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Abstract: Several recent studies have demonstrated that
people show large behavioural uniqueness. This has se-
rious privacy implications as most individuals become
increasingly re-identifiable in large datasets or can be
tracked, while they are browsing the web, using only a
couple of their attributes, called as their fingerprints.
Often, the success of these attacks depends on explicit
constraints on the number of attributes learnable about
individuals, i.e., the size of their fingerprints. These con-
straints can be budget as well as technical constraints
imposed by the data holder. For instance, Apple re-
stricts the number of applications that can be called
by another application on iOS in order to mitigate the
potential privacy threats of leaking the list of installed
applications on a device. In this work, we address the
problem of identifying the attributes (e.g., smartphone
applications) that can serve as a fingerprint of users
given constraints on the size of the fingerprint. We give
the best fingerprinting algorithms in general, and eval-
uate their effectiveness on several real-world datasets.
Our results show that current privacy guards limiting
the number of attributes that can be queried about indi-
viduals is insufficient to mitigate their potential privacy
risks in many practical cases.
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1 Introduction
People exhibit large behavioural uniqueness. The way
how they move around [10], purchase goods [11], config-
ure their browser [12], or browse the web [24] make them
unique in very large populations. Even various combi-
nations of seemingly innocuous behavioural attributes,
such as in which shops they used to buy goods or where
they live and work make them unique [27]. For example,
it has been demonstrated that only four spatio-temporal
positions are enough to uniquely identify an individual
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95% of the times in a dataset of one and a half million
users [10].

As many devices record people’s behavioural pat-
terns today, it becomes relatively easy for third par-
ties to access such personal information. This has detri-
mental effect on individuals’ privacy, as behavioural
attributes can be easily used for the purpose of re-
identification and tracking in different contexts. For ex-
ample, advertiser companies often use behavioural at-
tribute values (e.g., the list of installed fonts [12] or ap-
plications [19]) to fingerprint website visitors in order
to show them more personalized ads. That is, each time
a user visits a website where a 3rd party tracker is em-
bedded, the tracker retrieves the user’s fingerprint (such
as certain fonts installed on the device [6]) and link all
his visited sites together [3]. As visited sites can belong
to very different topics, the tracker can build accurate
interest profiles of visitors in order to show them more
personalized ads. However, the list of visited sites can
also potentially uncover sensitive information such as
sexual behaviour or religion among others. Indeed, most
popular website categories that employ such user track-
ing were found to be porn (15%) and dating (12.5%)
[7].

Several countermeasures have been introduced
against fingerprinting in the context of web-tracking [7].
A simple solution is to completely disable all techniques
which allow a tracker to fingerprint visitors, such as
the execution of Javascript and Flash programs in a
browser. However, this causes significant degradation of
user experience and hence it is a less appealing option.
Another, more flexible approach is to enable but con-
strain the usage of such techniques. For example, only
limited number of system fonts can be used/queried by
an entire website [20], or only limited number of ap-
plications can be opened from another application on
a smartphone [2]. Hence, the goal of an adversary is
to identify at most a given number of attributes (e.g.,
fonts or applications), whose values make either a tar-
geted user or every user as unique as possible in the
dataset, i.e., the number of users sharing the same val-
ues of these attributes is minimized.

In this paper, we show that the practice of limit-
ing the number of attribute queries per user to mitigate
the privacy risks of fingerprinting is often inadequate.
We construct efficient greedy fingerprinting algorithms
given constraints on the maximum size of the finger-
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User # A1 A2 A3 A4

U1 1 0 1 1
U2 1 1 1 1
U3 0 1 0 1
U4 1 0 1 0
U5 1 1 1 0
U6 1 1 0 0

Table 1. Example dataset where each row is a record of a user
with binary attributes A1, A2, . . . , A4.

print. We provide essentially the best fingerprinting al-
gorithms under standard computational assumptions.
In particular, we address two general problems. Suppose
a positive integer s. First, given a targeted user and all
his attribute values, we want to know the subset of at-
tributes with cardinality at most s, called the individual
fingerprint of the user, whose values make this user as
unique as possible in a given dataset. This is referred to
as the targeted fingerprinting problem and analogous to
the re-identification (de-anonymization) problem when,
for example, a user of the Tor Browser is re-identified
using some of his/her attributes which can be queried
by visited websites. Second, we want to know the subset
of attributes with cardinality at most s, called general
fingerprint, whose values make each member of a group
as unique as possible within the group. This is referred
to as the general fingerprinting problem and analogous
to the linking problem when, for example, the brows-
ing activities of users are tracked, perhaps without re-
identifying them.

For example, in Table 1, the individual fingerprint of
U1 with maximum size 2 is {A2, A4}, and the fingerprint
value is {A2 : 0, A4 : 1} which make U1 unique among
5 other users. However, U2 has many possible finger-
prints with maximum size 2 (e.g., {A2, A4}), but none of
them provides a unique fingerprint value to U2, because
there is always at least another user which remains in-
distinguishable from U2 with respect to the fingerprint.
Table 2 shows the anonymity sets of all possible sub-
sets of attributes with cardinality 3 (in one anonymity
set, users share the same values of these attributes). We
find that the only general fingerprint of all the six users,
with maximum size 3, is {A2, A3, A4}, because this is the
combination of attributes (with size at most 3) which
yields the smallest anonymity sets.

We believe that the solutions of the above finger-
printing problems also have great importance in practice
due to the upcoming European General Data Protec-
tion Regulation which mandates privacy risk assessment
[1]. This requires to measure the re-identification risk

given certain “reasonable” constraints on the adversarial
background knowledge. Moreover, the problem of user
fingerprinting indirectly also appears in the Article 29
Working Party Opinion 05/2014 on data anonymization
techniques [5] which describes the linkability of records
concerning the same data subject in an anonymized
dataset as a privacy weakness.

Finally, we must note that our problems are differ-
ent from the one in [21], which is about finding a min-
imal subset of attributes that provides a certain sep-
aration of all the users in a dataset. That is, given a
separation value α, the minimum subset of attributes
which provides separation α (i.e., it separates at least
α fraction of all possible record pairs) is approximated
in [21]. By contrast, in our problems, we are given a
threshold s and we aim to give a subset of attributes
with size at most s which provides the best separa-
tion. Obviously, the larger s the better separation is
provided. Moreover, as we describe in Section 4.2, our
general fingerprinting algorithm solves some problems
in [21] more efficiently than prior algorithms. We also
note that the naive approach of using a limited num-
ber of random attributes as a fingerprint, which is also
employed by prior re-identification studies [4] [10] [11],
is inferior to our solution. In particular, these naive ap-
proaches build individual fingerprints from only those
attributes whose values are set in a record. For exam-
ple, in Table 1, {A2, A4} is not a possible fingerprint of
U1 with such a naive approach, as A2 is not set in the
first record. In fact, U1 has no unique fingerprint with
size 2 out of the attributes whose values are 1 in U1’s
record. Even more, in our work, missing attributes such
as {A1 = 0} could be a valid individual fingerprint of
U3.

Our main contributions are summarized as follows:

– We provide essentially the best fingerprinting algo-
rithms when constraints of the size of the fingerprint
are provided. In particular, we first prove that both
targeted and general fingerprinting are NP-hard in
general and the best possible polynomial time ap-
proximations are greedy heuristics.

– We provide real-life applications where these finger-
printing methods can be used in practice. In particu-
lar, we analyze the privacy protection used by many
popular services, such as iOS or Tor Browser Bun-
dle, which are based on limiting the number items
(e.g., installed apps or fonts) that can be queried on
a device for the purpose of fingerprinting. Our aim
is to raise awareness about the weakness of such
privacy guards.
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Subset of Attributes Anonymity sets
{A1, A2, A3} {U1, U4}, {U2, U5}, {U3}, {U6}
{A1, A2, A4} {U1}, {U2}, {U3}, {U4}, {U5, U6}
{A1, A3, A4} {U1, U2}, {U3}, {U4, U5}, {U6}
{A2, A3, A4} {U1}, {U2}, {U3}, {U4}, {U5}, {U6}

Table 2. The anonymity sets of all possible subsets of attributes (from Table 1) with size 3. The single general fingerprint is
{A2, A3, A4} whose values make every user unique.

– We evaluate our fingerprinting algorithms on differ-
ent large real-life datasets. Specifically, we analyze
the separation of different individual as well as gen-
eral fingerprints on several datasets, where a record
can contain the list of installed fonts, smartphone
applications, or visited locations by an individual.

The code base related to this paper is avail-
able at https://github.com/gaborgulyas/constrainted_
fingerprinting.

2 Model
Suppose that each individual in a population P has a
set of items from a larger universe U with size n. The
universe can contain any observable items of individuals
(e.g., set of all possible applications installed on individ-
uals’ smartphones, set of possible visited locations, etc.).
Therefore, each user is represented by a binary vector u,
called the user’s profile, where u[i] = 1 only if the user
has the corresponding item i ∈ U .

Our goal is twofold. First, we want to identify at
most s items, called individual fingerprint, which sepa-
rate a single individual from others the most, i.e., whose
values provide the largest uniqueness to the individual
in the population. We refer to this problem as targeted
fingerprinting. Second, we want to identify at most s
items, called general fingerprint, which simultaneously
separate all users from each other in a group the most,
i.e., whose values make each member of the group as
unique as possible within the group. We call this prob-
lem as general fingerprinting.

In particular, we are given the following constraints.
(1) We have only access to a subset B of the whole
population P , where one can think of B as a subsample
of P . (2) We can query at most s items of a user to
check whether the user has these items in his/her profile
or not. Then, our exact problems to be solved are as
follows.

Targeted fingerprinting: Given a targeted profile u
and a subset B of population P . Identify at most
s items {i1, i2, . . . , is} ⊂ U such that the number of
profiles in B which share identical values at posi-
tions i1, i2, . . . , is with u is minimized.

General fingerprinting: Given a subset B of popula-
tion P . Identify at most s items {i1, i2, . . . , is} ⊂ U
such that the number of profiles in B which share
identical values at positions i1, i2, . . . , is is mini-
mized.

Simply put, we intend to compute the uniqueness
of different itemsets in B and generalize these results
to the whole population. The underlying assumption of
this approach is that B is a subset of the population
P , and hence if B has sufficient number of users, the
uniqueness of different itemsets in B and P are also
similar.

3 Hardness of fingerprinting
We show that identifying the fingerprint items for both
problems described in Section 2 is NP-hard. In both
cases, we reduce the problem to the Maximum Coverage
Problem which is NP-hard [9].

Maximum Coverage Problem: Given a positive in-
teger s and a collection of sets C = C1, C2, . . . , Cm. Find
a subset C′ ⊆ C of sets such that |C′| ≤ s and the num-
ber of covered elements

∣∣∣⋃Cj∈C′ Cj

∣∣∣ is maximized.

The reductions are as follows.

Targeted fingerprinting: Let u denote the profile of
the targeted user. Assign a set of profiles Di ⊆ B to each
item i ∈ U , where item i of each profile in Di has value
u[i]. Let D = {Di|i ∈ U}, where |D| = |U|. The problem
is to find at most s sets in D such that the size of their
intersection is minimized. This is identical to finding at
most s sets such that the size of the complement of their

https://github.com/gaborgulyas/constrainted_fingerprinting
https://github.com/gaborgulyas/constrainted_fingerprinting
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intersection is maximized. Following from De Morgan’s
laws, this is further equivalent to finding at most s sets
in D = {Di|i ∈ U} such that the size of their union is
maximized, whereDi contains all profiles whose value at
i is not u[i]. This problem is identical to the Maximum
Coverage Problem, and hence Problem 1 is NP-hard.

General fingerprinting: Let V denote the number of
all pairs of profiles from B, where |V | =

(|B|
2
)
. For each

item i ∈ U , let Ti ⊂ A denote all pairs of profiles which
have different values at i (i.e., they can be separated by
item i). Clearly,

⋃
i∈U Ti = V . Let T = {Ti|i ∈ U}, where

|T| = |U|. Hence, Problem 2 is equivalent to finding
at most s sets in T such that the size of their union
(i.e., the total number of separated pairs of profiles)
is maximized, which is again the Maximum Coverage
Problem.

4 Algorithms
As the underlying problems for both fingerprinting
problems are NP-hard, we cannot hope for finding the
optimal solutions. However, a simple greedy heuristics,
which approximates the solution of the Maximum Cov-
erage problem, provides essentially the best possible ap-
proximations for our fingerprinting problems.

The greedy algorithm for the Maximum Cover-
age Problem iteratively picks the set which covers the
largest number of uncovered elements. It can be shown
that this algorithm achieves an approximation ratio of
(1 − 1/e) ≈ 0.632 [22]. That is, if OPT denotes the op-
timal solution (i.e., the maximum number of covered
elements by at most s sets), then the greedy algorithm
will cover at least (1−1/e) ·OPT elements. Moreover, it
has also been proven that, unless P = NP, there is no
1−1/e−o(1) approximation for the Maximum Coverage
Problem [13], which means that the greedy approach is
essentially the best-possible polynomial time approxi-
mation for this problem.

4.1 Targeted fingerprinting

The first problem is straightforward to approximate
with the greedy approach which is described in Algo-
rithm 1. Instead of maximizing the number of users
which disagree on the values of fingerprint queries with
the targeted user u, we minimize the number of users
which agree on those values with u.

We iteratively squeeze the anonymity set of u, de-
noted by anon_set in Algorithm 1, which is the set of
users sharing identical values at all items of the finger-
print queries K with u. Initially, anon_set is composed
of all the users in B. Then, in each iteration, we select
the item isep which separates u from the other profiles
in the anonymity set the most, i.e., minimizes the num-
ber of profiles which agree at all items of K with u.
For this purpose, we pre-compute a table, denoted as
users in Line 2, which maps each item i ∈ U to the list
of profiles which has the value of u[i] at position i. The
computation of this table takes time of O(|B||U|). Then,
we can easily identify the most separating item in each
iteration by the intersection of the anonymity set of u
and each list of table users. Fast implementations of the
intersection of sorted integers are described in [18]. If
users in the anonymity set are no further distinguish-
able by any item, we terminate and return K as the
final fingerprint (in Line 7). Otherwise, we continue the
separation as long as |K| ≤ s.

This solution has a storage complexity of O(|B||U|)
and computational complexity of O(s|B||U|).

Algorithm 1: Greedy Approximation for Tar-
geted Fingerprinting

Input: Fingerprint size s, Universe of items U , Dataset
B, Targeted user’s profile u

Output: Fingerprint items K

1 K := ∅
2 users[i] := {u′ |u′ ∈ B ∧ u[i] = u′[i]} for all i ∈ U
3 anon_set := B

4 repeat
5 // if no further separation is possible
6 if mini∈U\K{|users[i] ∩ anon_set|} = |anon_set|

then
7 break

8 isep := arg mini∈U\K{|users[i] ∩ anon_set|}
9 anon_set := anon_set ∩ users[isep]

10 K := K ∪ {isep}
11 until |K| = s or |anon_set| = 1
12 return K

Example 1. Suppose that u = U5 in Table 1 and s = 3.
First, we select the attribute which makes U5 the most
unique. U5 shares the same values of A1, A2, A3 and
A4 with 4, 3, 3, and 2 other users, respectively, hence
we select A4 in the first iteration. As a result, U4 and
U6 still remain indistinguishable from U5. In the next
iteration, we select the attribute which distinguishes U5
from U4 and U6 the most. We have two options: A2 or
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A3, as A1 are identical for all of them. We select, say,
A2, which means that U5 and U6 are still indistinguish-
able. Hence, in the final iteration, we select A2, which
yields {A2, A3, A4} as the individual fingerprint of U5.

4.2 General fingerprinting

The naive greedy algorithm, which includes enumerat-
ing and storing each pair of profiles distinguished by
each attribute, has a storage complexity of O(|U||B|2)
and computational complexity of O(s|U||B|2). Instead,
we design a greedy algorithm whose storage complex-
ity is O(|U||B|) and its computational complexity is
O(s|U||B|).

Our proposal is shown in Algorithm 2. We itera-
tively partition the set of profiles in B into anonymity
sets, where all profiles in an anonymity set have identical
values at all items of K (i.e., they are not distinguished
by any items in K). Our goal is to compute a partition-
ing where each partition (i.e., anonymity set) is as small
as possible.

To do so, in each iteration, we compute a separation
metric of each item for the current partitioning C, which
is the total number of separated pairs of profiles over all
partitions (in Line 7-11). For example, if a partition is
split into sub-partitions P1 and P2 by item i (where all
profiles in a partition share identical value at position i),
then the separation of i with respect to P is |P1| × |P2|.
The total separation of i is the sum of separations over
all partitions. Then, the item with the largest separa-
tion, denoted by isep, is selected (Line 12). Finally, each
partition in C is split by isep into two sub-partitions
(Line 17-21) such that a sub-partition contains all pro-
files from C which have identical values at position isep.
To speed up the computation of the separation metric,
we pre-compute a table called items which maps each
profile u to the set of items which are contained by u

(in Line 2 of Algorithm 2). Again, this pre-computation
runs in O(|U||B|).

Example 2. Suppose that s = 3 and we want to com-
pute the general fingerprint of Table 1. The operation
of the algorithm can also be illustrated by a binary tree
which is shown in Figure 1. In the first iteration, we
compute the separation metric of all attributes A1, A2,
A3, A4 which are 5×1, 4×2, 4×2, and 3×3, respectively.
Hence, we select A4 which separates all users into two
partitions {U1, U2, U3} and {U4, U5, U6}. In the second
iteration, we again compute the separation metric of A1,
A2, A3 over the two partitions, which are 2× 1 + 0 = 2,

2×1+2×1 = 4, 2×1+2×1 = 4, respectively. Hence, we
can select A2 or A3. We select, say, A2, which produces
partitions {U1}, {U2, U3}, {U4}, {U5, U6}. Next, we com-
pute again the separation metrics of A1 and A3 over
the new partitions which are 0 + 1 × 1 + 0 + 0 = 1 and
0 + 1 × 1 + 0 + 1 × 1 = 2, respectively. Therefore, we
finally select A3. As 3 attributes have been selected, we
terminate and return K = {A2, A3, A4} as the general
fingerprint.

Notice that the maximum number of partitions in any
iterations is at most |B| (i.e., the number of all records),
and we only maintain the partitioning resulted by the
last iteration. The complexity of computing the separa-
tion metric of each attribute takes O(|U||B|) (Line 7-11)
in each iteration, as set-memberships can be checked in
O(1) using hash-maps. Similarly, the separation itself
(Line 17-21) runs in O(|U||B|), which means that the
total complexity is O(s|U||B|) (Line 5-22).

Algorithm 2: Greedy Approximation for Gen-
eral Fingerprinting

Input: Fingerprint size s, Universe U , Dataset B

Output: Fingerprint items K

1 K := ∅
2 items[u] := {i | i ∈ U ∧ ui = True} for all u ∈ B

3 users[i] := {u |u ∈ B ∧ ui = True} for all i ∈ U
4 C := B // anonymity sets
5 while |K| < s do
6 // compute the separation of all items
7 separation[i] := 0 for all i ∈ U
8 for S ∈ C do
9 for i ∈

⋃
u∈S

items[u] do
10 t[i] := |{u |u ∈ S ∧ i ∈ items[u]}|
11 separation[i] := separation[i]+t[i]·(|S|−t[i])

12 isep := arg maxi∈U\K separation[i]
13 // if no further separation is possible
14 if separation[isep] = 0 then
15 break

16 // splitting all partitions with isep
17 T = ∅
18 for S ∈ C do
19 V := {u |u ∈ S ∧ isep ∈ items[u]}
20 T := T ∪ {{V }, {S \ V }}

21 C := T

22 K := K ∪ {isep}

23 return K

Finally, we note that Algorithm 2 can also be
adapted to compute the minimum number of items
which separate all users in B (this is referred to as the
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Minimum Key Problem in [21]). To do so, we only need
to set s to |U| in Algorithm 2, which means that the
running complexity becomes O(|U|2|B|). By contrast,
the best prior greedy solution of this problem, which
is also proposed in [21], runs in O(|U|3|B|). However,
this is impractical if the number of attributes/items is
large. Although several probabilistic relaxations of this
problem is considered in [21] in order to reduce run-
ning complexity, they also degrade the accuracy of the
solution.

5 Applications
In this section, we describe some potential applications
of targeted and general fingerprinting in practice. The
first application relates to fingerprinting smartphone ap-
plications, which has also been partially studied in [4].
The second application shows how to fingerprint users
using the list of (non-)installed fonts in order to track
them while they are browsing the web. Finally, we show
a use-case of mass de-anonymization in location datasets
using our fingerprinting techniques, which can serve as
a potential investigation tool for authorities.

5.1 Smartphone app fingerprinting

It has been shown that knowing the presence of four ran-
domly chosen applications on a device are enough to re-
identify users in a dataset of 54,893 users [4]. Moreover,
installed apps also reveal a lot about the owner’s inter-
ests, and Twitter also used this information for targeted
interest-based advertising among others [19]. In this sec-
tion, we show how a third party can use such informa-
tion for tracking. The main idea is to install a malicious
application on the user’s device which executes the fin-
gerprint queries and identifies the fingerprint value of
the user. As some operating systems, such as iOS, limit
the number of apps whose existence can be checked by
another app, the queries should be optimized such that
their result distinguish as many users as possible. In
particular, we envision a re-identification scenario using
targeted fingerprinting (see Fig. 2a), when the browsing
activities of some targeted users are tracked, and also
a linking scenario using general fingerprinting (see Fig.
2b), when the browsing activities of multiple users are
tracked without re-identifying any of them.

In both cases, when the (individual or general) fin-
gerprint apps are provided to the malicious app, it

checks their existence on the device (i.e., constructs the
fingerprint value). Then, it opens a legitimate URL in
the browser which redirects to a third party tracker in
order to generate and store a tracking cookie of the
tracker as a visited first party in the browser1. This
cookie contains the user/device identifier which is the
fingerprint value. When the same browser visits a site
having this tracker, the user will be tracked using the
previously stored cookie (and also re-identified in case
of targeted fingerprinting).

We must note that, in contrast to traditional web
cookies, the identifier stored in the cookie is strictly
bound to a persistent, behavioural attribute (i.e., the
list of installed/non-installed apps). This means that
even if the user deletes the cookie, he can still be re-
linked to the same identifier by re-generating the same
cookie based on possibly the same list of (non-)installed
apps. The identifier even persists, if the application is
removed and then re-installed, or other applications are
installed that can generate the same identifier.

Next, we provide the details of the attack, which
consists of three phases: (1) Identify the fingerprint apps
(queries) of the targeted user (targeted fingerprinting) or
a group of users (general fingerprinting), (2) Retriev-
ing the list of fingerprint apps on users’ device, (3) De-
anonymize the targeted user and/or track user activities.
As the third phase has been detailed before, we will fo-
cus on the first two phases.

5.1.1 Identifying the fingerprint apps

For targeted fingerprinting, the malicious 3rd party
tracker, called as adversary henceforth, first needs to
obtain the list of (non-)installed apps of a known, tar-
geted user. This is relatively easy by consulting with
some social media where users often post the applica-
tions they use, or simply retrieving the app list directly
from the user’s device (if the user has iOS 9, the ad-
versary may get access to the full list of installed apps
before the user upgrades to iOS 9, see below for de-
tails). As another work suggests [4], the adversary does
not need to get the complete list of applications, but

1 In order to circumvent the third-party blocking of Safari, the
legitimate URL specifies a malicious website which redirects to
the third-party tracker. The tracker then becomes a first party
and can set a tracking cookie in the browser. Finally, the tracker
redirects to the initial website, and the device can be tracked
across websites.
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{U1, U2, U3, U4, U5, U6}

A4 = 1 A4 = 0

{U1, U2, U3} {U4, U5, U6}

A2 = 1 A2 = 0 A2 = 1 A2 = 0

{U1} {U2, U3}

Iteration 1:
isep = A4

K = {A4}

Iteration 2:
isep = A2

K = {A4, A2}

Iteration 3:
isep = A3

K = {A4, A2, A3}

A3 = 1 A3 = 0

{U4} {U5, U6}

{U2} {U3}

A3 = 1 A3 = 0

{U5} {U6}

Fig. 1. General fingerprinting on the dataset of Table 1: Greedy algorithm builds a binary tree of partitions, where the leaves
constitute the final anonymity sets of the fingerprint K = {A2, A3, A4}.

application
store

web
tracker

1

3

4

5

2

(a) Re-identification: after the tracker app is installed 1 ,
the individual fingerprint apps of the targeted users, whose
identities are known, are retrieved from the 3rd party tracker

2 - 3 . These fingerprints are matched with the list of
(non)-installed apps on the device 4 . If there is a positive
match, the browsing activities of the user along with his

identity is tracked using a cookie created by the tracker app
5 .

application

store web
tracker

1

2

3

F={App1, ..., Apps}

(b) Linking attack: the tracker app is installed with the
general fingerprint apps which distinguish all users the most
1 . After the fingerprint value is computed by checking the

existence of the fingerprint apps on the device 2 , a cookie is
created by the tracker which is bound to this fingerprint

value. As a result, the browsing activities of any user in the
group can be tracked 3 .

Fig. 2. Targeted fingerprinting (for re-identification) and general fingerprinting (for linking) using the list of installed apps on a
smartphone.

only 4 random apps are sufficient to re-identify the user
with 95% of the times. We show later that, by using
the greedy optimization algorithm, described in Section
4.1, the adversary can re-identify most users with even
fewer queries.

For both targeted and general fingerprinting, the
adversary needs to have access to a subset of user pro-
files, denoted by B in Algorithms 1 and 2, in order to
identify the fingerprint apps of the users to be tracked.
In particular, for targeted fingerprinting, the adversary
identifies at most s apps, using Algorithm 1, whose ex-
istence need to be checked on the targeted user’s device
to construct his/her individual fingerprint. As we detail
below, the value of s changes depending on which oper-
ating system the app is built for. In certain cases, iOS
allows to query at most 50 apps, while in other cases the
queries need to be pre-defined and cannot be changed

later when the app is installed, which is reminiscent of
our general fingerprinting problem.

For general fingerprinting, the dataset is used to
identify at most s fingerprint apps, using Algorithm
2, whose existence need to be checked on every group
member’s device to construct a fingerprint for each
group member which sufficiently distinguish them. This
dataset can contain the profiles of the group themselves,
or another subset of the same population. After calcu-
lating the user/device identifier, this could be used as
an identifier for web tracking; we show how in Fig. 3
(with a proof-of-concept demo).

5.1.2 Retrieving the fingerprint apps on iOS

Equipped with the list of the fingerprint apps, the ma-
licious application needs to check their existence on
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the device. To the best of our knowledge, Android al-
lows to retrieve the complete list of installed apps, but
Apple has introduced some limitations with the re-
lease of iOS 9 [2]. On iOS, applications can use the
canOpenURL() call to determine if another application is
available on the system (i.e., whether it can be called).
That is, each fingerprint app query corresponds to a call
of canOpenURL() specifying a URL. The call returns a
boolean value indicating whether or not the specified
URL’s scheme can be handled by some app installed
on the device. However, Apple introduced two restric-
tions that apply when the program is compiled on iOS
9 [2]. Applications built for systems before iOS 9 but
executed on iOS 9 can invoke canOpenURL() with at
most 50 distinct apps. This number is reset each time
the user re-installs or upgrades the app. Applications
built for iOS 9 and also executed on iOS 9 have to de-
clare in advance which other applications they would
like to check with canOpenURL(), making abuses notice-
able well in advance. Every canOpenURL() call which is
over the limit of 50, or specifies a non-declared app, will
return a negative response.

We emphasize again that these limitations are in
effect only when a user builds an app on iOS 9, leav-
ing users of older systems vulnerable. The proportion
of such systems was measured to be 23% according to
a statistic revealed by the Apple Store (as of February
22, 2016) 2.

5.2 Font fingerprinting

Fingerprinting projects, such as the Panopticlick3 [12]
and the cross-browser fingerprinting project4 [6] have re-
vealed that websites can effectively query browser prop-
erties to track their visitors. In particular, it has been
shown that detecting fonts is an important technique to
track users as their entropy is one of the highest among
the available identifiers [12], and they can be queried in-
dependently from the browser [6]. Font detection mech-
anisms were also shown to be used in device tracking
mechanisms [23].

2 Statistic published by the Apple Store: https://developer.
apple.com/support/app-store/
3 Website: https://panopticlick.eff.org
4 Website: https://pet-portal.eu/fingerprint/; newer version
available at: https://fingerprint.pet-portal.eu

malicious
website(s)

1

2 3

tracker

1

2

3

webbug.eu/ios_device_id/?device_id=UmVhZGVy

tracker.pet-portal.eu/?device_id=UmVhZGVy
      &return=webbug.eu/ios_device_id/

webbug.eu/ios_device_id/

Proof-of-concept demo

Fig. 3. Example on how the device identifier could be leaked
to the web. The malicious application opens a URL that seems

to be legitimate, but it contains the hidden or obfuscated
device identifier 1 . In order to circumvent the potential

third-party blocking of Safari, the malicious websites redirects
to a third-party tracker 2 . The tracker then is now becomes
a first party and can set a tracking cookie. Finally, the tracker
redirects to the initial website 3 , while it also remains able to

track the devices across websites.

One cutting edge web browser that promises
anonymity is called the Tor Browser Bundle 5 (TBB)
or the Tor Browser, whose anonymity guarantees have
been widely studied [8, 17]. Up to version 5.5, TBB de-
velopers tackled font-based tracking by introducing two
limits: one on the number of font load trials, and one
on the number of successful font loads [20]. These pa-
rameters are called browser.display.max_font_count
and browser.display.max_font_attempts, and by de-
fault they are set to a value of 10. These options can
be changed by accessing about:config. Detecting the
existence of fonts on a system is relatively easy using
Javascript, which can be embedded on the visited web-
site: it can be measured if the rendered text has a differ-
ent width and height compared to the system default 6.
Notice that TBB allows the execution of Javascripts by
default due to their prevalence on the web today. TBB
addresses two types of attacks, among others, which we
analyze in this paper: de-anonymization (see Section
3.1.2 in [20]) and linking attacks (see Section 3.1.4 in
[20]). Our attack schemes are depicted in Fig. 4.

De-anonymization occurs when an attack correlates
TBB and non-TBB activities of a targeted user. First,
the adversary collects the available fonts on the user’s
system when the user visits a website with a regular,
non-TBB browser, thus the list of fonts can be associ-

5 The TOR project website can be found here: https://www.
torproject.org
6 Example: http://www.lalit.org/lab/javascript-css-font-
detect/

https://developer.apple.com/support/app-store/
https://developer.apple.com/support/app-store/
https://panopticlick.eff.org
https://pet-portal.eu/fingerprint/
https://fingerprint.pet-portal.eu
https://www.torproject.org
https://www.torproject.org
http://www.lalit.org/lab/javascript-css-font-detect/
http://www.lalit.org/lab/javascript-css-font-detect/
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https://webbug.eu/test_font.php

Proof-of-concept demo
4

TORregular
browsers

Fig. 4. Attacks against TOR browser. Initially, the malicious websites (or collaborating sites) build a large dataset of (font)
profiles by installing trackers (or web bugs) on websites which are also accessed without TOR 1 . In case of targeted

fingerprinting, when the user visits a site containing a malicious tracker 2 , the adversary gets informed by its trackers and
retrieves the complete profile of the targeted user 3 . Then, using the collected dataset of font profiles, the adversary can
compute the fingerprint fonts of the user, which can be later queried in order to de-anonymize the user when he visits a site

through TOR containing a malicious tracker 4 . In case of general fingerprinting, the adversary computes the general fingerprint
using the collected dataset of font profiles, and queries these fonts from each TOR visitor 4 .

ated with the user’s identity. We note that this does not
mean that the site is under a total control of the adver-
sary. This can also be a site where a malicious tracker
(or web bug) is installed. Then, the adversary selects
at most 10 fingerprint fonts whose existence need to
be checked on the user’s system to re-identify him/her.
When the user visits this or another malicious website
via Tor Browser, this site queries these fingerprint fonts
through Javascript. As a result, “private” (TBB) and
“public” (non-TBB) activities of the web user can be
linked. De-anonymization is analogous to our targeted
fingerprinting problem, where the maximum number of
fingerprint queries is limited to 10.

Linking attack refers to linking the activities of
a user together within TBB. As opposed to de-
anonymization, the identity of the user is not known
(i.e., the attack does not require a visit to a site with a
regular browser), and the goal is to track the user us-
ing TBB. In this case, the adversary needs to identify
at most 10 fingerprint fonts which can distinguish any
TBB user from the rest. This means that a malicious
tracker queries the same set of 10 fonts of each TBB user
visiting a site, and the results of these queries serve as a
fingerprint for each user. This is analogous to our gen-
eral fingerprinting problem, where the maximum num-
ber of fingerprint queries is limited to 10. Notice that
while these fingerprints may not be sufficiently unique
to every user in the whole TBB community, they should
be quite unique per site. According to a measurement
based on TBB usage data of 2012-2013 [15], the average
number of daily Tor Browser users per country was well
below 1%, e.g., 0.08% in Europe, meaning that even visi-

tors of well known websites receiving a large daily traffic
could be easily identified even if they would use TBB.

In order to identify the fingerprint fonts, the adver-
sary needs to have access to a subset of all profiles in
the TBB population, where a profile contains the list of
installed and non-installed fonts of a user.

Note on deprecation: In the beginning of our in-
vestigation, we found out that the font limitation was
not working at all in the Tor Browser, making TBB
users vulnerable to the above attacks without limita-
tion (the current stable version was TBB 5.0.4 at that
time). We published a blog post to demonstrate the fea-
sibility of the above attacks [16], and informed the de-
velopers about this issue. It turned out that developers
had already been working on other workarounds to de-
feat font fingerprinting [14], and the lack of the above
limitation on the number of font queries was due to im-
plementation difficulties in newer Firefox versions. The
new countermeasure, which is shipping the Tor Browser
with a pre-defined set of fonts that the browser can only
use, was introduced two months later with TBB 5.5 at
January 26, 2016. While this makes our fingerprinting
techniques deprecated in the context of TBB, we believe
that our work can be a useful warning for developers
who may use similar countermeasures in the future, as
the case of application fingerprinting also shows.
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5.3 Mass de-anonymization in location
datasets

We can also use fingerprinting techniques in a quite
different context than online tracking, that is, to de-
anonymize a location database (e.g., a Call Detail
Record dataset). Suppose that the adversary has access
to a weakly anonymized location dataset containing the
set of visited locations per individual in a city (time
information is omitted for the sake of simplicity). For
example, this dataset contains pseudonymized records
(i.e., only direct personal identifiers are removed), but
location information are kept intact. The goal of the ad-
versary is to re-identify as many users as possible in this
dataset, i.e., to perform a mass de-anonymization attack
without knowing any locations of the victims a priori7,
but only their personal photos (e.g., by crawling a social
media of the city). The plan of the adversary is to mount
at most s cameras at different spots of the city, and re-
identify all individuals observed by any of these cameras
by using some face recognition mechanism and the pho-
tos that she has. Knowing the fact that an individual
does (not) visit these camera spots (i.e., the visiting
pattern of individuals with respect to only these spots),
the adversary locates the record which has the observed
visiting pattern in the anonymized dataset, and learn
all other unknown visited places of the individual.8

In order to maximize the number of de-anonymized
users in the dataset, the adversary wants to identify at
most s camera spots which can distinguish all users in
the anonymized dataset as much as possible. In par-
ticular, the values of any record at these spots should
be unique in the dataset, or at least the number of
records sharing the same values at these spots should
be minimized. This goal is reminiscent of our general
fingerprinting problem. Hence, the adversary runs our
greedy heuristic in Algorithm 2, with input s and the
anonymized dataset, in order to identify these finger-
print spots.

Although deploying cameras at any spot of a city is
unlawful and easily detectable, we believe that the above
scenario is not far-fetched at all. Authorities, who have
the right to install or access such surveillance cameras,
may be interested in the above “privacy-friendly” ap-
proach of learning the trajectories of suspects. Indeed,

7 Otherwise, the adversary has good chance to locate the vic-
tim’s record based on [10]
8 It is not reasonable to assume that the adversary can mount
any number of cameras due to budget constraints.

authorities do not need to ask telecom companies to re-
veal the exact identity of any of their customers, but
only their anonymized CDRs.

6 Experimental results
In this section, we compute the uniqueness of targeted
and general fingerprints on real-world datasets. In par-
ticular, we consider three real-world datasets, each cor-
responding to an application described in Section 5,
which can be used by the adversary to identify the
fingerprint items of users. We report the size of the
anonymity sets of all targeted and general fingerprints
for each dataset.

6.1 Datasets and ethical considerations

6.1.1 Smartphone applications

6.1.1.1 Dataset
The dataset comes from the Carat research project [25].
The dataset includes data from 54, 893 Carat Android
users between 11/03/2013 and 15/10/2013 [26]. Dur-
ing this period, the Carat app9 was collecting the list
of running apps (and not the list of all installed apps)
on users’ devices when the battery level changes. As col-
lecting the list of running apps multiple times over more
than 7 months is likely to sum up to the set of all in-
stalled apps of a user, we consider a record as the set
of installed applications in this paper, even if a record
might not be the complete set of installed apps all the
time.

We removed system apps from all records because
they are common to all users. Without system apps,
our analyzed dataset contains 92, 210 different applica-
tions whereas the total number of apps available on the
GooglePlay were around 1 million during this time10.
Table 3 summarizes the main characteristics of our
dataset.

6.1.1.2 Ethical considerations
This dataset contains the list of installed smartphone
applications per user. The data were collected with the
users’ consent, and they were explicitly informed that

9 http://carat.cs.helsinki.fi
10 http://en.wikipedia.org/wiki/Google_Play

http://carat.cs.helsinki.fi
http://en.wikipedia.org/wiki/Google_Play
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# of records 54, 893
# of all apps in the dataset 92, 210
Maximum record size 541
Minimum record size 1
Average record size 42
Std.dev of record size 39

Table 3. Characteristics of the smartphone app dataset

# of records 43, 656
# of all fonts in the dataset 81, 195
Maximum record size 6, 072
Minimum record size 1
Average record size 143
Std.dev of record size 118

Table 4. Characteristics of the font fingerprint dataset

their data could be used and shared for various research
projects. In fact, the Carat privacy policy (available at
http://carat.cs.helsinki.fi) clearly specifies that “Carat
is a research project, so we reserve the right to publish
our results online and in academic publications. We also
reserve the right to release the data sets into the public
domain.” Also, the dataset was shared with us by the
Carat team in a pseudo-anonymised form. In particu-
lar, identifiers were removed, and each application name
was replaced with its SHA1 hash. It contained 54, 893
records [26], i.e. one record per user. Each record is com-
posed of the list of applications installed and run by the
user. Furthermore, the data sharing agreement that we
signed, stipulated that we cannot use the dataset to
deanonymize the users in the dataset.

6.1.2 Fonts used by web browsers

6.1.2.1 Dataset
This dataset contains the list of installed fonts, the
screen size and available screen size per user. The data
collection was done on fingerprint.pet-portal.eu where
users could test and compare their OS fingerprint in
different browsers. Data was collected with the purpose
of analyzing OS fingerprint uniqueness. In particular,
users were advised to run the test in different browsers
which collected the list of installed fonts, among others,
and compare the calculated fingerprint if they match
The website have collected more than 107, 102 font pro-
files between 05/04/2012 and 22/09/2015, which do not
necessarily belong to distinct users due to the purpose
of the project. In our experiments, we only used a sub-
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User agent string 10.0 7.18
Timezone 3.04 2.23
All fonts 13.9 7.79
Plugins 15.4 7.91
Screen 4.83 3.34

(a) Comparison of entropy values for each attribute.

(b) Number of users w.r.t. the sizes of the
anonymity set they belong to.

Fig. 5. Descriptive attributes of our datasets that also enable
the comparison with previous work in [12].

set of users and attributes that were collected, and the
data was cleaned as follows.

In order to remove possible duplicates (a user could
visit the fingerprinting site multiple times), several
records were removed by comparing hashed IPs and
stored usernames. If username was not given by a person
who conducted the test, the site stored the font profile
of the user in an evercookie11. Given a list of profiles
having the same IP address where creation dates were
closer than 10, only the first entry was preserved. All
record duplicates having the same username were re-
moved regardless of date differences.

The resulted database had 43, 656 records, which
contained the list of detected fonts, and the screen and
available screen sizes12 of each user. As this is the first

11 Evercookies: http://samy.pl/evercookie/
12 Referring to JavaScript properties screen.width &
screen.height and screen.availWidth & screen.availHeight

http://carat.cs.helsinki.fi
fingerprint.pet-portal.eu
http://samy.pl/evercookie/
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paper using the given dataset, we provide descriptive
metrics of the data in order to help understanding our
results. We also provide attributes of the original Panop-
ticlick dataset for comparison, and Fig. 5b is also easily
comparable with Fig. 3 in [12]. This figure confirms that
our dataset has been cleaned properly. The main prop-
erties of the dataset is described in Table 4.

6.1.2.2 Ethical considerations
The data were collected with users’ consent on a website
that raises awareness on tracking using OS (or device)
fingerprinting. On the website it is clearly described that
all collected information is treated confidentially, and
the goal of the data collection is to analyze uniqueness
of generated OS fingerprints. Types of data that are
collected is also clearly communicated, from which we
used screen size, available screen size, and available fonts
per user. The data we used was shared with us with the
operators of the fingerprint website, and our agreement
allowed us to conduct the uniqueness study we present
in this paper.

6.1.3 Location dataset

6.1.3.1 Dataset
This dataset contains the list of visited locations per
user in a large European city. We use a CDR (Call De-
tail Record) dataset provided by a cell phone operator
in Europe. A cell tower is visited by an individual, if
the operator has a recorded event at the tower related
to the individual over the observed period (01/09/2007
- 17/10/2007). An event can be an incoming/outgoing
call or message to/from the individual. The dataset
contains the events of 4, 427, 486 users at 1, 303 tow-
ers within the administrative region of the city, where
the GPS coordinates of all the towers are also available.
In our dataset, a record contains only the set of towers
that are visited by a user over six weeks, i.e., it does not
contain the time of visits.

The average number of individuals per tower over
this period was 38, 817 with a standard deviation of
50, 911. The total area of the city which is covered by
cell towers is 128.1 km2. The main characteristics of our
dataset and the cell towers are shown in Table 5.

6.1.3.2 Ethical considerations
The dataset was shared with us by the telecom opera-
tor in a pseudo-anonymised form. Each record in this

Dataset size 4, 427, 486
# of all cell towers 1303
Maximum record size 422
Minimum record size 1
Average record size 11.42
Std.dev of record size 17.23
Total area of all cells 128.1 km2

Table 5. Characteristics of our location dataset (up) and
Voronoi-tessellation of cell towers (down). Red lines denote the

boundaries of districts.

dataset represented an event belonging to a single user
with a pseudonymized phone number, i.e., the last 8
digits of the original phone number were changed to a
randomly chosen 8 digit number. The record included
the GPS location of the cell tower, the type of the event
(incoming/outgoing SMS or call) and the timestamp of
the event. Records (events) belonging to the same indi-
vidual contained identical pseudonymized phone num-
ber, hence all events of an individual could be linked to-
gether. We signed a data sharing agreement with the op-
erator which stipulated that we cannot use the dataset
to deanonymize the users in the dataset.

6.2 Targeted fingerprinting

6.2.1 Smartphone users by applications

We run Algorithm 1 on the smartphone application
dataset, described in Section 6.1.1, to generate an in-
dividual fingerprint for each user in our dataset with
different constraints on the maximum size of the fin-
gerprint. When s = 50 (this threshold comes from the
iOS countermeasure detailed in Section 5.1.2), on aver-
age, only 2.3 app queries per user provided the finger-
print value. The exact distribution of fingerprint length
is shown in Fig. 6. Our greedy algorithm generated fin-
gerprints shorter than 50 apps for all users. Moreover,
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with the exception of 27 users, the generated fingerprints
consist of at most 10 apps. The reason is that our algo-
rithm can terminate before the fingerprint size reaches
s (see Line 7 in Algorithm 1). We note that a user who
has a fingerprint shorter than s is not necessarily unique
with this fingerprint in the dataset. For example, a user
may have fewer than s apps installed on his phone which
are also installed by other users in the dataset.

For s = 50, we find 4,098 users (7.47%) in our
dataset who cannot be uniquely re-identified and there-
fore belong to some anonymity sets with size greater
than 1. We visualized the sizes of anonymity sets and
their population in Fig. 8a. This figure shows that
96.15% of users are almost unique (the size of their
anonymity sets is at most 3), while only 3.02% of users
fall into anonymity sets with size at least 10. (Note:
large anonymity sets concerning only a couple of users
are possible as these anonymity sets are not disjoint.)

We also measured the size anonymity of sets when
s = 2 (instead of 50); results are reported in Fig. 8b. The
proportion of almost unique users decreased to 85.54%,
eventually showing that the current privacy protection
method on iOS is ineffective against fingerprinting users.
In addition, this uniqueness value is larger than the one
in [4], which was about 75% for 2 apps. The difference,
as we have discussed in Section 1, is due to the fact that
only existing apps of users are selected to measure their
uniqueness in [4], meanwhile we optimize the queries for
the targeted user’s profile and they can also include the
queries of non-existing apps.

Finally, we note that similar uniqueness is expected
in even larger datasets based on the same reasoning as
in [4]. With a growing number of users, the number of
available applications should also increase with a lower
pace. This means that the number of possible combina-
tions of apps also increases exponentially with each new
application added to the dataset.

6.2.2 TBB users by font detection

We also run Algorithm 1 on the font dataset, described
in Section 6.1.2, to measure the effectiveness of finger-
printing using fonts. We believe that, despite that non-
Firefox browsers are not excluded from our dataset, our
results are generic. While there are minor differences
of JavaScript font detection in different browsers, this
method is reliable enough to detect the majority of fonts
in all browsers. As a result, a record characterizes the
OS of a user rather than his browser. We also studied the
uniqueness of fingerprints when they are extended with

the screen resolution and available screen size. While
the Tor Browser makes various efforts to hinder access
to this information, it cannot block full access [20]; for
example, it warns users of related privacy hazards in
case the window of a Tor Browser is maximized.

The distribution of fingerprint length is shown in
Fig. 7. Results are better for user privacy compared to
our app dataset, as only 53.8% of users have fingerprints
no longer than the font load limit of s = 10 imposed by
the Tor Browser (see Section 5.2). Peaks appearing for
longer length are likely to be due to pre-set OS configu-
rations that were not altered at all, or only slightly. For
example, these can be computers running in institutions
or at companies, where configurations are very similar
to each other. Barely modified fresh installs could also
be behind this phenomena.

As font fingerprints are not necessarily unique (due
to the same reasons discussed in Section 6.2.1), we re-
port the sizes of anonymity sets for each user. Results
are shown in Fig. 9a. Detection of 10 fonts allows unique
identification of 13, 155 users in our datasets (30.13%),
and 39.26% of the users are almost unique (i.e., has
anonymity set size at most 3). This roughly means that
one third of TBB users at a given service can effectively
be de-anonymized.

We also report the size of anonymity sets if screen
resolution and available screen size are also added to
the fingerprint (see Fig. 9a and 9b). These results show
that these extra attribute values significantly increase
the uniqueness of users. While we find that the pro-
portion of almost unique users is roughly doubled when
available screen size is added to the fingerprint, probably
this would not be the case for TBB users. In particular,
TBB users are discouraged to install any browser exten-
sions and other tools which usually change the available
screen size.

We additionally examine if decreasing the limit s is
a remedy for the situation. Our negative findings show
that when the font load limit is decreased to 5, signif-
icant uniqueness can be still observed (see Fig. 10 for
details). For example, detecting solely 5 fonts makes still
30.58% of users unique (Fig. 10a).

6.3 General fingerprinting

We run Algorithm 2 on the three datasets to compute
general fingerprints and partition users into anonymity
sets, where users have the same fingerprint value in each
set. The average size of anonymity sets for small finger-
print sizes (less than 20) are shown in Fig. 11. The aver-
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Fig. 6. Distribution of the length of individual fingerprints for
the app dataset. Almost all users have fingerprint size smaller

than 10, with only 27 exceptions.

Fig. 7. Distribution of the length of individual fingerprints for
the font dataset. 53.8% of users has a fingerprint smaller than

the constraint 10.

(a) s = 50

(b) s = 2

Fig. 8. Targeted fingerprint attacks with the app detection
limit defined by Apple (a), and decreased further to only 2
applications (b). (Note: dot sizes is proportional to the

proportion of users having a particular anonymity set size.)

age set size drops fast; we observed 135.15 for s = 10 in
case of the font dataset, 58.21 and 4344.93 for the app
and location dataset, respectively. In case of the appli-

(a)

(b)

Fig. 9. Comparison of different targeted fingerprinting
methods for the font dataset when s = 10. Even if only fonts
are detected (a), a large proportion of users are almost unique
(i.e., have anonymity set size at most three). However, adding

available screen size (b) greatly increases uniqueness and
vanishes large anonymity sets that were visible before.
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(a)

(b)

Fig. 10. Targeted fingerprinting: uniqueness in the font
dataset with the size of anonymity sets when s = 5.

cation dataset, the average anonymity set size is 1.96 at
s = 29. In case of the other datasets, the average never
falls below 3, and we found 3.99 at s = 76 for the app
dataset, and 3.96 at s = 73 for the font dataset.

While these results may not be promising to the
adversary, measuring the proportion of unique users,
whose anonymity sets are singletons, provides a differ-
ent view. Unique users do not share the same finger-
print value with any other users in the dataset. As Fig.
12 shows, the proportion of unique users remains rela-
tively low. The proportion does not change too much
even for almost unique users which have anonymity set
with size at most 3.

As regards linking attack against TBB users, we
find that the available screen size as an auxiliary infor-
mation (in addition to the detection of 10 fonts) makes
this attack a significant threat, as 8, 303 users (19.02%)
are unique in this case. Without available screen size,
less than 0.37% of users are unique with s = 10, but
7.89% of users are almost unique with s = 25 (Fig. 14;
with available screen size in Fig. 16). We provide further
details in Fig. 13 on the apps dataset, where uniqueness

Fig. 11. General fingerprinting: average size of
anonymity sets as the function of s.

Fig. 12. General fingerprinting: proportion of
unique and almost unique (k ≤ 3) users as the

function of s.

was the highest, that is, 76.30% of users have a size of
anonymity set smaller than 4. This means that even if
all 50 apps need to be pre-defined for all users, which is
the case for iOS 9 at present, privacy threats still per-
sist. For the location dataset, we find that 29% of all
users are unique, and the average size of the anonymity
set is 3.13 with s = 100 (Fig. 15). That is, an author-
ity would need to deploy at least 100 cameras in the
city to re-identify every third person on average in an
pseudonymized CDR dataset (see Section 5.3).

7 Conclusion
In this paper we addressed two fingerprinting problems
with constraints on the maximum size of the finger-
print. Targeted fingerprinting is executed on a specific
user, whose profile and identity are known to the ad-
versary, and the goal is to re-identify him/her in an
anonymous context, where only a limited number of his
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(a) s = 10 (b) s = 20 (c) s = 50

Fig. 13. General fingerprinting: distribution of size of anonymity sets for different values of s on the apps dataset.

(a) s = 10 (b) s = 25 (c) s = 100

Fig. 14. General fingerprinting: distribution of size of anonymity sets for different values of s on the font dataset.

(a) s = 10 (b) s = 25 (c) s = 100

Fig. 15. General fingerprinting: distribution of size of anonymity sets for different values of s on the location dataset.

attributes can be queried. General fingerprinting is used
to link the activities of multiple users without their re-
identification in an anonymous context, where only a
limited number of their attributes can be queried. We

provided essentially the best fingerprinting algorithms
for both problems.

We evaluated these fingerprinting methods on real-
life examples focusing on web tracking, smartphone user
identification and mass de-anonymization of location
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(a) s = 10 (b) s = 25 (c) s = 100

Fig. 16. General fingerprinting: distribution of size of anonymity sets for different values of s on the font dataset (with screen
resolution and available screen size).

datasets. We showed that targeted fingerprinting is a
significant threat to user privacy, as a significant ratio
of users can be re-identified with our technique in case of
web tracking and smartphone identification. This holds
even when tighter constraints are applied than the de-
fault. Our results with general fingerprinting also sup-
port this claim; we found that 19.02% of web browsers
could be uniquely identified by combining the presence
of 10 fonts and the available screen size. We also found
that by installing 100 surveillance cameras in a city of
4 million people, one can re-identify on average every
fourth person in pseudonymized CDR dataset. More-
over, by querying 50 apps on a smartphone, which can
be even pre-defined and identical for all users, one can
obtain a unique fingerprint value for more than 65% of
users in a dataset of 55k users.

All these findings show a conceptual weakness of
limiting attribute access as a privacy guard.
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