge messages. Similar to the client’s
case, server’s cost is dominated by the decryption cost.
In the same example, the typical cost of decryption is
262s and the cost of key derivation is 0.03s. Note that
since the canonical covering is unique, this cost of com-
puting it using GetRoots is the same at the server and
the client.

7.4 Server Storage Cost

We measure the total storage cost at the server to store
the data (D) and authentication information (σS) used
for answering queries. Recall that σS contains a secret
key of the HIBE scheme for the root of every subtree
covering a range of empty keys (see Section 5). Since
this cost again depends on the number of empty ranges,
we report the number of empty ranges for D$, D128 and
Dn of varying sizes of n in Table 3. Since D$ has the
highest number of empty ranges, it also has the highest
storage requirement. The storage cost is the size of each
HIBE key times the number of ranges.

For l = 20, HIBE key size 2960 bytes is the worst
case, i.e., when an empty range covers only one leaf
of the tree. Hence, for n = 10, 000 and D$, the server
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Table 2. Average ciphertext generation time (in seconds) for the client and average ciphertext decryption time (in seconds) for the
server using HIBE during the query phase. We show in parentheses the standard deviation as a percentage of the average. Keys in the
dataset have size l = 16 bits. We use ‘-’ to denote missing table entries as m > n.

Client: Server:
ciphertext generation ciphertext decryption
Query answer size m Query answer size m

1 10 100 500 1000 5000 1 10 100 500 1000 5000

n = 103
D$ 0.6(40) 6.3 (10) 59.3(30) 226(50) 320(60) - 0.6(40) 6.2 (10) 58.3(30) 223(50) 314(60) -
D16 0.7(70) 0.7(60) 0.7 (60) 0.7(70) 1.7(30) - 0.7 (70) 0.7(60) 0.7(60) 0.7(70) 1.6(30) -
D128 0.7(40) 0.7(50) 0.7 (40) 1 (40) 1(30) - 0.7(40) 0.6(50) 0.7(40) 1(40) 1(30) -
Dn 0.3(110) 0.3(120) 0.3 (100) 0.3 (120) 0.4(100) - 0.3 (110) 0.2(120) 0.3 (100) 0.3 (120) 0.3(100) -

n = 104
D$ 0.3(70) 2.8(20) 28(10) 134(20) 262(20) 1387(10) 0.3(70) 2.8(20) 28(10) 134(20) 262(20) 1384(10)
D16 0.6 (40) 0.6(50) 1 (60) 1(60) 1.7 (40) 2(50) 0.6(40) 0.6(50) 1 (60) 1(50) 1.6 (40) 2(50)
D128 0.5(70) 0.6(60) 0.6(60) 0.9(40) 1.4(40) 3.9(20) 0.5(70) 0.6(60) 0.6(60) 0.8(40) 1.4(40) 3.8(20)
Dn 0.3(110) 0.3(110) 0.3(100) 0.3(120) 0.3(110) 0.4(100) 0.3(110) 0.3(110) 0.3(100) 0.3(120) 0.3(110) 0.4(100)

storage is 62Mb while for n = 10, 000 and D128 it is
only 0.3Mb.

7.5 Comparison with Ostrovsky et al. [33]

The protocol in [33] is based on a cut-and-choose tech-
nique. In particular, the protocol requires the server to
commit to the database during the setup phase, then
for every query, the server re-randomizes and permutes
these commitments. Hence, for each step, the server has
to also prove that the re-randomization and permuta-
tion are consistent with the original data. The protocol
also involves proving the equality and comparison of two
commitments, which requires bit level commitments.

Table 3. Number of HIBE secret keys by database size, n, and
clustering level. Keys have l = 20 bits.

n
Clustering level
D$ D128 Dn

102 845 16 16
103 5222 32 12
104 21004 107 12
105 271089 814 10

Given the complexity of the above approach, we
chose to estimate only some operations that are per-
formed during the cut-and-choose protocol. We set the
cut-and-choose parameter λ′ = 80. The protocol of [33]
requires a homomorphic commitment scheme, for which
we use Pedersen commitments. Using the same library
we use for our experiments, we measured the cost of re-
randomizing a Pedersen commitment (CRR) as 0.2ms.
Though not expensive on its own, the number of times
it is invoked in the protocol is at least 2mλ′ logn for a

query on a dataset D of size n that returns an answer
of size m. The cut-and-choose protocol also involves
random permutation sampling, permuting the commit-
ments and oblivious evaluation of the circuit for hash
function. Oblivious hash evaluation alone makes our
method at least an order of magnitude faster than [33]
when using the timing result from [24]. The cost of one
invocation of hash evaluation is estimated to be between
0.85ms and 3.5ms in [24]. We use the fastest time of
0.85ms in our estimate below.

In Table 4, we show that the server’s cost of our pro-
tocol is orders of magnitude faster than the estimate of
just one step of [33]. We note that the performance ad-
vantage of our protocol grows with the query answer size
and clustering level. The clustering does not affect [33],
while our approach makes use of it. Moreover, our per-
formance does not degrade as the number of queries
grows (recall that [33] is stateful).

7.6 Closest Point Query

We experiment with closest point query (Table 5) for
key size l = 24 by varying the database size of D2048. We
see that the encryption (client) and decryption (server)
time drops as the database size grows. As we have dis-
cussed before, this is due to the number of empty ranges
decreasing as the database size grows for a fixed l.

8 Experiments on Real-World
Data

In this section, we measure the cost of query and verifi-
cation on two real-world datasets, Enron email dataset
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Table 4. Total time (in seconds) for the server in our approach
vs. time of one step of the server (CRR) in [33] for l = 16, n =
104.

Answer Our scheme CRR
size m D$ D128 Dn [33]

100 28 0.4 0.4 206.5
1000 237 1.3 0.5 2064.7
5000 1317 3.6 0.2 10323.6

Table 5. Closest point query time (in seconds) for the server and
the client for datasets of varying size, n. The key size is l = 24
bits the clustering is D2048.

n 102 103 104 105 106

Server 1.4 0.9 1.0 1.3 0.5
Client 1.6 1.0 1.3 1.5 0.6

and Boston city taxi dataset. The goal of these experi-
ments is to measure the performance of our protocol on
real world data. We describe our experimental set up
for each dataset first and then report the performance
of our method on various range query sizes in Table 6.
We note that we ran experiments on the same machine
and using the same parameters as in Section 7.

8.1 Enron Data

The Enron dataset [2] consists of 54,152 emails gener-
ated by 158 employees (including incoming and sent-
mails). The emails were sent between 1999 and 2002.
The first two lines of each email contain the fields
Message-ID and Date, for example:

Message-ID: 〈6233160.1075840045559.
JavaMail.evans@thyme〉

Date: Wed, 6 Feb 2002 14:51:43 -0800 (PST)

We created a database consisting of all the emails in
the inbox and sent-mail folder of each employee and
used 〈Date, Message-ID〉 as the the key-value pair for
the database. We first converted all the dates into UTC
time and kept precision up to minutes. The emails were
then sorted by the timestamp (date) value. In case of
collision, i.e., if there were more than one Message-ID
associated with a timestamp, we created a chain for that
timestamp. In particular, we found collisions for 6331
timestamps, where the average number of emails per
timestamp (i.e., the length of a chain) was 1.8 and the
maximum number of emails per timestamp was 36.

For this dataset we consider an audit query that re-
quests emails sent between timestamp A and B (e.g.,
an authorized time interval). Our protocol then returns
all message-ID’s sent and received in the time period
between A and B. It also proves that the answer is
complete, i.e., no email has been omitted, and reveals
nothing else about the email corpus.

8.2 Boston Taxi Data

As our second example, we chose the Boston taxi
dataset, which contains data about taxi rides in Boston
from November 2012 [1], sorted by pickup date. For our
experiments we use the first 54,152 taxi rides of the
original dataset in order to match the size of the Enron
dataset.

We build a database of the original records
using record fields PICKUPADDRESS, PICKUPLONG and
PICKUPLAT as follows. Using the GeoHash library [3], we
create a binary hash value, GeoHash, from the longitude
and latitude of each pick up location (fields PICKUPLONG
and PICKUPLAT). A geohash is a short binary string rep-
resentation of a (latitude, longitude) point. It is com-
puted via a hierarchical spatial data structure that sub-
divides space into buckets of grid shape, using the Z-
order curve, or Hilbert curve —more generally known as
space-filling curves [15]. Geohashes offer arbitrary preci-
sion and the possibility of gradually removing characters
from the end of the code to reduce its size (and grad-
ually lose precision). The longer a shared prefix of two
geohashes is, the closer the two places are. We use the
〈GeoHash, PICKUPADDRESS〉 as the key-value pair of the
dataset.

The range query on this dataset requests all ad-
dresses between two pickup locations, C and D. Our
protocol returns all the addresses between these pick up
locations and proves that the answer is complete, i.e., no
address has been omitted, without revealing anything
else about the other records in the dataset.

8.3 Performance

The results of our experiments are shown in Table 6
where we report averages and standard deviation over
100 runs.

As we have already discussed in Section 7, low clus-
tering creates many empty ranges, which, in turn, re-
quires more work for all three parties, namely, owner,
server and client. In the Enron email dataset, the emails
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Table 6. Average ciphertext generation time (in seconds) for the client and average ciphertext decryption time for the server using
HIBE during the query phase. We show in parentheses the standard deviation as a percentage of the average.

Client: Server:
ciphertext generation ciphertext decryption
Query answer size m Query answer size m

1 10 102 103 104 1 10 102 103 104

Enron 1.2(60) 12.9(30) 53(30) 504(20) 3904(30) 1.2(60) 12.9(30) 51(30) 505 (20) 3915(30)
Boston 1.7(50) 8.1(40) 29(20) 192(30) 795(60) 1.6(50) 8(40) 28(20) 191(30) 793(60)

clustering is much lower compared to the Boston taxi
dataset, where data is clustered around certain neigh-
borhoods. Note that although we did not use the full
Boston taxi dataset, our choice of records was based on
the timestamp and not the location, as we chose first
54K records of the original dataset sorted by date. To
give concrete numbers, the number of empty intervals
for the Enron dataset is 22,650 whereas for the Boston
taxi dataset it is only 3,176. As expected, the effect of
clustering is evident in Table 6. For the same query size,
we observe that the performance on the Boston taxi
dataset is much better than that on the Enron dataset.

Here, we also recall that the time taken to answer a
query of sizem varies depending on the size of the cover-
ing forest and depth of each root of the covering forest
needed to construct a proof for the returned answers.
This dependency is evident in the standard deviation
across the 100 random queries performed. For example,
we observed the following variation in size and depth
of the covering forest for queries of size 10. In the En-
ron dataset, the size of the covering forest varied from
4 (each of depth 20) to 86 (depth varying between 4
and 20), which resulted in query times between 1.26s
and 18.54s, respectively. In the Boston dataset, the size
of the forest varied from 15 (depth varying between 13
and 21) to 55 (depth varying between 4 and 21), which
resulted in query times between 4.1s and 13.8s, respec-
tively.

We also note that, as expected from the asymptotic
analysis of Section 5, the query time grows linearly with
the size of query answer.

9 Conclusion and Future
Directions

In this paper we presented and experimentally eval-
uated an efficient solution for answering 1-D range
queries while providing both integrity and privacy (zero-
knowledge). Our technique extends directly to multi-

dimensional data only with an exponential (in the se-
curity parameter) blow up in the number of secret
keys stored by the server. Finding an efficient solu-
tion that maintains integrity and zero-knowledge for
multi-dimensional range queries is left as an open prob-
lem. Another interesting research direction is to support
range queries on dynamic datasets efficiently without
compromising on privacy and security.
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