DE GRUYTER OPEN

Proceedings on Privacy Enhancing Technologies ; 2017 (3):21-38

Hung Dang*, Tien Tuan Anh Dinh, Ee-Chien Chang, and Beng Chin Ooi
Privacy-Preserving Computation with Trusted
Computing via Scramble-then-Compute

Abstract: We consider privacy-preserving computation
of big data using trusted computing primitives with
limited private memory. Simply ensuring that the data
remains encrypted outside the trusted computing en-
vironment is insufficient to preserve data privacy, for
data movement observed during computation could leak
information. While it is possible to thwart such leak-
age using generic solution such as ORAM [42], design-
ing efficient privacy-preserving algorithms is challeng-
ing. Besides computation efficiency, it is critical to keep
trusted code bases lean, for large ones are unwieldy
to vet and verify. In this paper, we advocate a sim-
ple approach wherein many basic algorithms (e.g., sort-
ing) can be made privacy-preserving by adding a step
that securely scrambles the data before feeding it to
the original algorithms. We call this approach Scramble-
then-Compute (STC), and give a sufficient condition
whereby existing external memory algorithms can be
made privacy-preserving via STC. This approach fa-
cilitates code-reuse, and its simplicity contributes to
a smaller trusted code base. It is also general, allow-
ing algorithm designers to leverage an extensive body
of known efficient algorithms for better performance.
Our experiments show that STC could offer up to 4.1x
speedups over known, application-specific alternatives.

DOI 10.1515/popets-2017-0026
Received 2016-11-30; revised 2017-03-15; accepted 2017-03-16.

1 Introduction

Big data is one of the main driving forces behind on-
line data storage model offered by incumbent cloud ser-
vice providers. While these services are cost-effective

*Corresponding Author: Hung Dang: National Univer-
sity of Singapore, E-mail: hungdang@comp.nus.edu.sg

Tien Tuan Anh Dinh: National University of Singapore,
E-mail: dinhtta@comp.nus.edu.sg

Ee-Chien Chang: National University of Singapore, E-mail:
changec@comp.nus.edu.sg

Beng Chin Ooi: National University of Singapore, E-mail:
ooibc@comp.nus.edu.sg

and scalable, security in terms of data privacy remains a
concern, for the data is being handled by untrustworthy
parties. Even if the providers were trusted, other fac-
tors like multi-tenancy, complexity of software stacks,
and distributed computing models would continue to
enlarge the attack surface [17, 20]. In addition, there
is a tight constraint on the performance overhead since
most computations on the data, especially data analyt-
ics tasks, consume vast numbers of CPU cycles which
are directly billable [18].

The first step towards securing the data is to pro-
tect it using encryption. Semantically secure encryp-
tion schemes ensure high level of security, but only
protect data at rest [33]. Fully homomorphic encryp-
tion schemes allow for computations over encrypted
data, but suffer from prohibitive overheads [15, 22].
Partially homomorphic encryption schemes [21, 41] are
more practical, but limited in the range of supported
operations [43, 46].

A line of recent works have advocated an approach
of combining encryption with trusted computing primi-
tives that offer a confidentiality and integrity protected
execution environment [8, 11, 44]. This trusted envi-
ronment can be provisioned by either hardware (e.g.,
IBM 4767 PCIeCC2 [3], Intel SGX [4]) or hardware-
software combination [34, 35]. Under this approach,
data is stored in untrusted external memory/storage
and protected by semantically secure encryption. Con-
fidentiality is protected since the data is only decrypted
and processed in the trusted execution environment,
and the outputs are encrypted before being written back
to the storage.

Nevertheless, the trusted environment has a limit
on the amount of data it can process at any time. This
means a communication channel between the trusted
and the untrusted environments is necessary to com-
plete the computation. Unfortunately, such a channel
could leak information about the data [17, 20, 45]. For
instance, by observing I/O access patterns during merge
sort, an attacker can infer the order of the input records,
i.e., their ranks in the output. This leakage could be
eliminated by using generic oblivious-RAM (ORAM),
but with high performance overheads [42]. Due to these
overheads, ORAM are more suitable for applications

[®) ov-ne-np |

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 22

which make few accesses in a large dataset, but not
necessarily being so for other applications that require
accessing the entire dataset multiple times. For those
applications, customised data-oblivious algorithms of-
ten perform better [39]. However, designing these algo-
rithms are challenging, and existing constructions are
complex, which indirectly leads to large trusted code
bases (T'CB) that are difficult to vet and verify.

Our goal is to design algorithms that are privacy-
preserving and practical while keeping the TCB lean. To
this end, we observe that for a large class of algorithms
(e.g., sorting), randomly permuting (or scrambling) the
input before feeding it to the original algorithms is suf-
ficient to prevent leakage from access patterns. For ex-
ample, consider a merge sort algorithm in which the
original input is first randomly permuted. During the
execution, the adversary observing access patterns will,
at best, be able to infer only sensitive information on
the scrambled input. If the scrambling is done securely,
such information cannot be linked back to that of the
original input.

Based on such observation, we advocate an ap-
proach for designing privacy-preserving algorithms
which we call Scramble-then-Compute (STC). This ap-
proach essentially scrambles the input before executing
the original algorithm on the scrambled data. STC not
only is applicable to a large number of algorithms, but
also incurs only an additive overhead factor (as op-
posed to a (amortized) multiplicative factor when using
ORAM). Its generality facilitates code reuse, i.e., it al-
lows us to harvest an extensive body of existing works
on efficient algorithms to achieve desirable performance.
For example, built on top of the external merge sort
algorithm, the privacy-preserving sorting algorithm im-
plemented under STC outperforms the data-oblivious
sorting algorithm specially designed for external mem-
ory setting [26] by upto 4.1x. Furthermore, the scram-
bling step in STC is easily distributed, enabling the algo-
rithms constructed under STC to scale. Of equal impor-
tance is the simplicity of our solution, which promises
an ease of implementation and vetting.

We note that not all algorithms can be made
privacy-preserving by scrambling the input beforehand.
Hence, we give a sufficient condition for algorithms
derived by STC to be privacy-preserving (Section 3).
While it may appear that STC has limited use case,
we remark that it is capable of supporting an expres-
sive class of privacy-preserving computations. In par-
ticular, STC is inherently applicable to various algo-

rithms involving data movement such as merge-sort,

quicksort or compaction®. Moreover, it is also compat-
ible with Spark - a general computing framework for
large-scale data processing [1]. To demonstrate its prac-
ticality, we describe privacy-preserving implementations
of five popular algorithms: sort, compaction, selection,
aggregation and join, which are the core to various data
management applications (Section 4). The first three
algorithms can be made privacy-preserving by directly
applying STC, and the other two by stitching together
privacy-preserving sub-steps. We benchmark their per-
formance against baseline implementations that are not
privacy-preserving, showing that STC offers a stronger
privacy protection at a cost of 3.5x overhead on aver-
age. We also compare them with state-of-the-art data-
oblivious algorithms that are tailor-made for the above
mentioned applications [8, 9, 24, 26]. Experimental re-
sults manifest that privacy-preserving algorithms con-
structed under STC can achieve speedups as high as
4.1x over the data-oblivious alternatives. Furthermore,
these algorithms are arguably easier to parallelise. The
improvement on performance is probably gained by har-
vesting an extensively studied body of work on external
memory algorithms. In summary, we make the following
contributions:

1. We present STC — an approach for implementing
privacy-preserving algorithms. We give a condition
on algorithms whereby scrambling the input be-
forehand is sufficient to preserve privacy (Theorem
1 & 2). Multiple privacy-preserving sub-steps can
be stitched together to realize more complex algo-
rithms. STC’s simplicity and generality help reduce
the performance overhead and keep the TCB lean.

2. We demonstrate the utility of STC by applying
it to five data management algorithms (including
sort, compaction, selection, aggregation and join),
all of which achieve asymptotically optimal runtime
(Section 4). In particular, our privacy-preserving
compaction runs in O(n), and sorting in O(nlogn)
using O(y/n) trusted memory. We also show that
STC is applicable to Spark — a general computing
framework [1], enabling developers to build complex
privacy-preserving applications at ease.

3. We conduct extensive experiments to evaluate the
privacy-preserving algorithms constructed under
STC. The results indicate relatively low overheads
over the baseline system that is less secure, and run-

1 There is a subtle issue with non-unique elements. We shall
discuss techniques to address it in Section 3.5.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 23

ning time speedup of up to 4.1x over data-oblivious
alternatives with a similar level of privacy protec-
tion. The results also show that STC fits well in
distributed settings, allowing for further speedups
of up to 7x when running on eight nodes.

The rest of the paper is structured as follows. The next
section defines the problem and related challenges. Sec-
tion 3 presents STC and the rationale behind the ap-
proach. Section 4 demonstrates its utility. The experi-
mental evaluation is reported in Section 5. Related work
is discussed in Section 6 before we conclude.

2 Problem Definition

In this section, we discuss the problem and challenges of
enabling privacy-preserving computation using trusted
computing primitives. We also give formal definitions of
privacy-preserving algorithms.

We shall use the following running example to il-
lustrate the problem and its related concepts. Let us
consider a user outsourcing her data comprising integer-
value records to the cloud. The outsourced data is pro-
tected by semantically secure encryption. When the user
wishes to sort the data, perhaps as a pre-processing step
for other tasks such as ranking, she relies on a trusted
unit which processes and re-encrypts the records in its
private memory. Since the private memory is limited in
size, a k-way external memory merge sort algorithm is
employed. Figure 1 depicts a simple example of three-
way merge sort in which the private memory can hold
only three records at a time. The input consists of nine
records, and sorting involves one merging step.

Sp Sa S3
S S S —

Input [30]50]10]60]20]40]90]70]80]

Sa S5 S6

[10[30[50] [20[40[60] [70[80]90]

Fig. 1. An example of three-way external merge sort on encrypted
records. The subscripts denote the order in which the record is read
into the trusted unit during the merging step.

‘Worker

e

Trusted Unit

Fig. 2. The system model consists of a trusted unit which can

process a limited number of records at a time. The storage and
worker are untrusted. Only the trusted unit can see the content of
the encrypted records (denoted by hatched squares).

2.1 Computation and Adversary Model

Computation model. Let X = (x1,z2,...,2,) be the
input data of n equal-sized key-value records. Let key(z)
and wval(z) denote the key and value component of a
record x, respectively. An algorithm P, given X, com-
putes an output sequence Y = P(X) = (y1,y2, .., Yn’) of
n' key-value records. Unlike input records, the output
records need not be of the same size.

We focus on a class of algorithms that are
permutation-invariant. An algorithm P is permutation-
invariant if P(X) = P(n(X)) for any input X and per-
mutation 7 () over records in X. In our running exam-
ple, P is the three-way merge sort algorithm, the input
X comprises nine records, and Y is the sorted output.

The computations are to be carried out by a trusted
unit and a worker with a storage (depicted in Figure
2). The trusted unit holds persistent secret data; e.g.,
secret key used in cryptographic operations that is es-
tablished prior to the algorithm’s execution. It has a
limited memory to hold m records. Data is persisted
in the long term storage component whose communica-
tion with the trusted unit is mediated by the worker.
The worker can also carry out computations.

Threat Model. We consider an honest-but-curious
adversary having complete control over the storage and
worker. Such adversary can be an insider who has full
access to the cloud infrastructure via misuses of priv-
ilege, or an attacker gaining access by exploiting vul-
nerabilities in the software stack. The adversary is able
to see the input, output, and access sequences made by
the trusted unit. This threat model is realistic, given
recent security breaches (e.g., NSA Target List [5]) be-
ing attributed to insider threats. A malicious adversary,
in contrast, can modify data in the storage and deviate
the worker from its execution path. Such adversaries are
considered by other works [20, 44]. Although our secu-
rity model considers only honest-but-curious adversary,
we believe that our approach remains applicable against
malicious adversary. For instance, by incorporating ad-
ditional integrity check, we can detect malicious tam-
pering. We leave it as an avenue for future work.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute =— 24

We assume that the trusted unit constituting the
system’s TCB is sufficiently protected, and thus the ad-
versary is unable to observe its states. For TCB based
on hardware-software combination, we assume that the
software part is free of vulnerabilities and malwares.
Furthermore, we assume that there is no side-channel
leakage (e.g., power analysis) from the trusted unit.
Physical attacks that compromise the trusted unit’s pro-
tection mechanisms, such as cold-boot attacks that sub-
vert the CPU’s hardware protections, are beyond scope.
Finally, we assume that some data (e.g., secret keys) can
be delivered securely to the trusted unit before the al-
gorithms’ execution.

Baseline system. For security and performance
analysis, we compare the algorithm in question with an
external memory algorithm (which is not necessarily se-
cure) that executes under a baseline system. Under this
system, records in the storage are protected by a se-
mantically secure encryption scheme with a secret key
stored in the trusted unit. Moreover, all records writ-
ten back to the storage are re-encrypted. Hence, even
if the adversary can observe the input and output of
the trusted unit, it is still unable to infer content of the
records. This baseline system serves as a fair point for
comparison. However, as we shall see below, the baseline
could leak important information.

Leakage of the baseline system. The baseline
system fails to ensure data privacy. In our running ex-
ample (Figure 1), the encrypted input is divided into
three blocks, each with three records. The trusted unit
executes the algorithm in two phases. First, it indepen-
dently sorts each block and returns three sorted, en-
crypted blocks. Next, it performs three-way merge: at
most three records are kept in the secure memory at any
time. They are pulled from the sorted blocks with help
from the worker. The adversary observes in the merging
phase that the trusted unit first takes one record from
each sorted block, writes one record out, then takes in
another record from the first block. From this, he knows
that the smallest record is from S;. Such inference may
eventually reveal the distribution of input data. For al-
gorithms taking data from different anonymous sources,
this can potentially expose their identities.

Performance Requirements. It is desirable to
keep the runtime overhead low. To prevent leakage, one
could employ oblivious RAM [45] directly on the stor-
age backend. This approach incurs Q(logn) (amortized)
overhead per access, making it impractical for large scale
data processing. Alternatively, one can use application-
specific data-oblivious algorithms [26], which are com-
plex yet limited in scope. Therefore, offering privacy

protection while enabling adoption of state-of-the-art
external memory algorithms for improved performance
is certainly of great interest.

For security, it is important to keep the overall
TCB small. Even though we assume the TCB to be
vulnerability-free, small TCB is preferable since verify-
ing a large code base is unwieldy. STC (presented in
Section 3) essentially adds a scrambler to existing ex-
ternal memory algorithms in order to achieve security.
Its simplicity leads to small TCB and low performance
overhead. Furthermore, its ability to parallelize enables
privacy-preserving computation at scale.

2.2 Security Definition

First, let us formalize the information that the ad-
versary can learn by observing the computation. Let
QB (X) = (q1,92,.--,q-) be the access (read/write or
1/0) sequence the adversary observes during the exe-
cution of P on X, where m is the maximum number
of records that the trusted unit can hold at any time.
Hereafter, unless stated otherwise, we assume m > /n
where n is the number of input records, and omit the
superscript m in the notation. Each ¢; is an 1/O re-
quest made by the trusted unit to the worker. It is a
3-value tuple (op, addr, info) where op € {r,w} is the
type of the request (“read” or “write”), addr is the ad-
dress accessed by op, and info is metadata (L if not
applicable) revealed to the worker (the record content
is not included in the request because it is encrypted).
The metadata is useful when the trusted unit wishes
to offload parts of the computation to the worker. For
example, if an algorithm sorts records by non-secret
indices, the indices can be revealed to the worker via
info, allowing the latter to complete the sorting. In our
running example (Figure 1), the first eight observed
accesses that the trusted unit made on the external
storage during the merging phase of the merge sort is:
<<r, Sa, L), (r, S5, L), (r,Se, L), (w,S7, L), (r,S4 + 1, 1),
(w,S7 +1,1),(r,85 +1,1),(w,S7 + 2, 1)), in which S;
denotes the address of the block S; (this is also the ad-
dress of the first record in the block), and S; + j denotes
the address of the j** record in that block. The first five
observed accesses have already revealed the fact that
the smallest record is from S4, which in turns implies
that it originated from 5.

Our security definition requires that Qp(X) leaks no
information on X (except for its size, i.e., the number
of records).

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 25

Definition 1 (Privacy-Preserving Algorithm). An al-
gorithm P is privacy-preserving if for any two datasets
X1, Xo with the same number of records, Qp(X1) is
computationally indistinguishable from Qp(X2).

Note that the asymptotic notion of indistinguishability
implicitly requires a security parameter k. In the defini-
tion, the number of records in the dataset is a polyno-
mial of x (hence the size of the private memory is also
a polynomial of k).

Relationship to data obliviousness. Closely
related to our security definition is the notion of
data obliviousness [24], in which P is data-oblivious if
Qp(X1) = Qp(X2) for any X; and X2 having the same
number of records. This definition is stronger than ours
in the sense that it implies perfect zero leakage via ac-
cess patterns. However, in practice, since encryption is
involved, we argue that the security of data-oblivious
algorithms essentially still relies on indistinguishability.

Permissible leakage. Some applications permit
certain leakage of information. For example, consider
the problem of grouping records by their keys, the num-
ber of unique keys may be considered non-sensitive, and
revealing it is permissible. We formulate such leakage by
a deterministic function ¥, and call ¥(X) the permis-
sible leakage on input X. In the group-by-key example
above, ¥(X) is the number of unique keys in X. We say
that an algorithm is W-privacy-preserving if it leaks no
information on X beyond ¥(X).

Definition 2 (U-Privacy-Preserving). An algorithm P
is U-privacy-preserving if for any two datasets X1, Xo
with the same number of records and permissible leak-
age (i.e., V(X1) = U(X2)), Qp(X1) is computationally
indistinguishable from Qp(X2).

Clearly, when ¥(X) is the same for any X, then a W-
privacy-preserving algorithm is also privacy-preserving.

3 Scramble Then Compute

3.1 Overview

In this section, we present STC — an approach for imple-
menting privacy-preserving external memory algorithms
that follow the computation model described earlier in
Section 2. Given an algorithm P that is not necessarily
privacy-preserving, STC derives Ap. We give conditions
for P under which Ap is privacy-preserving.

For those algorithms that are not inherently
privacy-preserving, STC employs a component called
scrambler which randomly permutes the input without
revealing any information of the permutation during its
execution. Some algorithms, such as sort, compaction
and selection, can be made privacy-preserving imme-
diately via this approach. Others such as join and ag-
gregation are made privacy-preserving by exploiting the
composition property, i.e., restructuring the original al-
gorithms to be composed of only privacy-preserving sub-
steps.

The privacy protection that Ap offers can also be
achieved by executing the original algorithm P on an
ORAM protocol [42, 45]. In fact, one can derive a
privacy-preserving execution of any algorithm using an
ORAM protocol, but with a (amortized) multiplicative
overhead factor of Q(logn) where n is the input size [45].
In other words, for every real access that P incurs, the
ORAM execution will require accessing Q(logn) records
to hide its access pattern. Recall that records are to be
re-encrypted every time they are accessed, this overhead
translates to 10 — 100x slowdown when processing giga-
bytes of data [20].

STC, on the other hand, adds only an additive over-
head of O(n) to the execution. Thus, for computations
that process the entire dataset, such as sort, aggre-
gation, join and other data management algorithms,
STC clearly offers better performance, both in terms
of asymptotic complexity and practical running time.

One drawback of STC is that it is not applicable to
all algorithms. Nevertheless, we would like to remark
that the class of permutation-invariant computations
that STC covers is expressive and especially relevant in
the context of big data management. In fact, STC can
support all computations that are available in Spark.
We further elaborate on this in Section 4.

For clarity, we summarize notations that are used
throughout the rest of the paper in Table 1.

3.2 The Scrambler

We base the scrambler S on the recently proposed data-
oblivious Melbourne shuffle algorithm by Ohrimenko et
al. [38]. We first describe the Melbourne shuffle algo-
rithm before discussing construction of S.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 26

Table 1. Summary of Notations

Notation Description

Input data

Scrambled input
Output data
Random permutation
The Scrambler

Input size

Trusted memory's size

S 33| @<=~

Tagging algorithm

o
e
s’

Access sequence of algorithm P on input X

S

Leakage function

Privacy-preserving algorithm derived from a

S
9

permutation-invariant algorithm P

Configurable parameters of the Melbourn
p1,p2

shuffle algorithm

3.2.1 Building block: Melbourne Shuffle algorithm

The Melbourne shuffle algorithm [38] follows the com-
putation model described in Section 2. In particular,
it assumes a trusted unit with private memory of size
O(y/n) where n is the input size, and records are only
decrypted inside the trusted unit and re-encrypted be-
fore being written back to the storage.

The algorithm takes as input a data set X compris-
ing n items and a randomly chosen permutation 7, and
obliviously arranges the n items to their final position
in the output X according to w. The permutation 7 can
be generated using a pseudo random permutation [29],
and represented by a short secret seed. The algorithm is
data-oblivious in a sense that it incurs the same access
sequence for all X of the same size.

The shuffling requires two intermediate arrays T}
and Ty which are of size pi1n and pan, respectively (p;
and po are constants larger than one and ps > p1).
Records in X, Ty, Ty and X are grouped into buckets.
Each bucket of T7 and T can hold upto p14/n and pay/n
records, respectively. The buckets are further grouped
into chunks. Each chunk consists of exactly n buck-
ets, hence there are {/n chunks in total.

The algorithm proceeds in three phases: two distri-
bution phases and a single clean-up phase. In the first
distribution phase, the trusted unit reads batches of /n
records from X, splits records into /n segments accord-
ing to their final positions indicated by 7, and writes
the i*" segment to the i*" chunk in T}. If a segment
contains less than p;/n records (i.e., half-full), dum-
mies are added to ensure data-obliviousness. On the
other hand, if some segment contains more than p; /n
records, the algorithm fails. At the end of this phase,

records are placed in correct chunk, but not the cor-
rect bucket within the chunk. In the second distribution
phase, the trusted unit reads buckets of piy/n records
in each chunk of T, ignores dummies, divides the real
records into +/n segments according to their final posi-
tions, and writes the j%* segment to the j“* bucket of
the same chunk in Tb. If a segment has less than ps ¢/n
records, it is padded with dummies. If some segment
contains more than ps¢/n records, the algorithm fails.
At the end of this phase, records are placed in the cor-
rect bucket, but not necessarily at the correct positions
within that bucket. Finally, the clean-up phase removes
dummies and arranges real records to correct positions
within their own bucket.

The Melbourne shuffle algorithm runs in O(n) time,
failing with negligible probability:

Prian < ¥4~ + —25%) = negl(n)
1 2

where negl(n) is a negligible function [38].

3.2.2 The Scrambler Construction

The scrambler S is a probabilistic algorithm that takes
as input a dataset X and outputs a permuted sequence
X = 7(X) where 7 is a random permutation?. We rea-
son about the security of S using a notion of indistin-
guishability.

Recall that in our computation model, input and
output records are always encrypted. Let us denote by
S a variant of S with one additional step that decrypts
all records in the output X at the end. Intuitively, we
would like S to transform X to X = x(X) without re-
vealing any information on X and . More formally, we
say that S is secure if (1) it is privacy-preserving, and
(2) S is U-privacy-preserving with respect to a deter-
ministic function ¥ that outputs the sorted sequence of
the input X. Condition (1) ensures that no information
on X is leaked, while condition (2) guarantees that the
permutation 7 is not revealed.

We construct S based on the Melbourne shuf-
fle algorithm. Another (arguably simpler) construction
of S could be based on Chaum’s mix-network [16],
which achieves statistical indistinguishability, but re-
quires large trusted memory [30].

The Melbourne shuffle algorithm may fail with a
negligible probability, requiring repeating the shuffling

2 It is not necessary that every permutation is equally likely.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 27

with another random seed. This leads to a probabilistic
running time. Fortunately, the probability of failure is
negligible and thus it is still computationally infeasible
for an adversary to distinguish the access patterns of the
algorithm on different inputs of the same size via tim-
ing attack. Nevertheless, since it is not straightforward
to reason about the complexity of combined STC al-
gorithms should S have probabilistic running time, we
implement S using a variant of the Melbourne shuffle
whose running time is deterministic.

S first generates a permutation mw, using a secure
pseudo-random permutation [29]. Next, it executes the
Melbourne shuffle algorithm with 7, and X as input.
If the underlying Melbourne shuffle completes without
failure, S outputs X = 7o(X). In case there is a segment
containing more than an expected number of records
(i.e., p1¢/n in the first distribution phase, and ps¥/n
in the second distribution phase), instead of failing as
in the original algorithm, S distributes the overflow-
ing records (called outliers) among other half-full seg-
ment(s). Once the outliers are consumed, segments that
are still half-full will be padded with dummies. In the
clean-up phase, the trusted unit scans through the in-
termediate array 75, removing the dummies and out-
putting X = m(X) where 7 is some secret permutation.

The two distribution phases of S are data-oblivious,
while its clean-up phase is privacy-preserving. The ac-
cess patterns of the clean-up phase (and thus S) are dif-
ferent only if some bucket in T contains more than \/n
records. Fortunately, such event happens with negligible
probability (upper bounded by the probability wherein
the Melbourne shuffle fails). It can be proven that S is
secure according to the definition put forth earlier.

Similar to the Melbourne shuffle, S§ runs in O(n)
time. It is invoked in every run of a privacy-preserving
algorithm constructed under STC. If an algorithm com-
prises privacy-preserving sub-steps, S is invoked sepa-
rately in each sub-step. Without loss of generality, we
can consider the number of such sub-steps a constant.
Hence, S adds an additive overhead of O(n) to the exe-
cution of STC algorithms.

3.3 Deriving Privacy-Preserving Solutions

Recall that P is permutation-invariant if it always out-
puts the same result on different input permutations.
Examples include sort and group-by-key algorithms.
However, hash table lookup or binary search algorithm,
which assumes certain structure or order of the input,
is not permutation-invariant.

Scramble-then-compute. Given a permutation-
invariant algorithm P, STC derives an algorithm Ap
by first scrambling its input X, then forwarding the
scrambled data to P. Specifically, Ap(X) = P(S(X)).
Clearly, by the definition of permutation-invariant, Ap
preserves the correctness of the original P, in the sense
that Ap(X) = P(X) for any X. Let us call Ap the
combined STC algorithm.

Before stating our theorem, let us first introduce the
following two definitions.

Definition 3 (Tagging Algorithm). A deterministic
algorithm T operating on X is a tagging algorithm if
it is permutation-invariant, and the output T(X) is a
permuted sequence of (1,2,...,n), where n is the num-

ber of records in X.

Let us call the output 7(X) the tags. A tagging
algorithm can, on input of a sequence of integers
(50,10, 30,1), output tags (4,2,3,1) representing the
record ranks in the input according to ascending order.

Definition 4 (Imitator). Given an algorithm P, the
pair of two algorithms (P*,T) in which T is a tag-
ging algorithm operating on X is an imitator of P if
for any input X and permutation 7, the access sequence

Qp(r(X)) = Qp-(x(T(X))).

The algorithm P*, when operating on the tags, essen-
tially incurs the same observable behaviour as P does
on X. We now give a sufficient condition for combined
STC algorithm Ap to be privacy-preserving.

Theorem 1. Given a permutation-invariant algorithm
P, if there exists an imitator (P*,T) of P, then Ap is
privacy-preserving.

Proof. [Main idea] The proof consists of two parts. The
first part shows that an algorithm Ap- constructed un-
der STC which scrambles the tags before feeding them
to P* is privacy-preserving. This is to manifest that
Ap« leaks no information on the tags. The second part
extends the result to the original input X, i.e., showing
that if Ap~« is privacy-preserving, then so is Ap. This
is not surprising, for the tags do not reveal content of
X, and P* incurs the same access pattern as P does.

Part 1.
bines S and P*, and by T its input (comprising tags).

Let us denote by Ap« the algorithm that com-

Ap~ first scrambles T by S, and then feeds the scram-
bled tags R = S(T') to P*. We note that T and R always

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute =— 28

remain encrypted outside of the trusted unit. To prove
that Ap- is privacy-preserving, intuitively, we want to
show that even if R are revealed (i.e., by decrypting
and revealing the plaintexts to the adversary), and P*
is not privacy-preserving, the adversary is still unable to
obtain sensitive information on 7. We formally reason
such intuition in the following.

Let S be a variant of S with an additional final step:
after scrambling T, S intentionally decrypts and reveals
plain-text of R via the meta data info in the read/write
requests. Let .Zp* be an algorithm that applies S on its
input before feeding the output of S to P*. Clearly, if
.Zp* is privacy-preserving, then so is Ap=«.

Let us denote by Ti
m1((1,2,...,n)) and m2((1,2,...,n)) where m and 7o

and T> two sequences

are any two permutations. Let us also denote by R; and
Ry scrambled tags S(Ty) and S(Ty). By the security of
the scrambler, the distribution of the access sequence
and revealed tags (Q3(71), R1) is indistinguishable from
that of (Q5(72),Rz), and hence R; and Ry are in-
distinguishable. Accordingly, it follows that the access
sequences generated by P* (i.e., Qp~(R1), @p~(Rz2)) are
indistinguishable from each other. Overall, @ Joe (Th)

is indistinguishable from @ i (To). Therefore Ap- is
P
privacy-preserving, and so is Ap=.

Part 2.
is privacy-preserving. Suppose Ap is not privacy-

We next show by contradiction that Ap

preserving, i.e., there exist X7, X2 having the same num-
ber of records and an algorithm Adv that can distinguish
Qap(X1) and Qa,(X2). Let Ty = T(X;) and Tp =
T(X2) be the corresponding tags. We can construct
a distinguisher D that differentiates Q4,.(T1) and
QA (T2) by imitating Adv. Recall that Qp(7(X)) =
Qp+«(m(T(X))) for any permutation m, it shall follow
that Qa,(X) = Qa,. (T(X)). When given access se-
quences generated by Ap+, D can transform them to the
corresponding access sequences generated by Ap. By
imitating Adv on the transformed sequences, it is able
to distinguish Q. (T1) and Q. (T2), contradicting
the fact that Ap« is privacy-preserving proven above.
Therefore, Ap must be privacy-preserving.

O

The theorem provides an easy mean to determine
whether an existing external memory algorithm P can
be made privacy-preserving via STC: it suffices to define
an imitator of P. If P is a comparison-based algorithm,
the tagging algorithm 7 is the one that outputs the
record ranks, and P* is a comparison-based algorithm

similar to P but operates on the record ranks. If the
records are unique, then (P*,7T) is an imitator of P.

The above theorem does not consider the case of
permissible leakage. Intuitively, when permissible leak-
age is acceptable, the imitator should have access to
such leakage. Hence, given P and a permissible leakage
U, we say that (P*,T) is an ¥-imitator of P if the access
sequence Qp(m(X)) = Qp+(7(T (X)), ¥(X)) for any X
and permutation 7.

Theorem 2. Given a permutation-invariant algorithm
P and a permissible leakage VU, if there exists an V-
imitator of P, then Ap is U-privacy-preserving.

The proof for this theorem is similar to that of Theorem
1 and is omitted.

Composition. By hybrid argument [29], it is feasi-
ble to derive a privacy-preserving algorithm via a com-
position of other privacy-preserving algorithms. In spe-
cific, if algorithms P; and P, are privacy-preserving,
their composition, i.e., executing one after another
wherein the output of P; is the input of Ps, is also
privacy-preserving. We note subtly that only a poly-
nomial number of compositions (with respect to k)
are allowed. In another words, the number of com-
bined privacy-preserving algorithms cannot be arbitrar-
ily large. Interested readers can refer to [29] for a de-
tailed discussion. Nevertheless, this restriction does not
affect the utilization of STC in practice, for practical
algorithms do not contain a very large number of sub-
steps. We demonstrate the composition property using
two examples of aggregation and join algorithms in Sec-
tion 4.4 and 4.5.

3.4 Handling Duplicates

The permutation-invariant condition is strict, for it re-
quires the output of the algorithm operating on the
scrambled data to be exactly the same as that when it
operates on the original input. For example, a merge sort
algorithm operating on duplicate records does not meet
this condition. Consider X = (0g, 01, 02, 03, 04, 05) where
the subscripts denote the original positions in the input,
it may be the case that P(X) = (0p,03,01,04,02,05)
while Ap(X) = (0g,02,01,05,03,04) for a certain per-
mutation generated by S. This problem can be resolved
by adding metadata (e.g., address of the record) to the
keys so that the input contains no duplicate. With-
out loss of generality, some algorithms that are not

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 29

permutation-invariant can be made so by introducing
a pre-processing step that appends metadata to the
input, then reversing the effect via a corresponding
post-processing step. We use this technique in deriving
privacy-preserving implementations of sort and selec-
tion algorithms (Section 4).

3.5 Discussion

We stress the simplicity STC offers in deriving privacy-
preserving algorithms from existing algorithms. One im-
mediate benefit is code reuse. For example, there exist
extensive studies on sorting algorithms, each catered for
a specific system configuration and application. With
STC, especially with its ability to support parallelism,
we can easily adopt the most suitable algorithm with
the most well-tuned parameters for a particular problem
setting at hand. Another benefit is the small TCB, for
we can choose an algorithm with small codebase. This
is in contrast to implementing convoluted algorithms
like existing data-oblivious ones. Furthermore, our ap-
proach offers an arguably simpler way of implementing
data-oblivious algorithms; the composition property al-
lows us to replace the complex data-oblivious sub-steps
with more efficient STC alternatives. We demonstrate
this advantage in Section 4.5.

Finally, although the algorithms considered so far
are deterministic, STC also generalizes to probabilistic
instances such as quick sort. Specifically, they can be
modified to take the random choices as additional input,
making them deterministic and to which our theorems
can be applied.

4 Privacy-Preserving
Computations with StC

We demonstrate the utility of STC by showing privacy-
preserving implementations of five algorithms: sort,
compaction, selection, aggregation and join. These al-
gorithms are the core to various data management ap-
plications. Sort is fundamental to any database systems.
Compaction is vital in many distributed key-value stores
where updates are directly appended to disk and com-
paction is frequently scheduled to improve query perfor-
mance [6, 7, 32]. Selection is essential in order statistic.
Aggregation is widely used in decision support systems
to summarize data, making it an integral part of data
warehouse systems. Join is arguably one of the most im-

portant operations in data management, and commonly
used for data integration that is becoming more impor-
tant given the variety of data sources [28]. By showing
that STC is applicable to these algorithms, we would
like to remark that it can be generalised to support a
wide range of data management applications.

Among the five algorithms under consideration, the
first three are realized directly through STC, and the
other two are constructed by stitching together privacy-
preserving sub-steps. We provide performance analy-
sis for each algorithm and compare it with the base-
line implementation as well as the data-oblivious alter-
native. Our algorithms offer better privacy protection
than the baseline implementations, and similar to the
data-oblivious alternatives but with better performance.
We summarize in Table 2 the time complexities of the
STC algorithms in comparison with the baseline algo-
rithms that are not privacy-preserving and the corre-
sponding oblivious algorithms offering similar level of
privacy protection.

We further illustrate how STC can be generalized
to support generic privacy-preserving computations at
scale by applying it on basic operations in Spark [1]
(Section 4.6). Owing to the facts that Spark is a general
computing framework for scalable data processing and
that it witnesses a steady adoption in various applica-
tion domains [36, 49], supporting Spark computations in
STC promises a capability of building complex and gen-
eral privacy-preserving applications with ease of design
and implementation.

4.1 Sort

The algorithm sorts the input according to a cer-
tain order of the record keys. We consider the
EXTERNALMERGESORT algorithm [31], in which the in-
n/m blocks (s < m) and
the sorted blocks are combined in one merging step

put is divided into s =

using s-way merge. This algorithm has optimal I/0
performance, but leaks the input order when imple-
mented in the baseline system. In STC, we first adds
a pre-processing step (i.e., MAKEKEYDISTINCT()) that
appends the address of each record to its key, i.e.,
key(x}) = key(x;)||i. The result is then forwarded to S,
whose output is used as the input to the original algo-
rithm (the comparison function breaks ties using the ad-
dress attached to the key). Finally, the post-processing
step (i.e., REVERTKEY()) scans through the output and

removes the address information.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 30

Table 2. Comparison of time complexity of different algorithms. For join algorithm, [is the size of the result

Algorithm Baseline StC Oblivious Algorithms
Sort O(nlogn) O(nlogn) O(nlog?n)
Compaction O(n) O(n) O(nlogn)
Selection O(n) O(n) O(n)
Aggregation O(nlogn) O(nlogn) O(nlogn)
Join O(n1 log n1 + 12 log 1) O(nilogni + nalogna + | O(nylogni + nalogng +
llogl) llogl)

This derived algorithm, called PSORT, is detailed in
Algorithm 1. PSORT runs in O(nlogn) time. The pre-
processing and post-processing steps make the original
algorithm permutation-invariant. We can construct its
imitator by specifying the two algorithm P* and 7.
The tagging algorithm 7 on input X outputs the se-
quence of record ranks, and P* is essentially the ex-
ternal merge sort algorithm operating on the record
ranks. For example, if X = (50, 30,10, 1), then T(X) =
(4,3,2,1); and P* is executed on T(X). It is trivial
to see that Qp(n(X)) = Qp+(7(T(X))) for any per-
mutation 7 and input X, where P is the underly-
ing EXTERNALMERGESORT algorithm. Thus, by The-
orem 1, PSORT is privacy-preserving. To the best of our
knowledge, the most efficient data-oblivious sorting al-
gorithms run in O(nlog®n) [26]. We note that there
also exists a randomized oblivious sort algorithm that
runs in O(nlogn) time [24]. However, it features a large
constant factor and is not necessarily faster than the
O(nlog?n) version.

procedure PSORT(X)
X' + MAKEKEYDISTINCT(X);
X « S(X7);
Y’ ¢+~ EXTERNALMERGESORT(X);
Y + REVERTKEY(Y”);
return Y,
end procedure

We emphasize the efficiency of the PSORT algorithm.
Given a number of privacy-preserving solutions relying
on the sorting primitive [39, 42], having an efficient im-
plementation of a privacy-preserving sorting algorithm
is certainly of significant interest.

4.2 Compaction

The algorithm removes (n—n’) marked records from the
input of n records, while preserving the original order
of the remaining n’ records. The baseline algorithm —
FILER() — sequentially reads the input records into the
trusted unit and writes back those unmarked records
(re-encrypted). This solution is efficient but reveals the
distribution of the marked records. In STC, the algo-
rithm PCOMPACT consists of four steps. In the first step
(i.e., MARK(X)), the trusted unit initializes two coun-
ters, Ch1 = 0, Cy = n. While scanning through X, it
labels each record with C; or (s if the record is un-
marked (to be retained) or marked (to be removed),
respectively. C] is incremented while Cy is decremented
after each labelling. The next two steps involve running
the labelled input through S and then the baseline al-
gorithm. Finally, the trusted unit reveals the labels to
the worker so that the latter can move records to their
final positions (i.e., ARRANGE()).

PCOMPACT runs in O(n), while the data-oblivious
alternative [24] runs in O(nlogn). The sub-procedure
MARK() and ARRANCE() make the original algo-
rithm permutation-invariant. We show the security
of PCOMPACT by considering the following imitator
(P*,T). The tagging algorithm 7 associate with each
record z; in X a counter t; according to the follow-
ing two rules. First, if z; is unmarked, then t; < n';
otherwise, ¢; > n’. Second, for any i < j, t; < t; if
both z; and z; are unmarked; or ¢; > t; if both z;
and z; are marked. The algorithm P* is essentially
the same baseline algorithm operating on 7 (X). Here,
the permissible leakage ¥(X) is the number of marked
records in X (the data-oblivious algorithm [24] also re-
veals this information), which is accessible to P*. Since
Qp(r(X)) = @p+(n(T(X)), ¥(X)) for any X and T,
where P is the underlying filter algorithm, by theorem 2,
PCOMPACT is W-privacy-preserving, where ¥(X) reveals
the output size.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 31

1: procedure PCOMPACT(X)
2: X' + MARK(X)
3 X« S(X)
4 Y FILTER()A(:)
5 Y < ARRANGE(Y)
> ARRANGE() is offloaded to the worker
6: return Y

7. end procedure

4.3 Selection

The algorithm outputs the k" smallest element of the
input according to a certain order of the record keys.
A straightforward algorithm is to first sort the input

k" record,

data in ascending order and then output the
but its complexity is O(nlogn). Instead, we consider the
MEDIANOFMEDIANS algorithm [13] that has O(n) run-
time complexity even in the worst-case. The baseline
implementation of this algorithm, however, partially re-
veals the distribution of the input records. The algo-
rithm in STC, called PSELECT, is the same as PSORT,
except that merge sort is replaced by the median of me-
dians algorithm. Unlike PSORT, PSELECT outputs one

record instead of a sorted sequence of n records.

1: procedure PSELECT(X, k)
2 X' + MAKEKEYDISTINCT(X);
3 X+ S(X)

4: Y’ + MEDIANOFMEDIANS(X);
5 Y < REVERTKEY(Y');

6 return Y;

7: end procedure

PSELECT
complexity as the existing data-oblivious alterna-

runs in O(n) time, having the same

tive [24]. We show in the next section, however, that
in practice PSELECT outperforms its data-oblivious
counterpart by a few times. The original algorithm
is made permutation-invariant because of the pre-
processing and post-processing steps. Its imitator com-
prises the tagging algorithm 7 that outputs the se-
quence of record ranks, and P* which is essentially
the MEDIANOFMEDIANS algorithm being executed on
the record ranks. It is straightforward to observe that
Qp(m(X)) = Qp+(m(T(X))) for any permutation = and
input X, where P is the underlying median of medians
algorithm. Thus, PSELECT is privacy-preserving accord-
ing to Theorem 1.

4.4 Aggregation

The algorithm first groups records based on their keys,
then applies an aggregation function, such as summing
or averaging, over the group members. We consider a
baseline algorithm that first sorts the input, then scans
the sorted records, accumulates the values and writes
out an output record immediately after passing the last
record of each group. Because of this last step, the over-
all execution reveals number of records in each group
even if a privacy-preserving sorting algorithm is used.

It can be shown that the baseline algorithm does
not satisfy the condition in Theorem 1. Thus, we design
a new privacy-preserving aggregation algorithm, called
PAGGR, and exploit the composition property to derive
its security. First, it sorts X using PSORT, obtaining G
in which records of the same key are next to each other.
Second, it scans through G to compute the aggregate,
outputting one record for every record it encounters in
G. Some of these records are real output records, while
other are dummies and therefore marked so that they
can be removed later. Finally, it uses PCOMPACT to re-
move the dummies. Because these 3 steps are privacy-
preserving, so is PAGGR (i.e., it does not reveals num-
ber of records in each group). The algorithm invokes the
scrambler S twice. The overall running time is O(nlogn)
— having the same complexity as that of the data-
oblivious alternative [8].

1: procedure PAGGR(X)
G + PSORT(X)
3: k=Fk
> ky is first element in the the set of distinct keys
K.

N

4: v=20
5: for each g in G do
6: if key(g) = k then
7 v v + value(g)
8: Add (dummy) to V
> output dummy

9: else
10: Add (k,v) to V
11: k <+ key(g)
12: v+ value(g)
13: end if
14: end for
15: Y + pCompact(V)

> Remove all dummies from V'
16: return Y

17: end procedure

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 32

4.5 Join

The algorithm performs the inner join on two datasets
X1 and X5. We consider the sort-merge join (generaliz-
ing to other join algorithms is straightforward), which
first sorts X1 and Xs, then performs interleaved linear
scans on two sorted sequences to pair matching records.
Implemented in the baseline system, the sorting and
matching steps reveal the entire join graph.

Similar to the aggregation algorithm, the baseline
join algorithm cannot be transformed using STC. We de-
sign a new privacy-preserving algorithm, PJOIN, based
on the data-oblivious version proposed by Arasu et
al. [9]. The data-oblivious algorithm consists of two
stages: the first stage computes the degree of each
record in the join graph, and the second stage dupli-
cates each record a number of times indicated by its
degree. The output is generated by “stitching” corre-
sponding (duplicated) records with each other. In the
nutshell, PJOIN follows the workflow of Arasu et al. data-
oblivious join algorithm [9], but improves its overhead
by implementing the first stage using one PSORT, two
linear-scan and two PCOMPACT steps (line 2-7), while
reimplementing the data-oblivious expansion step with-
out change for the second stage. (line 8-9).

1: procedure PJOIN(X, X?)
2: X X1||X2
3: S+ PSORT(X)
> tie is broken such that X; records always come
before X5 records
Vo < FRSuM(S)
V1 + RRSuM(S)
W1 + pCompacT(V7)
Wy < pCompacT(Vz)
Xiexp ¢ OEXPAND(W7)
Xoexp < OEXPAND(W>)
10: Y — Xiexp - Xoeap
> stitch expansion of X; and X5 to get the join

output
11: return Y
12: end procedure

In the first stage, PJOIN first combines X; and Xo
into one big dataset X of size n = ny + no, then pri-
vately sorts X using PSORT, ensuring that for those
records having the same key, tie is broken by placing
X1’s records before Xs’s. Next, it scans the entire X in
two passes. The first pass, FRSuM(), assumes that each
X, record has a weight value of 1 while X5 record has

a weight value of 0. It traverses X in forward direction
(i.e., from left to right), associating with each record
the running sum of weights in its group. At the end of
this pass, each record in X5 is associated with a weight
representing its degree in the join graph. Similarly, the
second pass, RRSuUM(), assumes weight values of 0 for
X1 records and 1 for Xs records, scans X backwards
(i.e., from right to left) and associates with each record
the running sum of weights in its group. At the end of
this pass, X1 records are associated with theirs degree in
the join graph. After these two passes, PCOMPACT is in-
voked twice to privately remove X5 and X, records from
V1 and Vs, respectively, giving two weight sequences W;
and Ws.

In the second stage, PJOIN duplicates each record
in X7 and X3 a number of times indicated by its as-
sociated weight. It directly uses the oblivious expan-
sion algorithm OEXPAND() presented in [9] for this
step. Finally, it performs a linear scan to stitch records
together and generate the final output Y. Table 3
gives a detailed example for pPJOINwith two input se-
quences X1 = {{(a, fde), {a,tol), (b, lzv), (b,xdj)} and
Xo = {{a,maj), (b,med), {(c,tfn),{d, kbs)}.

PJOIN runs with the same complexity as the data-
oblivious version does, i.e., O(nlogn + llogl) where [is
the output size. Nevertheless, we show later in Section
5 that PJOIN has a lower running time in practice, for
PSORT and PCOMPACT are more efficient than the cor-
responding data-oblivious steps. Since each and every
step in PJOIN is privacy-preserving, following the com-
position property, PJOINis also privacy-preserving.

4.6 Supporting Spark Operations

Spark [1] is a general computing framework that has
been widely adopted in various application domains in-
cluding machine learning and data analysis [50]. Thus,
by supporting Spark functions in STC, our solution en-
ables developers to build complex privacy-preserving
applications. While STC covers only a certain class of
computations (e.g., those that are invariant to input
permutation), its compatibility with Spark has proved
that such a class is expressive enough to enable a wide
range of privacy-preserving computations. We remark
that most, if not all, of functions in Spark require ac-
cessing the entire dataset during their execution, render-
ing ORAM protocols’ amortized multiplicative overhead
significantly prohibitive when processing a large volume
of data (e.g., translating to 10 — 100x slowdown).

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 33

Table 3. Example of PJOIN for inputs X1 = {(a, fde), (a, tol), (b, lzv), (b, zdj)} and X2 = {(a, maj), (b, med), (c,tfn), (d, kbs)}. Values
in parentheses appeared in columns W7 and W5 represent records’ degree in the join graph while those in columns V7 and V5 are running

sum of weights in each group.

X v Vi Wi Wa Xiewp | Xzeop Y
o e @] oo | @ma@) | Gy | Gomed) | Gedimed)
%Zﬂi{’? <?b7:f>>x’i2((12)) %’Z;j; ;2((11)) (bylzv)(1) | (b,med)(2) | (b,lzv) | (b,med) | (b,lzvmed)
éi’r‘ffz;; <$72ij3>§2(3) <<;1if:]>>):2((11)) (a,tol)(1) | (c,tfn)(0) | (a,tol) | {(a,maj) | (a,tolmas)
2;’,2;’32 22:;’;’32 o &‘T’Zﬁgﬁi’) (a, fde)(1) | (d,kbs)(0) | (a, fde) | (aymaj) | (a, fdemag)

Table 4. List of Spark’s functions supported in STC.

Scramble-then-compute

Composition

Privacy-preserving

MAP, FILTER, MAPPARTITION, SAMPLE,
DISTINCT, SORTBYKEY, CARTESIAN,
REPARTITION, COUNT, FIRST,

UNION, INTERSECTION, REDUCEBYKEY,
AGGREGATEBYKEY, JOIN, COGROUP,
REDUCE, TAKESAMPLE, COUNTBYKEY

TAKEORDERED
W-privacy- FLATMAP, GROUPBYKEY,
preserving REPARTITIONANDSORT WITHINPARTITIONS

We summarize our effort in Table 4. Some
benefit immediately from STC,
to PSORT and PSELECT,
the
other

functions simi-

lar while other func-

tions require rewriting

of
Almost all of these functions are privacy-

original algorithms
be
steps.

preserving, except for FLATMAP, GROUPBYKEY, and
REPARTITIONANDSORTWITHINPARTITIONS which are

W-privacy-preserving. The permissible leakage ¥ of

to composed privacy-preserving

these three algorithms is output records’ distribution,
which conveys a certain information about the distri-
bution of the input records with respect to their key
or partition. For example, the GROUPBYKEY function
reveals how many input records sharing the same key.

5 Performance Evaluation

We evaluate STC by benchmarking the five algo-
rithms discussed in the last section. We first quan-
tify the cost of security that STC incurs, by com-
paring the running time of our algorithms with those
implemented in the baseline system. In addition, we
compare this cost with that of the state-of-the-art
data-oblivious alternatives: OBLSORT for sorting [26],
OBLCOMPACT for compaction [24], OBLSELECT
selection [24], OBLAGGR

for
for aggregation [8] and

OBLJOIN for join [9]. Next, we evaluate our approach’s
scalability by measuring the algorithm performance
when running on a network of multiple nodes.

We generate the input data using the Yahoo! Tera-
Sort benchmark [40]: each record comprises a 10-byte
key and a 90-byte value. We encrypted each record
with AES-GCM using a 256-bit key, generating a 132-
byte ciphertext. We vary the input size from 8GB to
64GB (i.e., 226 to 22 records). Our implementations
use Crypto++ library for cryptographic operations. For
the distributed implementations, we use HDFS as the
backend storage and Zookeeper to synchronize the pro-
cesses. We run our experiments on an eight-node cluster
of commodity servers, each node has an Intel Xeon E5-
2603 CPU, 8GB of RAM, two 500GB hard drives and
two 1GB Ethernet cards. In order to simulate a trusted
hardware (e.g., IBM 4767-002 PCIeCC2 [3]), we limit
the CPU clock to 233MHz and use 64MB of RAM to
represent its private memory (i.e., m = 219). We repeat
each experiment 10 times and report the average results.

5.1 Cost of Security

Table 5 compares the running time for various algo-
rithms with 32GB inputs (or n = 228 records) on one
node. While STC algorithms can run on multiple nodes,
we are not aware of any distributed versions of the five

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute =— 34

Table 5. Overall running time (in seconds) of STC's algorithms
in comparison with: (1) implementations in the baseline system
with weaker security and (2) data-oblivious algorithms offering the
similar level of privacy protection.

Algorchm | Baseine | 10| IO
soring | 7991 | (170 | (e
Compaction 1678 (4831;1) (12452;1)
Select 2758 (39221) (12692?:)()
Aggregation 10593 (;435273) (2?9497:)
Join 12400 (2?8611:) (180451315)

data-oblivious algorithms under consideration. Thus, to
make the comparison fair, we ran STC algorithms on
a single node. It can be seen that STC algorithms in-
cur overheads between 1.79x to 4.91x over the baseline
system. To better understand the factors contributing
to the overheads, we measured the time taken by the
scrambler, by the worker (if any) and by other opera-
tions in the trusted unit. The last factor includes the
time spent on pre-processing, post-processing steps and
on the main algorithm logic. Figure 3 depicts the break-
down, showing consistently across all algorithms that
the cost of scrambling is significant: from 27.4% (PJOIN)
to 64.1% (PSELECT). The time taken by the untrusted
worker accounts for small portions of the total running
time, from 0.6% (PSORT) to 5.4% (PCoOMPACT). This
is because the worker does not perform cryptographic
operations which are computationally expensive.

5.2 Comparison with data-oblivious
algorithms

The overheads of data-oblivious algorithms are between
5.99x to 16.65x in comparison to the baseline system.
Thus, we remark that STC algorithms incur relatively
low overhead and therefore are practical. Figure 4 fur-
ther illustrates that compared to their data-oblivious
alternatives, they are consistently more efficient across
all input sizes while offering similar privacy protection.
More specifically, the privacy-preserving sorting algo-
rithm under STC is up to 4.1x faster than the data
oblivious one, compaction is up to 3.4x, selection is up
to 3.8 %, aggregation is up to 3.1x, and join is 1.8x. We

Escrambler worker E other operations of trusted unit

T T T T T
8253 9451 24578 59610

1 14330

normalized running time

PSORT PCOMPACT PSELECT PAGGR PJOIN

Fig. 3. Normalized running time breakdowns for STC'’s algorithms.
The total running time (in seconds and displayed on top of each
bar) comprises of the time taken by the scrambler, by the worker,
by the pre-processing and post-processing steps, and by the main
algorithm logic.

note that the speedup for join is smaller than for the
others because the data-oblivious expansion algorithm,
which PJOIN inherits directly from [9], contributes the
most to the total running time. It is also worth noting
that the speedup becomes more evident with larger in-
puts: from 1.3 —2.7x for 8GB datasets to 1.8 —4.1x for
64GB datasets.

5.3 1/0 complexity of STC algorithms

Table 6 details the numbers of I/O and cryptographic
operations required by STC algorithms and their data-
oblivious counterpart. STC algorithms require O(n)
I/Os with a small constant factor, whereas all data-
oblivious algorithms, except for OBLSELECT, have super-
linear 1/O complexity. I/O complexity of the join algo-
rithm depends on d, the average record degree in the
join graph. For uniformly distributed datasets, d can
be considered as a constant (we assumed d = 3 in our
experiments). The number of re-encryptions of STC al-
gorithms depends on the number of re-encryptions per
scrambling step: n(p1 +p2). In our experiments, we find
that for the datasets under consideration, with p; =
p2 = 2, the scrambler achieves optimal performance.
On the other hand, the numbers of re-encryptions re-
quired by data-oblivious algorithms depend only on the
size of the secure memory. With secure memory of size
m = c¢y/n (where ¢ is a small constant larger than
one), the data-oblivious algorithms perform a few times
more re-encryptions than STC algorithms, which di-
rectly translates to considerable performance overheads.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute

35

~10°} = PSORT = pCOMPACT — = PSELECT ~ | = PAGGR 7 —~ — PJOIN

% | = OBLSORT[20] £10%5| =20BLCOMPACT[24] 5. 15| Z#OBLSELECT(24] $10°F Z2OBLAGGR(S] 7 v =20BLJOIN[J]

g g 7 2100 =1 ; £ 106

il =) A = A | s =100

ES = i 3 A 3 i 3

5 oo 10 A - - L 0 , w0 .

£ g N g0 2 £ 7 e ; £ 2

= = > YA = o = Jore 7 = 7] |

£l ERE N 7T g 3 b Sl o mrE ’ El0v 2k

5 ! R 7B RIS A A 210 FER 7S A] 72 00

g & NN YA 210 YRR ZEHA = 2 1k b ; = H BN

: mZERZEEZEE mZER YN ZEN AR YEEZER Y AR

8 16 32 8 16 32 64 8 16 32 64 8 16 32 64 8 16
Input size (GB) Input size (GB) Input size (GB) Input size (GB) Input size (GB)

(a) Sort (b) Compaction (c) Selection (d) Aggregation (e) Join

Fig. 4. Performance comparison between our algorithms and the corresponding data-oblivious alternatives. Running time (s) is shown in

log-scale.

Table 6. Number of re-encryptions and |/O complexity required by STC's algorithms and relevant data-oblivious algorithms. n is the

input size, p1 and pa are constant parameters in the scrambler’s configuration. In our experiments, p1 = p2 = 2. s = n/m and d is the

average degree of records in the join graph.

Algorithm # Re-Encryptions 1/O Complexity
PSORT (p1+p2+5)-n O(n)
OBLSORT[26] (Zi‘fls i+logs+1)-n O(nlog® n)
PCOMPACT (p1+p2+2)n O(n)
OBLCOMPACT[24] (1+1logn)-n O(nlogn)
PSELECT (p1+p2+4)n O(n)
OBLSELECT[24] 1(4+1logn)-n O(n)
PAGGR (2p1 +2p2+8)'n O(n)
OBLAGGREGATE[8] (Zl;fls i+logs+logn+3)-n O(nlog”®n)
PJOIN (Bp1+3p2+9+4d)-n O(dn)
OBLJOIN[9] (Zliojls i+logs+2logn+5+d)-n O(nlog? n)

5.4 Scalability

Figure 5 reports the running time of STC algorithms
on multiple nodes. It demonstrates that STC can lever-
age resources in distributed environment to achieve sig-
nificant speedups. In particular, increasing the number
of nodes from one to eight results in 4x speedup for
sort and up to 7x for compaction, selection and ag-
gregation. This is over an order-of-magnitude better
than single-node data-oblivious algorithms. However,
PJOIN achieves only 2x speedup, because we cannot par-
allelize the oblivious expansion algorithm. We note that
the speedup comes from the distribution of both the
scrambler and of the original algorithm itself. Although
our current implementations may not be the most effi-
cient, their simplicity and speedup gained when scaling
out are compelling evidence of STC’s advantages over
existing data-oblivious algorithms.

6 Related Work

Secure Computation using Trusted Hardware.
Several systems have used trusted computing hardware
such as IBM 4764 PCI-X[2] or Intel SGX [4] to enable

secure computations, especially focusing on query pro-
cessing. TrustedDB [10] presents a secure outsourced
database prototype that leverages IBM 4764 secure
CPU (SCPU) for privacy-preserving SQL queries. Ci-
pherbase [8] extends TrustedDB’s idea to offer a full-
fledged SQL database system with data confidential-
ity. VC3 [44] employs Intel SGX processors to build
a general-purposed data analytics system. In particu-
lar, it supports MapReduce computations, and protects
both data and the code inside SGX’s enclaves. However,
these systems do not meet our security definition; i.e.,
they offer a weaker security guarantee.

Recent systems [20, 37] adopt a similar approach
to this paper’s to support privacy-preserving computa-
tion. However, they focus on the MapReduce compu-
tation model, and specifically use scrambling to ensure
security for the shuffling phase (which is essentially a
sorting algorithm). STC is a more general solution that
supports many other algorithms.

Ohrimenko et al. presented a system for oblivious
multi-party machine learning, supporting various train-
STC, on the other
hand, focuses on data management operations.

ing and prediction methods [39].

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute

—-PSORT = PCOMPACT 4 PSELECT-¢ PAGGR-4 PJOIN

— - A
N J @ A
: I
& g0
g 2
g 10%) 13
=
5 508k
ol g
2 4 8
nodes
(a) 8GB (b) 16GB

- LU S S,
:3104, ,‘4:

80)

g £10%}

=] =]

=] =]

2 . Z

109]

(c) 32GB (d) 64GB

Fig. 5. STC algorithms performance on multiple nodes with different input sizes. Running time (s) is shown in log-scale.

Secure Computation by Data-Oblivious
Technique. Oblivious-RAM [23] enables secure and
oblivious computation by hiding data access patterns
during program execution. ORAM techniques [14, 26,
42] trust a CPU with limited internal memory, while
storing user programs and data encrypted on the
untrusted server. A non-oblivious algorithm can be
made data-oblivious by adopting ORAM directly, incur-
ring performance overhead of Q(logn) per each access.
STC offers a similar level of security with O(n) additive
overhead.

Goodrich et al. proposed several data-oblivious al-
gorithms [24-26] which we used for benchmarking STC.
The authors also presented approaches to simulate
ORAM using data-oblivious algorithms [26]. Other in-
teresting data-oblivious algorithms have also been pro-
posed for graph drawing [27] and graph-related compu-
tations such as maximum flow, minimum spanning tree,
single-source single-destination (SSSD) shortest path,
or breadth-first search [12]. However, these algorithms
are application-specific and less efficient than STC al-
gorithms.

Access Confidentiality via shuffling. The use
of scrambling process in hiding data access patterns has
been discussed in the literature [19, 42, 47, 48]. While
these works are ideal for applications that make few ac-
cesses in a large dataset, they may not necessarily be so
for other applications that potentially require accessing
the entire dataset multiple times, for example data man-
agement tasks. For such applications, customized algo-
rithms are likely to perform better (e.g., [37]). STC of-
fers a simple way for implementing those algorithms.

7 Conclusion

We have described STC, an approach for implementing
practical privacy-preserving algorithms using trusted
computing with limited secure memory. We showed
that many algorithms can be made privacy-preserving
by directly applying STC, and others can be imple-
mented efficiently by rewriting them using only privacy-
preserving sub-steps. We demonstrated STC’s utility by
implementing five algorithms, all of which are not only
privacy-preserving but also asymptotically optimal. We
showed experimentally that these algorithms are effi-
cient and scalable, outperforming the data-oblivious al-
ternatives with similar privacy protection. STC algo-
rithms can be distributed and therefore able to support
privacy-preserving computation at scale.

Acknowledgements

We would like to thank the anonymous reviewers of
the paper for their helpful feedback and insightful sug-
gestions. This research has been supported by the Na-
tional Research Foundation, Prime Minister’s Office,
Singapore under its National Cybersecurity R&D Pro-
gram (Award No. NRF2015-NCR-NCR002-001) admin-
istered by the National Cybersecurity R&D Directorate,
and its Competitive Research Programme (CRP Award
No. NRF-CRP8-2011-08). All opinions and findings ex-
pressed in this work are those of the authors and do not
necessarily reflect the views of any of the sponsors.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 37

References

(1]
(2]
(3]

(4]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Apache Spark. http://spark.apache.org/.

IBM 4764 PCI-X Cryptographic Coprocessor. http://www-
03.ibm.com/security/cryptocards/pcixcc/overview.shtml.
IBM PCle Cryptographic Coprocessor Version 2 (PCleCC2).
http://www-03.ibm.com /security /cryptocards/pciecc2/
overview.shtml.

Software Guard Extensions Programming Reference. https:
/ /software.intel.com /sites/default/files/managed/48,/88/
329298-002.pdf.

WikiLeaks Publishes NSA Target List. https://www.
schneier.com /blog/archives/2016/03/wikileaks__publi.html.
Ahmad, Muhammad Yousuf, and Kemme, Bettina 2015.
Compaction management in distributed key-value datas-
tores. In: PVLDB.

Aiyer, Amitanand, Bautin, Mikhail, Chen, Guogqiang Jerry,
Damania, Pritam, Khemani, Prakash, Muthukkaruppan,
Kannan, Ranganathan, Karthik, Spiegelberg, Nicolas, Tang,
Liyin, and Vaidya, Madhuwanti
ture behind facebook messages using hbase at scale. Data
Engineering Bulletin.

2012. Storage infrastruc-

Arasu, Arvind, Blanas, Spyros, Eguro, Ken, Kaushik,
Raghav, Kossmann, Donald, Ramamurthy, Ravi, and
Venkatesan, Ramaratnam 2013. Orthogonal Security
With Cipherbase. In: CIDR.

Arasu, Arvind, and Kaushik, Raghav 2013. Oblivious
query processing. arXiv preprint arXiv:1312.4012.

Bajaj, Sumeet, and Sion, Radu 2014. TrustedDB: A
Trusted Hardware-Based Database with Privacy and Data
Confidentiality. In: TKDE.

Baumann, Andrew, Peinado, Marcus, and Hunt, Galen
2014. Shielding applications from an untrusted cloud with
haven. In: OSDI.

Blanton, Marina, Steele, Aaron, and Alisagari, Mehrdad
2013. Data-oblivious graph algorithms for secure computa-
tion and outsourcing. In: ASIACCS.

Blum, Manuel, Floyd, Robert W, Pratt, Vaughan, Rivest,
Ronald L, and Tarjan, Robert E 1973. Time bounds for
selection. Journal of computer and system sciences.

Boneh, Dan, Mazieres, David, and Popa, Raluca Ada
2011. Remote oblivious storage: Making oblivious RAM
practical. MIT-CSAIL-TR-2011-018.

Brakerski, Zvika, and Brakerski, Zvika 2011. Efficient
Fully Homomorphic Encryption from (Standard) LWE. In:
FOCS.

Chaum, David L
addresses, and digital pseudonyms. Communications of the
ACM.

Chen, Shuo, Wang, Rui, Wang, XiaoFeng, and Zhang, Ke-
huan 2010. Side-Channel Leaks in Web Applications: A
Reality Today, a Challenge Tomorrow. In: IEEE S&P (Oak-
land).

Chen, Yao, and Sion, Radu
clouds with cryptography. Data Engineering Bulletin.

di Vimercati, Sabrina De Capitani, Foresti, Sara, Paraboschi,
2013.
Distributed shuffling for preserving access confidentiality. In:
ESORICS.

1981. Untraceable electronic mail, return

2012. On securing untrusted

Stefano, Pelosi, Gerardo, and Samarati, Pierangela

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

28]
[29]

3]

(31]

(32]

33]

(34]

(35]

[36]

37]

(38]

39]

Dinh, Tien Tuan Anh, Saxena, Prateek, Chang, Ee-Chien,
2015. M2R:
Enabling Stronger Privacy in MapReduce Computation. In:
USENIX Security.

ElGamal, Taher 1984. A public key cryptosystem and

a signature scheme based on discrete logarithms. In:
CRYPTO.

Gentry, Craig, et al. 2009. Fully homomorphic encryption
using ideal lattices. In: STOC.

Goldreich, Oded, and Ostrovsky, Rafail 1996. Software
protection and simulation on oblivious RAMs. Journal of the
ACM.

Goodrich, Michael T. 2011.
memory Algorithms for the Compaction, Selection, and Sort-
ing of Outsourced Data. In: SPAA.

Goodrich, Michael T 2014. Zig-zag sort: A simple deter-
ministic data-oblivious sorting algorithm running in o (n log
n) time. In: STOC.

Goodrich, Michael T., and Mitzenmacher, Michael = 2010.
Privacy-preserving access of outsourced data via oblivious
RAM simulation. CoRR, abs/1007.1259.

Goodrich, Michael T, Ohrimenko, Olga, and Tamassia,
Roberto 2012. Data-oblivious graph drawing model and
algorithms. arXiv preprint arXiv:1209.0756.

Halevy, Alon, Rajaraman, Anand, and Ordille, Joann

2006. Data Integration: The Teenage Years. In: VLDB.

Ooi, Beng Chin, and Zhang, Chunwang

Data-oblivious External-

Katz, Jonathan, and Lindell, Yehuda 2014. Introduction
to modern cryptography. CRC Press.
Klonowski, Marek, and Kutytowski, Mirostaw 2005. Prov-

able anonymity for networks of mixes. In: Information Hid-
ing.

Knuth, Donald Ervin
ming: sorting and searching, Vol. 3. Pearson Education.
Lakshman, Avinash, and Malik, Prashant 2010. Cassan-
dra: a decentralized structured storage system. Operating
Systems Review, 44.

1998. The art of computer program-

Li, Feifei, Hadjieleftheriou, Marios, Kollios, George, and
Reyzin, Leonid 2006. Dynamic authenticated index struc-
ture for outsourced databases. In: ACM SIGMOD.

McCun, Jonathan M., Parno, Bryan, Perrig, Adrian, Reiter,
Michael K., and Isozaki, Hiroshi 2008. Flicker: An Execu-
tion Infrastructure for TCB Minimization. In: EuroSys.
McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor,
V., and Perrig, A. 2010. TrustVisor: Efficient TCB Reduc-
tion and Attestation. In: IEEE S&P (Oakland).

Meng, Xiangrui, Bradley, Joseph, Yuvaz, B, Sparks, Evan,
Venkataraman, Shivaram, Liu, Davies, Freeman, Jeremy,
Tsai, D, Amde, Manish, Owen, Sean, et al. 2016. Mllib:
Machine learning in apache spark. JMLR.

Ohrimenko, Olga, Costa, Manuel, Fournet, Cedric, Gkant-
sidis, Christos, Kohlweiss, Markulf, and Sharma, Divya
2015. Observing and Preventing Leakage in MapReduce.
In: CCS.

Ohrimenko, Olga, Goodrich, Michael T, Tamassia, Roberto,
and Upfal, Eli 2014. The Melbourne shuffle: Improving
oblivious storage in the cloud. In: ICALP.

Ohrimenko, Olga, Schuster, Felix, Fournet, Cédric, Mehta,
Aastha, Nowozin, Sebastian, Vaswani, Kapil, and Costa,
Manuel 2016. Oblivious Multi-Party Machine Learning on
Trusted Processors. In: USENIX Security.

http://spark.apache.org/
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pciecc2/overview.shtml
http://www-03.ibm.com/security/cryptocards/pciecc2/overview.shtml
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.schneier.com/blog/archives/2016/03/wikileaks_publi.html
https://www.schneier.com/blog/archives/2016/03/wikileaks_publi.html

Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute = 38

[40] O’Malley, Owen, and Murthy, Arun C 2009. Winning a 60
second dash with a yellow elephant. Tech. rep., Yahoo.

[41] Paillier, Pascal 1999. Public-key cryptosystems based on
composite degree residuosity classes. In: EUROCRYPT.

[42] Pinkas, Benny, and Reinman, Tzachy 2010. Oblivious
RAM revisited. In: CRYPTO.

[43] Popa, Raluca Ada, Redfield, Catherine, Zeldovich, Nicko-
lai, and Balakrishnan, Hari 2011. CryptDB: Protecting
confidentiality with encrypted query processing. In: SOSP.

[44] Schuster, Felix, Costa, Manuel, Fournet, Cédric, Gkantsidis,
Christos, Peinado, Marcus, Mainar-Ruiz, Gloria, and Russi-
novich, Mark 2014. VC3: Trustworthy DATA analytics in
the cloud. In: IEEE S&P (Oakland).

[45] Stefanov, Emil, Van Dijk, Marten, Shi, Elaine, Fletcher,
Christopher, Ren, Ling, Yu, Xiangyao, and Devadas, Srinivas
2013. Path ORAM: An extremely simple oblivious RAM
protocol. In: CCS.

[46] Tu, Stephen, Kaashoek, M Frans, Madden, Samuel, and
Zeldovich, Nickolai 2013. Processing analytical queries
over encrypted data. In: PVLDB.

[47] Vimercati, Sabrina De Capitani Di, Foresti, Sara, Para-
boschi, Stefano, Pelosi, Gerardo, and Samarati, Pierangela
2015. Shuffle index: efficient and private access to out-
sourced data. TOS.

[48] Wang, Shuhong, Ding, Xuhua, Deng, Robert H, and Bao,
Feng 2006. Private information retrieval using trusted
hardware. In: ESORICS.

[49] Xin, Reynold S, Gonzalez, Joseph E, Franklin, Michael J,
and Stoica, lon 2013. Graphx: A resilient distributed
graph system on spark. In: GRADES.

[50] Zaharia, Matei, Chowdhury, Mosharaf, Franklin, Michael J,
Shenker, Scott, and Stoica, lon 2010. Spark: Cluster
computing with working sets. HotCloud.

	Privacy-Preserving Computation with Trusted Computing via Scramble-then-Compute
	1 Introduction
	2 Problem Definition
	2.1 Computation and Adversary Model
	2.2 Security Definition

	3 Scramble Then Compute
	3.1 Overview
	3.2 The Scrambler
	3.2.1 Building block: Melbourne Shuffle algorithm
	3.2.2 The Scrambler Construction

	3.3 Deriving Privacy-Preserving Solutions
	3.4 Handling Duplicates
	3.5 Discussion

	4 Privacy-Preserving Computations with StC
	4.1 Sort
	4.2 Compaction
	4.3 Selection
	4.4 Aggregation
	4.5 Join
	4.6 Supporting Spark Operations

	5 Performance Evaluation
	5.1 Cost of Security
	5.2 Comparison with data-oblivious algorithms
	5.3 I/O complexity of STC algorithms
	5.4 Scalability

	6 Related Work
	7 Conclusion

