
Proceedings on Privacy Enhancing Technologies ; 2019 (2):66–87

Sashank Narain* and Guevara Noubir

Mitigating Location Privacy Attacks on Mobile
Devices using Dynamic App Sandboxing
Abstract: We present the design, implementation and
evaluation of a system, called MATRIX, developed to
protect the privacy of mobile device users from loca-
tion inference and sensor side-channel attacks. MA-
TRIX gives users control and visibility over location
and sensor (e.g., Accelerometers and Gyroscopes) ac-
cesses by mobile apps. It implements a PrivoScope ser-
vice that audits all location and sensor accesses by apps
on the device and generates real-time notifications and
graphs for visualizing these accesses; and a Synthetic
Location service to enable users to provide obfuscated
or synthetic location trajectories or sensor traces to
apps they find useful, but do not trust with their pri-
vate information. The services are designed to be ex-
tensible and easy for users, hiding all of the underly-
ing complexity from them. MATRIX also implements
a Location Provider component that generates realis-
tic privacy-preserving synthetic identities and trajecto-
ries for users by incorporating traffic information us-
ing historical data from Google Maps Directions API,
and accelerations using statistical information from user
driving experiments. These mobility patterns are gen-
erated by modeling/solving user schedule using a ran-
domized linear program and modeling/solving for user
driving behavior using a quadratic program. We exten-
sively evaluated MATRIX using user studies, popular
location-driven apps and machine learning techniques,
and demonstrate that it is portable to most Android
devices globally, is reliable, has low-overhead, and gen-
erates synthetic trajectories that are difficult to differ-
entiate from real mobility trajectories by an adversary.

Keywords: Location Privacy Protection, Anonymity,
Android Audit Framework, Synthetic Mobility Models,
Location-based Services, Mobile Apps, Android

DOI 10.2478/popets-2019-0020
Received 2018-08-31; revised 2018-12-15; accepted 2018-12-16.

*Corresponding Author: Sashank Narain: College of
Computer and Information Science, Northeastern University,
Boston, MA, USA, E-mail: sashank@ccs.neu.edu
Guevara Noubir: College of Computer and Information
Science, Northeastern University, Boston, MA, USA, E-mail:
noubir@ccs.neu.edu

1 Introduction
Modern mobile smartphones are equipped with a large
number of precise and sophisticated sensors. These sen-
sors vastly improve the quality of the user’s interaction
with the environment, but also pose significant threats
for privacy breaches by directly or indirectly leaking pri-
vate information about their users. The leakage of lo-
cation information from the GPS sensor, for instance,
has been a fast growing privacy concern. The commer-
cial GPS hardware available in modern smartphones is
capable of triangulating a user’s position within an ac-
curacy of 3 meters. This leakage enables more sophisti-
cated threats such as tracking users, identity discovery,
and identification of home and work locations.
Motivation: The current protections against location
tracking mostly revolve around obfuscating the users’
location. Previous work proposed solutions that induce
noise in the location data [4, 9, 18, 73, 80]. Others de-
vised solutions that send the real location with dummy
locations or within a data-set, and use the response
pertaining to the real location [41, 48, 49, 56, 75, 85].
Others proposed stripping off all identifying informa-
tion about a user before sending the real location data
in order to protect the user’s privacy [40, 71]. Unfor-
tunately, these solutions still leak information about
their users and can be combined with other informa-
tion (e.g., census data) to infer user identities and their
locations [72, 86]. Mobile operating systems also try
to prevent undesired location tracking by implement-
ing permissions that all apps must request for accessing
location data. These measures, however, are not very
effective in preventing location tracking because users
are unaware of an app’s privacy practices and are often
careless about granting such permissions. Also, no pro-
tections exist against sensor side-channels (e.g., from
Accelerometers, Gyroscopes, and Magnetometer) even
when they are now known to leak location informa-
tion [17, 37, 59, 60, 62, 64], enable unauthorized key-
board logging [63], and covert channels [16]. Localizing a
user is important beyond privacy breaches due to track-
ing, it can be used to trigger more intrusive attacks such
as targeted stealthy man-in-the-middle attacks in some
wireless protocols [20].

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 67

An alternative protection against location track-
ing is the generation of synthetic location trajecto-
ries [15, 58] that are independent of users real loca-
tions [23, 51]. These trajectories guarantee location pri-
vacy because it is not possible to derive the user’s loca-
tion from them, however, they risk denial of service if an
adversary detects that the trajectories are fake. To be
effective against detection, these trajectories must em-
ulate real movements and routes by incorporating real
user transitions, movement schedules, traffic informa-
tion and driving behavior. Synthetic, yet realistic, mo-
bility trajectories are important as they have the po-
tential to eliminate privacy leaks and also enable the
understanding of how users’ location information is ex-
ploited by mobile apps.
Approach: The proposed MATRIX system is designed
to address privacy protection weaknesses in Android. To
detect leakage from location and sensor data, it imple-
ments a PrivoScope service to monitor and analyze apps
patterns for accessing location and sensor APIs. Privo-
Scope provides users with real-time notifications and
a graphical interface to display how apps access their
location information and permissionless sensors (e.g.,
the time of location access, the accuracy of the loca-
tion data, the rate a sensor was sampled, and whether
the app was in foreground or background). This user
interface helps users make more privacy informed deci-
sions about providing synthetic data to apps using MA-
TRIX or uninstalling/disabling apps they do not trust.
PrivoScope also implements a permission-protected API
that allows security apps installed on the device to get
real-time information about other apps accessing pri-
vate location and sensors information.

To protect against leakage of location data, MA-
TRIX implements a Synthetic Location Service that
gives users the capability of setting their privacy pref-
erences for each installed app. The service dynamically
and seamlessly sandboxes apps installed on the device to
receive obfuscated or synthetic location and sensor feeds
as specified by the user. The synthetic feeds are gener-
ated such that they are difficult to distinguish from real
ones by an adversary. To this end, we model user iden-
tities and their movements between locations through
Finite State Machines (FSM) with probabilistic transi-
tions connecting states. The transitions between states
represent routes that are generated from graphs con-
structed from real road networks. These synthetic routes
are made realistic by generating a randomized schedule
(path in the FSM) using Linear Programming that sat-
isfies each state’s preferences in terms of time spent, and

expected arrival in those states. We further incorporate
traffic information from historical traffic APIs such as
Google Maps Directions API, generate accelerations and
speeds using Quadratic Programming based on statis-
tical information from user driving behavior, and also
add noise to the synthetic data to emulate real data, in
addition to incorporating walk times and idle times.

We extensively evaluated MATRIX to validate sys-
tem performance and reliability, and realism of the syn-
thetic trajectories. Testing with 1000 popular Android
apps, we report negligible impact in performance and re-
liability. For 10 popular location-driven apps, we report
that MATRIX is undetected while at least one app could
detect non-MATRIX mobility patterns. Our user study
involving 100 users indicates that the synthetic trajec-
tories are difficult to differentiate from real traces visu-
ally, with more users confusing synthetic trajectories to
be real. Our machine learning evaluation indicates that
most well-known algorithms fail to differentiate between
real and synthetic trajectories with an average accuracy
of 50% (comparable to an algorithm that uses a coin-
flip), with just one algorithm achieving an accuracy of
63% in guessing if a trajectory is synthetic.
Contributions: Our contributions are as follows:
– MATRIX implements an efficient, reliable and ex-

tensible auditing system for the Android ecosystem.
It audits all location and sensor accesses by all apps
on the device to detect privacy leakages, generates
real-time notifications and graphs for visualizing
these accesses in an easy and intuitive manner. It
can be used by users, security apps and researchers
to identify which apps misuse/leak private location
and sensors information, by analyzing an app’s ac-
cesses and injecting synthetic honey-data to observe
if it is used in contexts not authorized by users.

– MATRIX gives users the capability to change their
privacy preferences, and provide obfuscated or syn-
thetic location and sensor (Accelerometer, Gyro-
scope and Magnetometer) trajectories to installed
apps. We show that generating realistic synthetic
location and sensor trajectories is feasible by incor-
porating traffic information, using randomized yet
realistic schedule constraints using a linear program,
and matching statistical characteristics of user driv-
ing behavior using a quadratic program.

– MATRIX is an extensible and lightweight system
integrated within Android without modifications to
the operating system, nor requires rooting the de-
vice. It is implemented following the Android de-
sign paradigms and can be easily extended for other

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 68

sensitive APIs, e.g., Wi-Fi, Telephony, Camera and
Microphones. MATRIX attempts to hide all un-
derlying system complexity from the users to pro-
vide users an intuitive and holistic view of accesses
to their private information, to enable these users
to make privacy-aware decisions regarding apps in-
stalled on their device.

2 Location Privacy in Android
We discuss the Android location and sensor APIs, An-
droid privacy protection schemes and their weaknesses.

2.1 Android Location & Sensor APIs

The MATRIX system audits all location and sensor ac-
cesses and updates this information reported to an app
in some contexts. There are a standard set of Android
APIs that provide this information.

Location information can be accessed using
four different APIs. The LocationManager is the
default API available in all versions of the An-
droid SDK. The FusedLocationProviderClient,
FusedLocationProviderApi (deprecated) and
LocationClient (deprecated) are provided by Google
Play services as recommended closed source alternatives
that consume less battery for higher accuracy data. All
these APIs contain request* and remove* calls (e.g.,
requestLocationUpdates in LocationManager) that
enable apps to register and unregister for continuous
location updates. Once registered, location information
is sent asynchronously to the listeners based on the
criteria set by the app (e.g., quality, rate, latency).
These managers also contain additional methods such
as getLastKnownLocation in LocationManager that
can return a location update immediately.

Sensor information (e.g., Accelerometers and Gyro-
scopes) can be accessed using the SensorManager API.
It is important to note that access to these sensors does
not require permissions in any versions of Android. Also,
these sensors can be accessed by apps without any no-
tification or visual cues to the user.

2.2 Weaknesses in Privacy Protections

The location privacy protection schemes implemented
by Android are not sufficient for completely protecting
a user’s privacy. Some of the weaknesses are discussed

below. Note that these weaknesses are labeled (W#)
for ease of referring to them in the next section.
Weak Permissions Model (W1): Android spec-
ifies two permissions for limiting access to the
user’s location information: ACCESS_FINE_LOCATION and
ACCESS_COARSE_LOCATION. The former allows apps to
access high accuracy location information, while the lat-
ter provides obfuscated information to hide the user’s
real location. The permissions model is a good step in
notifying users of location access, however, this protec-
tion is limited as users have an option to always allow
access. This means that the user will not be notified
about location access again even if the app’s context
has changed, i.e., location is accessed from another ac-
tivity or from a service, or a previously benign app is
updated with a privacy intrusive version. Moreover, the
obfuscated locations still leak information about the real
locations. There is currently no mechanism for users to
completely hide their location by providing synthetic
information to untrusted apps.
Non-existent Auditing Capabilities (W2): An-
droid does not provide a framework to audit how apps
access a user’s private information. Also, App stores
(e.g., Google Play Store) do not provide enough infor-
mation about the privacy practices of an app. With-
out any privacy-related knowledge, users are more than
likely to install and use an app if they require the ser-
vices provided by that app.
Weak Location Activity Notification (W3): The
Android operating system displays a notification icon
on the notification bar of the device, whenever any app
requests continuous location updates. An adversary can
easily bypass this notification icon by using an alter-
native method for location access. One example is the
getLastKnownLocation call in LocationManager which
can be invoked numerous times for receiving continuous
location updates. Another example is exploiting the per-
missionless sensors like Accelerometers, Gyroscopes and
Barometers to infer user locations. In any case, the no-
tification simply indicates that some app has access to
location and no further information is given to the user
to make privacy-aware decisions.
Restricted Privacy Preferences (W4): Android
does not provide the capability for users to define their
privacy preferences for apps installed on their device.
Users can deny location access to certain apps by disal-
lowing location permissions, however, certain apps may
then deny service to the users. There are situations in
which users may not wish to disclose their locations, in
particular at some moments in time, and still require

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 69

the services of the app. One example of this is when the
app is turned-off or in the background.

3 High-Level Approach
MATRIX is an extensible system designed to ad-
dress the above location privacy protection weaknesses
in Android. It is implemented using Android design
paradigms for easy integration into the Android ecosys-
tem with minimal changes. It is meant to be easy to use
and intuitive for end-users. The system comprises of an
App-activity PrivoScope Service, a Synthetic Location
Service, and a Synthetic Location Provider.

The App-activity PrivoScope Service monitors and
analyzes apps patterns of location and sensor API ac-
cesses. It is designed for end-users, security apps and
researchers desiring to assess the privacy posture of in-
stalled apps on the device. End-users can view all loca-
tion and sensor access information as intuitive graphs.
Other apps can get real-time audit events via a per-
mission protected secure API (W2). The service also
displays real-time visual notifications of location and
sensor access activity to users. The notification bar is
updated whenever any app accesses these sensors and
displays information about which apps are actively ac-
cessing what sensors on the device (W3). The architec-
ture of PrivoScope is described in Section 4.2.

The Synthetic Location Service provides a user in-
terface for setting the location and sensor privacy pref-
erences for all installed apps. This service implements
three privacy settings: Block level, City level and Syn-
thetic Locations (W4). It relies on the default Android
permission manager for managing location permissions,
however, restricts location access to background apps by
default. Instead of completely denying location informa-
tion, the service detects if the app is in the background
and provides it the last location fix that the app re-
ceived in foreground to prevent it from tracking users
(W1). The architecture of this service is described in
Section 4.3. The Synthetic Location Provider provides
the Synthetic Location Service obfuscated/synthetic lo-
cations whenever the service requests for it (W1). The
techniques for modeling and generating synthetic iden-
tities and movements are described in Section 5.

Figure 1 shows how MATRIX integrates into the
Android ecosystem. The integration is closely aligned
with current Android design paradigms with an assump-
tion that the paradigm will not change significantly as
Android evolves in the future. The PrivoScope Service

HARDWARE ABSTRACTION LAYER (HAL)HARDWARE ABSTRACTION LAYER (HAL)

Camera

HAL

GPS

HAL

Graphics

HAL

Audio

HAL
Other

HALs

SYSTEM SERVICES

Camera

Service

Location

Services

PrivoScope

Service

Synthetic

Location

Service

Other

Services

SYSTEM SERVICES

Camera

Service

Location

Services

PrivoScope

Service

Synthetic

Location

Service

Other

Services

APPLICATION FRAMEWORK

Camera

Manager

Location

Manager

PrivoScope

Manager

Synthetic

Location

Manager

Other

Managers

APPLICATION FRAMEWORK

Camera

Manager

Location

Manager

PrivoScope

Manager

Synthetic

Location

Manager

Other

Managers

USER & SYSTEM APPS

Camera
Google

Maps
PrivoScope

Location

Preference
Other

Applications

USER & SYSTEM APPS

Camera
Google

Maps
PrivoScope

Location

Preference
Other

Applications

LINUX KERNEL

Camera

Driver

GPS

Driver

Display

Driver

Audio

Driver
Other

Drivers

LINUX KERNEL

Camera

Driver

GPS

Driver

Display

Driver

Audio

Driver
Other

Drivers

Fig. 1. MATRIX integration into the Android ecosystem.

and Synthetic Location Service are implemented as sys-
tem services that start at device boot and are registered
in the system server registry. These services implement
all the protections that ensure that only authorized apps
can use their functions. Apps installed on the device in-
teract with these services using APIs provided by the
PrivoScope Manager and Synthetic Location Manager.
These managers are loaded into each app’s process and
communicate with the corresponding services. At the
user level, MATRIX implements a PrivoScope GUI that
provides a graphical interface to the users to analyze the
app’s privacy practices, and a Location Preference GUI
that enables users to set their location privacy prefer-
ences. These also use the PrivoScope and Synthetic Lo-
cation Managers to communicate with the correspond-
ing system services.

4 MATRIX Architecture
This section describes the architecture of the Privo-
Scope and Synthetic Location services implemented for
the MATRIX system.

4.1 API Call Interception

Previous mitigation systems (excluding Boxify [12])
were implemented by either modifying the Android
source code, using rooted devices, or using third party
frameworks such as the Xposed Framework [84]. The

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 70

Xposed framework adds an extended app_process exe-
cutable in the /system/bin folder of the device on in-
stallation. This extended app_process adds an addi-
tional jar file to the classpath and calls methods even
before the main method of Zygote is called. This en-
ables apps to intercept method calls that are otherwise
inaccessible from an app’s process.

MATRIX uses the Xposed framework to intercept
location and sensor API calls. One example usage in our
context is intercepting the requestLocationUpdates
method of LocationManager to generate an event ev-
ery time an app requests location updates. This event
contains all the relevant information about the request,
which is sent to PrivoScope for logging and notification.
Using the framework is both necessary and advanta-
geous due to the following reasons: (1) Xposed has the
capability to intercept external APIs like Google Play
Services which is currently not possible by modifying
the Android source or by rooting, (2) the framework is
supported and has a consistent API for different ver-
sions of Android ensuring portability and ease of de-
velopment, and (3) the framework does not require a
rooted device to function properly. We developed a sim-
ple tool that automates the installation of Xposed and
MATRIX through a custom recovery (e.g., TWRP [77])
without rooting the device. The Xposed framework and
TWRP recovery are both open-source and consistently
analyzed and updated by a large community of Android
users, making them quite reliable.

4.2 The App-activity PrivoScope Service

The goal of the PrivoScope service is to give users an
intuitive interface to help them make privacy aware deci-
sions regarding installed apps. We assume that the user
has some knowledge of privacy leakages and are com-
fortable using their devices (e.g., checking notifications,
opening apps). To achieve this goal, the service hides all
the underlying system complexity from the users. This
paper focuses on the high level design of the services as
outlining all implementation challenges is outside scope
due to length requirements. We mention just a few here
to provide an idea of the system complexity: (1) the
services must start before all user services mandating
that the services be registered in the system server reg-
istry without modifications to the Operating System, or
rooting the device, (2) these services run within a privi-
leged environment and interfaces must be defined using
Binder for other apps to communicate with them, (3)
by design, the interfaces allow all apps to communicate
with the services mandating security checks to be imple-

(a) PrivoScope Notification Bar (b) App Selection Activity

(c) App Detail Activity (d) Accelerometer Timeline

Fig. 2. Example screenshots of the PrivoScope GUI.

mented within the services, and (4) these security checks
and service functionality must be very lightweight and
efficient to not cause device instability and process mul-
tiple requests quickly.

At a high level, the PrivoScope service uses the
Xposed framework to intercept all location and sen-
sor APIs, generates events containing the audit details,
adds the events to a database and displays real-time
usage notifications to the end-user. The service also ex-
poses a permission protected API that other security
apps can register to get real-time and archived audit
events. Figure 2 shows example screenshots of the Privo-
Scope GUI, where Figure 2a shows the PrivoScope real-
time location and sensor usage notification, Figure 2b
shows a list of installed apps sorted by most recent ac-
cess of location and sensor APIs, Figure 2c shows links
to an app’s permissions and access details, and Fig-
ure 2d shows a timeline of Accelerometer access by an
app at different times. This timeline can be set to dis-
play accesses in the past month, week, day, or a custom
number of hours. Note that an app’s life-cycle is color
coded to help users differentiate between foreground and
background accesses. Here, blue indicates that the app

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 71

Location Service

Location

Manager

Location Service

Location

Manager
Application

Location

Service

PrivoScope

DB

Notification

Event

Creator

PrivoScope

DB

Notification

Event

Creator

PrivoScope

Manager

PrivoScope

Service

1

8

2

3

4

5

7

Check Access

Security

Application

6

Fig. 3. Architecture diagram of the PrivoScope service.

was in the foreground while gray would indicate back-
ground access. The performance analysis and evaluation
of PrivoScope are reported in Sections 6.1 and 6.2.

The architecture of the PrivoScope service
for a requestLocationUpdate method call from
LocationManager is shown in Figure 3. Note that this
architecture is generic across all location managers
and the sensor manager and we use LocationManager
here just for illustration purposes. Like all other An-
droid services, PrivoScope implements a manager called
PrivoScopeManager that exposes public APIs to other
apps and a service called PrivoScopeService that per-
forms all the security sensitive operations and checks if
apps have appropriate access rights for its services.

The control flows like this: An app requests continu-
ous location updates using the requestLocationUpdate
method call from LocationManager. The manager and
the privileged LocationManagerService validate the
app’s access by checking its requested permissions 1O.
Once access is validated, the API call interception ser-
vice generates an event containing all relevant infor-
mation to be logged for auditing. All private user in-
formation contained by the request are ignored. For
example, this specific event would contain the sys-
tem time, the app package name, the activity invok-
ing the request, whether the app is background or fore-
ground, the requested location provider, and the re-
quested accuracy and sampling rate 2O. This event is
then sent to the PrivoScopeManager for logging using
an addAuditEvent method call exposed by the man-
ager 3O. The PrivoScopeManager forwards this event
to the PrivoScopeService which validates whether the
package name in the event is the same as the package
name of the app making the request. This ensures se-
curity as only apps generating an event can add the
event. The event is discarded if the package names
do not match and a SecurityException is thrown.

Location Service

Location

Manager

Location Service

Location

Manager
Application

Location

Service

Synthetic Location

Location

Provider

Location Listener

Proxy

Synthetic

Location

Manager

Synthetic Location

Location

Provider

Location Listener

Proxy

Synthetic

Location

Manager

Synthetic

Location

Service

1

2

3

4

5

Location

Listener

7

6

Fig. 4. Architecture diagram of the Synthetic Location service.

In case of a successful match, the event is added to
the service’s database 4O. The PrivoScopeService also
sends this event to a Notification service that keeps
track of all active apps accessing location and sensor
APIs and updates the notification bar with this new
event information 5O. The PrivoScopeManager exposes
a requestAuditEvents method call that other apps on
the device can register for receiving real-time audit
events. This call is protected using a custom permis-
sion called GET_AUDIT_EVENTS and apps must request
this permission for access. The PrivoScopeManager
sends the event to all registered apps that receive
this event asynchronously using a AuditEventListener
callback interface 6O. Based on whether this event
was successfully added to the database or not, the
addAuditEvent method call returns a boolean value to
the LocationManager 7O. Note that steps 3O to 7O execute
in a new thread to ensure that the app functionality and
the performance is not impacted by PrivoScope. After
step 3O, the requestLocationUpdate method call sim-
ply terminates as its return type is a void. The other
method calls and managers return the expected values
and their functionality is not updated by PrivoScope 8O.

4.3 The Synthetic Location Service

The architecture of the Synthetic Location service is
shown in Figure 4, again in the context of receiving
location updates from the LocationManager API. Like
PrivoScope, this architecture is generic across all the
location managers. The Synthetic Location service im-
plements a manager called SyntheticLocationManager
that exposes public APIs to other apps and a service
called SyntheticLocationService that manages and
protects the database storing the user privacy prefer-

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 72

ences, and connects with the LocationProvider to re-
quest obfuscated/synthetic locations and sensor feeds.

The control flows like this: When an app re-
quests continuous location updates (with the cor-
rect permissions) using the requestLocationUpdates
call from LocationManager, the first steps that oc-
cur are the listener registration (cf. Section 2.1) and
addition of the audit event to the PrivoScope ser-
vice’s database (cf. Section 4.2). 1O, 2O. After reg-
istration is completed, all the location fixes gener-
ated by the LocationManagerService are typically
sent asynchronously to the app’s LocationListener,
PendingIntent or LocationCallback implementation.
In MATRIX, these location fixes are intercepted by a
LocationListenerProxy that proxies it to the app’s lis-
tener. The proxy works by hooking the Location ob-
ject that is used by all the managers to send location
fixes to the app’s listener. This enables it to modify
the location object before the app loads the informa-
tion using the get* method calls (e.g., getLatitude()
and getLongitude()) 3O. The LocationListenerProxy
requests the SyntheticLocationManager to provide an
updated location for the app, based on the app’s lo-
cation preference set by the user. The manager for-
wards this request to the SyntheticLocationService
that maintains and protects the database storing
the user location preference for each app 4O. The
SyntheticLocationService looks up the user’s location
preferences in the database, and communicates with the
LocationProvider to request an obfuscated/synthetic
location if the user has chosen to receive such loca-
tion information for the app. The default preference set
for an app requesting fine location is block level ob-
fuscated data (200m) 5O. An updated location object
is returned to the SyntheticLocationService which
forwards it to the SyntheticLocationManager. The
SyntheticLocationManager sends this location to the
LocationListenerProxy that updates it before the app
accesses the location 6O, 7O.

The Synthetic Location service currently pro-
vides four settings for per-app privacy: Default Ac-
curacy, Block Level Accuracy, City Level Accu-
racy, and Synthetic Locations. Note that the De-
fault Accuracy and Block Level Accuracy options
are only available for apps requesting fine loca-
tion using the ACCESS_FINE_LOCATION permission. This
is because apps that use ACCESS_COARSE_LOCATION
permissions already receive coarser location data
than that provided by the two options. For block
level and city level accuracy, we extended the de-
fault Android LocationFudger implementation to sup-

(a) Real Location (b) App Selection Activity

(c) Location Preference (d) Synthetic Location

Fig. 5. Example screenshots of the Synthetic Location GUI.

port different grid resolutions. The implementation
is in com.android.server.location.LocationFudger
under the Android source tree [6]. We analyzed this
code to find that the real location information is ob-
fuscated in two steps. First, a small random offset value
is applied to the location to mitigate against accurate
detection of grid transitions when a user crosses a grid
boundary. This offset is changed just once every hour
to mitigate against location inference attacks. Second,
the primary means of obfuscation is to snap the above
value (already mitigated against grid transitions) to a
grid. This grid radius chosen by most recent versions of
Android is 2000m. Note that a thorough security anal-
ysis of this technique is outside the scope of this paper,
however, this technique has been implemented in all An-
droid devices since 2012 with no known attacks till date.
The current grid radius settings for block level and city
level accuracy are 200m and 5000m, respectively.

Figure 5 shows screenshots, illustrating the Syn-
thetic Location service for a GPS tracking app. Note
that this app is used for demonstrating how the service
works because it displays the user location on the screen,
and it is not a malicious app. Figure 5a shows the test

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 73

app displaying the user’s real location, Figure 5b shows
the list of installed apps that request location permis-
sions, Figure 5c shows the location privacy preference
for the test app being changed to synthetic, and Fig-
ure 5d shows the test app now displaying a synthetic
location in another city. The synthetic locations and
corresponding sensor trajectories are generated once a
day for every user, and the location and sensor feeds are
provided to the service based on the time of the day.

5 Generating Synthetic Identities
We define a synthetic identity as a virtual identity of a
smartphone user that does not retain any location spe-
cific attributes of the user. MATRIX generates a unique
synthetic identity for every user using the system, each
with their own unique movement patterns. The iden-
tities are generated such that they emulate real user
movements, yet, do not contain a real person’s move-
ment patterns. Naturally, such movements must adhere
to real home and work places, realistic schedules, real
driving patterns incorporating both current traffic and
user driving behavior. We must emphasize that this syn-
thetic identity is only applied to apps selected by the
smartphone user, and other installed apps receive the
real location (obfuscated upto 200m by extending the
Android LocationFudger implementation). This is to en-
sure that location-based apps can still provide their ser-
vices with sufficient accuracy without collecting precise
location information. The user always has the option to
change their privacy preferences and can set them to
high accuracy for apps requiring precise location, such
as Google Maps. While the synthetic data is consistent
with itself (e.g., driving between a synthetic identity
home to a synthetic identity work place), it is inde-
pendent of the real users patterns. Therefore, one cur-
rent limitation of the trajectory generation scheme is
the absence of a method to synthesize movements that
preserve a user’s driving profile such as distances and
speeds. We discuss the limitations of our approach and
possible future research directions in Section 5.3. Next,
we provide a detailed description of our technique for
generating unique and realistic synthetic identities and
mobility trajectories for each user.

5.1 Modeling User States

A user’s synthetic mobility patterns are defined as an
automated probabilistic state machine with a finite set
of S states Q = {Q0, . . . , QS−1}. The states, in this con-

text, represent a set of tuples {(Loc(Qi), tmin,i, amin,i,
amax,i)}, where Loc(Qi) is the geographic coordinates
of state Qi, tmin,i is the minimum time spent in the
state, and amin,i, amax,i are the lower and upper time
bounds for arrival at the state. The geographic coordi-
nates of the states are obtained from OpenStreetMap
by parsing the ‘building’ and ‘amenity’ tags [67, 68] of
all ways and nodes for the given area. For instance,
a ‘Home’ state can be chosen as a way or node in
OpenStreetMap whose building type is one of the fol-
lowing: ‘apartments’, ‘house’, ‘residential’, or ‘bunga-
low’. Similarly, a ‘Work’ state can be chosen from the
‘commercial’ or ‘industrial’ tags. The other attributes
are used for scheduling the user’s activity for each day
and set based on typical times that these activities oc-
cur. Note that the attributes are set to default values
when they are unimportant for a state, i.e., tmin,i = 0,
amin,i = 00:00:00, and amax,i = 23:59:59. In the sim-
plest form, a state machine may contain just two syn-
thetic states Q = {Q0, Q1}, where Q0 = ‘Home’ and
Q1 = ‘Work’. We label these as significant states as the
user spends most of their time in one of these states.
The geographic coordinates Loc(Q0) and Loc(Q1) are
randomly chosen from the list of all locations with the
relevant tags. Assuming no ‘Work from Home’ scenar-
ios, the probabilities P (Q0) and P (Q1) of occurrence of
these states is taken to be 1.

The state machine is made more realistic by adding
synthetic states like Q2 = ‘School’, Q3 = ‘Gas Sta-
tion’, Q4 = ‘Lunch’ and Q5 = ‘Dinner’. We label these
as transitional states because a user will temporar-
ily visit these states when transitioning between sig-
nificant states (i.e., Q0 and Q1). For any transitional
state Qi, the geographic coordinates Loc(Qi) is selected
from a set of locations Loc = {Loc1, . . . , LocN} with
the relevant tags, such that its euclidean distance is
shortest from the significant states, i.e., Loc(Qi) =
arg minL∈Loc d(L,Loc(Q0)) + d(L,Loc(Q1)). Note that,
unlike significant states, visits to transitional states are
occasional based on some specific frequency of occur-
rence. This frequency, denoted by fi, is derived from a
uniform distribution U(l, u) with l and u as the bounds
for the frequency of visits to that state (e.g., once a
week to once a month). In case of ‘Gas Station’ specif-
ically, the system chooses a random mileage m and gas
capacity c, and calculates the frequency as the num-
ber of days a user can travel between the significant
states before the gas level goes below 1/4th of capac-
ity, i.e., f3 = int(0.75mc

d(Loc(Q0),Loc(Q1))+d(Loc(Q1),Loc(Q0))).
Assuming W workdays in a year, the probability of oc-
currence for any transitional state Qi is then calculated

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 74

Home

Q0

Home

Q0

Work

Q1

Dinner

Q5

Gas

Station

Q3

School

Q2

Lunch

Q4

0.111.0

0.14

1.0

0.14

0.08 1.0

0.99

0.01

0.78

0.89

Fig. 6. Example of a simplified finite state machine simulating a
user’s movements based on some transition probabilities.

as P (Qi) = (W/fi)/W . Note that the user state timing
constraints and above frequencies can be customized for
each region using the demographic information available
for that region (e.g., USA Census Bureau [66]).

The transition probability between states Qi and
Qj , denoted by χi,j , is equivalent to the compound prob-
ability of the two independent states, i.e., P (χi,j) =
P (Qi)P (Qj). The following conditions determine if a
state Qi can transition to state Qj : (1) Qi is a signif-
icant state and the originating state for Qj , (2) Qj is
a significant state and the destination state for Qi, or
(3) the two states originate from the same significant
state Qs and the route distance d(Loc(Qs),Loc(Qi)) <
d(Loc(Qs),Loc(Qj)). The significant states are always
connected and their probabilities are calculated as
P (χ0,1) = 1 −

∑S−1
i=2 P (χ0,i) and P (χ1,0) = 1 −∑S−1

i=2 P (χ1,i), respectively. All other transitions have
a probability of 0.

Note that users can go for ‘Lunch’ in the afternoon
and ‘Dinner’ in the evening from the ‘Work’ state. If we
use the same ‘Work’ state for both transitions, the prob-
abilities are split when they clearly are different tran-
sitions. To address this, the ‘Work’ state is internally
represented as two states: Q1a for afternoon and Q1e

for evening. Also note that the model described here is
for weekdays, and a similar model is created for week-
ends with a different set of states (e.g., the user may
leave from ‘Home’ to watch a ‘Movie’, eat ‘Dinner’ and
return ‘Home’). The model can also be easily extended
to incorporate multiple similar states such as going to
different restaurants for ‘Dinner’.

Figure 6 provides an intuition for our automated fi-
nite state machine model. This specific model comprises
of 6 states Q = {Q0, · · · , Q5} and their transition proba-
bilities are shown. We see that it is possible to transition
from state Q0 to states Q1, Q2 or Q3. As the transition
probability P (χ0,1) is 0.78, the model should typically
choose state Q1 ≈ 8 times out of 10. This makes sense

as a user will mostly go to ‘Work’ from ‘Home’ but may
sometimes need to drop their kids to ‘School’ or fill up
gas at a ‘Gas Station’.

5.2 Modeling Mobility Trajectories

The finite state machine generated for a user is used to
synthesize mobility trajectories for that user every day.
This is a 4 step process: (1) synthesize the user states
for the entire day, (2) synthesize the schedule to satisfy
the time constraints, (3) synthesize the GPS trajectory
based on the schedule, and (4) synthesize the sensor
trajectory using the GPS trajectory.
Synthesizing the user states: The state machine of a
user is loaded every day to generate a route of the states
the user will visit that day. This route always starts
and ends at the initial state Q0 (‘Home’) and traverses
through Q1 (‘Work’), i.e., R = [Q0, . . . , Q1, . . . , Q0]. The
first state Q0 can transition to any connected state Qi

based on the transition probabilities of Q0. The state
Qi can then transition to any of its connected state
Qj based on the transition probabilities of Qi, and so
forth forming a chain that ends at the final state Q0.
Note that the construction technique of the state ma-
chine ensures that this route traverses through Q1. Let
P (χi) = {P (χi,0), . . . , P (χi,S−1)} denote the set of all
transitional probabilities of state Qi. To obtain the next
state, the system first derives a random transitional
probability from a uniform distribution P = U(0, 1).
This probability P is then compared with the cumu-
lative probabilities of all transitions in P (χi). A state
Qj is selected if P lies between the previous state’s cu-
mulative probability and its cumulative probability, i.e.,
P (X ≤ χi,j−1) < P ≤ P (X ≤ χi,j).
Synthesizing the schedule: A realistic schedule
should satisfy the time constraints set for every state in
a user’s state machine, such as arriving at work between
8am and 9am or dropping children to school before
8:30am. The schedule should also satisfy the amount of
time spent in each state, such as working for at least
8hrs. The schedule should also account for the time
spent in transitioning from one state to the next, such
as driving for 0.5hrs to get from home to work. All
these constraints can be formulated as linear equali-
ties or inequalities, therefore, defining the problem of
scheduling as a Linear Program (LP). Let tai and tdi be
the arrival and departure times at/from state Qi. The
above constraints can be formulated as follows: arriv-
ing at state Qi between 8am and 9am is formulated
as 8am < tai ≤ 9am, specifying that the user works at

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 75

least 8hrs is formulated as tdi+1− tai ≥ 8.0, and the time
spent in transitioning from home to work is formulated
as tai+1 − tdi = 0.5. Naturally, all the times are specified
in UTC for consistency and bounded by the day’s limits
(i.e., 00:00:00 - 23:59:59).

This set of linear equality and inequality constraints
define a convex polytope of all the schedules satisfying
the state constraints, and the transition time constraints
between the states. Let T = (ta1 , td1, . . . , taS , tdS) denote a
vector of all the arrival and departure time instants for
a route containing S states. One simple way of find-
ing a point on this polytope is by defining an objective
function for the vector T with random coefficients, i.e.,
c = (c1, . . . , cS) where ci ∈ [−1, 1]. The LP is formally
defined as

Maximize
S∑

i=1

(cit
a
i + cit

d
i) where ci ∈ [−1, 1]

Subject to: amin,j < taj ≤ amax,j for j = 1, 2, . . . , S

tdj+1 − t
a
j ≥ tmin,j for j = 1, 2, . . . , S − 1

taj+1 − t
d
j = t(χj,j+1) for j = 1, 2, . . . , S − 1

where t(χi,j) denotes the total time spent in transition-
ing between two states Qi and Qj , tmin,i specifies the
minimum time spent in state Qi and amin,i, amax,i spec-
ify the time bounds of arrival at the state Qi (cf. Sec-
tion 5.1).

Solving this LP identifies a corner of the polytope
but not a random element within it. If the coefficients
of the objective function were repeated, the LP will out-
put the same schedule. To address this, we compute a
random point within the polytope by finding different
corners of the polytope using random coefficients and
then computing a random linear combination of these
corners. More precisely, let C = {C1, . . . , CN} denote a
set of N corners of the polytope obtained using random
coefficients, and let r = {r1, . . . , rN} denote a set of pos-
itive random numbers such that

∑N
i=1 ri = 1. The ran-

dom solution defining the user’s schedule for that day is
then calculated as Schedule =

∑N
i=1 riCi. We observe

that N = 3 provides a sufficiently random solution and
computes the user schedule within 1 second.

Note that as synthesizing the schedule using LP re-
quires pre-calculated transition times t(χi,j), the system
calculates this time using the ‘pessimistic’ traffic model
of Google Maps Directions API. The departure time is
chosen as the mean of the time constraints for the start
state. This typically gives us a worst case transition
time between two states and can be used for schedul-
ing. Note that for synthesizing the final trajectory, the

‘best_guess’ traffic model is used which provides more
accurate traffic representation.
Synthesizing the GPS route between two states:
The route between two synthetic states is generated us-
ing a graph G = (V,E) constructed for the area. The
system uses the Dijkstra’s algorithm to find the fastest
route between the states, using the length and speed
limit information present in each vertex. The resulting
route is split into multiple waypoints based on turns
and stop signs (extracted from OpenStreetMap). The
source, waypoints and destination are given as input
to the Google Maps Directions API to obtain histori-
cal traffic information about the route. The departure
time is specified based on the schedule generated for
that day. The route obtained from the Google API
consists of multiple steps and can be represented as
R = [r1, . . . , rS], where S denotes the number of steps.
Each step ri is attributed with geographic and traffic
related information ri = (B, dstep, tstep)i, where B is the
list of geographic coordinates of this step, dstep is the
length of this step in meters, and tstep is the time to
traverse this step in seconds.

To generate realistic trajectories, all steps of a route
must incorporate user driving behavior while also adher-
ing to the step’s traffic constraints, i.e., dstep and tstep.
To understand and calculate statistical attributes for
user driving behavior, we analyzed 400 driving routes
collected from 2 drivers and 4 phones (LG Nexus 5, LG
Nexus 5X, Samsung Note 4, and Google Pixel). These
routes covered a distance of ≈ 1400kms in a major city
of USA consisting of both highway and internal roads,
as well as peak and off-peak hours. The acceleration and
speed information were extracted from these routes for
every second to analyze their distribution. We must em-
phasize that this small data-set is simply a stand-in for
a larger data-set collected from many users. We found
the speeds to be randomly distributed, however, the ab-
solute values of accelerations approximate to an expo-
nential distribution (mean µ = 0.61, median M = 0.34,
and standard deviation σ = 0.79) shown in Figure 7a.
Note that the distribution is an approximation and not
truly exponential because µ < σ, where µ = σ is a prop-
erty of exponential distributions. Analyzing individual
routes, the range of means of absolute accelerations, de-
noted by [¯|a|min,

¯|a|max], varied between 0.1m/s2 and
1.1m/s2. The range of standard deviations of absolute
accelerations, denoted by [σ(|a|)min, σ(|a|)max], were
between 0.4m/s2 and 1.1m/s2. The bounds of all accel-
eration values, denoted by [amin, amax], were between
−7m/s2 and 7m/s2. The means of the accelerations

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 76

(a) Real Accelerations (b) Synthetic Accelerations

Fig. 7. Distribution of the absolute values of accelerations for
both Real (µ = 0.61, M = 0.34, σ = 0.79) and Synthetic
(µ = 0.61, M = 0.32, σ = 0.78) routes.

were ≈ 0m/s2 for every route. Deriving the above lim-
its from the probability distribution of several users also
helps eliminate privacy leaks because these limits can-
not then be used to identify the driving behavior of a
specific user, thus, masking all the users.

The above constraints can be formulated as a list
of equalities and inequalities, this time defining a non-
linear constraint optimization problem. Such problems
can be solved by using Sequential Quadratic Program-
ming (SQP) methods. Let a = (a1, . . . , aN) denote a
vector of acceleration values for each step, where N de-
notes the travel time of the step, i.e., N = int(tstep).
Let v0 denote the initial speed coming into this step
and v = (v1, . . . , vN) denote a vector of speeds calcu-
lated from v0 and the vector a. The objective of this
optimization is to find an optimal vector a that min-
imizes |v̄ − (dstep/tstep)| < ∆ to adhere to the traffic
constraints, where v̄ is the mean of vector v, and dstep,
tstep represent the step’s distance and time. The ∆ is a
threshold that determines whether the minimized objec-
tive function value is acceptable. All rejected optimiza-
tions are retried with a higher number of iterations till a
valid solution satisfying the threshold is found. We ob-
served that this optimization typically yields an optimal
vector a that approaches the lower mean bound of the
absolute accelerations ¯|a|min, for most optimizations. To
address this, we derive a new lower mean bound for ev-
ery route from a uniform distribution and use the fol-
lowing range for optimization: [¯|a|rand,

¯|a|max], where
¯|a|rand = U(¯|a|min,

¯|a|max−δ), and δ is a small constant
to ensure that ¯|a|rand <

¯|a|max. The optimal vectors ai

for every step i are merged to represent the route’s ac-
celerations. Note that a bounded constraint of the form
x1 ≤ x ≤ x2 can be rewritten as (x2−x)(x−x1) ≥ 0 for
simplifying the constraint for the solver. Using above at-
tributes, the route optimization for each step is formally
defined as

Minimize |v̄ − (dstep/tstep)|

Subject to: ā = 0

(¯|a|max − ¯|a|)(¯|a| − ¯|a|rand) ≥ 0

(σ(|a|)max − σ(|a|))(σ(|a|)− σ(|a|)min) ≥ 0

σ(|a|)− ¯|a| ≥ 0

Bounds: amin ≤ aj ≤ amax for j = 1, 2, . . . , N

Some additional constraints applied to the opti-
mization are that v0 = 0 for the first step and vN = 0 for
the last step of the route. The optimization is improved
by providing an initial guess of bounded accelerations
from a gaussian distribution N (v̄′, 2), where µ = v̄′ is
the mean step speed, i.e., v̄′ = dstep/tstep, and σ = 2m/s
is the standard deviation of the speed. Figure 7b shows
the distribution of the absolute accelerations generated
for synthetic trajectories. We can observe that the pa-
rameters and shape of the distribution closely follows
the parameters and shape of the real distribution. As
GPS accuracy varies, a small random gaussian noise is
added to each coordinate of the final trajectory.
Synthesizing the sensor route between two
states: The sensor data (Accelerometer, Gyroscope
and Magnetometer) can be synthesized between two
states using the GPS trajectory generated in the pre-
vious step. By modeling the synthetic sensor data on
GPS trajectories, we ensure that the generated sensor
traces follow the accelerations, left/right turns, and cur-
vature of the GPS trajectory. We further add noise with
probability distributions from real sensor measurements
on modern smartphones. This is done to simulate noise
in the sensor data (e.g., Gyroscope reports 97 degree
turn when the actual turn was 90).

To generate synthetic sensor trajectories, we first
assume that the phone is perfectly aligned to the vehi-
cle’s reference frame while driving. This simplifies cal-
culating the synthetic sensor values. The assumption is
later relaxed to support different phone orientations. For
the Accelerometer, in the above orientation, the y axis
will experience all the vehicular accelerations, z axis will
experience the gravitational force (i.e., 9.8) and x axis
will be zero. For the Gyroscope, the z axis will expe-
rience all the vehicular rotations and the x and y axes
will be zero. For the Magnetometer, the z axis will be
zero while the x and y axes will report values based
on the vehicle bearing with respect to magnetic north.
Note that these values can be pre-calculated and loaded
based on the desired bearing. Let a = (a0, . . . , aN) de-
note a vector of acceleration values and b = (b0, . . . , bN)
denote a vector of bearings derived from the geographic

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 77

coordinates of the synthetic GPS trajectory. At any
time instant t ∈ N , the Accelerometer sample will be
(nax, at +nay, naz + 9.8)t, the Gyroscope sample will be
(ngx, ngy, bt−b(t−1)+ngz)t, and the Magnetometer sam-
ple will be (x+ nmx, y + nmy, nmz)t. Here, n represents
a random noise added to each sensor axis whose limits
are derived by performing a calibration step. During cal-
ibration, the user places the phone on a flat surface for
a short duration and the Accelerometer, Magnetometer
bias and Gyroscope drift is recorded on all axes. The
sensor data can now be easily rotated into different ori-
entations (e.g., phone on a mount, in pocket) by calcu-
lating a rotation matrix for that orientation and using
it to rotate each individual sample.

5.3 Limitations and Future Work

In this section, we discuss some limitations and privacy
utility trade-offs of the Synthetic Location Provider.
Synthesizing GPS Trajectories: This work uses a
linear model for synthesizing walks from a state’s coor-
dinates to a graph vertex, and vice versa. The vertex
containing a point nearest to the state’s coordinates is
chosen, and the driving route is started/stopped at this
point. This simple model assumes a constant walking
speed as our main focus was on driving. We plan to
study models for generating realistic walk patterns in
the future in our continued effort to improve MATRIX.
Synthesizing Sensor Trajectories: The sensor ob-
fuscation technique solves the problem of sensor obfus-
cation when the user is driving, but what about when
the user is walking or using the phone for games or
browsing apps? We believe that obfuscating such sce-
narios requires a thorough analysis of the sensor pat-
terns when such behaviors occur. There is also the need
to analyze what type of approaches (e.g., discriminative,
generative [65], generative adversarial [36]) are suitable
for modeling this behavior. This is beyond the scope of
the current work and we intend to address this problem
in the future.
Privacy Utility Trade-offs: MATRIX provides
smartphone users a tool to feed obfuscated or synthetic
locations to apps that access a user’s precise location,
but don’t need this information to function. Such over-
provisioned apps are exemplified by "Brightest Flash-
light" that accesses users’ location when started, yet
does not provide location-based services [33]. The goal
is to give users the flexibility of synthesizing their lo-
cation information for such apps, while still use other
location-based apps by setting them to obfuscated /

high accuracy options. Location-based apps that use
approximate location (e.g., TripAdvisor, Yelp, Weather
Channel) can still function as intended by setting their
accuracy to block level obfuscation. Other apps that
require more precise information (e.g., Google Naviga-
tion, Waze) can function properly only by setting them
to high accuracy. Currently, MATRIX does not provide
the capability of preserving a users’ driving profile such
as their speeds and distances while synthesizing their
location. Such capability could be added by mapping
the user’s real route to a synthetic route in real-time,
and moving the synthetic identity with the same speed
on the synthetic route. In case the streets of the routes
are of different lengths and the real user makes a turn,
the synthetic identity can keep going straight at the
user’s speed and take the next turn or not. The sensor
data can also be obfuscated in real-time using the GPS
coordinates of the route. While such an approach will
not preserve the turns profile (which can reveal the real
location of users [62]), it can preserve the traveled dis-
tance and accelerations pattern (which might be useful
in some contexts such as monitoring a car’s health as
a function of traveled distance). We intend to carefully
design and implement such an extension in the future.
We re-emphasize that MATRIX was designed to be ex-
tensible and already existing trajectory generators that
provide similar capabilities (e.g., [15, 32]) can be easily
integrated and used as alternative Location Providers.
Wireless Tracking: MATRIX does not defend against
wireless tracking attacks that perform fingerprinting on
the device RF radio interface [79], or de-anonymize the
authentication protocol [19]. However, such attacks are
harder to achieve as they require the adversary to be
in the vicinity of the target or have control over the
authentication infrastructure.

6 Evaluation
In this section, we evaluate MATRIX using the following
metrics: the portability and performance of the Privo-
Scope and Synthetic Location services, the utility of the
PrivoScope service based on a user study, and the detec-
tion of synthetic trajectories by popular location-driven
apps and Machine Learning algorithms. We also include
an evaluation of the detection of synthetic trajectories
by regular users (cf. Appendix A) and the system sta-
bility (cf. Appendix B) in the Appendix due to paper
length requirements.

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 78

6.1 System Portability and Performance

MATRIX is compatible with Android KitKat and on-
wards. It has been tested to work on Xposed Frame-
work API versions 82 to 89 (current) which are compat-
ible with the above Android versions. This implies that
MATRIX can be ported to ≈ 94% of all Android de-
vices globally (based on information from the Android
Dashboard [8] as of August 25, 2018).

MATRIX was extensively evaluated for perfor-
mance overheads occurring from the most expensive op-
erations of the system. We identified 3 potential perfor-
mance bottlenecks in our system: (1) the API call inter-
ception function using the Xposed framework; (2) the
add audit event function of the PrivoScope service; and
(3) the location provider function of the Synthetic Lo-
cation service. We implemented a test app that invoked
these functions 1 million times to test performance. The
execution time was calculated as the difference between
two System.nanoTime method calls placed immediately
before and after the function execution. The API in-
terception bottleneck is caused by the Xposed frame-
work loading and hooking method calls. To evaluate its
performance, we created an empty method inside our
system and hooked it using the Xposed framework.

Table 1 shows the mean µ, standard deviation σ

and maximum time of execution for the three functions
on a LG Nexus 5 and a LG Nexus 5X. The API inter-
ception function using the Xposed framework averaged
to µ = 0.2ms on both the phones, which is negligible
from a usage perspective. The add audit event func-
tion of PrivoScope had a low µ for both the phones
(4.3ms and 3.2ms, resp), and its performance is also
acceptable. The location provider function of the Syn-
thetic Location service had a relatively higher µ and σ
for the Nexus 5 (µ = 11.1ms, σ = 7.7ms). We believe
this overhead is due to database lookups performed by
the service to check the location preferences for the app.
Overall, the entire system can run with an average over-
head of 15.6ms on the Nexus 5 and 9.1ms on the Nexus
5X which should have a negligible impact on the user
experience. The sum of worst case performances over-
head at 171.8ms on the Nexus 5 should also not affect
user experience since such overhead occurs rarely.

6.2 Utility of the PrivoScope Service

To evaluate the utility of the PrivoScope service, we
conducted a user study for a group of 15 participants
from different educational backgrounds. Of these par-
ticipants, 5 are in a non-CS profession (3 doctors, 1

Table 1. Results of the Performance evaluation of MATRIX for 2
smartphones.

Phone Service Mean (µ) Std (σ) Max

Nexus 5
Xposed Hook 0.2 ms 0.3 ms 17.1 ms
Add Audit Event 4.3 ms 3.8 ms 67.1 ms
Update Location 11.1 ms 7.7 ms 87.6 ms

Nexus 5X
Xposed Hook 0.2 ms 0.15 ms 5.7 ms
Add Audit Event 3.2 ms 1.6 ms 26.8 ms
Update Location 5.7 ms 1.5 ms 16.0 ms

chemist and 1 lawyer), 5 are software engineers with
some security knowledge, and the remaining are secu-
rity and privacy researchers. The user study steps were
as follows: (1) we asked the users how knowledgeable
they were about location tracking from the GPS, WiFi,
cellular, and the sensors, (2) we discussed some exam-
ples of location and sensor tracking with them to spread
awareness of these threats to their privacy, (3) we gave
them an introduction of MATRIX and then presented
a demo1 of the PrivoScope service, (4) we asked the
participants to use three flashlight apps on a Nexus 5
to assess their comfort with using the device and the
PrivoScope service, and (5) we asked them to answer
some questions regarding PrivoScope using a Google
form (see Appendix C for the questions and responses).

The device under test was preloaded with common
apps (e.g., Bank of America, Google Maps, Uber, Face-
book, Twitter, etc). It was used as a regular device for
≈ 2 weeks to collect location and sensor data for the
demo. We found some interesting data such as the Bank
of America app querying location data once every 3-4
hours. We believe they implement some form of user
protection using this data. We also observed that Google
Maps has a fixed pattern for accessing location data.
Such patterns can possibly be used to create app sig-
natures and detect situations when a clone app from a
third party app store is installed instead. Discussing all
observations is outside the scope of this paper. Regard-
ing the flashlight apps, App1 (flashlight) was used as
it did not access location or sensors, App2 (Flashlight
Plus) accessed the Accelerometer when in foreground
and ran as a background service all the time, and App3
(Brightest Flashlight) accessed the location of the users
when in foreground.

The results of this user study were encouraging. We
refer readers to Appendix C for all responses. To sum-
marize the results, 12 users found PrivoScope to be very

1 A video of the demo is available at
https://youtu.be/GkboLYZfLcA

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 79

useful, and 3 users found it to be useful. They mentioned
that adding a summary for all apps will make the tool
very useful, and we plan to incorporate this in Privo-
Scope before releasing the source code. All of them re-
sponded positively about recommending PrivoScope to
their friends and family. Regarding the flashlight apps,
many users initially preferred App2 as it looked nicer,
but all chose App1 after looking at their usages in Privo-
Scope. This also validates the analysis of [2] that sug-
gested that users are reluctant to change their privacy
settings unless they are nudged in some manner. All ex-
cept one, mentioned that they’re not comfortable with
App2 running in the background and accessing any form
of their personal information. One person chose App1 as
it would cause less battery drain. Since the study, 3 par-
ticipants have started using MATRIX on their devices
and we hope to soon make this tool available globally.

6.3 Detection of Synthetic Trajectories

Detection by Popular Mobile Apps: We evalu-
ated this metric using 10 popular location-driven apps
(listed in Table 2) on Google Play Store. We extend the
evaluation of [21] who showed that the top 300 apps
on the Play Store do not crash when supplied with a
fake location. Their approach focused on a single loca-
tion fix which may not provide these apps enough in-
formation to detect the presence of synthetic feeds. The
apps we choose rely heavily on location data to provide
their services to users. The evaluation was performed
by feeding these apps three types of synthetic location
data and monitoring their behavior. In test 1 (Syn-
thetic), the synthetic trajectories were generated using
the techniques described in Section 5.2. In test 2 (HS),
the trajectories from test 1 were time compressed by a
factor of 5 such that the user appeared to move 5 times
faster (e.g., at 300km/h in a 60km/h speed zone). In test
3 (HS+T), the trajectories from test 2 were perturbed
by large noises (≈ 1000m) such that the user appeared
to teleport to different locations very quickly. The ex-
pected results was that apps that detect fake location
should be able to easily detect the HS and HS+T tra-
jectories, but not Synthetic trajectories.

Table 2 shows the results of the three tests for our
test apps. None of the apps were able to detect synthetic
locations in the Synthetic trajectories test. Even for
HS and HS+T trajectories test, with the exception of
Ingress, none of the other apps detected the presence of
high speed and noisy synthetic locations. Ingress did not
ban us from playing the game, however, it denied points

Table 2. Results of the Synthetic Trajectories detection test on
10 popular Android apps that rely on location data.

App Name Rating Synthetic High Speed
(HS)

HS+Teleport
(HS+T)

Ingress 4.3 X Detected Detected
Pokémon Go 4.1 X X X

Geocaching 4.0 X X X

Glympse 4.5 X X X

Family Locator 4.4 X X X
happn 4.5 X X X

Yelp 4.3 X X X

Foursquare 4.1 X X X

Waze 4.6 X X Unstable
Google Maps 4.3 X X Unstable

when it detected that the user was moving too fast or
teleporting. Pokémon Go is also known to ban users,
however, we did not get banned during our tests even
after capturing many Pokémons using the noisy data.
This is likely because the ban threshold is set to high to
prevent users from going to a higher level by cheating.
All the remaining apps kept performing their functions
without detecting the presence of the synthetic data.
Note that Waze and Google Maps navigation operated
properly forHS but became unstable forHS+T, which
was expected as they constantly updated the routing
information based on the teleported locations.

These observations indicate that popular location-
driven apps fail to check validity of the received
data. Some of these apps (Ingress, Pokémon Go,
Foursquare and Google Maps) check whether the
MockLocationProvider [5] is enabled on the device.
Some apps rely on other schemes to limit user abuse
(e.g., Foursquare detects and limits rapid check-ins).
This means that they rely on simple checks but do not
implement algorithms for detecting synthetic data. The
only app that checked location validity in our set was
Ingress, and it was unable to detect any discrepancies
in the synthetic trajectories generated by our system.
Detection by Machine Learning Algorithms: We
evaluated this metric using the 400 routes collected for
analyzing user driving behavior (cf. Section 5.2). These
set of routes were labeled as ‘Real’. For each real route,
a corresponding synthetic route was generated using the
real route’s departure time, and start and end locations.
These set of routes were labeled as ‘Synthetic’. As differ-
ent routes may contain completely different trajectories,
a machine learning model comprising of spatial features
of the routes will be very inaccurate. Therefore, we fo-
cus on the temporal features of these routes, namely the
accelerations, speeds and distances traveled. Recall that
the routes were driven on different road types (highways

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 80

Table 3. Results of the Machine Learning algorithms evaluation
showing accuracy of ‘Real’ trajectories detected as ‘Real’, ‘Syn-
thetic’ trajectories detected as ‘Synthetic’, and the average Preci-
sion, Recall and F-score values.

Algorithm Real Synthetic Precision Recall F-score
Decision Trees 53% 62% 0.576 0.575 0.574
Random Forest 61% 63% 0.620 0.620 0.619
Nearest Neighbor 50% 57% 0.535 0.535 0.534
10 Nearest Neighbor 49% 57% 0.530 0.530 0.529
Naive Bayes 86% 14% 0.500 0.500 0.426
Neural Networks 95% 4% 0.471 0.495 0.363
SVM 5% 97% 0.565 0.510 0.378

and internal) and traffic conditions (cf. Section 5.2) indi-
cating high variation in the distances traveled and driv-
ing speeds. As a result, the strongest features are those
derived from the accelerations. To validate this analysis,
we evaluated different features using Information Gain
(IG) values that tree-based classification algorithms like
Decision Trees use for attribute splitting. Higher IG val-
ues indicate that a feature is more important for ma-
chine learning classification. After many experiments,
the following 9 features were selected as they yielded the
highest information gain values and prediction accura-
cies among other combinations:max (IG=0.07) and min
(IG=0.07) accelerations, mean (IG=0.03) and standard
deviation (IG=0.21) of accelerations, mean (IG=0.08)
and standard deviation (IG=0.26) of absolute accelera-
tions, maximum speed (IG=0.11), idle time (IG=0.09)
and distance traveled (IG=0.08). The above weighted
information gain values show that the standard devia-
tion of accelerations and absolute accelerations are the
strongest in determining the distinction between syn-
thetic and real traces. These values were derived us-
ing Scikit-learn [70] toolkit in Python. The models were
built and the predictions were averaged over 1000 iter-
ations. In each iteration, 90% of the dataset from each
set were randomly chosen for training data, and the re-
maining 10% from each set were test data.

Table 3 shows the list of algorithms that were eval-
uated, the prediction accuracies for ‘Real’ test trajecto-
ries that were detected as ‘Real’, ‘Synthetic’ test trajec-
tories that were detected as ‘Synthetic’, and the Preci-
sion, Recall and F-score values. Note that in our con-
text, the results for an ideal MATRIX route generator
should lead to a 50-50 split, i.e., 50% of ‘Real’ routes are
predicted as ‘Synthetic’ and 50% of ‘Synthetic’ routes
are predicted as ‘Real’. We can observe that most algo-
rithms (except Decision Trees) have an average predic-
tion accuracy of close to 50%. Three of those algorithms
(Naive Bayes, Neural Network and SVM) display results
biased towards one of the two classifiers implying that

the models had difficulty predicting the correct classi-
fier and defaulted to one classifier. The Decision Trees
algorithm could detect ≈ 62% of the ‘Synthetic’ trajec-
tories as synthetic. The ensemble classifier of Decision
Trees, Random Forest, could detect ≈ 63% of the ‘Syn-
thetic’ trajectories as synthetic. These numbers also do
not signify large detection rate for our synthetic trajec-
tories. We must note that this evaluation is preliminary
as 800 routes do not suffice for these algorithms to build
generalized models from training data, and the models
may be subject to overfitting. We intend to extend this
dataset in the future to incorporate more routes and run
this evaluation again for more generalized models.

7 Related Work and Discussion
A large body of research has focused on mitigating lo-
cation and other private information leakage attacks on
Android devices. Most of these works are orthogonal
to our system as their motivation and techniques dif-
fer, including recommending new frameworks/privacy
metrics [12, 14, 27, 31, 32, 52, 69], location obfusca-
tion [4, 9, 18, 73, 80], location cloaking [38, 41], gen-
erating dummy locations [48, 49, 56, 75, 85, 87], sen-
sor data obfuscation [24, 25], tainting sensitive data
[30, 74], dynamic analysis [83, 90], static code analysis
[10, 11, 57, 81], permissions analysis [46], and applica-
tion retrofitting [26, 43, 91].

Synthesizing human mobility was also studied in the
context of opportunistic networks [29, 35, 47, 53], ad-hoc
and vehicular wireless networks [22, 50, 78, 88], commu-
nity based mobility models [39, 42, 54, 61], predicting lo-
cation of moving objects [76, 89], and implementing effi-
cient location update mechanisms [28, 44, 45, 82]. Some
research also focused on generating synthetic traces for
user privacy [15, 23, 51], however, these works have lim-
itations that enable an adversary to detect fake traces.
None of these satisfy traffic constraints for different
roads at different times of the day, nor take into ac-
count the statistical properties of user driving behavior.
For example, [51, 82] simply superimpose speed pat-
terns from real routes on synthetic traces based on the
street type without accounting for traffic conditions of
the road. These speed patterns can be repeated and can
be detected.

Beresford et al. [13] implemented MockDroid, a
modified version of Android 2.2.1 with a user controlled
permissions manager. The system allowed users to de-
fine mock permissions for installed apps. The location

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 81

mock permission was implemented to block all location
fixes from reaching the app simulating a lack of available
location information. The authors ran the system on 27
apps and showed that most apps continued to function
with reduced functionality. This work is similar to the
current Android permissions model and, therefore, sub-
ject to the weaknesses in Android’s permission model
that we have addressed with MATRIX.

Agarwal and Hall [1] implemented ProtectMyPri-
vacy (PMP) for iOS jailbroken devices that intercepted
method calls accessing user’s private data, and allowed
the user to substitute anonymized data in place of the
real information. The system was later implemented for
Android [21]. The limitations of these work are: (1) the
anonymized data is provided by the user at run-time
which may be completely random and unrealistic, and
(2) the app’s functionality is paused for user input which
is detrimental to user experience and possibly to the
app’s functionality. The above limitations are addressed
by MATRIX through a seamless delivery of realistic syn-
thetic locations to apps without user interaction.

Liu et al. [55] implemented Personalized Privacy As-
sistant (PPA) for rooted Android devices. This system
is a modified App Ops permission manager that displays
an app’s recent requests and the frequencies of requests
in the past 7 days. The system uses this information to
generate daily privacy nudges to motivate users to in-
teract and change their privacy settings. Similarly, Fu et
al. [34] implemented a system for Android that displays
a user notification when an installed app accessed the
user location, and showed this location on Google Maps.
However, additional context is required to determine if
an app is misusing the information (e.g., time and dura-
tion of requests, was the app in the background?). Privo-
Scope addresses the limitations by providing much more
context to the users and displaying them in a way that
it is easier for the users to grasp and visualize accesses.

Zheng et al. [88] propose an agenda driven mobility
model that considers a person’s daily social activities for
motion generation. They derive this agenda from the
National Household Travel Survey (NHTS) database
by the U.S. Department of Transportation. The first
agenda and all subsequent activities are based on the
NHTS activity distribution, and addresses are picked
at random from many addresses for the corresponding
activity. The start time of the first agenda determines
the schedule for the entire day and each activity starts
immediately after the mean dwell time+longest transi-
tion time from previous activity. The route between two
activities assumes a longest possible time given by the
Dijkstra’s algorithm. This work has several limitations

(all addressed by MATRIX) that are trivial to detect:
(1) the addresses are picked at random without account-
ing for distances (e.g., gas station may be miles away
from regular route), (2) the routes do not incorporate
any traffic information and are always static, and (3)
the routes do not incorporate any driving behavior and
likely assume a constant speed of motion.

Bindschaedler and Shokri [15] generate synthetic
traces that are derived from seed datasets of real traces.
We believe that this work is orthogonal to our work and
potentially complementary. MATRIX focuses on solving
the problem of creating identities, user schedules, and
movement patterns; and seamlessly integrating them in
Android. Our trajectory generation scheme focuses on
adhering to daily schedule tasks/time constraints, traf-
fic, and generating acceleration patterns similar to real
user driving behavior. We chose an alternative approach
to them as they rely on data-sets of real traces which
limits scalability to cities where traces are unavailable.

Fawaz and Shin [32] implemented LP-Guardian, a
privacy protection framework modifying the Android
source code. The framework changes location granular-
ity of installed apps based on the threat posed by the
app and its location granularity requirements. It auto-
matically coarsens the location to a city level if it iden-
tifies a request from an A&A library, the app is in the
background, or the app is a weather app. It synthesizes
the location for fitness apps but preserves features of the
actual route such as the distance traveled. The frame-
work supplies a synthetic location if it determines that it
is not safe to release the location. This work has the fol-
lowing limitations that are addressed in MATRIX: (1)
the preservation of route features can lead to inference of
the user’s real locations, and (2) unless chosen very care-
fully, the synthetic traces generated from real features
will not snap to streets (e.g., different street lengths and
curvatures) and can be detected as synthetic.

In the future, we plan to extend MATRIX with
models that emulate human walks for location and sen-
sor obfuscation, as well as models for sensor obfuscation
that precisely emulate user behavior when they interact
with their smartphones.

8 Acknowledgments
We would like to thank Dr. Thomas Roessler for his
helpful comments. This material is based upon work
partially supported by the National Science Foundation
under Grant No. 1740907.

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 82

References
[1] Yuvraj Agarwal and Malcolm Hall. Protectmyprivacy: De-

tecting and mitigating privacy leaks on ios devices using
crowdsourcing. In Proceeding of the 11th Annual Inter-
national Conference on Mobile Systems, Applications, and
Services, MobiSys ’13, New York, NY, USA, 2013. ACM.

[2] Hazim Almuhimedi, Florian Schaub, Norman Sadeh, Idris
Adjerid, Alessandro Acquisti, Joshua Gluck, Lorrie Faith Cra-
nor, and Yuvraj Agarwal. Your location has been shared
5,398 times!: A field study on mobile app privacy nudging.
In Proceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems, CHI ’15, New York,
NY, USA, 2015. ACM.

[3] Amazon. Amazon Mechanical Turk. https://www.mturk.
com/mturk/welcome, 2017.

[4] Miguel E. Andrés, Nicolás E. Bordenabe, Konstanti-
nos Chatzikokolakis, and Catuscia Palamidessi. Geo-
indistinguishability: Differential privacy for location-based
systems. In Proceedings of the 2013 ACM SIGSAC Confer-
ence on Computer & Communications Security, CCS ’13,
2013.

[5] Android. Android Mock Location Provider. https:
//developer.android.com/guide/topics/location/strategies.
html#MockData, 2017.

[6] Android. The Android Source Code. https://source.android.
com/source/, 2017.

[7] Android. UI/Application Exerciser Monkey. https:
//developer.android.com/studio/test/monkey.html, 2017.

[8] Android. Android Dashboards. https://developer.android.
com/about/dashboards/index.html, 2018.

[9] C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati,
and P. Samarati. An obfuscation-based approach for pro-
tecting location privacy. IEEE Transactions on Dependable
and Secure Computing, Jan 2011.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon,
Damien Octeau, and Patrick McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, New York, NY, USA, 2014.
ACM.

[11] Michael Backes, Sven Bugiel, Erik Derr, Sebastian Gerling,
and Christian Hammer. R-droid: Leveraging android app
analysis with static slice optimization. In Proceedings of the
11th ACM on Asia Conference on Computer and Communi-
cations Security, ASIA CCS ’16, New York, NY, USA, 2016.
ACM.

[12] Michael Backes, Sven Bugiel, Christian Hammer, Oliver
Schranz, and Philipp von Styp-Rekowsky. Boxify: Full-
fledged app sandboxing for stock android. In 24th USENIX
Security Symposium (USENIX Security 15), Washington,
D.C., 2015. USENIX Association.

[13] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and
Ripduman Sohan. Mockdroid: Trading privacy for applica-
tion functionality on smartphones. In Proceedings of the
12th Workshop on Mobile Computing Systems and Applica-
tions, HotMobile ’11, New York, NY, USA, 2011. ACM.

[14] Igor Bilogrevic, Kévin Huguenin, Berker Agir, Murtuza Jadli-
wala, Maria Gazaki, and Jean-Pierre Hubaux. A machine-
learning based approach to privacy-aware information-
sharing in mobile social networks. Pervasive and Mobile
Computing, 25, 2016.

[15] V. Bindschaedler and R. Shokri. Synthesizing plausible
privacy-preserving location traces. In 2016 IEEE Symposium
on Security and Privacy (SP), May 2016.

[16] Kenneth Block, Sashank Narain, and Guevara Noubir. An
autonomic and permissionless android covert channel. In
Proceedings of the 10th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WiSec ’17, 2017.

[17] Kenneth Block and Guevara Noubir. My magnetometer is
telling you where i’ve been?: A mobile device permissionless
location attack. In Proceedings of the 11th ACM Conference
on Security & Privacy in Wireless and Mobile Networks,
WiSec ’18, 2018.

[18] Nicolás E. Bordenabe, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. Optimal geo-indistinguishable mecha-
nisms for location privacy. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’14, 2014.

[19] Aldo Cassola, Erik-Oliver Blass, and Guevara Noubir. Au-
thenticating privately over public wi-fi hotspots. In Proceed-
ings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, 2015.

[20] Aldo Cassola, William Robertson, Engin Kirda, and Guevara
Noubir. A Practical, Targeted, and Stealthy Attack Against
WPA Enterprise Authentication. In NDSS Symposium 2013,
2013.

[21] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I.
Hong, and Yuvraj Agarwal. Does this app really need my
location?: Context-aware privacy management for smart-
phones. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., September 2017.

[22] David R. Choffnes and Fabián E. Bustamante. An integrated
mobility and traffic model for vehicular wireless networks.
In Proceedings of the 2Nd ACM International Workshop on
Vehicular Ad Hoc Networks, VANET ’05, 2005.

[23] Richard Chow and Philippe Golle. Faking contextual data
for fun, profit, and privacy. In Proceedings of the 8th ACM
Workshop on Privacy in the Electronic Society, WPES ’09,
2009.

[24] Anupam Das, Nikita Borisov, and Matthew Caesar. Track-
ing mobile web users through motion sensors: Attacks and
defenses. In Network and Distributed System Security Sym-
posium (NDSS), 2016.

[25] Anupam Das, Nikita Borisov, and Edward Chou. Every move
you make: Exploring practical issues in smartphone motion
sensor fingerprinting and countermeasures. Proceedings on
Privacy Enhancing Technologies (PoPETs), pages 88–108,
2018.

[26] Benjamin Davis and Hao Chen. Retroskeleton: Retrofitting
android apps. In Proceeding of the 11th Annual Interna-
tional Conference on Mobile Systems, Applications, and
Services, MobiSys ’13, New York, NY, USA, 2013. ACM.

[27] B. Deva, S. R. Garzon, and S. Schünemann. A context-
sensitive privacy-aware framework for proactive location-
based services. In 2015 9th International Conference on Next
Generation Mobile Applications, Services and Technologies,

https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome
https://developer.android.com/guide/topics/location/strategies.html#MockData
https://developer.android.com/guide/topics/location/strategies.html#MockData
https://developer.android.com/guide/topics/location/strategies.html#MockData
https://source.android.com/source/
https://source.android.com/source/
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 83

Sept 2015.
[28] Z. Ding, L. Guo, and X. Meng. Adaptive location up-

date mechanism for network-constrained moving objects
in changeful traffic conditions. In 2009 Tenth International
Conference on Mobile Data Management: Systems, Services
and Middleware, May 2009.

[29] Frans Ekman, Ari Keränen, Jouni Karvo, and Jörg Ott.
Working day movement model. In Proceedings of the 1st
ACM SIGMOBILE Workshop on Mobility Models, Mobility-
Models ’08, 2008.

[30] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P.
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
Taintdroid: An information-flow tracking system for real-
time privacy monitoring on smartphones. In Proceedings of
the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, Berkeley, CA, USA, 2010.
USENIX Association.

[31] Kassem Fawaz, Huan Feng, and Kang G. Shin. Anatomiza-
tion and protection of mobile apps’ location privacy threats.
In 24th USENIX Security Symposium (USENIX Security 15).
USENIX Association, 2015.

[32] Kassem Fawaz and Kang G. Shin. Location privacy protec-
tion for smartphone users. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’14, 2014.

[33] FTC. Android flashlight app developer settles FTC charges
it deceived consumers. https://www.ftc.gov/news-events/
press-releases/2013/12/android-flashlight-app-developer-
settles-ftc-charges-it-deceived, December 2013. Accessed:
November, 2015.

[34] Huiqing Fu, Yulong Yang, Nileema Shingte, Janne Lindqvist,
and Marco Gruteser. A field study of run-time location
access disclosures on android smartphones. In Network and
Distributed System Security Symposium (NDSS), 2014.

[35] J. Ghosh, S. J. Philip, and C. Qiao. Sociological orbit aware
location approximation and routing in manet. In 2nd In-
ternational Conference on Broadband Networks, 2005., Oct
2005.

[36] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27, pages 2672–2680. 2014.

[37] Jun Han, E. Owusu, L.T. Nguyen, A. Perrig, and J. Zhang.
Accomplice: Location inference using accelerometers on
smartphones. In Communication Systems and Networks
(COMSNETS), 2012 Fourth International Conference on,
Jan 2012.

[38] B. Henne, C. Kater, M. Smith, and M. Brenner. Selective
cloaking: Need-to-know for location-based apps. In 2013
Eleventh Annual Conference on Privacy, Security and Trust,
July 2013.

[39] Klaus Herrmann. Modeling the sociological aspects of mo-
bility in ad hoc networks. In Proceedings of the 6th ACM
International Workshop on Modeling Analysis and Simula-
tion of Wireless and Mobile Systems, MSWIM ’03, 2003.

[40] Baik Hoh, M. Gruteser, Hui Xiong, and A. Alrabady. En-
hancing security and privacy in traffic-monitoring systems.
IEEE Pervasive Computing, Oct 2006.

[41] Baik Hoh and Marco Gruteser. Preserving privacy in gps
traces via uncertainty-aware path cloaking. In In Proceedings
of ACM CCS 2007, 2007.

[42] Xiaoyan Hong, Mario Gerla, Guangyu Pei, and Ching-Chuan
Chiang. A group mobility model for ad hoc wireless net-
works. In Proceedings of the 2Nd ACM International Work-
shop on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, MSWiM ’99, 1999.

[43] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall. These Aren’T the Droids
You’Re Looking for: Retrofitting Android to Protect Data
from Imperious Applications. In Proceedings of the 18th
ACM Conference on Computer and Communications Secu-
rity, CCS ’11, New York, NY, USA, 2011. ACM.

[44] Y. K. Huang, I. F. Su, L. F. Lin, and Y. C. Chung. Efficient
processing of updates for moving objects with varying speed
and direction. In 2013 IEEE 27th International Confer-
ence on Advanced Information Networking and Applications
(AINA), March 2013.

[45] Yuan-Ko Huang. Indexing and querying moving objects with
uncertain speed and direction in spatiotemporal databases.
Journal of Geographical Systems, Apr 2014.

[46] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan,
Ari Fogel, Nikhilesh Reddy, Jeffrey S. Foster, and Todd Mill-
stein. Dr. android and mr. hide: Fine-grained permissions
in android applications. In Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mo-
bile Devices, SPSM ’12, New York, NY, USA, 2012. ACM.

[47] D. Karamshuk, C. Boldrini, M. Conti, and A. Passarella.
Human mobility models for opportunistic networks. IEEE
Communications Magazine, December 2011.

[48] Ryo Kato, Mayu Iwata, Takahiro Hara, Akiyoshi Suzuki,
Xing Xie, Yuki Arase, and Shojiro Nishio. A dummy-based
anonymization method based on user trajectory with pauses.
In Proceedings of the 20th International Conference on Ad-
vances in Geographic Information Systems, SIGSPATIAL
’12, 2012.

[49] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous
communication technique using dummies for location-based
services. In ICPS ’05. Proceedings. International Conference
on Pervasive Services, 2005., July 2005.

[50] M. Kim, D. Kotz, and S. Kim. Extracting a mobility model
from real user traces. In Proceedings IEEE INFOCOM 2006.
25TH IEEE International Conference on Computer Commu-
nications, April 2006.

[51] John Krumm. Realistic driving trips for location privacy. In
International Conference on Pervasive Computing. Springer,
2009.

[52] B. Krupp, N. Sridhar, and W. Zhao. Spe: Security and
privacy enhancement framework for mobile devices. IEEE
Transactions on Dependable and Secure Computing, 2015.

[53] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong. Slaw:
A new mobility model for human walks. In IEEE INFOCOM
2009, April 2009.

[54] Baochun Li. On increasing service accessibility and efficiency
in wireless ad-hoc networks with group mobility. Wirel. Pers.
Commun., April 2002.

[55] Bin Liu, Mads Schaarup Andersen, Florian Schaub, Hazim
Almuhimedi, Shikun (Aerin) Zhang, Norman Sadeh, Yuvraj
Agarwal, and Alessandro Acquisti. Follow my recommen-

https://www.ftc.gov/news-events/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived
https://www.ftc.gov/news-events/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived
https://www.ftc.gov/news-events/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 84

dations: A personalized privacy assistant for mobile app
permissions. In Twelfth Symposium on Usable Privacy and
Security (SOUPS 2016), Denver, CO, 2016. USENIX Associ-
ation.

[56] Hua Lu, Christian S. Jensen, and Man Lung Yiu. Pad:
Privacy-area aware, dummy-based location privacy in mobile
services. In Proceedings of the Seventh ACM International
Workshop on Data Engineering for Wireless and Mobile Ac-
cess, MobiDE ’08, 2008.

[57] Kangjie Lu, Zhichun Li, Vasileios P. Kemerlis, Zhenyu Wu,
Long Lu, Cong Zheng, Zhiyun Qian, Wenke Lee, and Guofei
Jiang. Checking more and alerting less: Detecting privacy
leakages via enhanced data-flow analysis and peer voting. In
The Network and Distributed System Security Symposium,
NDSS ’15, 2015.

[58] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Jo-
hannes Gehrke, and Lars Vilhuber. Privacy: Theory meets
practice on the map. In Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, ICDE ’08,
2008.

[59] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veer-
apandian, Dan Boneh, and Gabi Nakibly. Powerspy: Lo-
cation tracking using mobile device power analysis. In
24th USENIX Security Symposium (USENIX Security 15).
USENIX Association, 2015.

[60] A. Mosenia, X. Dai, P. Mittal, and N. Jha. Pinme: Tracking
a smartphone user around the world. IEEE Transactions on
Multi-Scale Computing Systems, 2017.

[61] Mirco Musolesi and Cecilia Mascolo. A community based
mobility model for ad hoc network research. In Proceedings
of the 2Nd International Workshop on Multi-hop Ad Hoc
Networks: From Theory to Reality, REALMAN ’06, 2006.

[62] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir. Infer-
ring user routes and locations using zero-permission mobile
sensors. In 2016 IEEE Symposium on Security and Privacy
(SP), May 2016.

[63] Sashank Narain, Amirali Sanatinia, and Guevara Noubir.
Single-stroke language-agnostic keylogging using stereo-
microphones and domain specific machine learning. In Pro-
ceedings of the 2014 ACM Conference on Security and Pri-
vacy in Wireless & Mobile Networks, WiSec ’14, 2014.

[64] Sarfraz Nawaz and Cecilia Mascolo. Mining users’ significant
driving routes with low-power sensors. In Proceedings of
the 12th ACM Conference on Embedded Network Sensor
Systems, SenSys ’14. ACM, 2014.

[65] Andrew Y. Ng and Michael I. Jordan. On discriminative vs.
generative classifiers: A comparison of logistic regression and
naive bayes. In Proceedings of the 14th International Con-
ference on Neural Information Processing Systems: Natural
and Synthetic, NIPS’01, Cambridge, MA, USA, 2001. MIT
Press.

[66] US Department of Commerce. United States Census Bu-
reau. https://www.census.gov/, 2018.

[67] OpenStreetMap. OpenStreetMap Amenity Key. http://wiki.
openstreetmap.org/wiki/Key:amenity, 2017.

[68] OpenStreetMap. OpenStreetMap Building Key. http://wiki.
openstreetmap.org/wiki/Key:building, 2017.

[69] Simon Oya, Carmela Troncoso, and Fernando Pérez-
González. Back to the drawing board: Revisiting the design
of optimal location privacy-preserving mechanisms. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, 2017.

[70] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[71] A. Pingley, N. Zhang, X. Fu, H. A. Choi, S. Subramaniam,
and W. Zhao. Protection of query privacy for continuous lo-
cation based services. In 2011 Proceedings IEEE INFOCOM,
April 2011.

[72] R. Shokri, G. Theodorakopoulos, J. Y. Le Boudec, and J. P.
Hubaux. Quantifying location privacy. In 2011 IEEE Sympo-
sium on Security and Privacy, May 2011.

[73] Reza Shokri, George Theodorakopoulos, Carmela Troncoso,
Jean-Pierre Hubaux, and Jean-Yves Le Boudec. Protect-
ing location privacy: Optimal strategy against localization
attacks. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12, 2012.

[74] Mingshen Sun, Tao Wei, and John C.S. Lui. Taintart: A
practical multi-level information-flow tracking system for
android runtime. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, New York, NY, USA, 2016. ACM.

[75] Akiyoshi Suzuki, Mayu Iwata, Yuki Arase, Takahiro Hara,
Xing Xie, and Shojiro Nishio. A user location anonymization
method for location based services in a real environment. In
Proceedings of the 18th SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems, GIS
’10, 2010.

[76] Yufei Tao, Christos Faloutsos, Dimitris Papadias, and Bin
Liu. Prediction and indexing of moving objects with un-
known motion patterns. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’04, 2004.

[77] TeamWin. TeamWin - TWRP. https://twrp.me/about/,
2017.

[78] C. Tuduce and T. Gross. A mobility model based on wlan
traces and its validation. In Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communica-
tions Societies., March 2005.

[79] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara
Noubir. Fingerprinting wi-fi devices using software defined
radios. In Proceedings of the 9th ACM Conference on Secu-
rity & Privacy in Wireless and Mobile Networks, WiSec
’16, pages 3–14, New York, NY, USA, 2016. ACM.

[80] Y. Wang, Dingbang Xu, Xiao He, Chao Zhang, Fan Li, and
B. Xu. L2p2: Location-aware location privacy protection for
location-based services. In 2012 Proceedings IEEE INFO-
COM, March 2012.

[81] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby.
Amandroid: A precise and general inter-component data flow
analysis framework for security vetting of android apps. In
Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’14, New York,
NY, USA, 2014. ACM.

[82] Ouri Wolfson and Huabei Yin. Accuracy and Resource Con-
sumption in Tracking and Location Prediction. 2003.

https://www.census.gov/
http://wiki.openstreetmap.org/wiki/Key:amenity
http://wiki.openstreetmap.org/wiki/Key:amenity
http://wiki.openstreetmap.org/wiki/Key:building
http://wiki.openstreetmap.org/wiki/Key:building
https://twrp.me/about/

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 85

[83] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective real-
time android application auditing. In 2015 IEEE Symposium
on Security and Privacy, May 2015.

[84] Xposed Framework. The Xposed Framework Source Code.
https://github.com/rovo89/XposedInstaller, 2017.

[85] T. H. You, W. C.f Peng, and W. C. Lee. Protecting moving
trajectories with dummies. In 2007 International Conference
on Mobile Data Management, May 2007.

[86] Hui Zang and Jean Bolot. Anonymization of location data
does not work: A large-scale measurement study. In Pro-
ceedings of the 17th Annual International Conference on
Mobile Computing and Networking, MobiCom ’11, 2011.

[87] L. Zhang, Z. Cai, and X. Wang. Fakemask: A novel privacy
preserving approach for smartphones. IEEE Transactions on
Network and Service Management, June 2016.

[88] Qunwei Zheng, Xiaoyan Hong, Jun Liu, David Cordes, and
Wan Huang. Agenda driven mobility modelling. Int. J. Ad
Hoc Ubiquitous Comput., December 2010.

[89] J. Zhou, H. V. Leong, Q. Lu, and K. C. K. Lee. Optimiz-
ing update threshold for distance-based location tracking
strategies in moving object environments. In 2007 IEEE In-
ternational Symposium on a World of Wireless, Mobile and
Multimedia Networks, June 2007.

[90] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W.
Freeh. Taming information-stealing smartphone applications
(on android). In Proceedings of the 4th International Con-
ference on Trust and Trustworthy Computing, TRUST’11,
Berlin, Heidelberg, 2011. Springer-Verlag.

[91] Suwen Zhu, Long Lu, and Kapil Singh. Case: Comprehensive
application security enforcement on cots mobile devices. In
Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’16.
ACM, 2016.

A Detection of Synthetic
Trajectories by Regular Users

We also evaluated the realism of synthetic trajectories
by conducting two separate user studies: one comprising
of a group of 12 students from a university and another
comprising of 100 users from Amazon Mechanical Turk
[3]. We wanted to check whether it is possible for regular
users to visually determine if the synthetic trajectories
generated by MATRIX are fake. The intuition behind
two studies was to understand the results from two per-
spectives; one of users who know the area very well and
another of users unaware of the area. The university area
was chosen so that the students were aware of its traffic
congestions. The study asked the users to visually ana-
lyze a mix of 20 (10 real and 10 synthetic) trajectories
and label them as ‘Real’ or ‘Synthetic’ based on their
observations. Figures 8a and 8b show an example of a
real route and a synthetic trajectory used for the study.
The green marker marks the start location, the white

(a) Real Driving Route

(b) Generated Synthetic Trajectory

Fig. 8. An example of the similarity between a real route and a
generated synthetic route.

Table 4. Cumulative results of the User Study on Mechanical
Turk sorted by the number of noisy trajectories correctly labeled.

Noisy Surveyors Real Trajectories Synthetic Trajectories
Real Synthetic Real Synthetic

0 100 65.1% 34.9% 66.0% 34.0%
1 91 65.4% 34.6% 65.9% 34.1%
2 72 65.7% 34.3% 65.4% 34.6%
3 54 68.3% 31.7% 64.4% 35.6%

markers are 500m apart, and the red marker marks the
stop location. These markers display the time the vehi-
cle was at the given location.

The trajectories were created as follows: First, we
drove 10 unique routes close to the university area,
each starting and ending at different locations and
times of the day. Each route can be represented as
R = [n1, . . . , nL], where n is a node and L is the number
of nodes in the route. Each node ni is attributed with
timing and geographic information ni = (ti,Loc(ni)),
where ti is the timestamp and Loc(ni) is the node’s ge-
ographic coordinates. Next, we generated 10 synthetic
routes using the timestamp of the first node (i.e., t1) and
geographic coordinates of the end nodes (i.e., Loc(n1)
and Loc(nL)) for each real route R. For 8 out of 10
routes, we observed that the real and synthetic trajecto-
ries were the same route, with slightly different timing
information. For the remaining 2 routes, we observed
that the real and synthetic trajectories were different
but both were suggested routes by Google maps for the
given source and destination. The trajectories were shuf-

https://github.com/rovo89/XposedInstaller

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 86

fled so they appeared in a random order. For mechan-
ical turk, we added three very noisy trajectories which
looked obviously synthetic to find users who did not take
the study seriously.
University Students Study: For the real trajecto-
ries, ≈ 64.2% of the trajectories were labeled as ‘Real’
and the rest were labeled as ‘Synthetic’. For the syn-
thetic trajectories, ≈ 65.8% of the trajectories were la-
beled as ‘Real’ and the rest were labeled as ‘Synthetic’.
Note that more users of this study confused the ‘Syn-
thetic’ trajectories to be ‘Real’.
Amazon Mechanical Turk Study: For the real tra-
jectories, ≈ 68.3% of the trajectories were labeled as
‘Real’ and the rest were labeled as ‘Synthetic’. For the
synthetic trajectories, ≈ 64.4% of the trajectories were
labeled as ‘Real’. The above results are for 54 users
who detected all the obviously noisy trajectories. Ta-
ble 4 shows the cumulative results of the mechanical
turk study based on the number of noisy trajectories
detected by the users. We can see that the results are
not significantly different even for all 100 users, however,
more users labeled ‘Synthetic’ as ‘Real’.

The results indicate that it was difficult for the users
to differentiate between synthetic and real driving tra-
jectories. There was confusion in both groups regarding
their validity. Evaluating individual trajectories, we saw
that this confusion applied to each trajectory as not a
single one was labeled as ‘Real’ or ‘Synthetic’ unani-
mously by all users.

B MATRIX System Stability
Evaluation

The system’s stability was evaluated on 4 smartphones
and the results are shown in Table 5. The evaluation
was performed using 1000 popular apps on Google Play
Store that requested location permissions or accessed
the sensors. All the selected apps had a minimum rat-
ing of 4.0 and a minimum vote count of 10, 000 users.
These 1000 apps were successively run twice using an
automated UI application exerciser tool called Android
Monkey [7], once on a stock Android version of these
smartphones and then with MATRIX installed on the
same phones. The tool was configured to stress test each
app’s activities to monitor how many additional apps
crash or fail to execute. The same settings were used for
both tests (seed = 1, num_events = 2500) to ensure
that the same pseudo-random events were generated.

The first row for each phone in Table 5 shows the
test results for the stock version and the second row
shows the test results for MATRIX. All the apps in-
stalled and ran on every phone except for 15 apps on
the HTC One M9 (possibly due to compatibility rea-
sons). The number of successful monkey runs are very
similar in both the tests with the stock version per-
forming better on two phones and the MATRIX ver-
sion performing better on the other two. We analyzed
the errors/crashes manually to check for Xposed or MA-
TRIX specific errors and did not find any. This validates
that MATRIX remains stable and runs as expected for
different devices, OS versions, apps and in heavy use.

Table 5. Results of the Stability evaluation for MATRIX using
1000 popular Android apps on 4 smartphones.

Phone Version Installed Success Failure

HTC One M7 Lollipop 1000 892 108
1000 894 106

HTC One M9 Marshmallow 985 796 189
985 791 194

LG Nexus 5 Lollipop 1000 938 62
1000 944 56

LG Nexus 5X Marshmallow 1000 851 149
1000 848 152

C PrivoScope User Study:
Questions and Responses

Below are the questions asked to the users of the study.
All response values ranged between 0 (no knowledge /
not useful) to 5 (very knowledgeable / very useful).
– Q1: How knowledgeable were you about location

tracking by the GPS and WiFi before this demo?
– Q2: How knowledgeable were you about location

tracking by the sensors (Accelerometers, Gyroscope
and Magnetometers) before this demo?

– Q3: Rate your level of satisfaction with the protec-
tions that current mobile Operating Systems pro-
vide to protect your location information.

– Q4: Based on the demo, how useful do you think
PrivoScope is for understanding how installed apps
on your device access your private information?

– Q5: How likely are you to use PrivoScope, and rec-
ommend it to your friends and family?

– Q6: Based on your usage of the device, did you no-
tice any performance degradation with PrivoScope
active on the device? (5 means no degradation)

Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing 87

– Q7: Based on your observations about the flashlight
apps, which app would be keep while removing the
others? (App1 / App2 / App3)

Table 6 provides a summary of the responses from the
users of the study.

Table 6. Responses from the PrivoScope User Study

User Q1 Q2 Q3 Q4 Q5 Q6 Q7
User 1 5 3 1 5 5 5 App1
User 2 4 4 2 4 5 5 App1
User 3 5 4 5 5 5 5 App1
User 4 2 2 2 5 5 5 App1
User 5 4 3 3 5 5 5 App1
User 6 2 1 3 4 4 5 App1
User 7 2 1 2 5 5 5 App1
User 8 4 2 3 5 5 5 App1
User 9 4 3 3 5 5 5 App1
User 10 2 1 3 5 5 5 App1
User 11 2 2 3 5 5 5 App1
User 12 3 3 2 5 5 4 App1
User 13 4 3 4 5 5 5 App1
User 14 4 3 2 4 4 5 App1
User 15 3 2 4 5 5 5 App1

	Mitigating Location Privacy Attacks on Mobile Devices using Dynamic App Sandboxing
	1 Introduction
	2 Location Privacy in Android
	2.1 Android Location & Sensor APIs
	2.2 Weaknesses in Privacy Protections

	3 High-Level Approach
	4 MATRIX Architecture
	4.1 API Call Interception
	4.2 The App-activity PrivoScope Service
	4.3 The Synthetic Location Service

	5 Generating Synthetic Identities
	5.1 Modeling User States
	5.2 Modeling Mobility Trajectories
	5.3 Limitations and Future Work

	6 Evaluation
	6.1 System Portability and Performance
	6.2 Utility of the PrivoScope Service
	6.3 Detection of Synthetic Trajectories

	7 Related Work and Discussion
	8 Acknowledgments
	A Detection of Synthetic Trajectories by Regular Users
	B MATRIX System Stability Evaluation
	C PrivoScope User Study: Questions and Responses

