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ABSTRACT

In 2020, Apple introduced the Find My protocol, which allows own-
ers to crowdsource the location of their lost Apple devices even
when the lost device has no active internet connection (e.g., Wi-Fi,
Cellular). The Find My protocol is the basis for Apple’s AirTag
tracking tokens which were released later in 2021. In order to pre-
vent malicious use of these tokens, Apple also implemented “item
safety alerts” which can warn a person if they are being tracked
by an AirTag without their knowledge. However, researchers have
recently identified several shortcomings with these alerts that al-
low modified AirTags to track unsuspecting victims indefinitely
without being detected. Making matters worse, while recognizing
the observed malicious use of AirTags, news reports, Apple’s press
releases, and their intended anti-tracking improvements to the pro-
tocol do not consider the potential surreptitious use of the Find My
network by custom built AirTag clones.

In this work, we present an improved Find My protocol which
effectively limits the capabilities of malicious AirTags and guaran-
tees that they can be detected while tracking. We accomplish this
by adding additional cryptographic verification into the protocol,
which restricts tags to only using a bounded set of keys while track-
ing. In order to maintain - and exceed - the privacy guarantees of
the current Find My protocol, we make use of specialized partial
blind signatures.

To demonstrate the practicality of this protocol, we implement
it end-to-end using a programmable device with the same SoC
(nRF52832) as in current AirTags. We also benchmark the crypto-
graphic operations of our protocol and show that they require only
modest overhead during the initial pairing procedure.

KEYWORDS
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1 INTRODUCTION

Physical tracking devices have been in active use for decades, but
the cost, requisite communications back-haul, and maintenance
associated with traditional tracking devices (e.g., GPS transponders)
has limited their use to specific applications, like monitoring large
equipment or performing expensive targeted surveillance. In the
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past few years, commercial hardware vendors have seized the op-
portunity presented bymodern Systems on a Chip (SOCs) which are
small, inexpensive, power-efficient, programmable, widely-available,
and radio-enabled. These embedded systems support the produc-
tion of physical tracking devices designed for the consumer market
at scale. Instead of determining their own location and directly
reporting it back to the owner, which would require an expensive
and power-draining cellular radio, these devices rely on nearby by-
standers participating in the service to crowdsource their location
over close-range protocols like Wi-Fi or Bluetooth and report it
back to the owner on the device’s behalf.

Apple’s version of this product, AirTags [6], are particularly
effective because they use Apple’s Find My network [7], consisting
of millions of Apple devices which participate in the service by
default. AirTags have only a Bluetooth radio which they use to
send out “lost messages,” beacons indicating to nearby iPhones
and other Apple devices that they are lost. Then those “finding”
devices deliver the reports to an Apple server using their internet
connection. This allows AirTags to be found even when they are lost
outside of Wi-Fi or cellular range, since passerby devices can record
the lost message and deliver it once connectivity is reestablished.

Tracking devices like AirTags, designed to help consumers find
and recover lost belongings, present a serious novel threat to the
privacy of not only their users but everyone, in that they trivialize
the task of location surveillance. Since their release in Spring 2021,
popular media has been flooded with reports of AirTags used mali-
ciously, for theft [17, 18, 27], stalking and domestic abuse [2, 5, 19],
and to spy on well-known public figures [24]. In addition, in Feb-
ruary 2022 Apple released a statement [1] explicitly outlining con-
cerns about malicious AirTag use, stating they have worked with
law enforcement to successfully identify and apprehend malicious
actors using AirTags to perform unwanted tracking.

In an attempt to mitigate these tracking concerns, Apple has
introduced Item Safety Alerts (ISAs). If an iPhone observes the
same AirTag over a period of time and in separate locations, it
will alert the iPhone owner that they are likely the victim of un-
wanted surveillance and help them identify and disable the of-
fending AirTag. This feature is in part responsible for the media
response, since in contrast to surreptitious tracking technology
ISAs allow users to become aware their privacy has been violated
and report it. The presence of these news reports provide some
evidence that ISAs are succeeding in their intended task. Unfortu-
nately, previous work [21] has demonstrated that these alerts can
be trivially bypassed by programming inexpensive, commercially
available devices to participate in the Find My network. This al-
lows adversaries to construct one small programmable device that
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emulates multiple distinct AirTags over time. The lost messages pro-
duced by these custom devices are accepted by all Apple bystander
devices (e.g., iPhones), providing malicious tracking capabilities.
However, unlike genuine AirTags, these custom devices may not
alert nearby monitoring systems to their persistent presence, due
to the fact that they appear to be different devices at different times.
Because of the privacy properties associated with the Find My
network, it is difficult to detect malicious behavior of this type as
the protocol is currently deployed. While Apple has indicated a
list of intended implementation changes to improve anti-tracking
technology for AirTags [1], none of these planned changes provide
protection against malicious custom devices.

Further, other manufacturers, including Samsung, are quickly
following suit by developing their own tracking solutions [26].
Apple’s protocol provides many privacy guarantees in practice,
but as these networks are deployed and refined, there is no clear
definition for what security and privacy properties such a protocol
satisfies or should satisfy.

In the following, we propose formal security definitions for a
crowdsourced location tracking network like Apple’s Find My net-
work. We also introduce Blind My, a cryptographic protocol in-
tended as a drop-in replacement to the current Find My protocol
that ensures devices that send valid lost messages accepted by the
network are legitimate participants, and therefore will generate
ISAs. Our protocol successfully addresses the vulnerability identi-
fied byMayberry et al. [21] and prevents third-party stealth tracking
devices. We formally prove the protocol correct with respect to our
security definitions, provide a fully functioning open-source imple-
mentation, and evaluate its performance on hardware comparable
to an AirTag.

2 BACKGROUND AND RELATEDWORK

2.1 Prior Work

Since Apple has not publicly released technical specifications for
Find My enabled devices or the Find My protocol, there is a great
deal of prior work solving this problem by reverse engineering the
protocol [16], extracting and analyzing the AirTag firmware [22, 25],
and constructing tools to detect and analyze Find My traffic [14, 20].
Researchers have also studied ISAs [21] specifically, analyzingwhen
they are produced and how they can be circumvented. Prior work
also exists analyzing the security properties of other tracking ser-
vices [30], and researchers have produced high-level informal se-
curity notions for crowdsourced location tracking networks in
general [13], but these contributions analyze earlier tracking net-
works and do not reflect the novel security and privacy features
included in the Find My network. In particular, tracking networks
analyzed by prior work do not make any attempt to alert potential
victims of the presence of malicious tracking devices with a feature
like ISAs which are the primary focus of this work. For context, we
briefly describe the Find My protocol, AirTags, Item Safety Alerts,
cryptographic primitives required for our proposed protocol, and
known attacks on the security properties of the Find My network.

2.2 Find My Protocol

The FindMy protocol, introduced by Apple in 2019, allowsmany dif-
ferent devices (e.g., iPhones, iPads,MacBooks) to broadcast Bluetooth

Table 1: Breakdown of the byte structure of a lost message

in the Separated state.

Byte Value Comment
MAC addr Public key Bytes 0-5 of PWj

0 0x12 Payload Type
1 0x19 Length
2 Battery info, see discussion

3-24 Public key Bytes 6-27 of PWj
25 Key overflow Bits 0-1 of byte 0 of PWj
26 Byte 5 of Pi Unknown purpose

Lost Device

Rotating  
Public Key ! "

Bystander

Notes GPS location  
+ public key

#$%h(!")
&'(!"()!* +,($-",')

Server

Figure 1: Protocol execution showing the beacon broadcast

from a lost device being picked up by a bystander device

and a location report being encrypted and uploaded to the

server.

Low Energy (BLE) advertisement frames called lost messages which
contain as their payload a P-224 Elliptic Curve public key. Table 1
shows the format of a lost message. Because the BLE advertisement
frame is limited to a maximum of 27 application-usable bytes, the
first 6 bytes of the 28-byte public key are stored as the device BLE
MAC address. This means that the 6-byte MAC address used for
lost messages is not generated for link-layer addressing purpose
directly, as is the case with a traditional random MAC address, and
instead consists of the first 6 bytes of a compressed elliptic curve
point less two fixed bits required to form a valid randomized BLE
MAC address.

Upon receiving a lost message, a bystander device that partici-
pates in the Find My protocol extracts the public key contained
in the lost message (PWj in Table 1) and generates an ephemeral
key with which to complete an Elliptic Curve Diffie-Hellman Key
Exchange, producing a shared symmetric key. The bystander de-
vice then uses the symmetric key to encrypt a timestamp and GPS
coordinates with AES-128-GCM into an encrypted payload called a
location report. After some period of time and when the bystander
device is able to make a connection to the Apple servers, the by-
stander device uploads a key-value pair to the Apple servers, where
the key is the the hash of the received public key, and the value
is the encrypted location report recorded by the bystander device
when it received the initial lost message [16].

The Apple server stores location reports and permits queries
by key of this key-value store. Based on our experience using the
OpenHaystack tool [15] which facilitates building and locating
custom Find My devices, the server does not appear to rate limit
or prevent spurious or malicious queries, so long as the querying
device has an iCloud account.
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2.3 AirTags

Apple AirTags, introduced in 2021, are small, durable, coin-sized,
inexpensive commercial products that participate in the Find My
network by sending lost messages. They do not featureWi-Fi radios
or GPS technology and primarily communicate over BLE, keeping
their battery usage low. Thus, their expected battery life is around
one year during normal use. When purchased, AirTags must be
paired with a nearby Apple device, at which point they attach to the
iCloud account of that device’s owner. When an AirTag is not in the
proximity of an owner device (like an iPhone), it begins transmitting
lost messages once per second. An AirTag changes the content of
its lost messages by rotating to a new pseudo-random public key
daily. Each public key is derived by application of a key derivation
function (KDF) to the previous key, and all are derivable from secret,
encrypted data included in the iCloud account associated with the
AirTag.

We note that other devices within the Apple ecosystem produce
lost messages as well: iPhones produce lost messages when they are
unable to connect to Apple’s servers (so they can be found by their
owners in areas without a stable Internet connection), and when
they are powered off [12]. AirPods, Apple’s wireless headphone
product, also produce lost messages when separated from their
owning devices much in the way AirTags do.

2.4 Item Safety Alerts

With the release of AirTags, Apple also introduced an iOS feature,
the Item Safety Alert (ISA) intended to notify the owner of an
iPhone that they may be a victim of a malicious Find My tracking
device. These alerts appear when an iPhone observes the same lost
message consistently, exceeding some threshold of elapsed time
and travelled distance. Researchers have attempted to experimen-
tally determine these thresholds [21], and Apple has also publicly
announced intentions to change them [22]. The ISA includes a
warning that a malicious tracking device may be nearby, and in-
structions for how to identify and disable the device. In August 2021,
researchers released a tool called AirGuard [14] which provides
a similar functionality on Android devices. Later that year, Apple
also released an official Android app [8] that implements similar
Item Safety Alerts for Android. Apple has also just released a guide
for users to verify their devices are participating in the Find My
network and will receive ISAs [9] .

ISAs and AirGuard both function based on the principle that
devices can detect nearby lost messages and determine that a given
lost message is consistently present as the device moves and time
elapses. If a device consistently receives the same lost message, it
infers that there is an unknown AirTag tracking device present and
alerts the user. While the ISAs built into iOS only detect Find My
lost messages, the same principle can be applied to detect trackers
of all types, and the AirGuard application can detect trackers from
other manufacturers (such as Tile [28]) as well.

2.4.1 Attacks on Item Safety Alerts. Unfortunately, this approach
does not detect all malicious tracking devices. Recently, Mayberry
et al. [21] outlined a series of methods that defeat the ISAs technol-
ogy allowing malicious tracking by devices that can participate in
the Apple Find My network undetected. These devices avoid discov-
ery and will not trigger ISAs, thereby exploiting Apple’s network

of millions of iPhones which dutifully act as bystander devices and
report lost messages without user interaction.

The first approach taken by Mayberry et al. is to send lost mes-
sages with an invalid byte set for battery status (see Table 1). Sur-
prisingly, the researchers were able to determine that iOS devices
did not generate ISAs from lost messages constructed in this way.

Beyond this simple attack, the researchers showed that with the
battery byte set correctly, trackers could quickly rotate through
keys every few minutes rather than daily, which also prevented
alerts from being shown. To a detection service like AirGuard or
iOS, it appears as if new AirTags are present every few minutes
(plausible in a densely populated environment) rather than the same
tracking device remaining nearby over time. A malicious party can
then query Apple’s servers for all of the keys used in the rotation
for a given tracking device and recover the location history as with
a normal AirTag. In this way, the researchers were able to produce
malicious tracking devices with a comparable cost, form factor and
battery life to an AirTag that never produced ISAs when used to
track honest users. We reproduced these attacks, verifying that at
this time Apple has not patched the vulnerability.

However, we assert that even if Apple patched this original vul-
nerability, the Find My protocol is still deficient because malicious
trackers are able to leverage the Find My network. The goal of this
paper’s new protocol is to introduce additional cryptographic pro-
tections that ensure each tag is given only one valid key per day and
that they cannot feasibly produce any additional keys without help
from the server, thus preventing malicious actors from attempting
to circumvent ISAs. As a result, we can guarantee that Item Safety
Alerts function properly and malicious actors cannot successfully
track users without detection.

2.5 Partial Blind Signatures

In order to guarantee the authenticity of a user’s requests to the
server, but also provide anonymity to the user, our protocol makes
use of blind signatures. Introduced by Chaum [11], blind signatures
allow a user to interact with a signer to obtain a signature of their
input without the signer learning what that input is. There are
various applications of blind signatures, but they are principally
used for rate limiting, granting valid signatures for arbitrary data
while ensuring that the number of signatures issued is known and
controlled by the signer.

In our application, the data being signed are the public keys that
will be used by the tag. By adding this control to the protocol, we
guarantee that a malicious device cannot produce more keys than
it should be allowed to have, in order to circumvent tracking alerts.

It is important that we used blind signatures for this process
because we must maintain the privacy guarantees that exist in the
current Find My protocol. As it is now, the server cannot determine,
from seeing a public key, which device that key belongs to. If we
used normal digital signatures, the server would be able to corre-
late issued keys with a particular lost device later on, after seeing
location reports for it. Blind signatures prevent this because the
server does not see the actual public keys while it is signing them.

However, since the signatures will be computed blind by the
server, we need an additional way to guarantee that each key is
only valid for one day and that only one key is issued for each
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day. For this, we employ partial blind signatures [3] which can
additionally include some plaintext data which is visible to both
the signer and client and can be confirmed by the signer during the
signature process. For instance, the plaintext info in our protocol
will contain the date for which each key is valid.

We use the partial blind signature scheme fromAbe andOkamoto
[4] which is based on the hardness of the discrete logarithm problem.
We now reproduce the definitions of partial blind signatures and
refer the reader to the original paper for full details of the scheme.
Observe that there is a mistake in the security definition of Abe
and Okamoto [4], we instead use the corrected definition from the
follow-on work by Okamoto [23].

A partially blind signature scheme is composed of four algo-
rithms:
• KeyGen is a probabilistic polynomial time (PPT) algorithm
that takes a security parameter as an argument and outputs
a secret and public key pair (sk, pk).
• Signer and User are interactive PPT algorithms that jointly
compute a signature σ of a message m, including auxil-
iary plaintext data info. Signer starts with (sk, pk, info). User
starts with (pk, info,m). After interacting, User outputs ⊥ if
the protocol fails or (m,σ ) if the protocol succeeds.
• Verify is a PPT algorithm that takes as input (pk, info,m,σ )
and outputs accept if the signature is valid for the message
m and auxiliary date info or reject if it is not.

The correctness property of a partial blind signature scheme
is identical to that of a regular digital signature scheme, that a
correctly issued signature will result in the verification algorithm
accepting.

Definition 1 (Completeness). Let λ be the security parameter.
If Signer and User follow the signature protocol with the same input
(pk, info) thenUser outputs (m,σ ) such thatVerify(pk, info,m,σ ) →
accept with probability 1 − neдl(λ).

The security definition of a partial blind signature scheme is
similar to a blind signature, but with the additional requirement
that the auxiliary data info be known to both Signer and Userwhile
also being irrevocably tied into the signature in a way that can be
verified later with the public key.

There are two parts to the security definition: partial blindness,
indicating that the signer does not learn the inputm, and unforge-
ability, that a user not possessing the private key cannot forge a
signature for any new (m, info).

Definition 2 (Partial blindness). A partial blind signature
scheme achieves partial blindness, iff for all PPT adversaries A, there
exists a negligible function ϵ such that for sufficiently large λ

|Pr [ExpPartialBlind
A,Π (λ) = 1] − Pr [ExpPartialBlind

A,Π (λ) = 0]| < ϵ(λ).

That is to say, a signature scheme is partially blind if:
(1) The signer can be guaranteed that a plaintext info field is

included in the signature.
(2) The signer cannot distinguish between any two signatures

it has created with the same info field.
This property is extremely valuable in privacy-preserving sys-

tems because it allows the signer to have control over the rate that
signatures are created as well as who those signatures are granted

Partial blindness experiment

(1) Adversary A is initialized with 1λ and outputs a public key, pk,
two messages (m0,m1) and an auxiliary data info.

(2) Honest challenger C randomly generates bit b ∈ {0, 1}. Two
User algorithms are initialized U0 and U1 such that U0 gets
messagemb and U1 gets messagemb̄ . Both are given info and
pk.

(3) A engages in the signature protocol with both U0 and U1. U0
outputs (mb , σb ) and U1 outputs (m1−b , σ1−b ).

(4) C gives (mb , σb ) and (m1−b , σ1−b ) to A in random order, to
hide which user output which signature.

(5) A outputs b′ ∈ 0, 1.

Figure 2: Experiment Exp
PartialBlind

A,Π (λ)

Unforgeability experiment

(1) C is initialized with 1λ and outputs a public key pk.
(2) Adversary A chooses auxiliary data info.
(3) A chooses m and receives a signature σ from C such that

Verify(pk, info,m, σ ) = accept.
(4) Repeat previous step polynomially many times.
(5) A chooses (m′, σ ′) such thatm′ , m for anym sent in step

(3).
(6) C outputs 1 if Verify(pk, info,m′, σ ′) = accept and 0 other-

wise.

Figure 3: Experiment Exp
Unforgeable

A,Π (λ)

to, but the signatures themselves cannot be traced to the user that
received them.

Finally, we use a standard definition of unforgeability for digital
signatures.

Definition 3 (Unforgeability). Apartial blind signature scheme
achieves unforgeability, iff for all PPT adversaries A, there exists a
negligible function ϵ such that for sufficiently large λ

Pr [ExpPartialBlind
A,Π (λ) = 1] < ϵ(λ).

These two properties together provide a digital signature scheme
which will allow us to maintain user privacy while ensuring that
public keys in the FindMy protocol can be rate limited andmalicious
trackers can be caught with the existing Item Safety Alerts.

3 SECURITY DEFINITIONS

In this section, we provide a definition for a crowdsourced location
tracking protocol Π, list the parties that participate in Π, and give a
series of formal cryptographic security definitions that reflect both
the security goals the Apple Find My protocol achieves and the
additional properties required to prevent tag forgery or rotation
attacks such as those described in [21].

3.1 Parties

A crowdsourced tracking protocol Π involves the following parties.
Tracking device: This is the device whose location will be

tracked. It is presumed to not have ready access to the internet,
but does have Bluetooth Low Energy capabilities which it utilizes
to transmit lost messages (“Beacons”). Using Apple’s AirTags as
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a representative device, we assume limited memory (∼50 kb) and
CPU power.

Owner: The owner device is a more powerful device (laptop,
smartphone, tablet), has both Bluetooth and some connection to
the internet (Wi-Fi/cellular). This device has two main purposes: it
acts as a proxy to the internet for the tracking device during pairing
and it can query the server for locations of their lost devices. Note
that the owner device can also be the tracking device, e.g. iPhones
which transition to offline tracking devices when they are turned
off (as of iOS 15). In case of adversarial compromise, the owner
and tracking device are considered to be fully malicious (they can
participate in bad faith in protocols, change messages, etc.)

Bystander: A device that receives lost messages from the track-
ing device. It can receive BLEmessages and has, or will later reestab-
lish an internet connection via a Wi-Fi or cellular network. In prac-
tice, this device is usually a smartphone. It encrypts and sends the
location (“location report”) of the lost tracking device to the server.
This device is also fully malicious if compromised by an adversary.

Server: The server receives location reports from bystander
devices and interacts with owners to allow them to retrieve reports
for their lost tracking devices. We implicitly assume that the server
maintains some kind of internal state, a databaseD, where it stores,
e.g., location reports. The server is considered honest-but-curious
if compromised by an adversary.

Collusion: In our model, we allow for the bystander and server
to collude arbitrarily. The tag does not collude with any parties,
simply because it is the one trying to achieve privacy and has
nothing to gain by colluding.

3.2 Tracking Protocol

Moreover, a crowdsourced tracking protocol Π = (Pairing, Beacon,
GenReport, RetrieveReports) comprises four algorithms.

(1) Pairing(serial) → (Sserver, Sowner): A protocol between the
owner device and the server to establish any parameters or
long-term secrets necessary for the tracking device to oper-
ate. While the server does not have any input to this protocol,
the owner device inputs serial. The output of the protocol is
Sserver for the server and Sowner for the owner device. The
protocol may also output ⊥ if the server determines that
serial is not valid.
After pairing, the owner device communicates with the track-
ing device to share any secrets necessary for the protocol.
These devices are considered owned and controlled by one
entity so their communication is not explicitly described in
the security definition.

(2) Beacon(Sowner, t) → B: The tracking device outputs a BLE
advertisement beacon B to broadcast based on data it has
received during pairing from the owner. The tracking device
also uses the current time interval t as input. For simplicity,
and to match the current FindMy protocol, t is the number of
days passed since a fixed epoch (January 1, 1970). If Beacon
is executed honestly, and if t is outside of the range of dates
that the tag supports, i.e., before the time it was paired or
past the end of its service date, this function returns ⊥. The
range of dates that the tag supports is typically encoded into
both Sowner and Sserver.

Location indistinguishability experiment

(1) Adversary A is initialized with 1λ and outputs serial.
(2) Challenger C chooses random bit b ∈ {0, 1} and runs

Pairing(serial) with A being the semi-honest server. Conse-
quently, A receives Sserver, and C receives Sowner.

(3) A outputs t and two locations loc0 and loc1. A gives t to C .
(4) C computes B ← Beacon(Sowner, t ) and R ←

GenReport(B, locb ). If B = ⊥ (t is invalid), output 0. Oth-
erwise, C gives R to A who updates their internal database
D.

(5) C runs RetrieveReports(Sowner, Sserver, t , D) with A being the
semi-honest server. C receives R as output.

(6) A repeats steps 3 and 4 poly(λ) times.
(7) A outputs a guess b′.
(8) Output 1 if b = b′, otherwise 0.

Figure 4: Experiment Exp
Loc

A,Π(λ)

(3) GenReport(B, loc) → R: This is a protocol involving a track-
ing device and a bystander device. A bystander device re-
ceives a beacon B from the tracking device and creates a
location report R for its current location loc.
This R is typically sent to the server which updates its inter-
nal state D.

(4) RetrieveReports(Sowner, Sserver, t,D) → R: This is a proto-
col between the owner device with inputs Sowner and t , and
the server with inputs Sserver and D. The owner device re-
trieves a set of location reports R for a single tracking de-
vice for time period t . This protocol can fail, for example if
the owner presents incorrect authentication information, in
which case it returns ⊥.

3.3 Definitions

Apple has achieved several important privacy properties with their
current Find My protocol. In the following, we formally define
these properties, to ensure that our solution also meets them, while
also including new properties that support detection of malicious
tracking devices.

First, we formalize the properties which are already achieved
in Apple’s current AirTag protocol. One of the main goals of the
current protocol is that the location of tracking devices is hidden
from the server. Informally, an adversarial server cannot distinguish
between location reports for two different chosen locations. If this
is true, it implies that the protocol effectively hides the location of
the tracking device from the server.

We formalize this intuition with a standard indistinguishability
definition. Consider the location indistinguishability experiment
depicted in Figure 4.

Definition 4 (Location indistinguishability). A crowdsourced
tracking protocol Π provides location indistinguishably iff, for all PPT
adversaries A, there exists a negligible function ϵ such that

Pr [ExpLoc
A,Π(λ) = 1] < 1/2 + ϵ(λ).

In addition to hiding the location of the device, it should also be
the case that the server and the bystander cannot learn any useful
identifying information about the device itself when observing
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Tag indistinguishability experiment

(1) Adversary A is initialized with 1λ and outputs serial0 and serial1.
(2) Challenger C chooses random bit b ∈ {0, 1} and runs

Pairing(serial0) and Pairing(serial1) with A being the semi-
honest server. A receives (Sserver0 , Sserver1 ), and C receives
(Sowner0 , Sowner1 ).

(3) A outputs time interval t and location loc and gives it to C .
(4) C computes B0 ← Beacon(Sowner0 , t ), B1 ← Beacon(Sowner1 , t ).

If B0 = ⊥ or B1 = ⊥, output 0.
C computes R0 ← GenReport(B0, loc), and R1 ←

GenReport(B1, loc). C gives (B0, B1, R0, R1) to A.
(5) C runs RetrieveReports(Sowner0 , Sserver0 , t , D) and

RetrieveReports(Sowner1 , Sserver1 , t , D) with A being the
semi-honest server.

(6) A repeats steps 3 to 6 poly(λ) times.
(7) A outputs a t ′ that is not equal to any previously selected value

of t .
(8) C computes B0 ← Beacon(Sownerb , t

′), B1 ←

Beacon(Sownerb̄ , t
′). If B0 = ⊥ or B1 = ⊥, output 0.

C computes R0 ← GenReport(B0, loc), and R1 ←

GenReport(B1, loc).
(9) C gives (B0, B1, R0, R1) to A.
(10) C runs RetrieveReports(Sownerb , Sserver0 , t , D) and

RetrieveReports(Sownerb̄ , Sserver1 , t , D) with A being the
semi-honest server.

(11) A outputs a guess b′.
(12) Output 1 if b = b′, otherwise 0.

Figure 5: Experiment Exp
Tag

A,Π(λ)

beacons. We formalize that with a similar game-based experiment,
except this time varying the device identity.

Consider experiment ExpTag
A,Π(λ) in Figure 5. There, an adversar-

ial server runs the pairing protocol with two devices and then gets
a beacon and location report for one of the devices, whereupon
it must guess to which device these correspond (steps 7 to 11). In
an initial learning phase (steps 3 to 5), the adversary also gets to
receive a series of validly computed beacons and reports from both
devices before being challenged to guess a final unknown one.

Definition 5 (Tag Indistinguishability). A crowdsourced track-
ing protocol Π provides tag indistinguishably iff, for all PPT adver-
saries A, there exists a negligible function ϵ such that

Pr [Exp
Tag

A,Π(λ) = 1] < 1/2 + ϵ(λ).

Note that, in this definition, the adversary receives both the bea-
cons and the location reports, meaning that the indistinguishability
property applies to the bystander and the server or the pair of them
colluding together. It also includes both the beacon and querying
phases of the protocol, meaning that this property guarantees that
the owner’s location queries also cannot be linked together.

Finally, we present a new definition that aims to address the
malicious tracker problem. This security definition is not met by the
current AirTag protocol. In this definition, contrary to the previous
ones, the adversary is the owner of a tracking device. The goal of
the adversary is to create two valid beacons for a single time period
and be able to retrieve the location reports corresponding to both

Beacon unforgeability experiment

(1) Adversary A is initialized with 1λ and receives a serial from
challenger C .

(2) A maliciously runs Pairing with C being the server. C uses
serial as their input. A receives Sowner, and C receives Sserver.

(3) A outputs a time period tA that is valid for the performed
pairing, two locations (loc0, loc1) such that loc0 , loc1, and
two beacon messages (B0, B1) such that B0 , B1. A gives
(loc0, loc1, B0, B1) to C .

(4) C selects two random bits b0, b1 ∈ {0, 1} and computes
GenReport(B0, locb0 ) andGenReport(B1, locb1 ) and updates in-
ternal database D.

(5) A gives tA to C and maliciously runs RetrieveReports with C
being the server poly(λ) number of times. C ’s input is Sserver,
tA , and D.

(6) C generates a random bit b′ and sends it to A
(7) A sends loc′ to C .
(8) Output 1 if loc′ = locbb′ , otherwise 0.

Figure 6: Experiment Exp
Beacon

A,Π (λ)

beacons. If the adversary cannot do this, then the definition ensures
that only a single beacon value can be used per time period.

Consider the experiment shown in Figure 6.

Definition 6 (Beacon Unforgeability). A crowdsourced track-
ing protocol Π provides beacon unforgeability iff, for all PPT adver-
saries A, there exists a negligible function ϵ such that

Pr [ExpBeacon
A,Π (λ) = 1] < 3/4 + ϵ(λ).

This game relies on the fact that an honest tag should only be
able to have one valid beacon message per time period, which is
what enables tracking devices to be detected using Item Safety
Alerts. In step (3), A must produce two beacons B0 and B1 for the
same time period. The challenger C then generates lost reports for
both beacons, randomly selecting between the locations provided
by A to give A the most possible control.

If the protocol is Beacon Unforgeable, then the owner will only
be able to retrieve one of these location reports and will have to
guess for the other, therefore winning the game with probability
3/4 (half the time they are queried on the report they know and
win with probability 1 and half the time they are queried on the one
they don’t know and win with probability 1/2). Any non-negligible
advantage beyond 3/4 means that they were able to retrieve some
information about both beacons, violating this property.

Finally, we need one further property to make sure that only
one pairing operation can be performed per authorized, purchased
device. We omit a full game-based definition for property, as it is
straightforward.

Definition 7 (Serial Unforgeability). A crowdsourced track-
ing protocol Π provides serial unforgeability iff, for all PPT adversaries
A, the probability thatA can forge a serial such that Pairing(serial)
does not output ⊥ is less than ϵ(λ).

Here we use the same notion of forgery as with digital signatures,
even if A is given many valid serials they should not be able to
forge another valid one that they have not been given. Fortunately
there are many easy ways to achieve this: making the serial itself a
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signature, making it a MAC, choosing randomly from a large space
and having the server store a whitelist of valid serials, etc.

This property is very important: if the serial numbers are not
controlled, a malicious owner can perform the pairing operation
many times and retrieve secret keys for multiple tags that could be
coalesced together into one device violating Beacon Unforgeability.

3.3.1 Limitations. The goal of Beacon Unforgeability definition is
to prevent malicious tags from using more keys than they should
be allowed to for a given time period, which would let them avoid
being detected by Item Safety Alerts. A device participating in a
protocol which has the Beacon Unforgeability property still may
not be detected by the ISA system, however, due to the limitations
of that system itself. If a tracking device broadcasts beacons very
infrequently or limited to a small period of time during the day it
might still avoid being detected.

Unfortunately, the ISA system is closed-source and we do not
fully know how it works. Moreover, it is being updated regularly
by Apple. The aim of our definitions and protocol is simply to
guarantee that all devices are restricted to the proper key rotation
schedule as legitimate AirTags are, closing the vulnerability discov-
ered by Mayberry et al. [21] and giving the ISA system the best
shot at detecting malicious trackers.

3.4 Existing Find My Protocol

To motivate our protocol, we briefly assess Apple’s Find My proto-
col, as currently implemented in 2022, and demonstrate that not all
of our proposed definitions are achieved. We provide proof sketches
for the two security properties that Find My satisfies (Location In-
distinguishability and to some extent Tag Indistinguishability). We
also construct an adversary which wins the game in the Beacon
Unforgeability experiment with non-negligible probability to show
that Find My does not satisfy Beacon Unforgeability.

For a full detailed description of the Find My protocol, we refer
to Heinrich et al. [16]. We note here for convenience a few useful
facts about the protocol as it relates to our definitions. For Find My,
serials are not used in the protocol past Pairing and the Pairing
function simply produces a Master Beacon Key as Sowner, with
Sserver = ⊥, where individual beacon keys are derived using a KDF
on a rolling basis. Report retrieval requires the owner to query the
server for the SHA-256 hash of the public key used to construct
a beacon. We model the SHA-256 based KDF used in the Find My
protocol and the hash function SHA-256 applied to each public key
for retrieval as random oracles.

Location Indistinguishability. We reduce the Location Indis-
tinguishability Experiment to the IND-CPA game for the symmetric
encryption algorithm (in this case AES-128-GCM) used to encrypt
location reports. Suppose an adversary A wins the Location Indis-
tinguishability game with non-negligible probability. Let the adver-
sary A ′ play the IND-CPA game for the symmetric cryptosystem
above.A ′ runsA, and each timeA sends a pair (loc0, loc1) and a t ,
A ′ picks a random P224 public key to use to calculate Beacon, and
calculates GenReport(Beacon(t), loc0) GenReport(Beacon(t), loc1)
to send to its challenger. A ′ gives the result from the challenger
to A in place of R in step (4), and when A outputs b ′, A ′ outputs
this value as its output. We note that the keys used in beacon con-
struction are constructed via application of the KDF (i.e. a random

oracle) and so are uniformly random, and therefore are identically
distributed to the keys constructed by A ′, and that the key gen-
erated by A ′’s challenger is constructed via the same algorithm
as the challenger in Exp

Loc

A,Π(λ). This means that R is identically
distributed to the value produced by A ′ in place of it, and the
advantage of A, A ′ are equal and therefore both non-negligible.

Tag Indistinguishability. For Tag Indistinguishability, we note
that except with negligible probability, the Master Beacon Keys
SOwner0

and SOwner1
are distinct. Further, in the random oracle

model, any two beacons with distinct SOwner or t are a fixed tem-
plate embedded with a uniformly random P-224 public key. This
means that in step (4) and step (8) of ExpTag

A,Π(λ), B0 and B1 are a de-
terministic function of uniformly random group elements selected
by a random oracle, and R1, R0 are directly derived from B0, B1.
This means all of the messages A receives in the game are values
selected independently at random that do not depend on the value
of b, giving the required result.

However, there is a practical flaw in the way the protocol is
used that makes it so that Find My currently does not achieve Tag
Indistinguishability. This flaw has been described by Heinrich et al.
[16]. The location server requires a user to authenticate with their
iCloud credentials before retrieving location reports. The location
reports are indexed by their public keys (or a hash of the public key
as indicated in Figure 1), which cannot be linked to a particular tag
or owner. However, the fact that the owner must be logged into their
iCloud account to retrieve the reports means that the server can
link particular reports to an owner, and hence distinguish between
reports for different tags. This is a strange oversight given that
that the key derivation part of the protocol seems to be specifically
designed to prevent the server from linking public keys back to
individual tags. It could be easily fixed in the future by removing
iCloud authentication.

Serial Unforgeability. It is not known how the serial numbers
are generated for the Find My protocol. Since there is no attempt
to control the public keys that are used in the system, this property
does not actually matter for the existing Find My protocol. As
demonstrated by researchers [15, 21] it is trivial to create amalicious
tag that participates in the protocol even without a serial number.

Beacon Unforgeability. We now present an adversary A that
wins ExpBeacon

A,Π (λ) with probability 1 with the current Find My pro-
tocol. Thus, we demonstrate that Find My does not achieve Beacon
Unforgeability and consequently also motivate our improved pro-
tocol. Adversary A proceeds as follows: A can simply ignore the
Master Beacon Key, generate random keys to construct each bea-
con B0, B1, and select two random distinct locations and a random
time period to complete step (3). ThenA hashes each key and uses
these hashes as its input for RetrieveReports, recovering the two
locations correctly with probability 1.

This attack has been demonstrated by Mayberry et al. [21] and is
possible because the current implementation of the location server
does not perform any validation on the keys that are requested
during report retrieval. This is Find My’s main shortcoming that
we address in our protocol.
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4 BLIND MY PROTOCOL

Our Blind My protocol addresses the problem of malicious track-
ers by achieving the Beacon Unforgeability property defined in
Section 3.3. Our improvements are confined to the Pairing and
RetrieveReports portions of the protocol, with the behavior of the
tag and bystander unchanged except for minor practical details to
allow our implementation to work at the user level rather than the
OS level (see Section 6 for details).

The main idea of Blind My is to restrict each authorized tag
to possessing a single valid key per time interval (one day in Find
My and our proof-of-concept implementation). Unlike the current
Find My protocol, which allows the tag to create its own keys in an
arbitrary manner and then retrieve them later without any validity
check, Blind My has the server generate signed public keys for the
tag during the pairing process. This guarantees that the tag only
gets one key per time interval, and the digital signature prevents
the owner from generating further keys by themselves.

This naïve solution, using regular digital signatures, would vio-
late Tag Indistinguishability because the server granting the signed
public keys would later recognize which owner they belong to when
location reports are uploaded. Instead, we employ blind signatures
to solve this problem. Due to the blindness property of these signa-
tures, the server is not able to link the signed public keys that it will
see later on to any single tag pairing process. It only knows that
the signatures are valid, not when those signatures were created.

Yet, blind signatures again introduce a small problem: in a blind
signature protocol, the owner is able to specify any plaintext that
they choose to be signed by the server. A malicious user could try
to get 365 keys signed that are all valid for the same day, instead of
one per day, and use them to execute the rotating key attack from
Mayberry et al. [21]. We fix this by using partial blind signatures,
which allow the signer to include some embedded plaintext into
the blind signature which is not under the control of the device
owner. This way, while the owner can choose the keys however
they like, they do not have control over the validity period of each
key and so they will always end up with one key per time interval.

With this addition, a malicious tag can beacon any public key
that it likes, but during the report retrieval portion of the protocol
the server will check that each report was generated from a key
that is valid for the time that it was created. Thus, if a tag tries to
rotate through multiple keys in one time interval, all but one of
those keys will not result in valid reports and they will be useless
for tracking.

4.1 Limitations

The core problem in the Find My protocol that leads to the key
rotation vulnerability that we are trying to address is that the owner
and the tags are not required to perform any type of validation or
authentication to the bystander or location server to prove that
their beacon messages and public keys are formed correctly and
come from an authorized device. There are many cryptographic
tools that could solve this, for instance the tag could attempt to
prove to the bystander in zero knowledge that the public key it was
using was derived faithfully from an authorized master secret and
that it was valid for the current time period. However, there are

some limitations inherent in the crowdsourced tracker model that
prevent the use of such “heavyweight” cryptographic tools:

BLEAdvertisements: Bluetooth beacons are limited to 27 bytes
of usable data and are non-interactive broadcasts. This severely
limits the space we have to work with and makes it difficult to
include any authentication information. Even as it is now, the Find
My protocol struggles to fit an entire public key into this space.
Apple has had to use P-224, which only gives 112 bits of security,
and even resorted to some tricks (described in Section 2) to pack
that into the space of an advertisement message. Furthermore, it is
infeasible for a tracking tag to perform regular interactive protocols
with bystander devices. There are several reasons for this:

(1) Tags and bystanders are often in motion relative to each
other, sometimes very fast motion (cars passing each other
on the highway). By the time a beacon is registered, the tag
may already be out of range for subsequent communication.

(2) Tracking tags purposefully use only advertisement messages
to prolong battery life. The Bluetooth radio is awake for a
fraction of a second at a time, in order to send the adver-
tisement, then it goes to sleep and does not listen on any
channels. If the tag was required to listen constantly for
connections the battery life would be drastically reduced,
making AirTags far less attractive as a consumer product.

(3) Making matters worse, the energy required for computation
and transmission during an interactive protocol for a tag
would be orders of magnitude more than what is used during
advertisement in its current form. In urban areas, it is not
uncommon for beacons to generate hundreds or thousands of
location reports per hour from nearby devices, so requiring
any meaningful computation or signal transmission for each
report producedwould render AirTags nearly useless in these
circumstances.

Pairing Process: During the one-time pairing process, the Ow-
ner’s device acts as a proxy for the tag to communicate with iCloud
servers. During this stage, the tag can establish shared secrets with
the iCloud Servers and also the Owner device. After this step, the
tag is non-interactive for the remainder of its deployment. This
precludes us from using any technique that would require the
tracking tag to access the internet or communicate with any party
besides the bystander.

With these limitations in mind, our strategy will be to focus on
the pairing and report retrieval parts of the protocol. The owner
device performing these steps does not have the limitations out-
lined above. It is connected to the internet and can run arbitrary
interactive protocols. It also has much more processing capability
and access to more power.

4.2 Our Protocol

In the following section we present our new protocol, Blind My,
designed to satisfy all the security properties in Section 3.3 as a
protocol between four parties: a tracking device, server, device
owner, and bystander.

4.2.1 Setup. We assume throughout that network communications
are authenticated and end-to-end encrypted (i.e., via TLS) and we
assume the following protocol infrastructure is established prior to
protocol execution:
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• All parties agree on an elliptic curve group with a generator,
a secure Message Authentication Algorithm, and a hashing
function H .
• The server knows a key pair (KS , PS ), where the public key
PS is known to all parties. In addition, the server has a private
symmetric encryption key Kserial. Finally, the server also
maintains a database of used serial values DSerial.
• Each Tracking DeviceTD j has been initialized with a unique
serial number and a tag constructed by a secure Message
Authentication Code (MAC) algorithm applied to the serial,
so that each TD j has in its internal storage:(

Serialj ,Tj = MACKSerial (Serialj )
)

• A canonical integer representation of each calendar day is
established and known to all parties via a fixed epoch. We as-
sume all devices have synchronized clocks and may produce
the integer representing the current day, which we refer to as
a “daystamp” in the following, at any time. We note that this
choice of 24-hour time units is arbitrary and can be adjusted
freely in a protocol implementation, but we choose this time
unit to mirror the currently implemented Apple protocol.
• A fixed parameter N ∈ Z+ is established and known to all
parties which determines how many encryption keys are
produced during the pairing algorithm. As a typical value
we suggest N = 365, to produce one year of rotating elliptic-
curve encryption keys every time the pairing algorithm is
executed.

4.2.2 Pairing. We define our pairing protocol between the server S ,
and the ownerO . To participate in the pairing protocol, we assume
the owner O has some tracking device TD and has extracted its
internal keys (Serial,T ) . The owning device then transmits the
keys that result from the pairing protocol to the tracking device.

(1) The owner sends (Serial,T ) to S .
(2) S verifies the tag T and checks Serial < DSerial. If either of

these checks fail, S aborts. Otherwise, S sets Serial ∈ DSerial
and sends public parameters for N partial blind signatures
to O .

(3) O generates N elliptic-curve keypairs and signing requests
for the hash of the public key of each keypair using H , with
auxiliary info for each signing request set as the daystamp
for the current day and the N − 1 following days. O sends
all N signing requests to S .

(4) Server verifies the auxiliary info in the signing requests is
correct (corresponds to the right range of days), and aborts
if not. S produces the blind signature for each and sends the
N blind signatures to O .

(5) O unblinds the signatures and stores N pairs of the form
(KeyPair,UnblindedSignature) and transfers the N pub-
lic keys to the tracking device TD, ordered by daystamp.

4.2.3 Beacons.

(1) TheBlindMy tracking device broadcasts beacons containing
the public keys it has received in order, rotating to a new
one every 24 hour period according to the current datestamp.
The beacon format is identical to the lost messages in the
original Find My protocol, outlined in Figure 1.

4.2.4 Bystander Devices. Bystander devices behave identically to
the original Find My protocol, we simply describe the behavior
below for completeness.

(1) Upon receiving a beacon, the bystander device extracts the
elliptic curve public key from the beacon and records its
location data including the location, a timestamp, and a con-
fidence value indicating the accuracy of the measurement.
The bystander device compiles these values into a payload,
performs ECDH with an ephemeral key and the public key
from the beacon, and encrypts this payload with the shared
symmetric key derived from the result of the ECDH key
exchange.

(2) The bystander uploads the encrypted payload, the public
ephemeral key, a timestamp, and the hash of the public bea-
con key to S , who records it in a key-value store with the
key as the hash of the beacon key.

4.2.5 Location Retrieval. Location retrieval is similar to the original
Find My protocol, but with the additional step of verifying that each
hash that is requested has been blind-signed and is within a valid
date range, preventing adversaries from storing many old blind-
signed keys and rotating them quickly in order to avoid detection.

(1) The owner O sends a set of unblinded, signed public key
hashes to S corresponding to the date range they are inter-
ested in retrieving, along with the corresponding info fields
for each one.

(2) S confirms the auxiliary information on each signature is
reasonable (e.g. falls within the last 10 days) and that the
signature of each hash verifies correctly.

(3) S retrieves any report matching the hashes supplied and
returns them to the owner, including the public key hash,
the ephemeral public key, and encrypted payload, minus
any reports where the timestamp does not match the correct
time period from the info field (this would indicate that they
key was being used outside of its intended validity period).

(4) For each report, O finds the public key for the report by its
hash, and uses the corresponding private key alongside the
ephemeral public key included in the report to decrypt the
encrypted payload and recover the timestamp, confidence,
and location data associated with the report.

4.3 Revocation/Repairing

Our protocol can be naturally extended to allow users to perform
the pairing process more than once. The server can, during pairing,
record the day that keys were issued to a given serial, and give out
another set of N keys after N days have elapsed since that date.

Further, a user may re-run the pairing process and refresh their
set of keys earlier as well, i.e. if the Tracking Device ownership is
transferred, or if devices are to be configured so that they refresh
their keys many days before the last one expires, ensuring that
devices do not run out of keys while lost. Since the remaining keys
have never been used and carry no private information, this can
be done by simply having the owning device present all remaining
keys to the server, who stores them to a blocklist and does not
permit location retrieval for those keys. Since each key is bound to
a day, this blocklist can be implemented by a rotating buffer which
drops keys after enough time has elapsed that the reports under
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these keys would not be retrievable. After the remaining keys for a
device are blocked, the server and owning device are free to initiate
the pairing process again to produce a set of N fresh keys.

5 SECURITY ANALYSIS

In this section, we will show that our protocol meets all of the
security definitions we introduce in Section 3.3.

Theorem 1. Our protocol satisfies the definition of Location Indis-
tinguishability if the symmetric cipher used is semantically secure.

Proof. Our protocol achieves this property in the same manner
as is achieved in the existing Find My protocol, as illustrated in
Section 3.4. Location information is encrypted using a semantically
secure cipher with a key that is not known to the location server.
This part of the protocol (beacon collection and location reporting)
is not changed from the existing Find My protocol. □

For Location Indistinguishability, we cannot rely on the existing
proof because our protocol introduces additional information flow
between the owner and the location server. Specifically, the pairing
process includes the owner receiving a series of blind signatures
from the server. Therefore, we require a more thorough proof to
illustrate that we still achieve Location Indistinguishability.

Fortunately, the proof is intuitive and follows directly from the
definition of partial blindness. Because the server is not able to
distinguish between signatures that it has granted, it cannot later
distinguish between different owners/tags when the locations are
queried.We show this formally by a reduction frompartial blindness
to Location Indistinguishability.

Theorem 2. Our protocol satisfies the definition of Tag Indistin-
guishability if the signature scheme used has the partial blindness
property.

Proof. Suppose we have an adversary A that can distinguish
with non-negligible advantage in the ExpTag

A,Π(λ) tag. We show that
we can construct an adversary A ′ that can distinguish with non-
negligible advantage in the ExpPartialBlind

A,Π (λ).
When interacting with A, A ′ acts as the challenger C . Impor-

tantly, this means that as part of the pairing subprotocol thatA ′ can
choose the keys that will be signed byA in any way they like. The
reduction involves interleaving the two games so that the adversary
A that breaks the tag indistinguishability game is interacting with
the blind signature challenger and is forced to break that game as
well. Because the signing process involves multiple messages, we
have to “pause” the games and connect them together in the middle
as each message of the protocol is sent.

(1) A ′ performs the pairing process with A (steps 1-2 of Def-
inition 5) for all keys up to the last time interval (the keys
for the “learning phase”). Here A ′ chooses random keys for
each time interval and has them signed by A

(2) For the last time interval, the keys that will be used for the
“challenge”, A ′ interacts with A to do the signing up to the
point where it receives the signing parameters (a0,b0) and
(a1,b1), one set of parameters for each tag, from A

(3) A ′ chooses two random elliptic curve public keys k0 and k1

(4) A ′ performs steps 1-4 of the partial blindness game with
m0 = k0 and m1 = k1, using the (a0,b0) as the signing
parameters forU0 and (a1,b1) as the parameters forU1. A ′
receives e0 and e1 as signature requests (second message of
the blind signature protocol) fromU0 andU1

(5) A ′ sends e0 and e1 to A to continue the pairing process,
receiving (r0, c0, s0,d0) and (r1, c1, s1,d1) from A

(6) A ′ sends (r0, c0, s0,d0) and (r1, c1, s1,d1) toU0 andU1 respec-
tively to finish the signing process for the partial blindness
game, receiving siд0 and siд1 as output fromU0 andU1

(7) A ′ continues to interact withA in the game from Definition
5, creating beacons and reports for the learning phase

(8) In the challenge phase,A ′ creates beacons and reports from
k0 and k1 and sends them to A

(9) A outputs guess b,A ′ outputs the same guess b for its game
The goal of A ′ is to figure out whetherU0 or U1 signedm0 and

m1, and since m0 and m1 are set to be the keys used in our tag
indistinguishability game this is equivalent to figuring out if the
beacons sent in step 7 correspond to tag 0 or tag 1.

The reduction requires only one instantiation ofA and so is tight.
IfA has a non-negligible advantage in distinguishing between tags
then A ′ will have a non-negligible advantage in distinguishing
between users in the partial blindness game. □

Finally, we also have to prove that our protocol meets the new
definition that Find My does not, Beacon Unforgeability. Again, this
follows directly from the blind signature’s unforgeability property.

Table 2: Comparison of the existing Find My protocol and

our improved Blind My protocol. Note that Tag Indistin-

guishability can be achieved with the Find My protocol but

it currently does not due to an implementation flaw [16].

Security Property Find My Blind My
Location Indistinguishability ✓ ✓

Tag Indistinguishability ✓† ✓

Beacon Unforgeability ✗ ✓

Serial Unforgeability - ✓

Theorem 3. Our protocol satisfies the definition of Beacon Un-
forgeability if the signature scheme used is unforgeable.

Proof. Again, we can show this via reduction from an adversary
A that wins the game ExpBeacon

A,Π (λ) with probability higher than

3/4+ ϵ(λ) to an adversaryA ′ that wins the game ExpUnforgeable
A,Π (λ)

with non-negligible probability.
Because the server, in step (2) of the ExpBeacon

A,Π (λ) game, issues
only one signed key per time interval, the reduction is very simple.
Adversary A ′ runs A, acting as the challenger C , and uses their
challenger C ′ to create the blind signatures.

Since the server in our protocol will only respond with location
reports if the client can produce a valid signature for the key being
requested, and there was only one signature granted for the time
period tA , only one of the locations can be retrieved honestly. Then
A can only gain information about the second location with non-
negligible probability, which it must have in order to win the game
with sufficiently high probability, by forging another signed key.
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Figure 7: A Puck.js, AirTag, and quarter next to each other

for reference. The Puck.js uses the same SoC (nRF52832) as

the AirTag.

Therefore, in step (5) when A executes RetrieveReports, with
non-negligible probability A ′ will receive a forged signature from
A. A ′ then uses this signature to win its own game.
A requires only one instantiation ofA ′ so this reduction is tight

as well. □

Finally, it is easy to show that our protocol meets Serial Unforge-
ability as well.

Theorem 4. Our protocol satisfies the definition of Serial Unforge-
ability if the MAC used is unforgeable.

Proof. Serial numbers are assigned as a MAC computed with
a secret key known only to the server. If the MAC is unforgeable
then the serial will also be unforgeable. □

We summarize the results of our security analysis as applied
both to the original Find My protocol and our proposed Blind My
protocol in Table 2.

Covert Channel Defense. Researchers have demonstrated another
flawwith Apple’s FindMy protocol that allows for a low-bandwidth
covert channel to be formed [10? ]. A sending device can choose to
broadcast beacons with chosen public keys that encode information.
A receiving device queries the location server for a set of possible
keys and the presence of location reports indicates that the sending
device chose those keys, corresponding to some encoded message.
This allows one-way communication via nearby anonymous proxies
and with the sender only possessing a Bluetooth radio.

Although it is not the main goal, our protocol also mitigates
these covert channel attacks. Since only one key is valid per time
period, the data transmission rate across this channel is constrained
significantly in our protocol, to one bit per day for every valid
AirTag the adversary controls.

6 EVALUATION

We have implemented our protocol in order to show that the addi-
tion of extra cryptographic protections incurs a low overhead to
all parties. The server and owner were implemented in Python. We
have released this portion of the code as an open-source project to
allow for verification of our efficiency results1.

The tracking tag was implemented with the Puck.js platform,
depicted in Figure 7. The Puck.js can broadcast arbitrary BLE ad-
vertisements, which allows us to create our own protocol that uses
1https://www.dropbox.com/s/txnsj8vu7ktu050/blindmy.zip?dl=0

BLE. Blind My requires that the tracking tag stores a large number
of public keys, to create new beacons each day. Fortunately these
keys are small (28 bytes each), and the Puck has 512 KiB of flash
memory which is more than enough.

We have also implemented the bystander as an iOS app, to most
closely match the existing ecosystem. It could similarly be imple-
mented as an Android app, or on any other platform that can receive
BLE advertisement messages.

We have formatted our beacon messages as close to those in
the current Find My protocol as possible, to demonstrate that our
protocol could be adopted without changing hardware. Theoreti-
cally, our protocol could be completely compatible with the existing
Find My advertisement specification. However, security restrictions
for non-privileged apps on iOS cause any advertisement with the
Apple company ID 0x004c to be filtered out by iOS before it can
reach a normal app such as our bystander app.

Furthermore, we had the additional limitation that we could not
see the source MAC address of the lost messages. As depicted in
Figure 1, part of the public key is stored in the random bytes of the
MAC address. Again, for security reasons, non-privileged apps on
iOS cannot see the MAC address of nearby Bluetooth devices.

To address both of these problems, we have slightly changed
the format of the beacon message. We removed all of the extra
information (battery status, payload type, reserved byte) and used
all 27 bytes of the advertisement message to store the key. However,
the key is actually 28 bytes long. Therefore, the final byte of the key
was stored in the least-significant byte of the company ID. In theory,
is is not allowed by the Bluetooth specification, meaning our proof-
of-concept could not be widely deployed as an unprivileged app,
but none of these problems exist at the OS level. Apple (or another
mobile OS developer) could implement our protocol, as they do
now with Find My, while maintaining backward compatibility with
existing protocols and not violating any specifications.

With those modifications, we are able to demonstrate an end-
to-end working implementation of our protocol that can track our
Puck.js tags effectively. Figure 8 includes an image of our iOS track-
ing app showing beacon messages that have been logged and have
their locations reported.

Our Blind My protocol, compared to the existing AirTag pro-
tocol, is unchanged between the AirTag and the bystander and
between the bystander and the (location) server. Therefore, we
focus our evaluation on the pairing algorithm, as that is where the
majority of our improvements lie.

The signatures are done as a batch, meaning the pairing process
only requires two network round trips, making it robust even with
high network latency. The amount of communication required to
pair 365 keys is approximately 100 KiB.

Although partially blind signatures are well-established in the
literature, there have not been any published benchmarks eval-
uating their real-world efficiency. To show that our algorithm is
reasonable in practice, we have benchmarked our implementation
for a varying number of keys. Figure ?? shows the results. For our
target use case of one pairing operation per year, e.g., 365 keys, our
Python implementation takes approximately 4.5 seconds to com-
plete the pairing, with the tests performed on a consumer laptop
with an Intel Core i5-7200U processor.
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Figure 8: Our bystander iOS App. It lists beacon keys that

it has seen, with coordinates and timestamps. The upload

button encrypts them and uploads to the location server.
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Figure 9: Runtime of the pairing algorithm between the tag

owner and the location server.

The report retrieval algorithm is also similar to the current Find
My protocol. The only additional burden is on the server to check
that (1) the signature is correct and the daystamp of the report
matches the daystamp of the key that is being used to retrieve
it, and (2) that the key is not on the blacklist of revoked keys (if
using the repairing procedure described above). These are very low
overhead operations, especially considering no more than 10 keys
should be retrieved at a time, based on the validity window in the
current Find My protocol.

Limitations. Our protocol guarantees that each authorized device
can only have one valid key per time period. However, a funda-
mental limitation of a crowdsourced tracking protocol is that a
malicious adversary can always purchase multiple tags and use
them together to avoid detection.

For example, an adversary could buy 30 AirTags, pair each of
them with the server, and then extract the keys from them. This
would give 30 valid keys for each time interval and the adversary
could then load those keys onto a custom device and rotate between
them as in Mayberry et al. [21]. We note that this attack is impos-
sible to defend against with any protocol changes as long as the
tag devices can have their memory dumped. The only long-term
solution would be to use tamper-resistant tag hardware, which
would increase their cost substantially.

Fortunately, previous work has determined that a minimum of
25 rotating keys per day is necessary to evade detection by Apple’s
Item Safety Alerts. This appears to be a software limitation and
could be tuned at some point in the future to require more keys,
but even 25 AirTags would cost over $750. For that price, a rational
adversary would produce a much more sophisticated tracker that
would not rely on crowdsourcing locations. So, we believe BlindMy
effectively stops attacks where low cost devices are added to the
Find My network and serve as malicious trackers.

7 CONCLUSION

In this work we present the first formal definitions for a privacy-
preserving crowdsourced tracking protocol that is secure against
malicious tracking devices. We start by creating definitions that
codify the existing privacy guarantees present in Apple’s Find My
protocol, then add an additional property called Beacon Unforge-
ability which addresses a significant flaw that allows malicious
tracking devices to be used covertly to track unsuspecting third
parties.

We proceed to describe an improved protocol, using partial blind
signatures, that achieves Beacon Unforgeability as well. We imple-
ment this protocol and demonstrate that it is a practical replacement
for the Find My protocol which could be implemented on existing
hardware with minimal overhead.
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