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Abstract: Today’s mobile apps employ third-party ad-
vertising and tracking (A&T) libraries, which may pose
a threat to privacy. State-of-the-art detects and blocks
outgoing A&T HTTP/S requests by using manually
curated filter lists (e.g. EasyList), and recently, using
machine learning approaches. The major bottleneck of
both filter lists and classifiers is that they rely on ex-
perts and the community to inspect traffic and man-
ually create filter list rules that can then be used to
block traffic or label ground truth datasets. We propose
NoMoATS — a system that removes this bottleneck by
reducing the daunting task of manually creating filter
rules, to the much easier and scalable task of labeling
A&T libraries. Our system leverages stack trace anal-
ysis to automatically label which network requests are
generated by A&T libraries. Using NoMoATS, we col-
lect and label a new mobile traffic dataset. We use this
dataset to train decision tree classifiers, which can be
applied in real-time on the mobile device and achieve
an average F-score of 93%. We show that both our au-
tomatic labeling and our classifiers discover thousands
of requests destined to hundreds of different hosts, pre-
viously undetected by popular filter lists. To the best of
our knowledge, our system is the first to (1) automati-
cally label which mobile network requests are engaged
in A&T, while requiring to only manually label libraries
to their purpose and (2) apply on-device machine learn-
ing classifiers that operate at the granularity of URLs,
can inspect connections across all apps, and detect not
only ads, but also tracking.
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1 Introduction

The mobile ecosystem is rife with third-party track-
ing. App developers often integrate with third-party li-
braries, which can be broken into roughly three cate-
gories: advertisement and analytics libraries, social li-
braries (e.g. Facebook), and development libraries [1].
These libraries inherit the same permissions as their
parent app, and can thus collect rich personal and con-
textual information [2, 3].

To protect themselves, privacy-conscious users rely
on tools such as DNS66 [4] and AdGuard [5]. These
apps require no rooting and instead rely on VPN APIs
to intercept outgoing traffic and match it against a list
of rules, such as EasyPrivacy [6]. Such lists are man-
ually curated, by experts and the community, and are
thus difficult to maintain in the quickly changing mo-
bile ecosystem. More recently, multiple works [7—9] have
proposed to train machine learning models, which are
more compact and generalize. However, in order to ob-
tain ground truth (i.e. labeled datasets) to train the
machine learning models, current state-of-the-art still
relies on filter lists [7, 8] or a combination of filter lists
and manual labeling [9]. Therefore, obtaining accurate
ground truth is a crucial part and a major bottleneck of
both filter-lists and machine learning approaches.

In this paper, we aim to reduce the scope of man-
ual labeling required to identify mobile network requests
that are either requesting ads or are tracking the user
(A&T requests). We start by noting that tracking and
advertising on mobile devices is usually done by third-
party libraries whose primary purpose is advertising or
analytics (A&T libraries). Throughout this paper, we
will refer to a an HT'TP request (or a decrypted HTTPS
request) as an A&T request (or packet), if it was gen-
erated by an A&T library. Another key observation is
that it is possible to determine if a network request came
from the application itself or from a library by examin-
ing the stack trace leading to the network API call. More
specifically, stack traces contain package names that
identify different entities: app vs. library code. Thus,
to label which network requests are A&T, we just need
a list of libraries that are known to be A&T.
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We combine these ideas to make the following con-
tributions. First, we design and implement NoMoATS —
a system for automatically labeling A&T requests. Our
approach does not rely on filter lists nor manual label-
ing of requests. Instead, it examines stack traces leading
to the network API call to determine if the request was
generated by an A&T library. Second, using NoMoATS
we collect the first large-scale dataset of mobile network
requests, where each request is labeled based on its ori-
gin: the app itself or an A&T library. Third, we evaluate
the effectiveness of NoMoATS-produced labels for train-
ing machine learning classifiers that predict HTTP/S
A&T requests on mobile devices. Our classifiers can be
trained quickly (on the orders of milliseconds) while
achieving average F-scores of 93%. Furthermore, our
classifiers can be applied in real-time on mobile devices
to predict and block A& T requests when running on top
of a VPN-based interception system, such as [7, 10-12].
Using popular filter lists, namely EasyList, EasyPrivacy
[6] and Mother of All Ad-Blocking (MoaAB) [13], we
evaluate both our labeling approach and our classifiers.
We find that NoMoATS discovers thousands of requests
destined to hundreds of different hosts that evade filter
lists and are potentially engaged in A&T activities. We
also show that our classifiers generalize and find trackers
that were missed by our labeling procedure.

We envision that this work will be useful to the
community by minimizing human involvement in label-
ing A&T requests: from creating (tens of thousands of)
rules to only identifying libraries that are A&T (on the
order of hundreds). In addition to this scalability ad-
vantage, NoMoATS provides a more stable labeling: the
network behavior of trackers and apps change in much
shorter time scales than a library’s purpose, eliminating
the need for frequent manual updates. Our work can as-
sist both expert list curators in creating and updating
filter rules (especially as A&T change their behavior)
and researchers to label their own datasets (for apps and
libraries of their own interest). To that end, we make
NoMOoATS open-source and release our dataset![14].

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents the
NoMoATS system. Section 4 describes how we trained
machine learning classifiers for predicting A& T requests
using a dataset collected and labeled with NoMoATS.
Section 5 evaluates the NoMoATS approach and the
classifiers from Sec. 4 against popular filter lists. Section

1 Please note that the data collection process was automated.
No human subjects were involved, thus no IRB needed.

6 discusses the limitations of our system and Section 7
concludes the paper. Appendices A-C provide additional
details on the NoMoATS approach.

2 Related Work

Various studies have shown the prevalence of tracking
on the web [15-18] and on mobile devices [19, 20]. These
studies have shown that there are two types of tracking:
stateful and stateless. In stateful tracking, an explicit
identifier is collected, which can be a cookie or a type
of personally identifiable information (PII), such as a
person’s email address. In contrast, stateless tracking
aims to fingerprint users by collecting seemingly benign
information, such as the screen resolution of a device or
how a device processes audio. To prevent both types of
tracking, multiple tools have been developed in industry
and in academia. These tools can be categorized into
three approaches: (i) static analysis, (ii) rooted devices,
and (iii) traffic analysis. In this section, we exclude the
discussion of static analysis tools, such as [2, 21-24],
and focus on the latter two approaches as they are most
closely related to NoMoATS.

Using a rooted device or building a modified OS al-
lows power users and researches to exert greater control
over a device. For instance, TaintDroid [25] adapted the
Android OS to track how a taint (PII) propagates from
its sink (an API call that provides the PII) to its source
(e.g. network APIs). Since TaintDroid only considered
unencrypted traffic as a sink, AppFence [26] extended
the system to also consider SSL traffic. However, both
approaches could not deal with PII sent over native
code. Similarly, ProtectMyPrivacy (PmP) [3] hooked
into PIl-accessing APIs and recorded stack traces lead-
ing to each API call. From the stack traces, they were
able to tell whether PII was being accessed by the app
or by a third-party library. However, PmP was not able
to hook into networking APIs to trace which part of the
app was sending out information. Unfortunately, root-
ing a device or installing a custom OS is difficult for the
average user, and certain phone manufacturers make it
altogether impossible. In our work, we use a rooted de-
vice for data collection only (Sec. 4.2.4). To the best of
our knowledge, our system is the first to be able to map
network requests (including ones sent from native code)
to the libraries that generated them.

Traffic analysis is the most promising approach as
it is the most user friendly. In fact, all of the anti-
A&T tools that are popular today (i.e. have millions
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Blocks
3rd Parties Identifiers
Tool Ads | Trackers | Stateful |Stateless| PIl Inspects Deusu?n Labeling Procedure
Mechanism
AntMonitor [12] |[ X X X X /|| Full HTTP payload FL Automated
ReCon [7] X X X X || Full HTTP payload ML Automated
AdGuard [5] v v v v || URL, HTTP Headers FL Manually create rules
Lumen [8] V4 v V4 v N Hosts ML Use existing FL
NoMoAds [9] v X v v J || URL, HTTP Headers ML Use existing FL and manually create rules
NoMoATS v v v v || URL, HTTP Headers ML Label libraries as being A&T related or not

Table 1. Comparing NoMoATS to existing VPN-based anti-A&T tools. Some tools focus on blocking PII only, while others adopt a
more aggressive approach and block all connections destined to third parties, thereby reducing both stateless and stateful tracking.

Some tools leverage machine learning (ML) for decision making, while others rely on filter lists (FL). Of the approaches that target

A&T beyond PIl, only NoMoATS offers minimal manual labeling — one only needs to label libraries with their purpose.

of downloads) are traffic analysis-based. For example,
AdGuard [5] has reached over five million downloads on
the Google Play Store alone [27]. We note that multi-
ple anti-A&T tools exist that are tailored to the web
ecosystem and are offered as standalone browsers (e.g.
Safari [28]) or browser extensions (e.g. Adblock Plus
[29]). While these tools and their research extensions
(e.g. [30-34]) also fall into the traffic analysis category,
we exclude them from our discussion as our focus is on
mobile anti-A&T tools, which are fundamentally differ-
ent in the technology they use and are tailored towards a
different ecosystem. Specifically, operating as a browser
or a browser extension provides a level of control that
is similar to using a rooted mobile device: all browser
traffic is intercepted and read in plain text, all rendered
web content (e.g. HTML and JavaScript) can be read
and modified, and various JavaScript APIs can be inter-
cepted. On a mobile device, the only way to intercept
traffic from all apps without rooting the device, is to use
a VPN, which has certain limitations. First, inspecting
HTML and JavaScript is not possible without recon-
structing pages from HTTP responses, which is difficult
to achieve in real-time on a mobile device with limited
battery. Second, the increasing adoption of TLS limits
the analysis to HTTP traffic and HTTPS traffic that
can be decrypted (e.g. when certificate pinning is not
used). Since VPN-based traffic analysis is also the ap-
proach taken by NoMoATS, we focus the rest of this
section on discussing existing tools in this space.

Table 1 compares prior mobile anti-A&T solutions
to NoMoATS by evaluating them with respect to several
criteria listed next. (i) What does the tool block in terms
of third-parties and identifiers? (ii) What traffic does the
tool inspect? (iii) What decision mechanism does the
tool use? (iv) What labeling procedure is required? The
remainder of this section explores each of our criteria
serially using example tools from Table 1.

The first design choice in building mobile anti-A&T
tools is choosing what to block. For instance, tools such
as AntMonitor [12] and ReCon [7] only block connec-
tions that contain PII. While this approach has the ad-
vantage of preventing tracking by first parties, it can
also lead to apps breaking since first parties often have
legitimate reasons for collecting PII (e.g. Google Maps
requires location data). Furthermore, blocking PII alone
does not account for other identifiers, such as cookies
and fingerprints. A more aggressive approach is to block
all third-party connections that are A&T related, which
is the approach taken by the majority of the tools in
Table 1, including NoMoATS. This approach will miss
tracking done by first parties, but will be able to block
all types of identifiers, including stateless ones, that are
sent to A&T hosts. In fact, a recent study [19] showed
that such approaches are able to significantly reduce the
number of fingerprinting scripts loaded into web pages.

The second design choice is what traffic to in-
spect. Inspecting the entire HT'TP payload, as done by
AntMonitor and ReCon, ensures that PII sent as part
of HTTP data are also caught. On the other extreme,
is the choice to block connections based on the destina-
tion host alone, as in Lumen [8]. However, this approach
cannot effectively block multi-purposed hosts that serve
essential content and track users. As a middle ground,
most tools opt in to inspect the requested URL and
HTTP headers. This approach can strategize against
multi-purposed hosts and is more lightweight than in-
specting the entire payload.

Another critical design choice for anti-A&T tools is
the underlying decision mechanism that identifies which
connections should be blocked. In the simplest case of
AntMonitor [12], that mechanism is a filter list contain-
ing known PII values: when a PII is detected in an out-
going packet, the connection is dropped. This is also the
approach taken by AdGuard [5], albeit with much more
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complex filter lists that match keywords in URLs and
HTTP headers. One of the filter lists used by AdGuard,
is EasyList [6], which, as of August 2019, contains close
to 74K manually curated rules. These rules are difficult
to maintain in the quickly changing mobile ecosystem:
over 90% of the rules in EasyList are not triggered in
common use-cases [35] and it can take months to up-
date the list in response to changes [36]. An alternative
to filter lists is machine learning, proposed by multiple
works [8, 9]: instead of matching HTTP requests against
a set of rules, a classifier decides what to block. Unfortu-
nately, machine learning solves only half of the problem.
As we discuss next, obtaining ground truth can prove
challenging.

In the case of training classifiers to identify HTTP
requests that contain PII (e.g. ReCon [7]), labeling data
is straightforward: one simply needs to setup a test-
ing phone for which all PII values are known and then
search the collected traces for occurrences of these PII.
On the other hand, labeling network traffic as A&T re-
lated is difficult. Prior art [8, 9] relied on existing filter
lists (e.g. EasyList) to label their data. This approach
circulates back to the labeling procedure adopted by
filter lists, which is still manual. Specifically, to create
new rules, filter list curators manually inspect network
traffic to determine which requests should be blocked
and then create generic blocking rules for them. In our
own prior work, NoMoAds [9], we also took this manual
labeling approach to supplement EasyList with mobile-
specific ad-blocking rules. Due to the scalability issues of
this approach, the NoMoAds dataset was limited to just
50 apps. Scalability is a problem for both approaches:
filter list-based and machine learning-based (when it
comes to labeling ground truth). The mobile ecosystem
is a rapidly changing environment, and thus it is im-
portant to have a scalable approach for blocking A&T.
NoMoATS aims to aid with scalability of blocking A&T,
as discussed next.

In our approach, network traffic is labeled automat-
ically. The human only has to label which libraries are
A&T, and such information is easily found by visiting
a given library’s web page. Furthermore, there are only
hundreds of libraries [1] to label, which is orders of mag-
nitude less than the tens of thousands of rules that exist
in filter lists [6] or the millions of websites and HTTP
requests that constantly change. Finally, the purposes of
libraries (A&T or not) change in much longer time scales
than the network behavior of apps, which is important
in the arms-race. Future work has the potential to auto-
mate the library labeling process as well by searching for
keywords on the library’s page. Continuously expanding

APK LibRadar++ 3rd Party Packages
com s | | Clustering-based |  =——p
google Features com.google
mopub
mobileads com.mopub
com.mopub.mobileads
nativeads Manually Labeled com.mopub.nativeads
Omeos List of A&T Packages com.mopub.common
volley com.admob com.mopub.volley
net com.mopub
zedge com.adsmogo
Network Traffic Match Network Traffic
— _—

Stack Traces A&T Packages Labeled

Fig. 1. Our labeling approach with LibRadar++ (Sec 3.1). How
we obtain stack traces pertaining to each network request is de-
scribed in Sec. 3.2.

automation in the task of blocking A& T traffic will al-
low the privacy community to keep up with the rapidly
changing mobile advertising and tracking ecosystem.

3 The NoMoATS System

In order to move the labeling process from HTTP/S
requests to libraries, we need two components. First,
we need to be able to analyze stack traces to determine
if a request was generated by an A&T library (Sec. 3.1).
Second, we need to be able to map network requests to
stack traces that led to them (Sec. 3.2).

3.1 Stack Trace Analysis

Android apps are structured in a way where classes be-
longing to different entities (e.g. app vs. library) are
separated into different folders (packages). One such
structure, belonging to the ZEDGE™ app, is shown
in the “APK” box in Fig. 1. Note how the APK is
split between packages belonging to Google, MoPub,
and ZEDGE™ itself. We can use this splitting to ex-
tract package names belonging to third-party libraries.
Prior art, LibRadar [37], did just that: they built sig-
natures for each packaged folder and then used clus-
tering to identify third-party libraries. Based on the
extracted library signatures, LibRadar can identify li-
braries in new apps and can provide the corresponding
packages names even when package name obfuscation is
used. Recently, an updated version of LibRadar was re-
leased — LibRadar++ [38], which was built over a larger
set of apps (six million).

As shown in Fig. 1, NoMoATS uses LibRadar++
[38] to analyze apps and automatically produce a list of
library package names contained within (Fig. 1). Note
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Fig. 2. Our data collection system (Sec. 3 and Appendix A): using Frida to hook into Android networking APls, capture network

traces, and the Java stack traces leading to the networking API call.

that LibRadar++ provides two package names as out-
put: the first is the package name used in the APK and
the second is the original package name of the library.
Most of the time the two names are the same. If an app
uses package-name obfuscation, then the names are dif-
ferent, but LibRadar++ is still able to identify the li-
brary via its database of library signatures. Although
there are some cases in which this identification fails
(see Sec. 5.2), the LibRadar++ approach is still more
resilient than matching against a static list of library
package names. Furthermore, if an updated version of
LibRadar++ becomes available, it can easily be plugged
into NoMoATS. Based on the original package name
that LibRadar++ provides it is trivial to identify pop-
ular A&T libraries: one can simply search the Internet
or use an existing list of library names and their pur-
poses, such as AppBrain [1]. To identify A&T libraries,
we use the list prepared by LibRadar [39]. We note that
this is the only point where manual effort is needed: in
mapping package names to their primary purpose.

Once we have a list of A&T package names, we can
search stack traces for their presence — as shown in Fig.
1. If an A&T package name appears in a stack trace
leading to a networking API call, we can mark the cor-
responding network activity as A&T. The next section
describes how NoMoATS collects network requests and
the responsible stack traces.

3.2 Hooking Android Networking APlIs

Fig. 2 provides an overview of the part of the NoMoATS
system that is used to collect network requests and the
stack traces leading to them. To intercept network re-
quests, we use the Frida [40] dynamic instrumentation

toolkit. Frida allows us to write JavaScript code that
gets injected at run-time into an application process.
The injected code is referred to as the agent, which can
monitor and modify the behavior of the application by
hooking into API calls of interest. Once inside a hooked
function, we can fetch the Java stack trace that led to
the function being hooked. Our methods can be used by
future researchers to gain deeper insight into network
activities within Android apps, not just in terms of ad-
vertising and tracking, but across all types of third-party
libraries. We begin by providing some background on
the Android OS and then explain our hooking method.

Background. As shown in Fig. 2, Android apps typ-
ically access the network by using Java API calls
available through the Android Software Development
Kit (SDK). These APIs can be high level, such
as java.net.URLConnection.openConnection, or low
level, such as java.net.Socket. Regardless of which
API is used, every network operation eventually ends
up in a Posix socket operation, which then gets trans-
lated into a standard C library (1ibc) socket API call.
Previous studies, such as TaintDroid [25], have hooked
into Posix sockets to gain visibility into outgoing net-
work traffic. However, apps can also use the Android
Native Development Kit (NDK) to write additional
C modules for their apps. These native modules can
access the libc socket APIs directly and bypass any
hooks installed in Java space (see Fig. 2). To send
encrypted traffic, apps typically use Java SSL APIs,
such as javax.net.ssl.SSLSocket. These API calls get
translated into native OpenSSL operations, which are
only available through the SDK. We note that apps can
also use their own versions of OpenSSL and other SSL
libraries — Appendix A.2 discusses this scenario further.
To ensure that we catch all outgoing communication
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performed by an app along with the detailed stack traces
leading to each network request, we place the following
Frida hooks, as depicted in Fig. 2:

Plain Text Traffic. Prior work in both static (e.g. [2])
and dynamic (e.g. [25, 26]) analysis of Android apps
suffered from not having visibility into native code. To
overcome this limitation, we hook into the 1ibc sendto
function to collect plain text data sent via both the SDK
and the NDK API calls.

Encrypted Traffic. In order to read plain text traffic
before it becomes ciphertext, we hook into Android’s
OpenSSL SSL_write function.

WebView Traffic. WebView is a special GUI compo-
nent that provides developers with ready-made browser-
like functionalities. This component is often used in con-
junction with regular GUI components to display web
elements, such as banner ads. Although our previous
two hooks can successfully capture WebView traffic, we
also want the ability to accurately label if the traffic
is coming from the app or from a third-party library
by examining stack traces. Unfortunately, in the case
of WebView, all network requests are handled by the
Android System WebView app (see Fig. 2). This means
that regardless of if the WebView element was created
by the app or by a library, the network requests it gen-
erates will appear to be coming from the System We-
bView app. To handle this special case, we hook into
the WebViewClient constructor since apps need to cre-
ate a WebViewClient object in order to control a We-
bView. From the WebViewClient constructor we get a
stack trace leading to the app or a library and we save
each WebViewClient and stack trace pair for later query.
We also hook the shouldInterceptRequest function
of the WebView app’s WebViewContentsClientAdapter
class. This function gets called every time any Web-
View in the system attempts to load a resource. Since
each WebViewContentsClientAdapter instance is tied
to a specific WebViewClient object, we can refer to
our saved data structure containing WebViewClient and
stack trace pairs to get the stack trace responsible for
each request.

Saving Traces. To save the captured network traces,
we utilize the Frida client that runs outside of the in-
spected application (see Fig. 2). When a hook has been
triggered, our Frida agent sends the captured network
request and the responsible Java stack trace to the client
via the Android Debug Bridge (ADB). The client can
then save the collected data on the PC for any future
analysis. Depending on the hook triggered, the client

saves the data in either PCAPNG or JSON format, as
described in Appendix A.3.

4 Machine Learning Application

The motivating application for developing NoMoATS
was training classifiers to detect ads and trackers. With
NoMoATS, we were able to collect a large dataset with
minimal human involvement (Sec. 4.1) and then use that
dataset to train machine learning classifiers to predict
not just ad but also tracking requests (Sec. 4.2).

4.1 Data Collection

In this section, we describe how we used NoMoATS to
collect a training dataset. First, in Sec. 4.1.1, we dis-
cuss how we selected and downloaded apps to test, and
the testing environment we used when exercising the
selected apps. Next, in Sec. 4.1.2, we summarize our
collected dataset.

4.1.1 Selecting and Exercising Apps

To diversify our dataset, we used the Google Play Unof-
ficial Python API v0.4.3 [41] to download the top 10 free
apps from each of the 35 Google Play Store categories
on January 29, 2019. Previous studies, such as [9] and
[7] used top lists (e.g. AppAnnie) to select apps to test
without taking categories into consideration. However,
in our experience we found that such lists are heavy
on certain categories, such as games and entertainment,
and can sometimes miss less popular categories, such
as art & design and family. This can cause problems
because some categories of apps are more likely to use
specific third-party libraries. For instance, game apps
often use the Unity Ads library [42] to display in-game
ads. Since we want to gain a comprehensive view of
the mobile advertising and tracking ecosystem, we chose
to diversify our app categories. In addition, we manu-
ally verified that none of the selected apps are browser
apps, such as Firefox. Since browser apps function like
any desktop browser, they can open up the entire web
ecosystem. In this paper we focus on learning mobile
A&T behavior, and leave the in-browser anti-tracking
protection to standalone tools, such as Safari [28] (see
Sec. 2 for further discussion about browser tools).
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Fig. 3. Distribution of packets in our dataset: y-axis shows the
number of apps that generated the corresponding number of
packets on the x-axis. Packets are HTTP/S requests.

Since some apps appear in multiple categories, we
ended up with a total of 339 distinct apps. We ran each
app using NoMoATS (Sec. 3) on a Nexus 6 device run-
ning Android 7.1. We disabled the Chrome WebView
and used the Android System WebView to ensure com-
patibility with our Frida hooks (Sec. 3.2). Since the
Frida hooks may be affected by updates of Google Play
Services and of the Android System WebView, for re-
producibility purposes we indicate that we used versions
9.8.79 and 55.0.2883.91, respectively.

To automatically exercise apps at scale, we used
Droidbot [43], as shown in Fig. 2. Each app was ex-
ercised with Droidbot for five minutes, sending inputs
every two seconds. Certain apps could not be installed
or had run-time errors. For instance, a couple apps de-
tected the rooted state of the device and would not
start. Some apps required a Google Play Services up-
date, which we could not update as it would affect our
Frida hooks. Future work can update Frida hooks to
work with new versions of Google Play Services and to
hook into common methods for root detection and pro-
vide false responses to the apps (Sec. 6). In total, we
had to exclude 32 apps, leaving us with a total of 307

apps.

4.1.2 Data Summary

First, to understand how well Droidbot explores apps,
we have plotted the distribution of packets (HTTP/S
requests) in Fig. 3. We note that most apps generated
at least 50 packets, with over a dozen apps generat-
ing 400 or more packets. We examined the nine apps
that did not generate any traffic and found that three
of them required an account. Two of them were meant
for moving data to another device, and thus required ad-
ditional hardware for proper testing. Another two apps

Count
Apps Tested 307
Total Packets 37,438
A&T Packets 13,512
Apps with Packets 298 Number of
Apps with 10+ Positive and 128 Packets| Apps | Devs
Negative Samples WebView | 17,057 | 167 | 132
A&T Libraries 37 SSL_Write | 17,028 | 295 | 239
A&T Libraries with Packets 26 libc sendto| 3,353 | 129 | 108

(a) (b)

Table 2. Statistics about: (a) our dataset; (b) the number of
packets, apps, and developers (devs) that triggered each Frida
hook (Sec. 3.2). Packets are HTTP/S requests.

required a SIM card or a valid phone number, which our
test device did not have. Yet another pair of apps could
not start due to incompatibilities with Frida. Similarly,
the 19 apps that generated less than 10 packets also ei-
ther required logins or were gaming apps that Droidbot
had trouble exploring. We discuss these limitations fur-
ther in Sec. 6. Next, in Table 2a we provide additional
summaries of our dataset. In total, we collected 37,438
packets, 13,512 (36%) of which were A& T packets. With
our dataset of 307 apps we were able to test 37 different
A&T libraries, 26 of which have sent out at least one
network request.

In Table 2b, we explore the value of our Frida hooks
based on the number of packets, apps, and developers
that triggered each hook. Surprisingly, most (17,057) of
the packets that we captured were sent by WebView ob-
jects. This means that had we not placed the appropri-
ate hooks within the WebViewClient constructor (Sec.
3.2), we would have been unable to obtain stack traces
for over 45% of captured packets that range across 167
unique apps and 132 unique developers. Unfortunately,
we also had to discard 83 WebView packets because
Frida was unable to acquire stack traces for them. We
discuss this limitation in Sec. 6 and omit these packets
from our dataset of 37,438 packets. Out of 298 apps that
sent at least one packet, 295 used OpenSSL and trig-
gered our SSL_Write hook. Our 1ibc sendto hook saw
the least usage: only 129 apps (108 unique developers)
triggered this hook, resulting in just 3,353 packets. This
indicates that more apps and developers are moving to-
wards better security practices by using encryption.

The NoMoATS Dataset. We use this dataset to
train the classifiers discussed in the next section, and
this is the strength of the machine learning approach
presented in this paper. Our main contribution is in
our dataset: it has labels for trackers (not just ads is
in our prior work [9]) and it is larger in scale. We have
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released our dataset and open-sourced NoMoATS [14]
to allow other researchers to collect ever larger datasets
by letting NoMoATS run longer and on more apps.

4.2 Machine Learning Approach

In this section, we present our machine learning ap-
proach. First, we discuss our training setup in Sec. 4.2.1.
Second, we train a classifier on our entire dataset of
37,438 packets (Sec. 4.2.2). For the rest of the paper,
we will refer to this classifier as general classifier — a
term coined by ReCon [7]. Third, we explore the pos-
sibility of training per-app classifiers — classifiers built
by training on a specific app’s dataset only (Sec. 4.2.3).
Finally, in Sec. 4.2.4, we discuss a potential deployment
scenario and evaluate the time it takes for our classifiers
to make a prediction on a mobile device.

4.2.1 Setup

We build on our prior NoMoAds open-source code [9]
to train C4.5 Decision Tree (DT) classifiers since it was
shown in [7, 9] that they work well when classifying
mobile requests. Moreover, [9] has shown that DT clas-
sifiers can run in real-time on mobile devices. We fol-
low the standard approach for feature extraction from
HTTP requests, as was done in [7, 9, 44, 45]. Specifi-
cally, we use a bag-of-words model where we break each
packet into words based on standard URL delimiters
(e.g. “/7, “=", “?7”). We discard standard HTTP head-
ers [46], words that appear too infrequently, and any
words that consist of only one character. The remaining
words are used as our features. To evaluate which fea-
tures have the most importance, we selectively extract
words from various parts of requests as discussed next.

Host. First, we evaluate how well our classifiers can
perform when operating only with second-level domains
(SLDs) or hostnames. Evaluating on SLDs can help
identify which SLDs are only involved in A&T activi-
ties. This can make filter lists, such as EasyList, shorter
by eliminating the need to list all possible hosts within
an SLD. Using hostnames only is representative of a sit-
uation where TLS traffic cannot be decrypted, and we
are only left with DNS requests or with the server name
identification (SNI) field from TLS handshakes.

URL. Second, we evaluate how using more of the packet
helps with classification. Specifically, how well can a
classifier perform when using only the path component

F-score | Accuracy | Specificity | Recall | Training | Tree | Prediction

Feature Set (%) (%) (%) (%) Time Size | Time (ms)
Domain 87.72 90.82 90.80 90.84 | 284ms 1 10.12+0.08
Host 90.25 92.68 92.03 93.84 | 331ms 1 0.11 +£0.06
Path Component | oc 51 | 049 | 9511 |82.31| 5.59hrs | 535 [0.8541.13
of URL
URL (Host & Path)| 90.63 93.35 95.76 89.08 | 6.27hrs | 556 |0.87 +1.10
URL+Referer+ | o 77 | o618 | 9631 | 95.95| s.00hrs | 488 [0.83+0.92
Content Type
URL and HTTP 95.56 96.74 96.50 97.18 | 5.50hrs | 371 |0.92+1.15
Headers

Table 3. General Classifier Performance (Sec. 4.2.2) in terms of
F-score, accuracy, specificity, recall, training time (at the server),
tree size (number of non-leaf nodes), and average per-packet
prediction time on the mobile device (Sec. 4.2.4).

of the URL (including query parameters) and when us-
ing the full URL (hostname and the path component).

URL and HTTP Headers. Finally, we evaluate how
adding HTTP headers helps with classification. First,
since some filter lists (e.g. EasyList) use the Referer and
Content-Type headers, we evaluate the added benefit of
these two headers alone. Next, we evaluate how using
all the HTTP headers helps with classification.

4.2.2 General Classifier

Table 3
validation when training a general classifier across the

summarizes the results of five-fold cross-

entire dataset. We report the following metrics: F-score,
accuracy, specificity, recall, training time, and tree size
(non-leaf nodes). We find that using the SLD as the
only feature yields an F-score of 87%. Unsurprisingly,
using hostnames as a feature increases the F-score to
90%. This means that even when traffic cannot be de-
crypted, we can still block 90% of A&T requests by
blocking DNS requests to the corresponding hosts or
by matching the SNI field from TLS handshakes. How-
ever, it is possible for hosts to collect tracking data
and to also serve content necessary for the function-
ality of the app. For example, we found that the host
1h3.googleusercontent.com is often contacted by the
AdMob library. However, 1h3.googleusercontent.com
is also often used to fetch various Google content, such
as images of apps displayed on the Google Play Store.
In such a scenario, more features are needed.

To that end, we train a general classifier using the
path component of the URL, including query param-
eters. As shown in Table 3, using these features ac-
tually decreases the performance of the classifier. Fur-
thermore, the resultant tree size is 535, which is much
larger than the 188 non-leaf nodes reported in [9]. We



NoMoATS: Towards Automatic Detection of Mobile Tracking = 53

believe the difference in these findings is caused by our
larger and more diverse dataset. In addition, we find
that training a general classifier on the path compo-
nent of the URL takes over five hours. Next, we train
a general classifier using the full URL and find that
the F-score increases, but at the cost of an increased
tree size and longer training time. Interestingly, when
adding the HTTP Referer and Content Type header val-
ues as features, the F-score increases even more while
the training time and tree size both decrease. This signi-
fies the importance of these two features and validates
the EasyList community’s choice to use them in their
filter lists. Finally, using all the headers (last row in
Table 6) achieves the highest F-score of over 95% and
the smallest tree size (371 non-leaf nodes). This is be-
cause some A&T libraries use custom HTTP headers,
which can be used to easily identify a request as A&T.
For example, Chartboost [47] (a mobile advertising li-
brary), uses the following HTTP header key-value pair:
“X-Chartboost-Client: Chartboost-Android-SDK...” We
found this HT'TP header value early in the decision tree,
indicating its high information gain.

While the general classifiers perform well in terms
of F-scores, the slow training times may become prob-
lematic. With our current dataset of 298 apps daily up-
dates are still possible: performing five-fold cross val-
idation takes about 15 hours when using all features.
However, as of September 2019, the Google Play Store
contains over 2.7 million apps [48]. Thus, to achieve bet-
ter coverage, we would have to train on thousands more
apps, which would further increase our feature space and
training time. One way to avoid this would be to follow
the approach we proposed in [9] and select apps that
contain specific A&T libraries, until all A&T libraries
were explored. Another approach, discussed in the next
section, is to train per-app classifiers, using a particular
app’s data alone.

4.2.3 Per-App Classifiers

Rather than training one classifier over the entire
dataset, we explore the idea of training a classifier per-
application. Since VPN libraries, such as AntMonitor
[12], can provide packet-to-app mapping, we can ap-
ply a separate classifier to each app. Thus, we train a
separate classifier for each application in our dataset,
using that app’s data only. ReCon [7] proposed a simi-
lar approach where they trained per-SLD classifiers for
predicting PII exposures. Although it is possible for us
to also train separate classifiers for each SLD in our

dataset, we argue that per-app classifiers are more ap-
propriate for realistic deployment.

Consider the scenario when a new user wants to
sign up for our system — she will need to download our
classifiers. In order to reduce impact on RAM and disk
space usage of her mobile device, she will want to down-
load the minimal amount. Since it is impossible to know
in advance which SLDs will be contacted, the user will
need to download classifiers belonging to all possible
SLDs, of which there are millions. As of February 25th,
2019, the .com TLD (top level domain) alone consists
of over 140 million SLDs [49]. In contrast, according
to a 2017 report by AppAnnie [50], U.S. users have less
than 100 apps installed on their phones, on average. The
numbers are similar for other countries examined in the
report. Thus, with per-app classifiers, a new user in our
system would need to download less than 100 classifiers.
Furthermore, when a user installs a new app, the appro-
priate classifier can be downloaded, without the need to
guess which SLDs the new app will contact. Even if we
could predict which SLDs apps will contact, the number
of SLDs contacted will usually be higher than the num-
ber of apps installed on a user’s phone. For example, in
our dataset of 307 apps, 699 SLDs were contacted.

One problem with both per-app and per-SLD clas-
sifiers is that sometimes there is not enough training
data. For instance, as shown in Table 2, our dataset con-
tains only 128 apps that have at least 10 positive and
10 negative samples. ReCon [7] proposed the general
classifier as a means to deal with those SLDs for which
no specialized classifier could be trained. However, this
method does not eliminate the need to train a large gen-
eral classifier. Fortunately, our per-app approach allows
us a more flexible solution, described next.

In our dataset, the low number of samples is caused
by the inability of Droidbot to adequately exercise cer-
tain apps. For example, one app in our dataset, Fz-
treme City GT Car Stunts, is a game app written in
Unity 3D [51]. Since, as was confirmed in [45], Droid-
bot struggles with extracting Ul elements when Unity
is involved, the tool was unable to perform many mean-
ingful actions inside Extreme City GT Car Stunts. This
led to the collection of just seven negative samples and
three positive ones — not enough to train a reasonable
classifier. To confirm our hypothesis about Droidbot,
we manually exercised the app for five minutes. As ex-
pected, the manual interaction generated more packets:
eleven negative samples and 226 positive ones. This pro-
cedure can be repeated for any app with a low number
of samples. In contrast, in the case of per-SLD classi-
fiers, it is unclear how to increases samples for a given
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Average * Standard Deviation

F-score Accuracy Specificity Recall Training Tree Size Prediction

Feature Set (%) (%) (%) (%) Time (ms) Time (ms)

Domain 92.87+10.4| 94.51+6.6 | 86.77 +22.6|93.96 +11.9| 1.09+4.82 [0.95+0.21| 0.11 £ 0.07
Host 93.53+7.02| 94.91+5.40| 88.01+£20.4192.90+10.0| 1.12+4.75 [0.99 +£0.09( 0.12 +0.13
Path Component of URL 89.99+9.77| 92.98 +6.24 | 86.39+£21.8|88.60+ 13.7| 66.8+119 (8.88+7.42| 0.17+0.20
URL (Host & Path) 92.81+8.65|95.15+5.53 | 91.98 +13.492.00 + 10.9| 69.9+133 [8.54+6.83| 0.16 +0.18
URL + Referer + Content Type |94.14 +6.90| 96.02 +4.54 | 94.21 +10.3|92.90+ 8.96| 45.6 £ 79.5 [ 5.57 £4.50| 0.18 + 0.20
URL and HTTP Headers 93.23+8.97|95.79+6.24| 91.71 +18.4 |92.94 +10.6] 48.6+90.4 [3.71+2.67| 0.16 £0.18

Table 4. Performance of per-app classifiers (Sec. 4.2.3) and their average per-packet prediction time on the mobile device (Sec. 4.2.4).

Tree size here is the number of non-leaf nodes.

SLD. In the future, a crowdsourcing platform, such as
CHIMP [52] can be used to generate inputs for apps
with a low number of samples (Sec. 6). We note that
certain apps will always have zero positive samples. For
instance, in our dataset we had four apps that contained
no A&T libraries and thus they could not generate any
A&T packets. Such apps can have their traffic always
be allowed by the VPN.

Next, we discuss how we train per-app classifiers
using the NoMoATS dataset. For the purposes of this
section, we skip training classifiers for apps that have
less than 10 samples of each class and report results on
the remaining 128 apps. Specifically, we evaluate each
feature set from Sec. 4.2.1 with five-fold cross-validation
on each of the 128 per-app classifiers. In Table 4, we re-
port the average and standard deviation for the follow-
ing metrics: F-score, accuracy, specificity, recall, train-
ing time, and tree size (non-leaf nodes). We find that,
on average, the per-app classifiers perform similarly to
the general one — Tables 4 and 3. We find that in the
case of per-app classifiers, using the full URL along with
the HTTP Referer and Content Type features yields
the best results — an average F-score of over 94%. In-
terestingly, in the case of per-app classifiers, using the
full feature set slightly reduces the F-score, but also de-
creases the average tree size. Furthermore, using hosts
as a single feature also yields a high average F-score of
over 93%. Training on the path component of the URL
performs the worst — an average F-score of ~90%. This
shows that, as expected, the hostname is one of the most
important features for identifying trackers, and that is
why many common filter lists (e.g. MoaAB [13]) operate
on the host level alone. In addition, we note that train-
ing per-app classifiers takes milliseconds. This means
that if we need to provide a classifier for an app that
was not part of our dataset or adapt a classifier for an
updated app, we can test it for five minutes (either with
Droidbot or manually) and build a specialized classifier,
all in under 10 minutes. In contrast, in the case of a gen-
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Fig. 4. Complementary Cumulative Distribution Function (CCDF)
of F-scores of the 128 per-app classifiers trained on the full fea-
ture set (URL with all the HTTP headers). Over 80% of the clas-
sifiers reach F-scores of 90% or above, and over half of the classi-
fiers outperform the general one with F-scores of over 95.6%.

eral classifier, an additional or an updated app would
require re-training over the entire dataset. Finally, we
note that the per-app classifiers have an average tree
size below 10 — orders of magnitude less than the size of
the general classifier described in the previous section.
As we show in Sec. 4.2.4, the tree size has an impact on
real-time prediction on the device, and thus it is bene-
ficial to have smaller trees. Moreover, smaller trees are
easier for list curators to examine and adjust.

For the rest of this section, we will focus on the clas-
sifiers trained using the full URL with all the HTTP
headers (last row in Table 4). Fig. 4 shows the Comple-
mentary Cumulative Distribution Function (CCDF) of
F-scores of these per-app classifiers. We note that over
14% of our per-app classifiers achieve F-scores of 100%.
80% of our classifiers reach F-scores 90% or higher, and
56% outperform the general one with F-scores of over
95.6%. Next, we examine the trees that our classifiers
produce. Fig. 5 shows one such tree. We note that the
tree first splits on the query key app_id. Such keys are
often followed by package names of apps from which
they are sent. When an app displays an ad, the ad net-
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Not A&T

Fig. 5. An example decision tree of a per-app classifier trained on
the full URL and all HTTP headers.

work must know which app has shown an ad so that
the corresponding developer can get paid. However, this
also leads to user profiling: over time ad networks learn
what type of apps a particular user uses. The last fea-
ture in the tree, x-crashlytics-api-client-version
is even more interesting. Crashlytics is considered to be
a development library (not an A&T library), but it also
has the potential to track the user since it is installed
across many apps. In fact, some popular ad-blocking fil-
ter lists have began including hosts belonging to Crash-
lytics [13]. Fig. 5 shows that our classifiers generalize:
the depicted classifier has learned to identify Crashlytics
as a tracking service even though it was not labeled by
NoMoATS. Therefore, although Table 4 shows a high
false positive rate (low specificity with high variance),
it does not mean that these false positives are actual
false positives that will cause app breakage (see Sec. 5).

4.2.4 Deployment

The NoMoATS system described in Sec. 3 requires a
rooted device. As such, it is meant to be used by re-
searchers and filter list curators to assist in collecting
datasets and in creating new rules, respectively. On the
other hand, the classifiers presented in this section, can
be applied on top of a user-space VPN service, such as
the open-source AntMonitor [12]. This deployment sce-
nario is illustrated Fig. 6: we use NoMoATS to test apps,
label their traffic, and train classifiers at the server.
Since our proposed approach is to train per-app clas-
sifiers, the (re)training can be done on a per-app ba-
sis, as needed. For example, if an application gets up-
dated, we can re-run NoMoATS and re-train our classi-
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Fig. 6. Potential deployment: classifiers are trained offline and are
used to predict and block A&T requests intercepted by a VPN
service, such as AntMonitor [12].

fiers within minutes since the labeling is automatic and
training classifiers takes milliseconds (see Table 4).

Once the classifiers are ready, they can be down-
loaded on the mobile device, where they need to act on
live traffic without significantly impacting user experi-
ence. To that end, we evaluate both our general and per-
app classifiers in terms of their efficiency when applied
on a mobile device. In both cases, we use the classifiers
trained on the full feature set. For a more even compar-
ison, we took the per-app classifier that had the largest
tree size of 12 non-leaf nodes. We then took five nega-
tive and five positive samples from the app that resulted
in this tree to act as test packets. The packets ranged
in size from 63 bytes to 2836. Using a Nexus 6 (Quad-
Core 2.7 Ghz CPU, 3 GB RAM) running Android 7.1,
we fed these 10 packets to the general classifier and to
the per-app one, and recorded the time to classify using
System.nanoTime (). Each test case was repeated 100
times and we recorded the averages and the standard
deviation. The results are reported in Tables 3 and 4 in
the last column. We find that both the general classifier
and the per-app one can classify a packet within one
millisecond, making both models suitable for real-time
deployment. As expected, the smaller tree size of the
per-app classifier allows for even faster classification —
within a quarter of a millisecond.

5 Evaluation Results

In this section, we analyze the quality of NoMoATS la-
bels (Sec. 3) and our classifiers’ predictions (Sec. 4.2).
Specifically, we look into agreements and disagreements
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between popular anti-tracking filter lists and our labels.
We also seek to understand if our classifiers can gen-
eralize and learn to recognize A&T requests that were
not part of the training set. We start by introducing
our baseline for comparison — popular filter lists, and
how we labeled our dataset with them (Sec. 5.1). Next,
we evaluate the quality of NoMoATS labels by compar-
ing them with those of filter lists (Sec. 5.2). Finally, we
compare the labels provided by filter lists with both our
general classifier (Sec. 5.3) and our per-app classifiers
(Sec. 5.4), and we provide insight on our false positives
and false negatives.

5.1 Baseline for Comparison

As our baseline for comparison, we use popular ad-
blocking and anti-tracking filter lists that are publicly
available, and we match them against the requests in
our dataset. Specifically, we compare against EasyList,
EasyPrivacy [6], and MoaAB [13]. EasyPrivacy is a
small list of less than 17k rules aimed at blocking track-
ers that are not already blocked by the ad-blocking Ea-
syList that contains ~74k rules. Thus, we use these two
lists in conjunction. Although MoaAB is less popular
and is mostly aimed at ads, it was reported in [19] to
be the most effective list for mobile devices: it blocked
the most requests to third parties and fingerprinting
scripts. We fetched all three lists on August 7, 2019 and
used an open-source Python parser, adblockparser [53],
to match our data against the rules. The parser can
work with any list as long as it is in Adblock Plus for-
mat [54]. Both EasyList and EasyPrivacy already come
in this format. To convert MoaAB into Adblock Plus
format, we follow the guideline for writing filter rules
[54]. Since MoaAB operates by modifying a rooted An-
droid’s hosts file, the conversion is straightforward: for
each hostname specified in MoaAB we write an Adblock
Plus rule that blocks that hostname. Once the lists are
ready, we need to parse our collected requests and feed
the required information to adblockparser. The details
of this procedure are described in Appendix B.

Tables 5, 6, and 7 summarize the results of matching
against the three filter lists and comparing the outcome
against NoMoATS, our general classifier, and our per-
app classifiers, respectively. A label of “0” indicates a
negative label, and a label of “1” indicates a positive la-
bel —an A&T request. To simplify the tables, we merged
all three lists into one column, where “1” indicates that
at least one of the filter lists labeled a given sample as

Auto | Filter
Row | Label | Lists Count (%) Notes
1 0 0 16,054 (42.9%) negative samples
2 1 1 10,549 (28.2%) agreements with filter lists
disagreements: new A&T
3| 1| o | 2963(7.91%) 538 W
samples found
disagreements: AutoLabel
4| o | 1| 7872021.0%) 538 N
false negatives
Total Requests 37,438 (100%)

Table 5. Sec. 5.2: comparing NoMoATS to popular filter lists
(EasyList, EasyPrivacy and MoaAB). “0" = negative label; “1"”
= a positive label (A&T request). Example: row three means
that 2,963 requests were detected by NoMoATS, but were not
detected by any of the three filter lists.

positive, and a “0” indicates that all three lists labeled
a given sample as negative.

5.2 Evaluating NoMoATS

First, we examine the quality of the labels provided by
NoMoATS by analyzing the agreements and disagree-
ments between our labels and the filter lists’ labels. Out
of 37,438 requests, 16,054 (42.9%) were labeled as neg-
ative by both approaches (first row).

Agreements with Filter Lists. We begin by ana-
lyzing row two, which represents agreements between
NoMoATS and the filter lists. We find that for over 28%
of requests, at least one filter list agrees with our labels.

New A&T
Samples Found. Next, we examine the cases where
NoMoATS disagreed with the filter lists and found extra
positive samples. Row three indicates that 2,963 (7.91%)
positive samples were identified by our approach, but

Disagreements with Filter Lists:

were undetected by any of the filter lists. We examine
the hostnames contacted by these 2,963 requests and
find 162 distinct hosts. A plurality (563) of these re-
quests were destined to 1h3.googleusercontent.com.
Out of these 563 requests, 499 were generated by a
prior A&T request, as indicated by the presence of
A&T SLDs (e.g. doubleclick.net) in the HTTP Ref-
erer header. It is possible that filter lists do not need
to block these as they would never be generated if the
ad from doubleclick.net was never fetched. However,
the remaining 64 requests (out of the 563), did not con-
tain a Referer header and were sending various width
and height measurements. Such measurements could be
used to fetch ads or to potentially fingerprint the user.
Since the googleusercontent.com SLD often servers es-
sential content, a more complex rule should potentially
be added to EasyList to block A&T requests destined
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to this multi-purposed SLD. Some of the other samples
out of our 2,963 positive ones detect hosts that should
be included filter lists. For example, 286, 71, and 23 re-
quests were destined to SLDs belonging to the Startapp,
Tapjoy, and AppLovin mobile advertisers, respectively.

Disagreements with Filter Lists: False Nega-
tives. Finally, we examine row four, which repre-
sents NoMoATS false negatives — 7,872 (21%) requests.
A plurality of these requests (1,272) were going to
graph.facebook.com, which is a known tracking do-
main. NoMoATS failed to mark these requests as posi-
tive because they were sent by the social library — Face-
book. Such libraries, as well as various development li-
braries (e.g. Unity 3D), may sometimes need Internet
access for legitimate reasons. Distinguishing between
legitimate and A&T requests of other (non-A&T) li-
braries is the current limitation of our work (Sec. 6).
Another 625 requests (out of the 7,872) were going to
googleads.g.doubleclick.net. We examined some of
the stack traces that led to these requests but were not
marked to contain an A&T package name. We found
that these requests were sent by variations of the obfus-
cated com.google.android.gms.internal.zzabm.zza
package. The parent com.google.android.gms package
name belongs to Google Play Services [55], which pro-
vides not just ad libraries, but development libraries
as well (e.g. Google Maps). Thus, we cannot simply
block all requests sent by Google Play Services. We
note that most requests to the doubleclick.net SLD
are sent by com.google.android.gms.ads and com.
google.android.gms.internal.ads packages. Thus, it
is possible that the obfuscated package name is the
.ads package that was able to avoid detection by Li-
bRadar++. This suggests that future work may ben-
efit from combining static and dynamic analysis to
discover more package names in apps (Sec. 6). We
note that out of the 7,872 requests, 5,246 were labeled
as positive by MoaAB only, indicating that MoaAB
could contain false positives. Indeed, all 233 requests
going to fls-na.amazon.com that were blocked by
MoaAB alone, were sent by an Amazon app. Even more
problematic, MoaAB blocked 49 requests destined for
www.okcupid.com, sent by the OkCupid dating app.
Thus, some of the 7,872 NoMoATS false negatives could
actually be false positives in filter lists.

Summary. We find that the NoMoATS approach is
accurate when labeling requests generated by A&T li-
braries. The reason our method misses certain A&T
requests is partly caused by the fact that we do not
consider first-party tracking and tracking by social

General | Auto | Filter
Row | Prediction | Label | Lists Count (%) Notes

1 1 0 1 577 (1.54%) | agreements with filter lists

By 1 0 0 261 (0.70%) disagreements: new A&T
samples found

3 0 1 1 235 (0.63%) disagreements: p?rediction
false negatives

Total Requests 37,438 (100%)

Table 6. Sec. 5.3: comparing general classifier predictions to
NoMoATS and popular filter lists (EasyList, EasyPrivacy and
MoaAB). “0” = negative label; “1" = a positive label (A&T re-
quest). Example: row four means that 261 requests were labeled
as positive by the classifier, but were labeled as negative by all
three filter lists and NoMoATS.

(e.g. Facebook) and development (e.g. Unity 3D) third-
party libraries. Another reason for missing some A&T
hosts are package names that avoid detection by Li-
bRadar++4. We leave improving LibRadar++ to future
work. Overall, our approach can provide suggestions for
filter lists: it detected 162 hosts that are candidates for
inclusion in filter lists and highlighted potential false
positives in MoaAB.

5.3 Evaluating the General Classifier

In this section, we evaluate the performance of the gen-
eral classifier (Sec. 4.2.2) trained on the full feature
set (URL and all the HTTP headers). We examine the
agreements and disagreements between the classifier’s
predictions, NoMoATS, and filter lists. To that end, in
Table 6, we extend Table 5 to include a column for pre-
diction. Note that we omit the discussion of agreements
between NoMoATS and the classifier’s predictions as
these samples were discussed in the previous section.

Agreements with Filter Lists. Table 3 indicates that
the general classifier has a specificity of 96.5%, which
signifies a low false positive rate. In total, out of 23,926
samples labeled as negative by NoMoATS, 838 (~3.5%)
are predicted as positive. However, Table 6 shows that
577 of such “false positives” are also labeled as positive
by at least one filter list. In other words, 577 samples
(over 68%) out of 838 “false positive” ones are actually
true positives that were missed by NoMoATS for reasons
discussed in the previous section. This finding illustrates
that our classifiers can pick up patterns that extend past
the training data.

Disagreements with Filter Lists: New A& T Sam-
ples Found. Next, we examine the remaining 261 false
positives that were not detected by any of the filter lists
—row two in Table 6. Out of the 261, the majority (138)
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were going to the unity3d.com SLD and were either
sharing various app events performed by Droidbot or
were requesting ads from the unityads.unity3d.com
sub-domain. Another 61 requests were destined to other
A&T SLDs, such as tapjoy.com, crashlytics.com,
and urbanairship.com. These samples demonstrate the
general classifier’s ability to generalize past the training
data and find new A&T hosts that should be included
in filter lists. Out of the remaining 77 samples, only 14
were obvious false positives that could cause app break-
age (e.g. Hulu app sending a request to hulu.com). As
for the remaining 63 samples, it is unclear whether or
not they are A&T. For instance, 10 requests were des-
tined to googlevideo.com, but it is difficult to tell if
they were fetching video ads or content.

Disagreements with Filter Lists: False Negatives.
Row three shows that the general classifier resulted
in 235 false negatives. We further examined these re-
quests and found that they were affecting 29 distinct
SLDs, including some popular A&T SLDs, such as
doubleclick.net. Investigating further, we found that
for most of such domains, there was at least one request
that was marked as negative by NoMoATS (see Sec. 5.2
for more information about NoMoATS false negatives).
These false negatives in the labeled data then confused
the general classifier and led to false negative predic-
tions. Only four out of the 29 SLDs were never marked
as negative by NoMoATS, and in these cases, each do-
main experienced at most 2 false negative predictions.

Summary. We find that most of the general classi-
fier’s false positives are actually false negatives in the
NoMOoATS labeling mechanism. This illustrates that our
classifier can generalize past the ground truth and find
new A&T hosts. Similar results were reported by [33]:
machine learning algorithms trained with popular filter
lists result in “false positives” that highlight false neg-
atives in the ground truth data. In terms of false neg-
atives of the general classifier, most of them also stem
from the false negatives of NoMoATS caused by limita-
tions of our system (see Sec. 6).

5.4 Evaluating Per-App Classifiers

In this section, we compare the performance of our per-
app classifiers (Sec. 4.2.3) with NoMoATS, the general
classifier, and the filter lists. All the classifiers in this
section are trained using the full feature set (URL and
all the HTTP headers). For a fair comparison, this sec-
tion of the paper focuses on the 24,100 requests that

Prediction
Per- |Gener| Auto | Filter
Row | App al | Label | Lists Count Notes
1 1 0 0 1 54 (0.22%) agreements with
2 1 1 0 1 41 (0.17%) filter lists
3 1 0 0 0 207 (0.86%) |disagreements: new
4 1 1 0 0 65 (0.27%) | A&T samples found
5 0 0 1 1 43 (0.18%) disagreements:
6 1 1 1 193 (0.80%) prediction false
Total Requests 24,100 (100%)

Table 7. Comparing per-app classifiers’ predictions to general

classifier's predictions and to filter lists. “0” = negative label; “1
= a positive label (A&T request). Example: row three means that
207 requests were labeled as positive by per-app classifiers, but
were labeled as negative by all other approaches.

we were able to label with our per-app classifiers, i.e.
requests belonging to apps with less than 10 samples of
each type are absent from this analysis. To that end,
in Table 7, we extend Table 6 to include a column for
per-app classifiers. Note that we omit the discussion of
agreements between NoMoATS and the per-app classi-
fiers’ predictions as these samples were discussed in Sec.
5.2.

Agreements with Filter Lists. Table 4 shows that
the per-app classifiers suffer from a higher false positive
rate than the general classifier (Table 3): specificity is
below 92%, and there is high variance among the per-
app classifiers. In total, out of 11,693 samples labeled
as negative by NoMoATS, 367 (over 3%) are predicted
as positive. However, Table 7 shows that 95 of those
“false positives” are also labeled as positive by at least
one filter list (rows one and two). Moreover, 54 out of
the 95 samples were correctly labeled as positive by the
per-app classifiers, but not by the general one (row one).
This illustrates that the per-app classifiers are able to
learn patterns that not only extend past the training
data but are also different from the patterns picked up
by the general classifier.

Disagreements with Filter Lists: New A&T Sam-
ples Found. Next, we examine the 207 false positives
that were not detected by any filter list nor by the gen-
eral classifier — row three in Table 7. A plurality (67) of
these requests were destined to the unity3d.com SLD,
similar to what we observed with the general classifier in
Sec. 5.4. Examining these 67 requests further, we found
that all of them were sending various information about
the device, including a custom identifier that remained
the same across seven different apps. Similarly, 40
requests destined to settings.crashlytics.com were
also sending a unique identifier — potentially performing
cross-app tracking. This highlights that blocking stan-
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dard PII, such as advertiser ID, is not enough to prevent
tracking since third-party libraries can create their own
identifiers and use them across apps (see Appendix C
for further discussion about PII). 30 more requests were
going to app-measurement.com (an A&T domain), and
the remaining 70 requests were spread among 38 differ-
ent SLDs, with five or less requests going to each. We
randomly selected five of these SLDs for manual inspec-
tion. One request was going to googlevideo.com and it
is difficult to tell if it was requesting a video ad or con-
tent. Curiously, two requests were going to a hardcoded
IP - 203.107.1.1. Looking up the IP reveals that it
belongs to the Alibaba Advertising Co. This illustrates
another shortcoming of filter lists - they can be circum-
vented by hard-coding IP addresses. Two requests by
the Zillow app were sent to splkmobile.com (an ana-
lytics company). The remaining two requests were false
positives that could lead to app breakage: one was going
to moovitapp.com and it was sent by the Moovit app,
and another was going to cyberlink.com, sent by an
app developed by CyberLink.com.

Disagreements with Filter Lists: False Negatives.
Finally, we examine the 193 false negatives that were
marked as negative by the per-app classifiers but not
by the general one — row six in Table 7. These requests
were sent by 76 unique apps to 22 unique SLDs. We
randomly selected five of these apps to examine their
trees and the reasons behind the false negatives. In all
the apps we examined, there were one to three false
negatives, and each sample was generated by a differ-
ent cross-validation split. In three of the five apps, the
false negatives were samples that appeared infrequently
in the dataset, and thus were not part of the training set
in some cross-validation splits. For example, in one app
all three false negatives were the only ones in the app’s
dataset to be destined to the android.bugly.qq.com
host. In the remaining two cases, the decision trees con-
tained words such as “Mobile” and “Android,” which are
common words that appear in the User-Agent HTTP
header field. This indicates that we can further improve
our feature selection to help the classifiers pick better
features.

Summary. We find that our per-app classifiers are able
to uncover A&T samples that are missed by NoMoATS,
the general classifier, and by filter lists. As with the gen-
eral classifier, the per-app ones also suffer from actual
false positives that could lead to app breakage. We also
find that our false negative rate can be further improved
by better feature selection and by data balancing to
increase appearances of infrequent samples. While the

per-app classifiers perform similarly to the general one,
the per-app classifiers have the advantage of easy in-
spection and correction of faulty decision trees that are
only a few levels deep.

6 Limitations and Future Work

In this section, we discuss the limitations of this work
and outline future directions to remedy them. First,
NoMoATS relies on having a labeled list of A&T li-
braries, which still requires human involvement, albeit
decreased from millions of packers and tens of thousands
of rules to just hundreds of libraries. In the future, this
process can be further automated by crawling webpages
of libraries and searching for keywords.

Second, some mobile libraries are multi-purposed
(e.g. they provide development tools, but may also en-
gage in tracking). In certain cases, our proposed clas-
sifiers have already learned to identify tracking behav-
ior in requests sent by non-A&T libraries. We can use
these samples to feed back into our labels. Another idea
is to statically analyze which development and social
libraries explicitly request the Internet permission. Cer-
tain libraries have legitimate reasons for accessing the
Internet, e.g. the Facebook library providing a login op-
tion. In contrast, other libraries first check if their host
app has Internet access and then abuse that permission.
Such libraries can be safely blocked by our classifiers.
A third option is to supplement NoMoATS with filter
lists. Relatedly, throughout the paper, we have consid-
ered advertising and tracking together, which is reason-
able. Indeed, it is difficult to distinguish the two func-
tionalities as many advertising libraries are also engaged
in tracking. Furthermore, tracking on mobile devices is
most often done for the purpose of showing personalized
ads. For instance, it was shown in [8] that most of the
data collection on mobile devices is done by Google and
Facebook, whose primary source of revenue is advertis-
ing [56, 57]. Future work can explore the possibility of
looking into libraries that only do tracking but do not
show ads (e.g. analytics or development libraries) and
then using the collected data to learn what patterns can
be used to distinguish advertising from tracking.

Third, our current method does not check if block-
ing A&T requests causes applications to break. In the
future, we plan to explore if Droidbot can be used to
help us detect broken apps. Since Droidbot can ex-
plore UI elements in a predictable manner, any broken
functionality should be detectable across different test
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runs: one with blocking disabled and one with block-
ing enabled. Another option is to follow the filter list
approach: release our tool and rely on user reports for
detecting app breakage.

Fourth, for real-time A&T blocking (not labeling
and training), our design choice of using VPN to inter-
cept traffic applies to HTTP traffic, and HTTPS where
it can be decrypted. However, decryption is not possi-
ble when certificate pinning is used. In such cases, we
can train hostname-based classifiers, which still achieve
F-scores of over 90% and can be applied on DNS re-
quests or on the TLS SNI field. Another approach is to
use static analysis and modify a given app to trust user-
installed certificates, or to use a rooted device — see Sec.
2 for alternative design choices and their trade-offs.

Fifth, the tools we use (Frida, Droidbot, Li-
bRadar++) have certain limitations of their own. For
example, in the case Frida, apps can detect that they
are being executed in a different, rooted environment
and can choose to act differently or to not work at all
(as we saw in some of our experiments). Fortunately,
we can use Frida hooks to hook into common methods
for root detection and provide false responses to apps.
In addition, we saw that in some cases Frida failed to
acquire stack traces or had incompatibilities with cer-
tain apps. We hope that future releases of Frida will
address these issues. As for Droidbot, it often fails to
fully explore applications requiring a login. However,
most modern apps support third-party login function-
ality (e.g. via Facebook or Google). Future releases of
Droidbot can include the option to seek out these but-
tons and press on them. Another approach is to use a
system such as CHIMP [52] to crowdsource inputs for
more complex apps that Droidbot cannot handle, such
as games written in Unity. Finally, LibRadar++ some-
times fails to detect obfuscated A&T package names.
One way to address this limitation is to have a feedback
loop from our classifiers to LibRadar++ to help it learn
new obfuscated A&T package names.

Other, minor, possible extensions include the fol-
lowing. Our machine learning approach can be further
improved with better feature engineering and data bal-
ancing. We can also avoid confusing our classifiers by
reconstructing the HTTP Referer chain and excluding
HTTP requests that would not have been generated if
their referrer was blocked.

7 Conclusion

In this paper, we presented NoMoATS — a system that
can automatically label outgoing mobile network re-
quests with the A&T (advertising or tracking) library
that was responsible for generating them. NoMoATS
addresses the major bottleneck of both filter list-based
and machine learning-based approaches to ad-blocking
and anti-tracking. Specifically, it removes the need for
humans to label network traces, and instead requires
labeling of libraries only. This allows for improved scal-
ability of labeling: there are only hundreds of A&T li-
braries [1] as opposed to thousands of filter list rules [6]
that aim to correctly filter millions of HT'TP requests.
Furthermore, the purposes of libraries (A&T or not)
change in much longer time scales than the network be-
havior of apps and trackers, eliminating the need for
frequent manual updates. Network traces labeled with
NoMOoATS can be used to train classifiers or to pro-
vide suggestions to filter list curators. In our work, we
used NoMoATS to collect a new dataset, the first of
its kind: outgoing packets labeled with not just ad re-
quests (e.g. as in [9]) but also tracking (which is more
difficult to visually inspect), and at the fine granular-
ity of HTTP/S requests (not just tracking domains or
hostnames, e.g. as in [8]). We then used our dataset to
train machine learning classifiers that can detect A&T
requests on mobile devices in real-time using a VPN
interception service, such as the open-source AntMoni-
tor [12]. We showed that our classifiers can achieve high
F-scores of 93% on average, and can be trained in the
order of milliseconds. Finally, using popular filter lists
(EasyList, EasyPrivacy, and MoaAB), we showed that
our classifiers generalize past the training data: they
find samples that are also labeled as positive by filter
lists but are missed by NoMoATS. To enable further
research, we release our dataset and open-source the
NoMoATS tool [14].
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A System Details

In this appendix, we provide details on the NoMoATS
system (Sec. 3).

A.1 Stack Traces Intuition

In this section, we provide the intuition behind how we
find which requests were made by A&T libraries (Sec.
3.1). Figures Ta and 7b present trimmed stack traces
that were captured within the ZEDGE™Ringtones
& Wallpapers app, which has the package name
net.zedge.android. Fig. 7a shows the app starting an
SSL handshake, as indicated by the presence of the
package name net.zedge.android in the stack trace.
On the other hand, Fig. 7b shows the MoPub ad li-
brary starting an SSL handshake, as indicated by the
com.mopub package name.

A.2 SSL Libraries

In Sec. 3.2, we described how we hooked the OpenSSL
SSL_write function to captured TLS/SSL traffic before
it becomes ciphertext. This hook works when apps use
the version of OpenSSL provided by the Android OS.
To address scenarios where apps include their own ver-
sions of OpenSSL, we use the following procedure. We
hook into the java.lang.System loadLibrary and load
function calls to catch occurrences of native libraries be-
ing loaded. From there, we check each loaded library
for the inclusion of the OpenSSL SSL_write method,
and if such a method exists, we add a Frida hook to
it. In our experiments, we have seen apps load their
own versions of OpenSSL, but Droidbot did not trig-
ger the functionalities required to make the apps use
their OpenSSL modules. We note that it is also possible
for apps to include SSL libraries other than OpenSSL,
but a 2017 study has shown that only 14% of apps (out
of the studied 7,258) use third-party SSL libraries [58].
Furthermore, apps that do use other SSL libraries are
usually browser-type apps which are not the focus of
this paper (see Sec. 4.1.1).

A.3 Network Requests Formats

In this section, we provide details on how we save net-
work requests captured by Frida in Sec. 3.2. In the
case of non-WebView traffic, we save the requests in

PCAPNG format with the following procedure. When-
ever a sendto, write, or SSL_write is triggered, the
Frida agent has access to the full packet bytes that were
about to be sent since the packet buffer is passed as a
pointer argument to each function. In the case of sendto
and write, the socket file descriptor is also passed. With
the help of various libc functions and the file descrip-
tor, the agent can learn auxiliary information about the
intercepted connection: the IP address of the remote
server, the destination port, and whether the traffic is
TCP or UDP. To learn the same information about an
SSL connection, the agent can utilize a 1ibss1 function
to fetch the file descriptor from the SSL object which is
passed as a pointer argument to SSL_write. The agent
then sends this auxiliary information along with the
captured packet bytes to the Frida client for further pro-
cessing. Based on the provided information, the client
can reconstruct parts of the network and transport layer
headers and save the packet in PCAPNG format. We
chose the PCAPNG format as it allows the usage of
common tools such as tshark for correctly parsing packet
bytes. In addition, the PCAPNG format allows adding a
comment to each captured packet. We utilize the packet
comment to store the Java stack trace leading to the
function call responsible for generating the packet.

To save WebView traffic, we utilize the JSON
format as follows. WebView traffic is always sent
over HTTP/S, and the shouldInterceptRequest func-
tion’s argument ShouldInterceptRequestParams can
be used to extract all HT'TP fields of interest. Since
shouldInterceptRequest operates on the application
layer, these fields are available in plain text, even in the
case of HT'TPS. We extract the following fields and save
them in JSON format along with the stack trace of the
responsible WebViewClinet (see Sec. 3.2): the full URL,
the HT'TP headers, and the HTTP method.

Finally, to facilitate parsing and training of ma-
chine learning classifiers, we convert all PCAPNG files
to JSON using tshark. For consistency with the data col-
lected from WebViews, we keep only the relevant HT'TP
fields, namely the full URL, the HTTP headers, and the
HTTP method. Based on our stack trace analysis from
Sec. 3.1, we also add a label to each JSON data point,
indicating whether or not it contains an A&T request.
These JSON files can then be used to train machine
learning classifiers, as described in Sec. 4.2.
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com.android.org.conscrypt.NativeCrypto.
SSL do handshake

com.android.org.conscrypt.NativeCrypto.
SSL do handshake

com.mopub.network.RequestQueueHttpStack.

net.zedge.android.api.request.BaseApiRequest.
run executeRequest
net.zedge.android.config.ConfigLoaderImpl. com.mopub.volley.toolbox.BasicNetwork.
loadConfigurationBlocking performRequest
net.zedge.android.config.ConfigLoaderImpl. com.mopub.volley.NetworkDispatcher.
loadWithBackoff processRequest
(a) (b)

Fig. 7. Example stack traces captured from the ZEDGE™Ringtones & Wallpapers app: (a) The app itself is initiating an SSL hand-
shake, as indicated by the presence of the package name net.zedge.android and the absence of A&T package names in the stack
trace; (b) The MoPub ad library is starting an SSL handshake, as indicated by the com.mopub package name.

A.4 Droidbot

To automatically exercise apps at scale (Fig. 2), we used
Droidbot — a lightweight tool that requires no modifi-
cations to the Android OS and no application instru-
mentation. Droidbot consists of two components: an
Android app and a Python script that runs on a con-
nected PC. The Droidbot Android app utilizes the An-
droid Accessibility API [59] to find Ul elements of an
app in testing, in real-time. The app sends this infor-
mation through ADB to the Droidbot Python script.
Upon receipt of the Ul data, the script can decide which
UI element to exercise and send the command through
ADB. Since UI elements can be thought of as a graph,
Droidbot offers two algorithms for automatic and re-
peatable UT exploration: Depth First Search (DFS) and
Breadth First Search (BFS). During our experiments we
found the DFS variant to cause apps to crash, hence we
decided to use the BFS algorithm for exercising apps.
We note that most previous studies that collect mobile
packet traces exercise apps either manually [9], or both
manually and with the Ul/Application Exerciser Mon-
key [60] (e.g. [7]). However, manual testing does not
scale well. On the other hand, Monkey, when used as
a standalone tool, can only send random events to the
device — it has no knowledge of the UI. This can lead to
limited coverage of the app, and can even lead to other
apps being exercised instead of the intended one. For
example, Monkey can end up clicking on ads or links
which open up browser apps. Droidbot can detect when
it has left the intended app and can send a command to
go back to the application in testing. Jin et al. [45] have
also used Droidbot to exercise apps and collect network
traces. We believe that this is the correct direction for
future research on mobile network traffic.

B Matching Against Filter Lists

In this appendix, we describe how we parsed our col-
lected requests and fed the required information to ad-
blockparser (Sec. 5.1). The tool takes in the full URL
and several options that are used by Adblock Plus.
Key options are: whether the request is a request to
a third-party (e.g. a site fetching content from a dif-
ferent domain than its own), whether the request is an
XML HTTP request (contains the HTTP Header X-
Requested-With: XMLHttpRequest), and what type of
content is being requested (e.g. an image or an HTML
document). We note that Adblock Plus has even more
options, however they are not available when operating
on a mobile device. For example, the option “websocket”
is used to identify requests initiated by WebSocket ob-
ject. Such information is only available when operat-
ing within a browser with the ability to hook into var-
ious APIs. On a mobile device where we operate on
a per-packet basis we can only use the three options
described earlier. In fact, the Adblock Plus library for
Android [61] uses the exact same three options. To de-
termine the content type of the request, we follow the
same logic as written in the Adblock Plus library for
Android [61]: we match the requested object from the
path component of the URL against file endings. For
instance, to determine if the requested file is an image,
we match against the following file endings: .gif, .png,
.jpg, -jpeg, .bmp, .ico. Determining whether the re-
quest is an XML HTTP request is straightforward: we
look for the presence of the X-Requested-With: XML-
HttpRequest HTTP header. Finally, to determine if the
request is to a third-party, we compare the origin (de-
fined by the scheme, host, and port) of the URL be-
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ing requested to the origin of the URL specified in the
HTTP Referer header. This method allows us to ex-
tract the three options needed to feed into adblockparser
along with the full URL request.

C Measuring Tracking

Throughout the Evaluation Section (Sec. 5), we used the
number of A&T requests as a measure for the volume
of tracking. Although reasonable, and consistent with
prior work [9, 19, 62, 63], this is not necessarily the only
measure for tracking. Other approaches, such as Re-
Con [7] and AntMonitor [12], have measured the num-
ber of Pll-containing requests. For comparison against
such approaches, we considered seven popular PII and
searched for them in the NoMoATS dataset. Specifically,
we searched for the Android Device ID, IMEI, email,
location coordinates, device serial number, advertiser
ID, and MAC address. We also searched for the MD5
and SHA1 hashes of these values. We found that only
2,684 requests in our dataset contain PII, as opposed to
the 13,512 requests that NoMoATS identified as A&T.
Furthermore, out of these 2,684 PII-containing requests,
less than 400 were labeled as A&T by NoMoATS and
EasyList with EasyPrivacy. This finding is consistent
with what was discovered in [8] as a recent trend — only
14.4% of A&T services collect explicit identifiers, sug-
gesting that trackers have moved from collecting PII
to other techniques, such as fingerprinting, in order to
evade detection. Thus, measuring tracking on the use of
PII alone also has limitations.
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