
Proceedings on Privacy Enhancing Technologies ; 2019 (1):266–286

Anselme Tueno*, Florian Kerschbaum, and Stefan Katzenbeisser

Private Evaluation of Decision Trees using
Sublinear Cost
Abstract: Decision trees are widespread machine learn-
ing models used for data classification and have many
applications in areas such as healthcare, remote diag-
nostics, spam filtering, etc. In this paper, we address
the problem of privately evaluating a decision tree on
private data. In this scenario, the server holds a private
decision tree model and the client wants to classify its
private attribute vector using the server’s private model.
The goal is to obtain the classification while preserving
the privacy of both – the decision tree and the client
input. After the computation, only the classification re-
sult is revealed to the client, while nothing is revealed to
the server. Many existing protocols require a constant
number of rounds. However, some of these protocols per-
form as many comparisons as there are decision nodes
in the entire tree and others transform the whole plain-
text decision tree into an oblivious program, resulting in
higher communication costs. The main idea of our novel
solution is to represent the tree as an array. Then we ex-
ecute only d – the depth of the tree – comparisons. Each
comparison is performed using a small garbled circuit,
which output secret-shares of the index of the next node.
We get the inputs to the comparison by obliviously in-
dexing the tree and the attribute vector. We implement
oblivious array indexing using either garbled circuits,
Oblivious Transfer or Oblivious RAM (ORAM). Using
ORAM, this results in the first protocol with sub-linear
cost in the size of the tree. We implemented and evalu-
ated our solution using the different array indexing pro-
cedures mentioned above. As a result, we are not only
able to provide the first protocol with sublinear cost for
large trees, but also reduce the communication cost for
the large real-world data set “Spambase” from 18 MB
to 1.2 MB and the computation time from 17 seconds
to less than 1 second in a LAN setting, compared to the
best related work.

Keywords: Private Decision Tree Evaluation, Garbled
Circuits, ORAM, Oblivious Transfer

DOI 10.2478/popets-2019-0015
Received 2018-05-31; revised 2018-09-15; accepted 2018-09-16.

*Corresponding Author: Anselme Tueno: SAP SE, E-
mail: anselme.kemgne.tueno@sap.com

1 Introduction
Decision trees are common and very popular classifiers
because of their simplicity and ease of use. A decision
tree consists of two types of nodes. Internal nodes are
decision nodes that are used to compare an attribute
to a constant. Leaf nodes give a classification that ap-
plies to all instances that reach the leaf. To classify an
unknown instance, the tree is traversed according to
the values of the attributes tested in successive nodes,
and when a leaf is reached the instance is classified
according to the class assigned to that leaf [65].

Setting. Machine learning (ML) classifiers are valuable
tools in many areas such as healthcare, finance, spam
filtering, intrusion detection, remote diagnosis, etc [65].
To perform its task the classifier requires access to user’s
data, which is most of the time sensitive information,
such as medical or financial data. Therefore, it is crucial
to investigate privacy-preserving ML classification. On
the one hand, the model itself may contain sensitive
data. For example, a bank that uses a decision tree
for credit assessment of its customers may not want
to reveal any information about the model. On the
other hand, the model may have been built on sensitive
data. It is known that white-box and sometimes even
black-box access to a ML model allows so-called model
inversion attacks [27, 61, 67], which can compromise
the privacy of the training data.

Scenario. In this paper, we address the problem of
privately evaluating a decision tree on private data.
In this scenario, a client wants to classify its private
attribute vector using a server’s private decision tree
model. The goal is to obtain the classification, while
preserving privacy of both the decision tree and the
client input. After the computation, the result of the
classification is revealed only to the client and nothing

Florian Kerschbaum: University of Waterloo, E-mail: flo-
rian.kerschbaum@uwaterloo.ca
Stefan Katzenbeisser: TU Darmstadt, E-mail:
katzenbeisser@seceng.informatik.tu-darmstadt.de

Private Evaluation of Decision Trees using Sublinear Cost 267

else is revealed either to the client or the server.

Solution Approach. The main idea of our novel solu-
tion is to represent the tree as an array. Then we execute
only d comparisons, where d denotes the depth of the
tree. The result of each comparison allows to obliviously
select the index of the next node which is never revealed
to any party in clear. This selection of the next node is
computed using a small garbled circuit (GC), which is
independent of the position in the tree and its size. This
GC is handcrafted and executed using the ObliVM GC
runtime. However, it is also possible to use other GCs
runtime environment like SCAPI [25]. The framework
ObliVM was chosen because of its implementation of
the state-of-the-art ORAM [62]. We get the inputs to
the comparison by obliviously indexing the tree and the
attribute vector. We construct oblivious array indexing
using either garbled circuits (GC), Oblivious Transfer
(OT) or Oblivious RAM (ORAM).

Using ORAM our protocol is the first that achieves
sub-linear communication and computation cost in the
size of the tree, and hence likely the first able to evalu-
ate very large trees with thousands to millions of nodes,
which we will see with the future growth of big data
[14]. Currently, communication cost is an important
asset in mobile settings. Remote clients using smart-
phones often do not have the bandwidth to run heavy
protocols. However, ORAM has large constants hidden
in its asymptotic complexity and a significant setup cost
that needs to be amortized over many invocations of the
protocol. Hence, we aim not only at improving asymp-
totic communication cost, but also at the practical cost
on real-world data sets. Other alternative indexing pro-
tocols, particularly OT, have much smaller constants
and help improve the practical communication cost for
smaller trees. By using OT instead of ORAM, we reduce
the cost for the large real-world data set “Spambase”
in the UCI repository from 18 MB to 1.2 MB and the
computation time from 17 seconds to less than 1 second
in a LAN setting, compared to the best related work.

Generic Solution. While generic secure multiparty
computation [17, 29, 68] can implement a decision tree
classifier, they are not efficient, in particular when
the size of the tree is large. For example, frameworks
such as ObliVM [49] or CBMC-GC [26] are able to
transform plaintext programs into oblivious programs
suitable for secure computation. Their straightfor-
ward application to decision tree programs does cer-
tainly improve performance over a manual construc-
tion. However, the size of the resulting oblivious pro-

gram is still proportional to the size of the tree. Deci-
sion programs can be seen as nested if−instructions;
the ObliVM compiler transforms the exemplary pro-
gram If (s) Then x = 1; Else x = 2; where the
Boolean expression s involves secret variables, into
x1 = 1; x2 = 2; x = Mux(s, x1, x2), where Mux is
a multiplexer that returns either x1 or x2, depending
on s being true or false. Any framework implementing
the whole program will generate for each condition a
corresponding oblivious computation. This results in an
oblivious program whose size is linear in the number of
decision nodes, which might be too large to be practical
for some applications (e.g., Spam filtering). Therefore,
optimized protocols, which exploit domain knowledge of
the problem at hand and make use of generic techniques
only where it is necessary, yield more efficient solutions
[1, 4, 9, 11, 12]. Many proposed protocols for privately
evaluating decision trees have a constant number of
rounds at the cost of performing as many comparisons
as there are decision nodes or transforming the whole
plaintext decision tree into an oblivious program.

Application to ML-as-a-service. As concrete mo-
tivation for the usefulness of privately evaluating a
decision tree on private data consider remote diagnostic
services [12], healthcare [4]. Many cloud providers are
already proposing platforms that allow users to build
machine learning applications 1. A hospital may want
to use such a platform to offer a medical expert sys-
tem as a ML-as-a-service application to other doctors
or even its patients. A software provider may leverage
ML-as-a-service to allow its customers to detect the
cause of a software error. Software systems use log files
to collect information about the system behavior. In
case of an error these log files can be used to find the
cause of the crash. Both examples (medical data and
log files) contain sensitive information which is worth
to protect.

Contribution. Our contributions are as follows:
– The idea is to represent the tree as an array, where

each element contains a node of the tree and point-
ers to its child nodes. Then, while traversing the
tree, we obliviously select the next node and secret-

1 https://bigml.com/
https://azure.microsoft.com/de-de/services/machine-learning/
https://aws.amazon.com/machine-learning
https://cloud.google.com/prediction/docs/
http://predictionio.incubator.apache.org/index.html

Private Evaluation of Decision Trees using Sublinear Cost 268

share it to the parties. The comparison at each node
is performed using a GC, that takes secret-share of
that node and the corresponding attribute value and
returns secret-shares of the index of the next node.

– We instantiate our protocol by the different index-
ing procedures mentioned above. In particular, in-
stantiating our protocol with OT is more efficient
for small to mid-size trees. With ORAM [62] our
scheme has sublinear communication.

– Finally, we implement and evaluate our scheme
and demonstrate its practicality regarding runtime
and bandwidth. For small size trees our scheme
competes with previous protocols, but outperforms
them if the size of the decision tree becomes larger
– using OT for small to mid-size trees and ORAM
for very large trees.

The remainder of the paper is structured as follows.
We review related work in Section 2 and preliminar-
ies in Section 3 before defining correctness and security
of our protocol in Section 4. In Section 4 we also define
a primitive called oblivious array indexing on which our
scheme relies. Our main construction itself is described
in Section 5. In Section 6 we instantiate oblivious array
indexing with garbled circuits and Oblivious Transfer.
In Section 7 we discuss some optimizations. We discuss
implementation details and the evaluation in Section 8
before concluding our work in Section 9. Due to space
constraints, we discuss remaining aspects such complex-
ity analysis, correctness and security proofs in appendix.

2 Related Work
Our work is related to secure multiparty computation
(SMC) [8, 13, 15, 17, 20, 21, 29, 39, 68], private func-
tion evaluation (PFE) [44, 51] and privacy-preserving
machine learning. SMC allows several parties to com-
pute a public function on their private inputs with-
out revealing any information other than the func-
tion’s output. PFE is a special case of SMC where
the function to be computed is not public but private.
Privacy-preserving machine learning takes advantage of
SMC techniques to build classifiers on private databases
[35, 45–47] or to classify private data with private mod-
els [4, 11, 12, 16, 32, 35, 52, 66]. Since our work falls
under the second category, we concentrate in this sec-
tion only on privacy-preserving classifiers, particularly
decision trees.

Solutions Based on Program Transformation.
Brikell et al. [12] combine homomorphic encryption
(HE) and GCs in a novel way. In an initial phase the
server non-interactively transforms the plaintext deci-
sion tree in a secure program, by permuting the tree
and replacing each decision node by a small GC imple-
menting offset integer comparison, and each leaf node by
an encryption of the corresponding classification label.
The GC at a decision node will allow the client in the
evaluation phase to learn the decryption key of one child
node according to the result of the comparison. In the
second phase the parties execute an oblivious attribute
selection protocol, where the client uses a homomorphic
scheme to encrypt each element of the attribute vector
under his public key. The server receives the encrypted
vector, permutes it, homomorphically blinds each ele-
ment and sends it back to client. The client decrypts the
vector and the two parties execute Oblivious Transfers
that allow the client to learn the keys corresponding to
its input. In the last phase, the client receives the secure
program and evaluates it.

Although the evaluation time of Brikell et al.’s
scheme is sublinear in the tree size, the secure program
itself and hence the communication cost is linear and
hence not efficient for large trees. Barni et al. [4] im-
prove the previous scheme by not including the leaf
node in the transformed secure program, thereby re-
ducing costs by a constant factor, however maintaining
linear communication cost. Although more efficient, it
is still suitable only for small trees.

Solutions Based on Homomorphic Encryption.
Using homomorphic encryption (HE) Bost et al. [11]
propose a privacy-preserving protocol for different clas-
sifiers including decision trees. They represent the deci-
sion tree as a polynomial P whose output is the result of
the classification. The constant values of the polynomial
are the classification labels and the variables represent
the results of the Boolean conditions at the decision
nodes. Then the parties privately compute the inputs
to this polynomial by comparing each threshold of the
tree with the corresponding element of the attribute vec-
tor. Finally, the server privately evaluates the polyno-
mial and returns the result to the client. Privacy of the
tree is guaranteed by the fact that the server evaluates
the polynomial non-interactively. The evaluation is done
homomorphically on inputs encrypted under the client
public key. The number of invocations of the compari-
son protocol and the size of the polynomial are linear
in the size of the tree. Moreover, the evaluation requires
fully HE or at least somewhat HE.

Private Evaluation of Decision Trees using Sublinear Cost 269

Wu et al. [66] improve the protocol of [11] by using
different techniques so that the protocol requires only
additive HE. Using the protocol from [18], they also per-
form as many comparisons as there are decision nodes.
The server receives each comparison bit, encrypted un-
der the client public key, and uses them to evaluate the
decision tree. The evaluation returns the index of the
corresponding classification label to the client. Finally,
the parties execute Oblivious Transfer to allow the client
to learn the classification label. Their protocol is more
efficient than [11] because it relies on additive HE, im-
plemented using a variant of ElGamal based on elliptic
curve cryptography.

Tai et al. [60] follow the same blueprint as in [66]
by using the comparison protocol of [18]. Then they
mark the left and right edge of each node with the cost
b and 1 − b respectively, where b is the result of the
comparison at that node. Finally, they sum for each
path of the tree the cost along it. The label of the path
which costs sum to zero, is the classification label.

Solution Based on Secret Sharing. De Cock et
al. [16] follow the same blueprint as the two previ-
ous scheme by first comparing each threshold with the
corresponding attribute. In contrast to all other proto-
cols (ours included), which are secure in the computa-
tional setting, they operate in the information theoretic
model using secret sharing (SS) based SMC and uti-
lize commodity-based cryptography [5] to reduce the
number of interactions. This results in a protocol that
performs better than all other protocols (ours included)
for small trees. However, their protocol is less efficient
for large trees, since it is also linear in the size of the tree.

Secure Computation Frameworks. Despite being a
powerful tool for privacy-preserving application, SMC
incurs large overheads and requires expert knowledge to
develop efficient protocols. Therefore a variety of frame-
works (the software tools implementing the underlying -
or a combination of - generic SMC protocol(s)) has been
developed to address these problems. There exist three
predominant approaches. Some frameworks are tailored
for Garbled Circuits e.g., FairPlay [50], FairPlayMP
[7], LEGO [55], TASTY [34], SCAPI [25], JustGarble
[6], CBMC-GC [26] or ObliVM [49]. Among the GC
frameworks, some (such as [26, 49]) can transform Java,
C/C++ programs into GC, other tools can run the gar-
bling process and execute the generated GCs [6, 25, 49].
The second approach of frameworks is based on secret
sharing, e.g., Sharemind [10], VIFF [19], SPDZ [21],
SPDZ-2 [20], TinyOT [13] or MASCOT [39]. They al-

Symbol Interpretation

l Bit length of attribute values
n Dimension of the attribute vector

x = x0, . . . , xn−1 Attribute vector

M Number of nodes
m Number of decision nodes
d Depth of the decision tree

N = (w, vl, vr, i) Node representation (Def. 5.1)
N = N0, . . . , NM−1 Array of nodes (Def. 5.1)

〈υ〉 Secret sharing of a variable υ
υC Client’s share of a variable υ
υS Server’s share of a variable υ
[[υ]] Additively HE of υ

Table 1. Notations.

Scheme Rounds Tools Commu- Compa-
nication risons.

[12] ≈5 HE+GC O(M) d

[4] ≈4 HE+GC O(m) d

[11] ≥6 FHE/SHE O(m) m

[66] 6 HE+OT O(m) m

[60] 4 HE O(m) m

[16] ≈9 SS O(M) m

This 4d GC,OT O(M) d

Work d2 + 3d ORAM [62] O(d4)
4d ODS [64] O(d3)
4d FLORAM [24] O(d2)

Table 2. Summary of private decision tree evaluation protocols.

low to share the parties’ inputs among many computing
parties using additive secret sharing. Addition of secret
values can be evaluated by just adding the shares lo-
cally. Multiplication requires interactions and can be
speed up using a pre-processing based on Beaver tech-
nique [5]. So called multiplication triples are generated
in an offline phase and later use in the online protocol
to reduce the number of interactions. Finally, the third
approach consists of hybrid frameworks that combine
GC, additively HE and secret sharing, e.g., ABY [23].

Summary. We summarize the properties of private de-
cision trees protocols in Table 2. Already from the table
we can conclude that our protocol has the best asymp-
totic communication complexity. Since the size of the
tree is in the worst case exponential in the depth of the
tree d, M = O(2d) and m = O(2d), we can expect our
protocol to outperform alternative approaches for large
trees. However, we also aim to improve the practical
communication cost and computation time. Hence, we

Private Evaluation of Decision Trees using Sublinear Cost 270

compare our implementation to the protocol of Wu et
al. [66] on relevant, real-world data sets from the UCI
repository. We chose Wu et al. because they perform an
extensive comparison to the other protocols and have
the best performance in the computational, two-party
setting. The results are summarized in our evaluation
in Section 8.

3 Preliminaries
We begin by clarifying our problem statement and by
introducing relevant cryptographic tools but refer the
interested reader to the bibliographical references.

3.1 Problem Definition

We consider a client that holds a private attribute vec-
tor and a server holding a private decision tree classi-
fier. Each internal node of the decision tree contains a
threshold value and an integer value that indexes an el-
ement of the attribute vector. Leaf nodes contain only
the corresponding classification label. To evaluate the
tree on the client input, we traverse the tree beginning
from the root by comparing the threshold of the current
node with the corresponding attribute value. Depend-
ing on the result of the comparison, we move either to
the left or right subsequent node. Once we reach a leaf
node, we return its classification label as result of the
computation. To respect the privacy of the inputs, the
computation has to be done in a secure way.

We make the following assumption for our scheme.
We assume the elements of the attribute vector and the
threshold to be l-bit integers. As in previous work [16,
66], we assume the tree to be complete. Note that the
evaluation of a non-complete tree may leak information
to both parties on the opponent’s input: For example, if
the evaluation ends after a number of iteration smaller
than the depth of the tree, the server might infer the
classification result. In addition, the client also learns
information about the structure of the tree. If the tree
is not complete, we can insert internal dummy nodes.
In particular, all leaves in the subtree of a dummy node
have the same classification label.

The basic insecure decision tree evaluation algo-
rithm is sublinear in the size of the tree. To ensure
privacy most previous protocols evaluate all decision
nodes by comparing each node’s threshold with the cor-
responding attribute value, yielding a linear complexity

in the size of the tree. Our goal is to evaluate only the
nodes that lead to the correct classification label and
to rely as much as possible on symmetric cryptography.
This provides a significant boost in performance.

3.2 Garbled Circuits

Yao’s initial protocol for secure two-party computation
uses a technique called garbled circuits (GC). In GC
protocols, a party called Generator garbles a Boolean
circuit representing the function to be computed and
sends it with the keys corresponding to its input to a
second party called Evaluator. Then both parties en-
gage in an Oblivious Transfer protocol, that allows the
Evaluator to learn the keys corresponding to its inputs
without revealing any information on the actual inputs
to the Generator. Finally, the Evaluator evaluates the
GC and outputs the result. For a detailed, technical de-
scription of circuit garbling and its implementation see
[25, 47–49, 57, 68].

3.3 Oblivious Transfer

Oblivious Transfer (OT) is a fundamental cryptographic
protocol that allows a receiver to choose 1 out of n values
held by a sender, without revealing to the sender which
value was chosen, while revealing to the receiver only the
chosen value [29]. In a 1-out-of-2 OT (OT1

2), the sender
has two inputs x0 and x1 and the receiver has an index
i ∈ {0, 1}. After the protocol the receiver learns only
xi and the sender learns nothing. There are several effi-
cient OT protocols including [53]. Nevertheless, all these
schemes require some public key operations. In [36] the
authors describe a hybrid cryptographic technique to
extend a constant number of OTs to polynomially many
OTs using symmetric cryptography. Recently, the OT
extension protocol was improved by [2, 3, 38]. There
are also number of 1-out-of-n OT protocols (OT1

n). For
our protocol, we rely on the OT1

n by [54] that uses log(n)
OT1

2 protocols to realize OT1
n.

3.4 Oblivious RAM

Oblivious RAM (ORAM) is a cryptographic primitive
that allows a client to outsource its encrypted storage
to an untrusted server and to hide the data access pat-
terns of the client from the server [28, 30]. Efficient
ORAM schemes replace each read/write access to the

Private Evaluation of Decision Trees using Sublinear Cost 271

original storage with a randomized series of read/write
accesses. Many schemes have improved the performance
of ORAM including [62], which we have used in our im-
plementation. The idea of using ORAM in secure com-
putation was first mentioned in [31, 63].

Our implementation relies on Circuit ORAM [62],
which is a tree-based ORAM. Tree-based ORAM was
first introduced by [59] and has been improved by many
other works, including [62]. Tree-based ORAM schemes
have sublinear complexity. For a database with n ele-
ments Circuit ORAM [62] has O(log3(n)) costs. It has
been implemented in the ObliVM framework [49]. In
Tree-based ORAM a position map stores for each block
the index of the path, where this block lies. It can be
stored recursively on the server to reduce the client stor-
age. Tree-Based ORAMs differ mostly in their eviction
strategy but adopt a similar data structure. We refer to
[59, 62] for more details.

Another relevant concept also related to ORAM
are Oblivious Data Structures (ODS) [64]. ODS ensure
that for any two sequences of k operations to the data
structure, their resulting access patterns are indistin-
guishable. They apply to data structures such as bi-
nary trees or heaps with sparse access graphs. For such
data structures, [64] introduces a pointer-based tech-
nique. Thereby, the key idea is to store each node with
the indexes and labels of its child nodes. This elimi-
nates the need to search through the position map (and
hence the recursion step for tree based ORAM) for a
child node label, achieving O(log2(n)) cost. Using simi-
lar techniques, Keller and Scholl [40] proposed schemes
for ODS based on secret sharing . Their schemes are
very efficient, translate to the multiparty setting and
provide active security as they fit naturally with the
SPDZ framework, which uses a pre-processing phase to
generate secret random multiplication triples and ran-
dom bits. The resulting online protocol is actively secure
against a dishonest majority.

In [24] Doerner and Shelat introduced FLORAM
an ORAM scheme based on function secret sharing, a
primitive that allows sharing a function f to p >= 2
parties such that on input x, each party learns a share
fi(x) and

∑
fi(x) = f(x). Despite its linear compu-

tation complexity, the access time is better than tree-
based ORAM for trees up to 230 large. The communica-
tion is O(log(n)) for a database with n elements. Most
importantly, the initialization does not require secure
computation and is therefore very fast. For instance, an
ORAM with 220 4-byte elements can be initialized in
less than 200 milliseconds. However, the security model
requires two non-colluding servers.

4 Definitions
In this section we introduce relevant definitions and no-
tations for our scheme. Our definitions and notations
(Table 1) are similar to previous work [16, 66]. With
[a, b], we denote the set of all integer from a to b. Let
c0, . . . , ck−1 be the classification labels, k ∈ N>0.

Definition 4.1 (Decision Tree). A decision tree (DT)
is a function T : Zn → {c0, . . . , ck−1} that maps an
n-dimensional attribute vector x = (x0, . . . , xn−1) to a
finite set of classification labels. The tree consists of:
– internal nodes (decision nodes) containing a test

condition and
– leave nodes containing a classification label.
A decision tree model consists of a decision tree and the
following functions:
– a function t that assigns to each decision node a

threshold value, t : [0,m− 1] 7→ Z,
– a function a that assigns to each decision node an

attribute index, a : [0,m− 1] 7→ [0, n− 1], and
– a labeling function c that assigns to each leaf node

a label, c : [m,M − 1] 7→ {c0, . . . , ck−1}.
The decision at each decision node is a “greater-than”
comparison between the assigned threshold and attribute
values, i.e., the decision at node v is [xa(v) ≥ t(v)].

Definition 4.2 (Node Indices). Given a decision tree,
the index of a node is its order as computed by breadth-
first search (BFS) traversal, starting at the root with
index 0. If the tree is complete, then a node with index
v has left child 2v + 1 and right child 2v + 2.

We will also refer to the node with index v as the
node v. W.l.o.g, we will use [0, k − 1] as classification
labels (i.e., cj = j for 0 ≤ j ≤ k − 1) and we will la-
bel the first (second, third, . . .) leaf in BFS traversal
with classification label 0 (1, 2, . . .). For a complete
decision tree with depth d the leaves have indices rang-
ing from 2d, 2d + 1, . . . 2d+1 − 2 and classification labels
ranging from 0, . . . , 2d − 1 respectively. Since the classi-
fication labeling is now independent of the tree, we use
M = (T , t,a) to denote a decision tree model consisting
of a tree T and the labeling functions t,a as defined
above. We also assume that the tree parameters d,m,M
can be derived from T .

Definition 4.3 (Decision Tree Evaluation). Given x =
(x0, . . . , xn−1) and M = (T , t,a), then starting at the
root, Decision Tree Evaluation (DTE) evaluates at each
reached node v the decision b← [xa(v) ≥ t(v)] and moves

Private Evaluation of Decision Trees using Sublinear Cost 272

either to the left (if b = 0) or right (if b = 1) subsequent
node. The evaluation returns the label of the reached leaf
as result of the computation. We denote this by T (x).

Definition 4.4 (Private DTE). Given a client with a
private x = (x0, . . . , xn−1) and a server with a pri-
vate M = (T , t,a), a private DTE (PDTE) function-
ality evaluates the model M on input x, then reveals to
the client the classification label T (x) and nothing else,
while the server learns nothing, i.e., (M, x) 7→ (∅, T (x)).

Definition 4.5 (Correctness). Given a client with a
private x = (x0, . . . , xn−1) and a server with a pri-
vate M = (T , t,a), a protocol Π correctly implements
a PDTE functionality if after the computation it holds
for the result c obtained by the client that c = T (x).

Besides correctness parties must learn only what they
are allowed to. To formalize this, we need the following
two definitions. A function µ : N → R is negligible if
for every positive polynomial p(.) there exists an ε such
that for all n > ε: µ(n) < 1/p(n). Two distributions D1
and D2 are computationally indistinguishable (denoted
D1

c≡ D1) if no probabilistic polynomial time (PPT)
algorithm can distinguish them except with negligible
probability.

In SMC protocols the view of a party consists of its
input and the sequence of messages that it has received
during the protocol execution [29]. The protocol is said
to be secure if for each party, one can construct a sim-
ulator that, given only the input of that party and the
output, can generate a distribution that is computation-
ally indistinguishable to the party’s view.

Definition 4.6 (Semi-Honest Security). Given a client
with a private x = (x0, . . . , xn−1) and a server with a
privateM = (T , t,a), a protocol Π securely implements
the PDTE functionality in the semi-honest model if the
following conditions hold:
– there exists a PPT algorithm SIMS that simulates

the server’s view viewΠ
S given only the private deci-

sion tree model (T , t,a) such that:

SIMS(M, ∅) c≡ viewΠ
S (M, x), (1)

and
– there exists a PPT algorithm SIMC that simulates

the client’s view viewΠ
C given only the depth d of the

tree, x = (x0, . . . , xn−1) and a classification label
T (x) ∈ {0, . . . , k − 1} such that:

SIMC(〈d, x〉 , T (x)) c≡ viewΠ
C(M, x). (2)

Before moving to our main construction, we describe a
primitive called oblivious Array Indexing (OAI), which
will serve as a sub-protocol. Private array indexing al-
lows a party C holding a private index i to privately
access the i-th element of an array held by a party S.
We will use array indexing as an intermediate step, and
therefore execute it obliviously such that the index and
the indexed element are secret-shared to the parties.

Definition 4.7 (Oblivious Array Indexing). Let A =
[A0, . . . , An−1] be an array and i ∈ [0, n − 1] be an in-
dex. An Oblivious Array Indexing (OAI) functionality
consists of:
– a party S holding privately A and a share iS of i,
– a party C holding privately another share iC of i.
The functionality computes two shares AiS and AiC of
Ai and returns them to party S and C respectively, i.e,

((A, iS), iC) 7→ (AiS , AiC),

such that if i = iS � iC then Ai = AiS � AiC , where
� ∈ {⊕,+}.

5 Our PDTE Protocol
In this section, we present our scheme and discuss its
correctness and security.

5.1 Intuition

At first, the server transforms the decision tree into an
array which is formalized in the following definition.

Definition 5.1 (Data Structure). Let M = (T , t,a)
with M and m as above. A node data structure (DS)
of a decision node v ∈ [0,m − 1] consists of the tu-
ple (t(v),Left(v),Right(v),a(v)), where Left(v) and
Right(v) are indices of left and right child node of v in
BFS traversal. A node DS of a leaf node v ∈ [m,M − 1]
consists of the tuple (c(v),Null,Null,Null). A tree
DS consists of the array N = N0, . . . , NM such that Nv
is the node DS of v ∈ [0,M − 1].

Hence, besides a threshold and an index to x, each node
stores the index to its two child nodes, similar to the
pointer-based technique of [64]. The tree DSN0, . . . , NM
is equivalent toM = (T , t,a) and will be used instead.

The server secret-shares the root node with the
client and the protocol loops d times. In each iteration,
the parties select the attribute value that corresponds to

Private Evaluation of Decision Trees using Sublinear Cost 273

Fig. 1. Illustration of the Protocol: The attribute vector x is in-
dexed with i (i.e., y = xi). The array of tree nodes N is indexed
with v (i.e., N = Nv , N0 is the root node).

the current node (initially the root). Then, they execute
a GC to compute an index which they use to obliviously
select one child node of the current node. Finally, they
execute another GC to check if the selected child node
is a leaf. Otherwise, this node is evaluated in the next
iteration. An overview is illustrated in Figure 1, where
each OAI block can be instantiated with any protocol
that allows secret indexing, such as GC, OT, ORAM.
Each GC block can be implemented with any generic
secure 2-party computation approach.

5.2 Algorithms

In our algorithms, we use v to denote the index of a
node, i.e., Tv. Moreover, we use N = (w, vl, vr, i) to
denote the content of nodes. If it is a decision node then
w = t(v), vl = Left(v), vr = Right(i) and i = a(v).
Otherwise w = c(v) and vl = vr = i = Null. For
a variable V that is secret-shared between server and
client, let VS and VC denote the respective shares, i.e.,
NS = (wS , vlS , vrS , iS) denotes the server’s share of N .
In our GCs, we use the following basic operations:
– And(b1, b2) = (b1 ∧ b2),
– Eq(a1, a2) = (If a1 = a2 Then 1 Else 0),
– Geq(a1, a2) = (If a1 ≥ a2 Then 1 Else 0),
– Mux(b, a1, a2) = (If b Then a2 Else a1),
– Not(b) = (¬b), and
– Xor(a1, a2) = (a1 ⊕ a2).

Additionally, our algorithms use a combination of GC
and simple secret sharing. We use the following opera-
tions to denote re-sharing of a value in a GC:
– Reshare(r, a) = (r, a� r), where � ∈ {⊕,+},
– Reshare(~r,~a) = (~r,~a � ~r), where ~a,~r are vectors

and � is applied componentwise.
The value to be re-shared (a or ~a) is an intermediate
result (e.g., the index of the subsequent node), which
should not be revealed in clear to the parties. The value
r or ~r is randomly chosen by the GC generator and used
to blind an intermediate result.

The Evaluation Algorithm. Fig. 2 shows our PDTE
scheme. It always starts at the root, i.e., the first el-
ement of the tree DS. Let the initial current node
N = (w, vl, vr, i) be the node DS of the root. With the
procedure ShareRoot, the server first shares the root
node by choosing a random NS = (wS , vlS , vrS , iS) and
sendingNC = N⊕NS = (w⊕wS , vl⊕vlS , vr⊕vrS , i⊕iS)
to the client. The values NS ,NC are used as shares of
the current node in the first iteration of the following
loop. In each iteration the parties successively perform
the following operation:
– Select the corresponding attribute value (Step 5):

Using the procedure IndexVector, the parties
then execute an oblivious array indexing (see Sec-
tion 6) to select and secret-share an array element.
The server’s input is its share of i and the client’s
input consist of its share of i and the attribute vec-
tor x. The result of Step 5 consists of two shares
of the attribute value corresponding to the current
decision node.

– Compute the index of the next node (Step 7): The
parties execute a GC which evaluates the current
node (i.e., compares the current attribute value with
the current node’s threshold) and uses the compar-
ison result to select the index of the next node in
the tree. The resulted index is secret-shared to the
parties. This step is fully specified in Fig. 3.

– Select the next node in the tree (Step 8): The par-
ties use their secret shares from the previous step
as input to the procedure IndexTree to select and
secret-share the next node in the tree. The addi-
tional input to the array indexing operation is the
array. The result is used to update the current node.

– Move (Step 10): Finally, another GC, which is also
fully specified in Fig. 4, checks if the current node
N is a leaf and computes the classification label and
re-shares the index i. Note that, as we assumed a
complete tree, it is enough to perform this check
only for the last iteration. In this case the Move

Private Evaluation of Decision Trees using Sublinear Cost 274

Input : (N , x)
Output : (∅, c)
1: (NS ,NC)←ShareRoot(root, ∅)
2: j ← 1
3: while j ≤ d do
4: (wp, vlp, vrp, ip)← Np . p = S,C

5: (yS , yC)←IndexVector(iS , (x, iC))
6: Np ← (wp, vlp, vrp, yp, rp) . p ∈ {S,C}, rC = ∅
7: (vS , vC)←Traverse(NS ,NC)
8: (NS ,NC)←IndexTree((N , vS), vC)
9: (wp, vlp, vrp, ip)← Np . p = S,C

10: ((0, iS), (c, iC))←Move((wS , iS), (wC , iC , rC))
11: j ← j + 1
12: end while
13: return (∅, c)
Fig. 2. Our Private Decision Tree Evaluation Protocol

algorithm only needs to re-share the index i for all
iterations but the last one.

The algorithm loops d times and N is evaluated in the
next iteration. Steps 4, 6, 9, and 11 are local steps and
do not require any secure computation.

We now turn to the description of the algorithms
Traverse and Move, which are implemented using
Yao’s garbled circuits approach.

The Traverse Algorithm. Fig. 3 describes the GC
that is used in Fig. 2 (Step 7) to compute the index
of the next node. The GC is generated by the server
and evaluated by the client. Each party inputs its share
of (w, vl, vr, y) which is then recovered (Step 2) in the
execution of the GC. Then the result of the comparison
y ≥ w (Step 3) is used to select (Step 4) the index
of the next node between vl and vr. The selection is
implemented using an l−bit multiplexer Mux(b, a1, a2).
Finally, this index is secret-shared (Step 5) and returned
to the parties. Note that, the output vS is identical to
the random string rS that is also part of the server’s
input, such that in Step 5, vC ← v � rS is computed
and returned only to the client.

The Move Algorithm. At the end of each iteration
in Fig. 2, the GC of Fig. 4 receives shares of (w, i) and
recombines them (Step 1) in the secure computation.
Then it checks (Step 2) if i equals Null and returns
either 0 or w. Again, as we assumed a complete tree, it is
enough to perform this check only for the last iteration.
The selection (Step 3) is also implemented as an l−bit

Input : ((wS , vlS , vrS , yS , rS), (wC , vlC , vrC , yC))
Output : (vS , vC)
1: Np ← (wp, vlp, vrp, yp) . p = S,C

2: (w, vl, vr, y)← Xor(NS ,NC)
3: b←Geq(y, w)
4: v ←Mux(b, vl, vr)
5: (vS , vC)←Reshare(rS , v)

Fig. 3. Traverse Algorithm

Input : ((wS , iS), (wC , iC , rC))
Output : ((Null, iS), (R, iC))
1: (w, i)← Xor((wS , iS), (wC , iC))
2: b←Eq(i,Null)
3: R←Mux(b, 0, w)
4: (iC , iS)←Reshare(rC , i)

Fig. 4. Move Algorithm

multiplexer. The final step re-shares the index i to both
parties. For this GC as well, the server and the client
act as generator and evaluator respectively.

We stress that the algorithms in Fig. 3 and 4 rep-
resent the full specification of the underlying GCs that
are neither dependent on the position in the tree nor on
its size. It is straightforward to see that the resulting
GCs are indeed small. Their cost depends on the opera-
tions Eq, Geq, Mux, and Reshare, as the performance
metric for GC is the number of AND-gates (XOR being
free). Assuming inputs are l-bit integers, operations Eq,
Geq, Mux contain each exactly l AND-gates [42, 43],
which results in 4l ciphertexts each. The Reshare op-
eration contains AND-gates only when the sharing is
additive. In this case re-sharing is implemented as full-
adder with l AND-gates [42]. The halfGate optimization
[69] reduces the number of ciphertexts per AND-gate
by a factor of 2 at the cost for the evaluator to per-
form two cheap symmetric operations, rather than one.
Also, notice that the size of Eq and Geq depends on
the size of the attribute vector n and the tree M re-
spectively, whose bit-length can be much more smaller
than the input’s bit-length in practice (i.e., log(n) and
log(M) are smaller than l). In the worst case, the com-
munication cost of our scheme (Fig. 2) is dominated
by the cost of the array indexing on the tree (in gen-
eral the tree is larger than the attribute vector) which
is O(M), O(M), O(d3), O(d2), O(d) for GC, OT, Circuit
ORAM, ODS and FLORAM respectively.

Private Evaluation of Decision Trees using Sublinear Cost 275

Input : ((A0, . . . , An−1, iS , rS), iC)
Output : (aS , aC) s.t. if i = iS ⊕ iC then Ai = aS ⊕aC
1: i←Xor(iS , iC)
2: aC ← 0
3: for j = 0 to n− 1 do
4: b←Eq(i, j)
5: aC ←Mux(b, aC , Aj)
6: end for
7: (aS , aC)←Reshare(rS , aC)

Fig. 5. OAI with Garbled Circuit

6 Implementing OAI
OAI can be instantiated with any protocol that allows
secret indexing, such as GC, OT, ORAM. Notice that,
OAI only makes sense when used as a sub-protocol. In
the overall protocol the array indexing is always pre-
ceded by a GC step that computes and returns the
shares iS and iC to server and client (i.e., in Step 5
of Traverse and in Step 4 of Move). To initially in-
dex the attribute vector the shares are computed by the
server in Step 1 of Fig. 2. This is not a security problem
as the classification always starts at the root.

As already mentioned, we assume the array ele-
ments and the indices to be l−bit integers. In this sec-
tion, we refer to party S and party C as Sender and
Receiver respectively.

6.1 OAI with Garbled Circuits

The GC for indexing is described in Fig. 5. The circuit
uses three sub-circuits: Xor, Eq, Mux. The input of
the sender also contains a random string rS that is used
in line 7 to randomize the output. The algorithm scans
the array and uses Mux to select the indexed element.
Since the sender is also the generator of the GC, the
evaluator does not have to send back the result of the
evaluation. Using the same metric explained in Section
5.2, the GC of Fig. 5 contains l(n+ 1) AND-gates. The
communication cost is clearly linear in the array size,
i.e., O(n).

Alternatively, we can also represent the index i as
a vector of bits with 0 everywhere except at position
i. This results in a more efficient GC by getting rid of
the equality check in line 4, which requires l And-gates.
However, since we use l bits to represent the index, we
run this more efficient alternative only when the size of
the array is smaller or equal to l.

Input : ([A0, . . . , An−1], i)
Output : (∅, Ai)

1: S chooses FK and pairs (K0
0 ,K

1
0), · · · , (K0

h−1,K
1
h−1)

2: ∀ι ∈ [0, n− 1]: S sends cι = Aι ⊕⊕h−1
j=0FK

ιj
j

(ι) to C

3: ∀j ∈ [0, h− 1]: (∅,Kij
j)← OT1

2((K0
j ,K

1
j), ij)

4: Ai ← Decrypt((Ki0
0 , . . . ,K

ih−1
h−1), ci)

Fig. 6. Naor and Pinkas OT1
n Protocol

Input : ((A0, . . . , An−1, r, s), k = i+ r mod n)
Output : (aS , aC) s.t. Ai = aS ⊕ aC
1: For all 0 ≤ i < n, S sets A′j+r mod n ← Aj ⊕ s
2: S and C execute (∅, A′k)← OT1

n(A′, k)
3: aS ← s and aC ← A′k = A′i+r mod n = Ai ⊕ s

Fig. 7. OAI with Oblivious Transfer

6.2 OAI with Oblivious Transfer

For the oblivious indexing with OT, we use the OT1
n

protocol by Naor and Pinkas, which we briefly review
first and refer to [54] for details.

Let A0, . . . An−1 be an array, i an index, h = log(n)
and FK a PRF. Let ι be an index in [0, n − 1] and
ι0 . . . ιh−1 its bit representation. Then sender S and re-
ceiver C perform O(n) and O(log(n)) operations respec-
tively. The scheme is described in Fig. 6.

The idea of OAI with OT is to share the array in-
dex i with additive sharing by choosing a random r as
sender’s share and i + r as receiver’s share. Then the
sender rotates the array by r and the parties execute
OT1

n on the new array and i + r. Hence, let r ∈ {0, 1}l

be a random l−bit integer and iS = r and iC = i + r.
The protocol is described in Fig. 7.

In [37], Jarrous and Pinkas used a similar idea
in a protocol called HDOT (Hamming Distance based
OT) in which parties C and S have private binary
strings α = α0 . . . αt and β = β0 . . . βt of length t =
log(n). The sender S additionally has a private dataset
A = [A0, . . . , An−1]. The parties then run a protocol
that privately computes the Hamming distance i = dH
and uses it to reveal Ai to C using OT1

n. To select
Ai without revealing dH to the parties, C first com-
putes [[α]] = ([[α0]], . . . , [[αt]]) under its public key using
an additively HE. Then S receives [[α]] and computes
[[i]] =

∏
[[αj ⊕ βj]] = [[

∑
αj ⊕ βj]]. Finally, S chooses a

random r and sends [[i+ r]] to C.
Alternatively, we can use the following proposition

to share the index with exclusive-OR sharing instead.

Private Evaluation of Decision Trees using Sublinear Cost 276

The benefit is that the re-sharing of the index in the GC
(e.g., in Step 5 of Fig. 3) is more efficient as it requires
only exclusive-OR operations. In our implementation,
we use this alternative, whenever it is possible.

Proposition 6.1. Let B = {0, 1}l and x ∈ B then we
have x⊕B = B.

Proof. ∀y ∈ B, x ⊕ y is clearly in B, since B contains
alls l−bit strings. Moreover, ∀y1, y2 ∈ B with y1 6= y2 it
holds x⊕ y1 6= x⊕ y2, because otherwise x⊕ y1 = x⊕ y2
implies y1 = y2.

From the above proposition, it follows that if the length
n of the array is a power of 2 with log(n) = h, then [0, n−
1] is isomorphic to {0, 1}h. As a result, we can modify
the algorithm in Fig. 7 as follows: we set iS = r and iC =
i⊕ r, and replace Step 1 by A′j⊕r ← Aj ⊕ s, 0 ≤ i < n.
If n is not a power of 2, one may consider padding the
array with 0s to an array of length n′ = 2h+1. However,
since the OTn1 requires sending n ciphertexts (resulting
in O(n) communication cost) we will use the alternative
protocol only if n is a power of 2.

6.3 OAI with Oblivious RAM

For an array of size N , tree-based ORAM organizes the
data into blocks stored in a binary tree of height log(N)
at the server. Each node of the tree is a bucket of log(N)
blocks. Each block has the form {idx‖label‖data},
with idx a block index, label a leaf identifier specifying
the path on which the block resides and data the actual
data. The client stores a stash Stash for buffering over-
flowing blocks and a position map PosMap mapping
idx to label. The position map can be reduced to O(1)
by recursively storing it in smaller ORAMs at the server.
There are two basic operations. The first one, ReadAn-
dRm, reads and removes a block from its current posi-
tion and the second one, Evict, randomly pushes blocks
down to their path. They are used to implement the
access operation (Algorirthm 8 [62]) which allows two
functionalities: Oram.read(idx):= Oram.access(idx,
∅) and Oram.write(idx, data):= Oram.access(idx,
data) [59, 62].

OAI with ORAM requires only read(). In an ini-
tial step, the server places the array in an ORAM, and
secret-shares the resulting ORAM with the client. OAI
with ORAM (Fig. 9) is similar to the case of GC, with
the only difference that the array is stored in the shared
ORAM and the computation of the indexed element is
replaced by ORAM.read(idx). In fact, the read and

Input: (idx, data)
Output: out

1: {idx‖lbl‖out} ← ReadAndRm(idx,PosMap[idx])
2: PosMap[idx]← UniformRandom(0, . . . , N − 1)
3: if (data = ∅) then data← out
4: Stash.Add({idx‖PosMap[idx]‖data})
5: Evict()
6: return out

Fig. 8. Algorithm Oram.access

Input: ((ORAMS , iS , rS), (ORAMC , iC))
Output: (aS , aC) s.t. if i = iS ⊕ iC then Ai = aS ⊕ aC
1: i←Xor(iS , iC)
2: aC ← Oram.read(i)
3: aC ←Xor(AiC , rS)
4: aS ← rS

Fig. 9. OAI with ORAM

write operations are implemented using GCs. In our im-
plementation we used the recursive circuit ORAM [62].
However, OAI with ORAM can be optimized by using
oblivious data structures [40, 64] or FLORAM [24] in-
stead. Using ODS is straightforward since ODS schemes
are basically optimized tree-based ORAM like circuit
ORAM. OAI with FLORAM requires to implement the
PDTE as a 3-party protocol (one client and two servers).
Because of our 2-party security model, we see the inte-
gration of FLORAM to our scheme as a future work.

7 Optimizations
We now discuss some optimizations of our scheme.

7.1 Level Indexing

In each iteration, our protocol executes array indexing
on the tree to select the index of the next node. Since
this node is always a child node of the current node, we
do not have to use the whole tree during array indexing.
It is sufficient to use only the nodes of the next level.
Therefore, before invoking IndexTree (Step 8 of Fig.
2) at level d′, we construct an array containing only the
nodes of level d′ + 1, where for each node vl and vr are
recomputed according to the number of nodes at level
d′ + 2. For ORAM, each level of the tree is stored in its
own ORAM during initialization. Of course, this reveals

Private Evaluation of Decision Trees using Sublinear Cost 277

Input : ((wS , iS , uS , eS , ~rS), (wC , iC , uC , eC))
Output : ((i′S , u′S , e′S), (i′C , u′C , e′C))
1: function fstCall
2: (w, i)← Xor((wS , iS), (wC , iC))
3: b←Eq(i,Null)
4: (u, e)←Mux(b, (Null, 0), (w, 1))
5: v′ ← (i, u, e)
6: ((i′S , u′S , e′S), (i′C , u′C , e′C))←Reshare(~rS , v′)
7: end function
8: function ithCall
9: vp ← (wp, ip, up, ep) . p = S,C

10: (w, i, u, e)← Xor(vS , vC)
11: b1 ←Eq(e, 1), b2 ←Eq(i,Null)
12: b←And(Not(b1), b2)
13: (u, e)←Mux(b, (u, e), (w, 1))
14: v′ ← (i, u, e)
15: ((i′S , u′S , e′S), (i′C , u′C , e′C))←Reshare(~rS , v′)
16: end function
Fig. 10. Garbled Circuit Move For Sparse Trees

the number of nodes per level to the client. However, if
we assume that the tree is complete, then it is not a new
leakage. Otherwise, we can still extend all levels to the
size of the longest level, which is smaller than 2d, leak-
ing only this longest size. To be secure for sparse trees,
this optimization has to be combined with the Han-
dling Sparse Trees optimization below. We note that
for efficiency reasons, previous schemes also leak either
the number of decision nodes, the number of nodes, the
number of paths or the depth of the tree to the client.

7.2 Pre-processing the Vector Indexing

One can also avoid indexing the attribute vector x in
each step. Let x = (x0, . . . , xn−1), then in an initial
step, the client computes [[x]] = ([[x0]], . . . , [[xn−1]]) un-
der its public key using additively HE. The server re-
ceives [[x]], chooses n random numbers r0, . . . , rn−1 ∈
{0, . . . , 2l+σ} (σ is a security parameter that determines
the statistical leakage [22], e.g., σ = 32) and com-
putes ([[x0 + r0]], . . . , [[xn−1 + rn−1]]). Then the server
chooses a random permutation π and sends back π([[x0+
r0]], . . . , [[xn−1 + rn−1]]) to the client. Finally, the server
replaces each decision node N = (w, vl, vr, i) of the tree
by N = (w+rπ(i), vl, vr, π(i)). Note that, we can reduce
the number of ciphertexts sent, by packing many plain-
texts in one ciphertext [58]. During the evaluation, the
client learns π(i) in each iteration, selects the attribute

value xπ(i) + rπ(i) locally and uses it in the Traverse
algorithm which evaluates Geq(xπ(i) + rπ(i), w + rπ(i))
instead of Geq(xi, w). Hence, with this optimization the
server’s share xiS in the Traverse algorithm is empty,
while xiC = xπ(i) + rπ(i). To preserve privacy, this pre-
processing step must be recomputed for each tree evalu-
ation. We have not yet implemented and evaluated this
optimization and intend to do it in future work.

7.3 Handling Sparse Trees

We assumed in our protocol that the tree is complete.
However, this is inefficient for sparse trees. We therefore
optimize our protocol to handle sparse trees efficiently.
This optimization requires only small changes to Fig. 3
and 4.

Let Mj denotes the number of nodes at level j.
Then, for a sparse tree Mj is much more smaller than
2j . However, a path may end at a level j < d. The idea
is to stored each level j in an array of size at least Mj ,
instead of 2j . When we are traversing a path that ends
at level j < d, we secret-share the corresponding classi-
fication label to the parties in iteration j − 1. Then we
simulate the remaining d − j iterations and refresh the
shares of the classification label each time.

We therefore use two additional variables u and e

to assign the classification label and a bit respectively.
During the tree evaluation, if we reached a leaf at level
j < d, we assign the corresponding classification label
to u and set e to 1. Then, we re-share both variables to
the parties in each iteration.

For Fig. 3 parties receive additionally shares of vari-
ables u and e. Then, after the comparison (Step 3), we
check if e = 1 (i.e., a leaf node was reached at level
j < d) and choose v′ randomly. This check is however
only necessary for levels j ≥ 1 (i.e., not at the root).

The modification for Fig. 4 is described in Fig. 10,
where fstCall is used only for the first iteration (i.e., at
the root node) and ithCall for all other iterations. The
inputs are w (either a threshold or a classification label),
i and u and e. For the first iteration, fstCall checks if
the next node is a leaf (Step 3), set u and e appropriately
(Step 4), and re-share i, u, e (Step 6). After the first
iteration, ithCall checks if e is still 0 and if the next
node is a leaf (Step 11 and 12). If this is true, then we
set u, e to w, 1. Otherwise, we maintain their previous
values (Step 13). Finally, we re-share i, u, e (Step 15).

Private Evaluation of Decision Trees using Sublinear Cost 278

Dataset n d m Time (s) Bandwidth (KB)
[66] F M S Upload Download Total

ECG 6 4 6 0.344 0.154 0.236 0.497 - (116.4) - (164.7) 101.9 (281.0)
Nursery 8 4 4 0.269 0.127 0.273 0.479 - (116.4) - (162.6) 101.7 (279.0)
Breast-cancer 9 8 12 0.545 0.256 0.376 0.927 73.7 (233) 132.0 (325.5) 205.7 (558.5)
Heart-disease 13 3 5 0.370 0.118 0.137 0.471 73.3 (87.4) 43.9 (124.5) 117.2 (211.8)
Housing 13 13 92 4.081 0.445 0.548 1.480 115.7 (378.7) 1795.2 (531.8) 1910.9 (910.5)
Credit-screening 15 4 5 0.551 0.164 0.306 0.474 49.9 (116.5) 45.0 (164.6) 94.9 (281.1)
Spambase 57 17 58 16.595 0.562 0.767 1.969 463.4 (490.5) 17363.3 (684.5) 17826.7 (1174.9)

Table 3. Performance on UCI datasets: The numbers on the left are taken from [66]. The numbers on the right and bold are our costs
using OT/OT. The columns F (LAN 10Gbps for Server and Client), M (LAN 1Gbps for Server and Wifi 72Mbps for Client), S (Wifi
144Mbps for Server and Wifi 72Mbps for Client) represent the type of network which has no impact on the bandwidth.

Dataset Bandwidth (KB) IndexVector Bandwidth (KB) IndexTree Bandwidth (KB) GC
↑ ↓ Total ↑ ↓ Total ↑ ↓ Total

ECG 35.80 22.83 61.63 14.76 30.94 45.7 65.68 110.76 176.44
Nursery 36.00 22.18 58.18 13.84 31.68 45.52 66.47 108.63 175.10
Breast-cancer 71.76 45.05 116.81 33.17 64.19 95.36 127.90 216.15 344.05
Heart-disease 26.88 16.57 43.45 11.74 23.48 35.22 48.65 84.31 132.96
Housing 116.57 72.53 189.10 54.51 108.80 163.31 207.50 350.33 557.83
Credit-screening 36.14 26.74 62.88 11.49 24.65 36.14 68.67 113.13 181.80
Spambase 152.53 92.32 244.83 71.04 144.56 215.60 266.78 447.48 714.26

Table 4. Detailed Bandwidth Costs on UCI datasets using OT/OT. The symbols ↑ and ↓ stand for upload and download.

8 Experiments
We have implemented our scheme with the level in-
dexing optimization and performed some experiments
which will be discussed in this section.

8.1 Experimental Setup

We evaluated our scheme with the ObliVM [49] which
is a Java framework for secure computation. It offers
a compiler for a domain-specific language ObliVM-lang
and a GC backend ObliVM-GC, which primarily sup-
ports semi-honest GC protocol. We implemented our
scheme in Java (1.8) using only the GC backend.

ObliVM-GC supports a standard garbling scheme
with garbled row reduction, FreeXOR and HalfGate. It
also implements the OT extension protocol proposed by
[36] and a basic OT protocol by [53] based on the deci-
sional Diffie-Hellman assumption in Zp. In our experi-
ments, we use a 2048-bit key length for Zp and SHA-256
as random oracle for the OT extension. For our OT1

n

implementation, we instantiated the PRF with AES-
128. Finally, ObliVM-GC provides a large set of built-
in Boolean circuits and a GC implementation of Circuit
ORAM [62]. The ORAM is secret-shared between the

two parties and for each read and write operation the
client and the server execute a GC protocol to scan the
corresponding path of the ORAM, then they execute
another GC protocol to perform the eviction operation.

We stress that we did not use the ObliVM compiler.
Using the compiler to transform the plaintext tree eval-
uation program in a secure one results in a program
whose size is proportional to the tree size. A similar
idea was already considered in the related work [4, 12]
and was outperformed by Wu et. al.’s paper [66]. Our
memory accesses are not only to variable locations but
they also depend on conditions involving secret vari-
ables. The ObliVM Compiler or any framework imple-
menting the whole program will generate for each condi-
tion a corresponding oblivious computation whose num-
ber is proportional to the number of decision nodes. We
then use only ObliVM-GC to run our manually created
GC which are independent of the branching result.

As mentioned above, we compare our protocol to
the scheme of Wu et. al. [66] in the semi-honest model
at the same security level 128, because they perform an
extensive comparison to the other protocols and have
the best performance in the computational two-party
setting. Hence, we choose a similar test environment.
We run both parties on two machines with Intel(R)
Xeon(R) CPU E7-4880 v2 at 2.50GHz connected via a

Private Evaluation of Decision Trees using Sublinear Cost 279

shared LAN and running Windows 10. The server ma-
chine has 4 CPUs and 4GB of RAM. The client machine
has 4 CPUs and 8GB RAM. However, Wu et. al. imple-
mented their protocol in C++. As HE they implemented
exponential ElGamal using the 256-bit elliptic curve
numsp256d1, which is one of the main source of their
performance improvement comparing to previous pro-
tocols. Our implementation uses Oracle’s Java 1.8 and
all experiments were run on the Java SE 64-Bit Server
virtual machine. We also compare our scheme to the
scheme of Tai et. al. [60]. They implemented their pro-
tocol using ElGamal over elliptic curve secp256k1. How-
ever, we notice that, in their experiments [60], both the
client and the server are run on one desktop computer
equipped with Intel Core i7-6700 CPU (3.40 GHz).

Our scheme uses the OT extension protocol of [36]
and requires therefore a setup phase which consist of
an initialization of the OT extension protocol by run-
ning the basic OT ([53] in our implementation). The
setup phase is executed only once to exchange symmet-
ric keys which will be used in the OT extension [2]. It
takes about 1 second and consumes about 20.31 KB
(from sender to receiver) and 3.96 KB (from receiver to
sender) communication. We note that [66] uses the very
efficient OT extension of [2], which is not implemented
in ObliVM yet. Additionally, if we want to index the tree
with ORAM, we populate it in this setup phase. How-
ever, this is executed only once for each client. In the
experiments below, we evaluate and report the costs for
the online tree evaluation. In the following figures, we
use Server (Client) Time to denotes the running time of
the server (client) and Server (Client) upload to denote
the number of bits sent by the server (client).

8.2 Performance on UCI Datasets

As Wu et. al., we evaluate our protocol on
seven real datasets from the UCI repository
(http://archive.ics.uci.edu/ml/) in the semi-honest
model and at the security level 128. We first trans-
form each tree in an array as explained above. Then,
we perform 100 tree evaluations, measure runtime and
bandwidth costs and compute the mean.

Our results are summarized in Table 3, where
n, d,m, l are as defined in Table 1 and l = 64 as in [66].
Moreover, Tables 4 and 5 show how each sub-protocols
contribute to the costs of Table 3. Recall that we can in-
stantiate our scheme with four different array indexing
methods. The results in Tables 3, 4 and 5 were achieved
using OT indexing on both side.

For small size trees, [66] has better bandwidth costs
compared to the current implementation of our scheme.
However, for applications that are willing to compro-
mise on bandwidth, our scheme is more suitable as it is
faster. Moreover, it has other advantages. First, it can
be further optimized, e.g., by using the efficient OT ex-
tension [2, 3, 41] and fast garbling (e.g., JustGarble [6]),
which are not yet implemented in ObliVM. In [49], it is
estimated that combining ObliVM with JustGarble may
reduce the time to compare 16384 bit Integers from 26
ms (using the original ObliVM as in our experiments)
to 1.96 ms. The scheme of [2, 3] significantly reduces the
runtime and bandwidth costs of the OT extension pro-
tocol to 41% and 50% respectively. OAI with OT can be
implemented with the OT1

n of [41] which improves upon
[54] by a factor ≈ 5.39. It is therefore clear that these op-
timizations will significantly improve the performance of
our scheme in both runtime and bandwidth. Addition-
ally, while [66] is based on public-key primitives (i.e.,
discrete logarithm on elliptic curve), our scheme relies
only on symmetric cryptography. We require public-key
primitives only for a one time initialization of the OT
extension protocol. Since our scheme is based on secret
array indexing, it naturally benefits from optimizations
on oblivious data structures [40, 64]. Finally, the opti-
mization described in Section 7.2 reduces the bandwidth
costs of IndexVector to few kilobytes.

For mid-size to large trees (e.g., “housing” and
“Spambase” datasets) our protocol outperforms previ-
ous protocols. Our protocol reduces the runtime of the
“housing” dataset from 4 seconds (by Wu et. al.) to 0.5
second, while the communication cost is reduced from 2
MB to 1 MB. For the “Spambase” dataset our protocol
is even 17 times better. Their takes 17 seconds consum-
ing 18 MB bandwidth, while we run within less than 1
second and require only 1.2 MB communication.

Tai et. al. [60] also compare their work to [66], how-
ever, running both the client and the server on one desk-
top computer equipped with Intel Core i7-6700 CPU
(3.40 GHz). Their reported time consists therefore only
of the local computation time without network traffic.
For small trees, they reported similar performances to
[66] in both bandwidth and runtime. For large trees such
as “housing” and “Spambase”, their protocols run in
about 2s (1.984 and 1.804 resp.) on one machine con-
suming slightly less than 1MB (0.854 and 0.920 resp.).
As a result, our scheme is already faster and can be
further optimized as explained above. This shows that
flattening the tree increases performance.

Private Evaluation of Decision Trees using Sublinear Cost 280

Dataset Time (ms)
IndexVector IndexTree GC

F M S F M S F M S

ECG 16.52 56.95 139.15 11.92 34.36 59.11 108.76 136.35 314.99
Nursery 15.31 67.12 126.31 12.05 39.12 46.70 85.40 160.51 323.17
Breast-cancer 33.51 104.31 211.95 21.25 54.10 108.11 179.10 210.65 626.59
Heart-disease 9.95 37.25 128.21 7.84 18.13 69.12 73.52 75.83 291.33
Housing 50.92 156.0 265.88 37.56 76.86 165.04 334.80 310.52 1067.25
Credit-screening 17.53 65.87 127.53 10.14 46.24 44.90 127.88 187.80 321.87
Spambase 71.83 213.33 501.18 44.64 104.61 220.44 427.85 443.98 1266.41

Table 5. Detailed Time Costs on UCI datasets using OT/OT. The columns F, M, S have the same meaning as in Table 3.

(a) Complete Trees

(b) Sparse Trees

Fig. 11. Scalability experiment with OT/OT indexing

8.3 Scalability

We also evaluate the scalability of our scheme by ex-
perimenting with synthetic trees of different depths and
densities and using similar parameters as previous work.
We vary the depth of the tree between 4 and 26 and use
64-bit precision and n = 16. We also ran both experi-
ments of this section on a LAN, while Wu et. al. reported
costs excluding network traffic.

First, we consider complete decision trees, which are
the worst-case. We evaluate the scheme with OT index-
ing for the tree and the attribute vector and measure
computation and communication costs of both parties.
The result is depicted in Figure 11a. Our results show
that even for deeper trees with a depth around 20, the
scheme takes less than 3 minutes and less than 70 MB
bandwidth. For complete trees of depth 14, the maxi-
mal depth reported by [66], their protocol runs in about
5 minutes, excluding network communication, and re-
quires about 120 MB bandwidth. Our protocol evaluates
a complete tree of depth 14 in less than 3 seconds via
LAN, while consuming only about 2 MB of the band-
width, which is 60 times better.

Using a complete tree even in case when the decision
tree has only a few nodes is totally inefficient, because
for deeper trees the difference between 2d+1−1 and the
real size of the tree can be very huge. For their experi-
ments on sparse trees, Wu et. al. assume that the num-
ber of decision nodes is linear in the depth of the tree,
e.g., m = 25d. We experiment with sparse trees using
the optimization mentioned in Section 7.3. We vary the
depth of the tree between 10 and 26 and set the number
of decision nodes to m = 25d. Then we generate random
trees with defined parameters d and m = 25d, run our
protocol and measure the results. Figure 11b shows that
our costs grow linearly, rather than exponentially in the
depth of the tree as in [66]. For sparse trees of depth up
to 26, our protocol takes less than 1.5 seconds and less
than 1.5 MB bandwidth. For sparse trees of depth 20,
the maximal depth reported by [66], their protocol runs
in about 2 minutes (excluding network communication)
and requires about 140 MB bandwidth. The scheme of
[60] runs in about 10 seconds (excluding network com-
munication) and requires about 4.1 MB bandwidth. Our
protocol evaluates a sparse tree of depth 20 with 500
decision nodes in less than 1 second via LAN, while
consuming only about 1.5 MB bandwidth.

Private Evaluation of Decision Trees using Sublinear Cost 281

(a) Indexing with GC/OT (b) Indexing with OT/OT (c) Indexing with ORAM/OT

Fig. 12. Costs for very large trees: For readability only the depth (i.e., log(M) − 1) is displayed on the x-axis, which ends at 18 for GC
and 23 for OT and ORAM because we ran out of memory.

8.4 Very Large Trees

In our last experiment, we consider very large complete
trees with depth larger than 20, containing millions of
decision nodes. In this setting, we expect the ORAM
solution to outperform the other approaches, since it
yields to a sub-linear complexity. We ran this experi-
ment on a single machine (via a loopback interface) with
Intel(R) Core(TM) i7-4770 CPU at 3.40GHz, 16GB of
RAM and Windows 10. We then run three experiments
using either GC, OT or ORAM to index the decision
tree and OT indexing for the attribute vector. For each
experiment, we set n = 64 and vary the depth from 10
to 24. As mentioned above, indexing with ORAM re-
quires populating the ORAM in the setup phase, which
is very tedious for large trees and may take up to 20
days to compute [31]. However, notice that the costs for
an ORAM access depend on the capacity of the ORAM,
but not on the actual number of elements stored in it.
For this reason, we avoid a long ORAM initialization by
populating the ORAM for larger trees with just enough
elements to evaluate the decision tree. The results of the
experiment are summarized in Figure 12. For small trees
with depth smaller than 12, GC and OT indexing are
better than ORAM. The computation cost for OT re-
mains better than ORAM up to depth 16. However, the
costs for GC and OT double with the depth and are lin-
ear in the size of the tree, while the costs for ORAM are
sublinear in the size of the tree as shown in Figure 12.
For trees of depth larger than 21, ORAM outperforms
both GC and OT in computation and communication
costs. For example, for depth 22, ORAM takes about 13
seconds and 175 MB of Bandwidth, while OT takes 287
seconds and 266 MB.

9 Conclusion
In this paper, we presented a protocol for evaluating pri-
vate decision trees using sublinear communication. The
idea of our novel solution is to represent the tree as an
array. Then we execute a number of comparisons that
is equal to the depth of the tree. We get the inputs to
the comparison by obliviously indexing the tree and the
attribute vector. Each comparison outputs secret shares
of the index of the next node to be evaluated. We im-
plement oblivious array indexing using either GC, OT
or ORAM. Using ORAM this results in the first proto-
col with sub-linear communication cost in the size of the
tree. We implemented and evaluated our scheme on real
datasets and synthetic decision trees. Our results show
that, we are not only able to provide the first sublin-
ear communication cost for large trees, but also reduce
the computation and communication costs for mid-size
to large real-world data set compared to the best re-
lated work. In future work, we intend to evaluate our
scheme with other frameworks such as JustGarble [6],
SCAPI [25], SPDZ [21], MASCOT [39] and efficient OT
extension protocols [2, 3, 38, 41, 56].

Acknowledgments
The authors would like to thank the anonymous re-
viewers for their valuable comments and helpful sug-
gestions. This work has received funding from the Eu-
ropean Union’s Horizon 2020 Research and Innova-
tion Programme under grant agreement No. 644579 of
ESCUDO-CLOUD project.

Private Evaluation of Decision Trees using Sublinear Cost 282

References
[1] A. Aly and M. V. Vyve. Securely solving classical network

flow problems. In ICISC, pages 205–221, 2014.
[2] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More

efficient oblivious transfer and extensions for faster secure
computation. In CCS, pages 535–548, New York, NY, USA,
2013. ACM.

[3] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More
efficient oblivious transfer extensions. J. Cryptology,
30(3):805–858, 2017.

[4] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R.
Sadeghi, and T. Schneider. Secure evaluation of private
linear branching programs with medical applications. In ES-
ORICS, pages 424–439, Berlin, Heidelberg, 2009. Springer-
Verlag.

[5] D. Beaver. Commodity-based cryptography (extended ab-
stract). In STOC, pages 446–455, New York, NY, USA,
1997. ACM.

[6] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway.
Efficient garbling from a fixed-key blockcipher. In SP, pages
478–492, Washington, DC, USA, 2013. IEEE Computer
Society.

[7] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: A
system for secure multi-party computation. In CCS, pages
257–266, New York, NY, USA, 2008. ACM.

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed
computation. In STOC, pages 1–10, 1988.

[9] M. Blanton, A. Steele, and M. Alisagari. Data-oblivious
graph algorithms for secure computation and outsourcing. In
ASIACCS, pages 207–218, 2013.

[10] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
ESORICS, pages 192–206, 2008.

[11] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine
learning classification over encrypted data. In NDSS, 2015.

[12] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel.
Privacy-preserving remote diagnostics. In CCS, pages 498–
507, New York, NY, USA, 2007. ACM.

[13] S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Or-
landi, E. Orsini, P. Scholl, and N. P. Smart. High perfor-
mance multi-party computation for binary circuits based
on oblivious transfer. IACR Cryptology ePrint Archive,
2015:472, 2015.

[14] J. Catlett. Overpruning large decision trees. In IJCAI, pages
764–769, San Francisco, CA, USA, 1991. Morgan Kaufmann
Publishers Inc.

[15] D. Chaum, C. Crépeau, and I. Damgard. Multiparty uncon-
ditionally secure protocols. In STOC, pages 11–19, 1988.

[16] M. D. Cock, R. Dowsley, C. Horst, R. Katti, A. C. A. Nasci-
mento, S. C. Newman, and W. Poon. Efficient and private
scoring of decision trees, support vector machines and lo-
gistic regression models based on pre-computation. IACR
Cryptology ePrint Archive, 2016:736, 2016.

[17] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In EURO-
CRYPT, pages 280–299, 2001.

[18] I. Damgård, M. Geisler, and M. Krøigaard. Efficient and
secure comparison for on-line auctions. In ACISP, pages
416–430, 2007.

[19] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen.
Asynchronous multiparty computation: Theory and imple-
mentation. In PKC, pages 160–179, 2009.

[20] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and
N. P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In ESORICS, pages
1–18, 2013.

[21] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multi-
party computation from somewhat homomorphic encryption.
In CRYPTO, pages 643–662, 2012.

[22] I. Damgård and R. Thorbek. Efficient conversion of secret-
shared values between different fields. IACR Cryptology
ePrint Archive, 2008:221, 2008.

[23] D. Demmler, T. Schneider, and M. Zohner. ABY - A frame-
work for efficient mixed-protocol secure two-party computa-
tion. In NDSS, 2015.

[24] J. Doerner and A. Shelat. Scaling oram for secure computa-
tion. In CCS, pages 523–535, 2017.

[25] Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell. SCAPI:
the secure computation application programming interface.
IACR Cryptology ePrint Archive, 2012:629, 2012.

[26] M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart, and
H. Veith. CBMC-GC: an ANSI C compiler for secure two-
party computations. In CC ’14, pages 244–249, 2014.

[27] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion
attacks that exploit confidence information and basic coun-
termeasures. In CCS, pages 1322–1333, 2015.

[28] O. Goldreich. Towards a theory of software protection and
simulation by oblivious rams. In STOC, pages 182–194, New
York, NY, USA, 1987. ACM.

[29] O. Goldreich. Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, New York,
NY, USA, 2004.

[30] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. J. ACM, 43(3):431–473, May
1996.

[31] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin,
M. Raykova, and Y. Vahlis. Secure two-party computation
in sublinear (amortized) time. In CCS, pages 513–524, 2012.

[32] T. Graepel, K. Lauter, and M. Naehrig. Ml confidential:
Machine learning on encrypted data. In Proceedings of the
15th International Conference on Information Security and
Cryptology, ICISC’12, pages 1–21, Berlin, Heidelberg, 2013.
Springer-Verlag.

[33] C. Hazay and Y. Lindell. Efficient Secure Two-Party Pro-
tocols: Techniques and Constructions. Springer-Verlag New
York, Inc., New York, NY, USA, 1st edition, 2010.

[34] W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: tool for automating secure two-
party computations. In CCS, pages 451–462, 2010.

[35] E. Hesamifard, H. Takabi, M. Ghasemi, and C. Jones.
Privacy-preserving machine learning in cloud. In Proceed-
ings of the 2017 on Cloud Computing Security Workshop,
CCSW ’17, pages 39–43, New York, NY, USA, 2017. ACM.

[36] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending
oblivious transfers efficiently. In CRYPTO, pages 145–161,
2003.

Private Evaluation of Decision Trees using Sublinear Cost 283

[37] A. Jarrous and B. Pinkas. Secure hamming distance based
computation and its applications. In ACNS, pages 107–124,
2009.

[38] M. Keller, E. Orsini, and P. Scholl. Actively secure OT
extension with optimal overhead. In CRYPTO, pages 724–
741, 2015.

[39] M. Keller, E. Orsini, and P. Scholl. Mascot: Faster malicious
arithmetic secure computation with oblivious transfer. In
CCS, pages 830–842, 2016.

[40] M. Keller and P. Scholl. Efficient, oblivious data structures
for MPC. In ASIACRYPT, pages 506–525, 2014.

[41] V. Kolesnikov and R. Kumaresan. Improved OT extension
for transferring short secrets. In CRYPTO, pages 54–70.
Springer, 2013.

[42] V. Kolesnikov, A. Sadeghi, and T. Schneider. Improved
garbled circuit building blocks and applications to auctions
and computing minima. In CANS, pages 1–20, 2009.

[43] V. Kolesnikov and T. Schneider. Improved garbled circuit:
Free XOR gates and applications. In ICALP, pages 486–498,
2008.

[44] V. Kolesnikov and T. Schneider. A practical universal circuit
construction and secure evaluation of private functions. In
FC, pages 83–97, 2008.

[45] Y. Lindell and B. Pinkas. Privacy preserving data mining. In
CRYPTO, volume 1880, pages 36–54, Berlin and New York,
2000. Springer.

[46] Y. Lindell and B. Pinkas. Privacy preserving data mining.
Journal of Cryptology, 15(3):177–206, 2002.

[47] Y. Lindell and B. Pinkas. Secure multiparty computation
for privacy-preserving data mining. IACR Cryptology ePrint
Archive, 2008:197, 2008.

[48] Y. Lindell and B. Pinkas. A proof of security of yao’s proto-
col for two-party computation. J. Cryptol., 22(2):161–188,
Apr. 2009.

[49] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi.
Oblivm: A programming framework for secure computation.
In SP, pages 359–376, 2015.

[50] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—
a secure two-party computation system. In SSYM, pages
20–20, Berkeley, CA, USA, 2004. USENIX Association.

[51] P. Mohassel, S. S. Sadeghian, and N. P. Smart. Actively
secure private function evaluation. In ASIACRYPT, pages
486–505, 2014.

[52] P. Mohassel and Y. Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Sympo-
sium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017, pages 19–38, 2017.

[53] M. Naor and B. Pinkas. Efficient oblivious transfer pro-
tocols. In SODA, pages 448–457, Philadelphia, PA, USA,
2001. Society for Industrial and Applied Mathematics.

[54] M. Naor and B. Pinkas. Computationally secure oblivious
transfer. Journal of Cryptology, 18:1–35, Jan 2005.

[55] J. B. Nielsen and C. Orlandi. LEGO for two-party secure
computation. In TCC, pages 368–386, 2009.

[56] A. Patra, P. Sarkar, and A. Suresh. Fast actively secure OT
extension for short secrets. In NDSS. The Internet Society,
2017.

[57] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams.
Secure two-party computation is practical. IACR Cryptology
ePrint Archive, 2009:314, 2009.

[58] P. Pullonen, D. Bogdanov, and T. Schneider. The design
and implementation of a two-party protocol suite for share-
mind 3, Sept. 2012.

[59] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious
ram with o((logn)3) worst-case cost. In ASIACRYPT, pages
197–214, 2011.

[60] R. K. H. Tai, J. P. K. Ma, Y. Zhao, and S. S. M. Chow.
Privacy-preserving decision trees evaluation via linear func-
tions. In ESORICS, pages 494–512, 2017.

[61] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Risten-
part. Stealing machine learning models via prediction apis.
In USENIX, pages 601–618, 2016.

[62] X. Wang, T. H. Chan, and E. Shi. Circuit ORAM: on tight-
ness of the goldreich-ostrovsky lower bound. In CCS, pages
850–861, 2015.

[63] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and
E. Shi. Scoram: Oblivious ram for secure computation.
In CCS, pages 191–202, 2014.

[64] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi,
E. Stefanov, and Y. Huang. Oblivious data structures. In
CCS, pages 215–226, New York, NY, USA, 2014. ACM.

[65] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Prac-
tical Machine Learning Tools and Techniques. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 3rd edition,
2011.

[66] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter. Privately
evaluating decision trees and random forests. PoPETs,
2016(4):335–355, 2016.

[67] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. A
methodology for formalizing model-inversion attacks. In
CSF, pages 355–370, 2016.

[68] A. C. Yao. Protocols for secure computations. In SFCS,
pages 160–164, Washington, DC, USA, 1982. IEEE Com-
puter Society.

[69] S. Zahur, M. Rosulek, and D. Evans. Two halves make a
whole - reducing data transfer in garbled circuits using half
gates. In EUROCRYPT, pages 220–250, 2015.

A Complexity Analysis
This section presents the complexity analysis of our
scheme and compares it to previous work [60, 66]. We fo-
cus on the level indexing and sparse trees optimizations
of Sections 7.1 and 7.3.

A.1 Asymptotic Analysis

Asymptotic Analysis of [60, 66]. We begin by re-
calling the cost provided by [60, 66]. In [66] the client
performs O((n + m)l) asymmetric and O(d) symmetric
operations, while the server performs O(ml) asymmet-
ric and O(2d) symmetric operations. In [60] the client
performs O((n + m)l) asymmetric operations, and the

Private Evaluation of Decision Trees using Sublinear Cost 284

server O(ml) asymmetric operations.

Asymptotic Analysis of our Scheme. Our cost
consists of the cost for GCs Traverse and Move
(CGC), the cost for IndexVector (CIV) and the cost
for IndexTree (CIT). If C(j)

IT denotes the cost for In-
dexTree at level j (Section 7.1), then the total cost
is d · CGC + d · CIV +

∑d
j=1 C

(j)
IT . All computations

require only symmetric operations. Each GC consists
of 6l ciphertexts resulting in a total of O(6ld) = O(ld)
operations for each party.

OAI With OT. In this case, the cost of In-
dexVector is O(dn) for the client, and O(d log(n))
for the server. Each level j of the tree has 2j elements,
resulting in O(d2) and O(2d) operations in IndexTree
for the client and the server respectively. Overall, the
client and server perform O(ld + dn + d2) = O(d2) and
O(ld+ d log(n) + 2d) = O(2d) symmetric operations.

OAI With ORAM. The asymptotic cost of recur-
sive circuit ORAM for an array of size O(2d) is O(d3).
Hence with ORAM the costs of the client and server are
respectively O(ld + dn + d4) and O(ld + dlog(n) + d4).
For ODS and FLORAM, it suffices to replace O(d3) by
O(d2) and O(d) respectively. Assuming constant l and n
(as in the experiment with complete trees, Section 8.3),
the complexity is indeed sublinear in the size O(2d) of
the tree.

Asymptotic Analysis Summary. The above cryp-
tographic operations are in fact encryption/decryption
operations such that we can assimilate their number to
the number of ciphertexts sent. In the worst case (com-
plete tree), m ≈ 2d is the dominant factor. This results
in an overall asymptotic cost of O(m) as claimed in Ta-
ble 2 for [60, 66] and our scheme.

A.2 Concrete Analysis

We now compute the estimated concrete communica-
tion cost depending on the protocols parameters.

Concrete Analysis of [60, 66]. We first provide our
own analysis of the communication of previous work.
Let λ denote the bit length of the asymmetric cipher-
text. For ElGamal using 256-bit elliptic curve, λ = 1024
(a ciphertext consists of two group elements, which on
the elliptic curve are encoded as points with coordinates
256-bit long). We use κ to denote the symmetric secu-

rity parameter, hence κ = 128. Wu et. al.’s scheme uses
the OT extension protocol of [2] in which for sending µ
strings of length κ in parallel, the receiver sends µκ and
the sender 2µκ bits.

In [66] each party sends two messages before en-
gaging in an 1-out-of-2d-OT (with the server as sender)
which is implemented using Naor and Pinkas OT [54] by
running d times the OT extensions of [2] and transfer-
ring 2d symmetric ciphertexts of length 2κ each. This
results in the client sending λln + λm + 2dκ and the
server sending λlm+ λ2d + 4dκ+ 2d2κ bits.

The analysis of [60] is much simpler. Also in this
case, each party sends two messages, which results in
the client sending λln + λm and the server sending
λlm+ 2λ(m+ 1) bits.

Concrete Analysis of our Scheme.We implemented
our scheme with the OT extensions of [36] which has
concrete cost of 2κ(κ + µ) bits for both sender and re-
ceiver to transfer µ strings of length κ. In each GC the
cost of the client (as evaluator) consists of its cost in OT,
while the cost of the server (as generator) consists of the
ciphertexts of the garbled tables (GT), the garbled input
(GI) of the server and the OT cost. For each node DS
(w, vr, vl, i), the threshold w has the same bit length l as
the attribute values, while the length of vl, vr, imight be
much more smaller and will be denoted by l′. The length
of i depends on the size of the attribute vector, while
vl, vr depend on the number of nodes at the correspond-
ing level in the tree (Section 7.1). In our evaluation for
UCI Datasets, l′ = 20 for spambase and l′ = 16 for the
other datasets.

The input length of the client in GC Traverse is
2(l+ l′) hence the client sends 2κ(κ+ 2l+ 2l′) bits. Sim-
ilarly, in GC Move the client sends 2κ(κ+ l + 2l′) bits
resulting in a total of 2κd(2κ+3l+4l′). In GC Traverse,
the server sends 2κ(l+2l′) bits as GT cost, κ(2l+3l′) bits
as GI cost and 2κ(κ+2l+2l′) bits in OT. In GC Move,
the server sends 2κ(l+ 2l′) bits as GT cost, κ(l+ l′) bits
as GI cost and 2κ(κ + l + 2l′) bits in OT. Overall the
server sends κd(4κ+ 13l + 20κl′) bits as GC cost.

Recall that the array indexing with OT is imple-
mented with Naor and Pinkas OT1

n that requires run-
ning log(n) times OT1

2 and transferring n symmetric ci-
phertexts. In IndexVector, the client as sender sends
κd(2κ+2 log(n)+n) and the server sends 2κd(κ+log(n))
bits.

In IndexTree, the parties run OT1
2j at each level

j in [1, d], where the client and the server send 2κ(κ +
j) and 2κ(κ + j) + κ2i bits respectively. As a result,
the client sends 2κ(κd+ (1+d)d

2) and the server 2κ(κd+

Private Evaluation of Decision Trees using Sublinear Cost 285

(1+d)d
2) + 2κ(2m+ 1) bits (a tree with m decision nodes,

has 2m+ 1 nodes in total).
In summary, the client sends

2κd(2κ+ 3l + 4l′) + κd(4κ+ 2 logn+ n+ d+ 1)

bits and the server sends

κd(4κ+13l+20l′)+κd(4κ+2 log(n)+d+1)+2κ(2m+1)

bits in our protocol.

Concrete Analysis Summary. To summarize this
section (see Table 6), the protocols in [60, 66] perform
m comparisons using asymmetric operations, while we
perform only d = log(m) comparisons using symmetric
operations. Using GC or OT, we still have linear cost
as previous work, while requiring only symmetric op-
erations with small concrete constants. Using ORAM
(or ODS, FLORAM), CIT is computed accordingly and
OAI is sublinear while requiring only symmetric op-
erations. Our implementation uses a concurrent queue
implementation offered by ObliVM, which uses only 2
threads to manage network input/output. While run-
ning the protocol, the main thread inserts new mes-
sages in the queue (it waits until there is enough place).
The second thread is only responsible for sending the
content of the queue over the network. Previous work
can also use multithreading to improve the execution
time, but not the communication. Their major advan-
tage is the use of ECC which allows smaller ciphertexts
than when using a group Zp with prime p. Our scheme,
however, can still be optimized by using more efficient
garbling [6], OT extensions [2, 3, 38] and ORAM (ODS
[40, 64], FLORAM [24]). Using more efficient OT ex-
tensions [2, 3] that reduces the runtime and bandwidth
to 41% and 50% respectively, will significantly improve
the performance of our scheme.

A.3 Round Complexity

The main cryptographic primitives used in our scheme
are OT extension, OT1

N and GC, which are all one round
protocol. The scheme itself consists of d iterations. Each
iteration consists of an OAI on x, a GC Traverse, an
OAI on the decision tree and a GC Move. When instan-
tiated with OT or GC, OAI has one round. Hence, our
scheme has 4d rounds. Recursive Circuit ORAM with
size N has log(N) rounds, resulting in (d+3)d = d2 +3d
rounds for our scheme, when instantiated with ORAM.
ODS and FLORAM have one round, resulting in 4d
rounds for our scheme.

B Correctness and Security
This section discusses the correctness and security of
our scheme. Our security proofs follow the idea of [48].
We construct simulators as in [33, 48] and refer to the
same references for the indistinguishability part.

B.1 Sub-protocols

Lemma B.1. The GC protocol in Fig. 3 is correct and
secure in the semi-honest model.

Proof. Depending on the comparison result between the
attribute value xi and the threshold, Fig. 3 returns the
correct index of the next node. Security follows from
Yao’s garbled circuit protocol.

Lemma B.2. The GC protocol in Fig. 4 is correct and
secure in the semi-honest model.

Proof. If the execution of the protocol reaches a leaf,
then i must be Null which is correctly checked in Step
2. As a result, the correct classification label is computed
in Step 3. Security follows from Yao’s garbled circuit
protocol.

Lemma B.3. The OAI using the GC in Fig. 5 is cor-
rect and secure in the semi-honest model.

Proof. The equality check in step 4 returns 1 for exactly
one index between 0, . . . , n− 1. The selection step 5 re-
turns 0 for all j < i and Ai for all j ≥ i. The output Ai
is secret-shared in step 7. Security follows from Yao’s
garbled circuit protocol.

Lemma B.4. The OAI as described in Fig. 7 is correct
and secure in the semi-honest model.

Proof. Let iS = r and iC = i+r. From the correctness of
the OT1

n protocol, C receives the keys corresponding to
i+ r and can decrypt A′i+r mod n = Ai⊕ s. Security also
follows from the OT1

n protocol, which guarantees that
C can decrypt only one message. Finally, this message
is blinded by a random value s.

Let viewOTS , viewOTC be the view of the sender
and the receiver in the OT1

n protocol. Then the re-
spective views viewOTIS , viewOTIC in the OT index-
ing are (A′, viewOTS , AiS) and viewOTC . Moreover, let
SIMOT

S , SIMOT
C be the simulator of the OT1

n for sender

Private Evaluation of Decision Trees using Sublinear Cost 286

Dataset [66] [60] This Work This Work
↑ ↓ Total ↑ ↓ Total ↑ ↓ Total With OT [2]

ECG 48.88 50.75 99.63 48.75 49.75 98.5 97.06 137.09 234.16 105.78
Nursery 64.62 34.75 99.37 64.5 33.25 97.75 97.31 137.09 234.40 105.90
Breast-cancer 73.75 136.5 210.25 73.5 99.25 172.75 195.25 274.90 470.15 213.15
Heart-disease 104.71 41.43 146.15 104.62 41.5 146.12 73.17 102.90 176.07 79.70
Housing 115.90 2016.81 2132.71 115.5 759.25 874.75 319.10 452.25 771.35 353.73
Credit-screening 120.75 42.75 163.5 120.62 41.5 162.12 97.75 137.15 234.90 106.40
Spambase 463.78 20945.06 21408.84 463.25 478.75 942.0 439.60 610.87 1050.48 494.79

Table 6. Comparison of estimated bandwidth costs (in KB) on UCI datasets. The symbols ↑ and ↓ stand for upload to server and
download to client. Columns Total are the total costs. The last column is our estimated total cost when using OT extension of [2].

and receiver. We construct the simulators of the OT in-
dexing as follows:
– Sender: the simulator SIMOTI

S ((A, iS), AiS) re-
ceives as input the array A, a share iS of the in-
dex and a share AiS of the indexed element. The
simulator computes A′j+r mod n ← Aj ⊕ AiS , j =
0, · · · , n− 1 and outputs (A′, SIMOT

S (A′, ∅), AiS).
– Receiver: the simulator SIMOTI

C (iC , AiC) receives
as input a share iC of the index and a share
AiC of the indexed element. It just outputs
SIMOT

C (iC , AiC)

The output of both simulators SIMOTI
S and SIMOTI

C

are clearly indistinguishable from the corresponding
party’s view in the real protocol.

B.2 Main Protocol

Theorem B.5 (Correctness). The protocol described
in Fig. 2 is correct.

Proof. We prove by induction on the level of the tree
that the protocol correctly traverses the tree. At level 0
there is only the root node. At level d′ < d the correct-
ness of the sub-protocols guarantees the computation of
the correct attribute value xi at Step 5, the correct node
index v′ at Step 7 and the correct node N ′ at Step 8.
Finally, at level d Fig. 4 returns the correct classification
label.

Theorem B.6 (Security). The protocol described in
Fig. 2 is secure in the semi-honest model.

Proof. Given a DT modelM, the simulator SIMS gen-
erates random elements to simulate the sharing of the
root (Step 1). Then it generates a random attribute vec-
tor x̃ and invokes d times the simulators of the sub-
protocols for the server. Analogously, given d and x the

simulator SIMC generates a random model M′, sim-
ulates the sharing of the root as above and invokes d
times the simulators of the sub-protocols for the client.

Let viewIVS , viewTRS , viewITS , viewMV
S denote the

real views of the server in the sub-protocols In-
dexVector, Traverse, IndexTree, Move respec-
tively. Moreover, let SIMIV

S (ĩS , ỹS), SIMTR
S (ỹS , ṽS),

SIMIT
S ((N, ṽS), ÑS), SIMMV

S ((w̃S , ĩS), (0, ĩS)) be the
respective simulators. Then the view viewPDTES of the
server in Fig. 2 is:

NS , viewIVS , viewTRS , viewITS , viewCLS , · · ·︸ ︷︷ ︸
d times

The simulator for the server SIMPDTE
S (M, ∅) receives

as input the decision tree, generates a random ÑS , in-
vokes d times the simulators of the sub-protocols and
outputs:

ÑS , SIMIV
S (·), SIMTR

S (·), SIMIT
S (·), SIMMV

S (·), · · ·︸ ︷︷ ︸
d times

The simulation for the client is similar.

	Private Evaluation of Decision Trees using Sublinear Cost
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Garbled Circuits
	3.3 Oblivious Transfer
	3.4 Oblivious RAM

	4 Definitions
	5 Our PDTE Protocol
	5.1 Intuition
	5.2 Algorithms

	6 Implementing OAI
	6.1 OAI with Garbled Circuits
	6.2 OAI with Oblivious Transfer
	6.3 OAI with Oblivious RAM

	7 Optimizations
	7.1 Level Indexing
	7.2 Pre-processing the Vector Indexing
	7.3 Handling Sparse Trees

	8 Experiments
	8.1 Experimental Setup
	8.2 Performance on UCI Datasets
	8.3 Scalability
	8.4 Very Large Trees

	9 Conclusion
	A Complexity Analysis
	A.1 Asymptotic Analysis
	A.2 Concrete Analysis
	A.3 Round Complexity

	B Correctness and Security
	B.1 Sub-protocols
	B.2 Main Protocol

