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ABSTRACT
As mobile devices and location-based services are increasingly de-
veloped in different smart city scenarios and applications, many
unexpected privacy leakages have arisen due to geolocated data
collection and sharing. User re-identification and other sensitive
inferences are major privacy threats when geolocated data are
shared with cloud-assisted applications. Significantly, four spatio-
temporal points are enough to uniquely identify 95% of the in-
dividuals, which exacerbates personal information leakages. To
tackle malicious purposes such as user re-identification, we pro-
pose an LSTM-based adversarial mechanism with representation
learning to attain a privacy-preserving feature representation of
the original geolocated data (i.e., mobility data) for a sharing pur-
pose. These representations aim to maximally reduce the chance of
user re-identification and full data reconstruction with a minimal
utility budget (i.e., loss). We train the mechanism by quantifying
privacy-utility trade-off of mobility datasets in terms of trajectory
reconstruction risk, user re-identification risk, and mobility pre-
dictability. We report an exploratory analysis that enables the user
to assess this trade-off with a specific loss function and its weight
parameters. The extensive comparison results on four representa-
tive mobility datasets demonstrate the superiority of our proposed
architecture in mobility privacy protection and the efficiency of the
proposed privacy-preserving features extractor. We show that the
privacy of mobility traces attains decent protection at the cost of
marginal mobility utility. Our results also show that by exploring
the Pareto optimal setting, we can simultaneously increase both
privacy (45%) and utility (32%).

KEYWORDS
LSTM neural networks, mobility prediction, data privacy, adversar-
ial learning

1 INTRODUCTION
Geolocation and mobility data collected by location-based services
(LBS) [32], can reveal human mobility patterns and address various
societal research questions [34]. For example, Call Data Records
(CDR) have been successfully used to provide real-time traffic anom-
aly as well as event detection [54, 56], and a variety of mobility
datasets have been used in shaping policies for urban communities
[19] and epidemic management in the public health domain [44, 45].
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From an individual-level perspective, users can benefit from per-
sonalized recommendations when they are encouraged to share
their location data with third parties or other service providers (SPs,
e.g., social platforms) [16]. Human mobility prediction based on
users’ traces, a popular and emerging topic, supports a series of
important applications. For instance, one of the prerequisites for
a successful LBS-recommendation system is the ability to predict
users’ activities or locations ahead of time, tracking their intentions
and forecasting where they will go [22].

While there is no doubt about the usefulness of predictive appli-
cations for mobility data, privacy concerns regarding the collection
and sharing of individuals’ mobility traces have prevented the data
from being utilized to their full potential [6, 35, 51]. A mobility pri-
vacy study conducted by DeMontjoye et al. [13] illustrates that four
spatio-temporal points are enough to identify 95% of the individu-
als, which exacerbates the user re-identification risk and could be
the origin of many unexpected privacy leakages. Additionally, with
increasingly intelligent devices and sensors being utilized to collect
information about users’ locations, a malicious third party can de-
rive increasing intimate details about users’ lives, from their social
life to their preferences. Hence, a mechanism capable of decreasing
the chance of user re-identification against malicious attackers or
untrusted SPs can offer enhanced privacy protection in mobility
data applications, as human mobility traces are highly unique.

In the past decade, the research community has extensively stud-
ied the privacy of geolocated data via various location privacy
protection mechanisms (LPPM) [20, 21]. Some traditional privacy-
preserving approaches (e.g., k-anonymity and geo-masking) have
shown to be insufficient to prevent users from being re-identified
[13, 23, 39, 53]. Differential privacy (DP), another popular notion,
is shown to be a limited metric for location trace privacy since
temporal correlations are not taken into account [51]. [16] also
states that DP and k-anonymity are meant to ensure the privacy
of a single data point in time. In general, many DP for LBS (DP-L)
mechanisms [2, 11, 28] attempt to protect the user’s location in-
stead of the user’s identity, which is different from our problem’s
scope. More recently, some related works have successfully applied
machine-learning- or deep-learning-based approaches to explore
effective LPPMs. Rao et al. proposed a model based on Generative
Adversarial Network (GAN) [24] to generate privacy-preserving
synthetic mobility datasets for data sharing and publication [48].
Feng et al. investigated human mobility data with privacy con-
straints via federated learning, achieving promising prediction per-
formance while preserving the personal data on the local devices
[18]. Though these works provide promising architectures to pro-
tect location privacy, the mobility data’s privacy protection and
utility degradation have not been thoroughly investigated, espe-
cially in reducing the chance of user re-identification. Our work
extends these machine-learning-based mechanisms and explores
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Figure 1: Privacy protection in user’s location data collec-
tion and sharing. Users share their daily traces to a trusted
mobile network operator; these traces are aggregated with a
privacy-preserving mechanism and shared as a compressed
data format; the compressed data should allow utility infer-
ence and avoid privacy inference.

the privacy-utility trade-off on mobility data in terms of declining
the effectiveness of privacy inference attacks while maintaining its
predictability. Moreover, research on human mobility shows that
the predictability of users’ location trajectories or mobility, and
the particular constraints of users’ movements, are sufficient to
reconstruct and/or identify anonymous or perturbed locations [52].
This specific confrontation makes the trade-off between mobility
predictability and users’ identity more challenging.

Consider a scenario, shown in Figure 1, where users share their
daily traces to a trusted mobile network operator, which then aggre-
gates these traces in a privacy-preserving approach and sends them
to third parties or other SPs with/without users’ consent. These
users may want to minimize the risk of being re-identified and
trajectory reconstructed by those who will access these released
data. However, they would like to keep receiving potential effec-
tive services from SPs. Therefore, a privacy-preserving mechanism,
which can release required information for the services (i.e., utility)
while features or patterns that facilitate fully data reconstruction or
user re-identification are obscured (i.e., privacy), is beneficial. The
compressed data encoded by this privacy-preserving mechanism is
freely accessed to SPs for the inference tasks, and SPs are free to
use any prediction algorithms of their choice.

To this end, we propose a privacy-aware adversarial network
to train a feature extractor EncL for mobility privacy, namely Mo-
PAE. It is based on representation learning and aims to ease data
sharing privacy concerns from privacy inference attacks. Inspired
by PAN (privacy adversarial network) [37], we employ adversarial
learning to better balance the potential trade-off between privacy
and utility. In contrast to PAN, which focuses on the privacy of
images, our approach is designed for complex time-series data that
exhibits spatial-temporal characteristics. At the core of our archi-
tecture lies an auto-encoder (AE) and long short-term memory
(LSTM) layers with three branches, corresponding to the three
training optimization objectives of the feature extractor EncL : i)
tomaximize the loss associated with the reconstructed output by
generative learning, ii) tominimize the prediction loss using the
learned representation from the EncL by discriminative learning,
and iii) tominimize the percentage of users who are re-identifiable
through their trajectories by discriminative learning. We explore

and quantify the privacy-utility trade-off provided by Mo-PAE in
terms of data reconstruction risk, user re-identification risk, and
mobility predictability. The results show that our proposed mecha-
nism achieves a better privacy level with the same utility loss and
vice versa.

The contributions of our work are the following:
• We propose a privacy-aware adversarial network to train an
effective feature extractor EncL formobility privacy, namely
Mo-PAE;

• We report the analysis of Mo-PAE by a comprehensive eval-
uation of four real-world representative mobility datasets;

• We provide an extensive analysis of different inference tasks
and quantify the privacy and utility bound of the target
mobility dataset, along with a trade-off analysis between
these contrasting objectives;

• We compare our model with, i) a famous DP notion that
developed on the idea from Geo-indistinguishability [2]
(namely GI-DP); ii) a state-of-the-art GAN-based mechanism
that attempts to generate synthetic privacy-preserving mo-
bility data (namely TrajGAN [48]); iii) as well as the optimal
LSTM-based inference models, and obtain favourable results.

The rest of this paper is structured as follows: we review the re-
lated work in Section 2; the proposed Mo-PAE is described in detail
in Section 3; we describe the experimental settings in Section 4; we
demonstrate an evaluation of our mechanism over four mobility
datasets with baseline comparisons in Section 5; Section 6 reports
an in-depth discussion of our setting; finally, we conclude the paper
with future work directions in Section 7.

2 RELATEDWORK
2.1 Notions of Location Privacy
Diverse privacy notions, direct or indirect, for the LBSs have been
proposed and evaluated in the literature. In [2], various direct no-
tions of location privacy and the techniques to achieve them are
examined and concluded, including but not limited to expected
distance error, k-anonymity, differential privacy (DP), and other
location-privacy metrics. First, the expectation of distance error
reflects the accuracy when an adversary guesses the user’s real
location in a location-obfuscation mechanism by using the avail-
able side information. In [52], an optimal LPPM strategy and its
corresponding optimal inference attack are obtained by formaliz-
ing the mutual optimization of user-adversary objectives (location
privacy vs correctness of localization). Second, k-anonymity is the
most widely used privacy notion for the LBSs [55]. These systems
aim to protect the user’s identity, requiring that the attacker can-
not infer the correct user among a set of k different users. Third,
DP [14] is an emerging notion initially formulated in the context of
statistical databases and aims to protect an individual’s data while
publishing aggregate information about the dataset. More precisely,
a randomization mechanismM gives ϵ-differential privacy for all
neighbouring datasets D and D ′, and the difference between D
and D ′ is within a bound of eϵ . One of the popular mechanisms to
achieve DP perturb the original query result using random noise
that is calibrated with the privacy budget ϵ and defines a global sen-
sitivity for all neighbouringD andD ′ [15]. The work in [17] reviews
research works done in differential privacy targeted toward location
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data from a data flow perspective, including collection, aggregation,
and mining. [2] proposed a Geo-indistinguishability notion based
on differential privacy and a planar Laplace mechanism. Signifi-
cantly, different from the systems in k-anonymity category aim at
protecting user’s identity, DP mechanisms are interested in protect-
ing the user’s locations [2, 11, 26, 28]. Apart from three mainstream
approaches, the location cloaking mechanism tries to define the
uncertainty region and measure privacy by the size of the cloak
and by the coverage of sensitive regions; the inaccuracy of the
sensing technology tries to achieve a certain level of privacy by
increasing uncertainty; and transformation-based approach tries to
make user’s location invisible to the service provider.

On the other hand, indirect notions of location privacy arise with
the emerging machine learning-based mechanism, which assesses
the privacy guarantee by measuring the effectiveness of target pri-
vacy inference attacks [25, 30, 39, 40]. For instance, in [39], the
authors access the privacy guarantee by measuring the difference
between an adversary’s belief about sensitive inferences before and
after observing the released data. In [30], the proposed mechanism
provides privacy guarantees by capturing how well an adversary
does in terms of inferring the private variables. In general, for
any LBS, their main privacy concerns can be summarized in two
categories. One is the attack on the user’s identity, which can be
re-identified maliciously. For instance, even if the adversary is as-
sumed to be unaware of the user identity of a trace, they can infer
user’s identity or additional sensitive information due to the loca-
tion information leakage based on publicly accessible background
information. The other attack is the one on user’s location while the
adversary has legible access to user’s identity. In this manner, user’s
locations are sensitive, which could exert a significant impact on
other sensitive personal details, such as religious affiliation, sexual
orientation, economic condition, health status, and so on.

In our work, we are interested in protecting user’s identity as
the privacy scope, which is similar to the location privacy notion
defined by the k-anonymity, and taking the real/distorted user’s
location as input for the personal recommendation model to provide
contextual services for their future travels. In general, DP paradigms
have the most formal privacy guarantee when compared with the
others, however, they are not immune to inference attacks [10, 27].
We will also compare our proposed model with one popular DP
paradigm on location privacy to illustrate the ineffectiveness of DP
to our research question. More details on our privacy definitions
are in Section 3.

2.2 Privacy Preserving Techniques for
Spatial-Temporal Data

Current privacy-preserving techniques for spatial-temporal data
focus on two research streams. One is the DP approach to grouping
and mixing the trajectories from different users so that the identifi-
cation of individual trajectory data is converted into a k-anonymity
problem [1, 2, 57]. For example, a recent Privacy-Preserving Tra-
jectory Framework (PPTPF) [60] applies the k-indistinguishability
to anonymize trips for each user by condensing them into k − 1
trajectories and determining k − 1 anonymized clusters of trips.

The other stream focuses on synthetic data generation [9, 31,
46, 49]. Synthetic data generation methods have been extensively

studied in recent years as a way of tackling privacy concerns of
location-based datasets. The majority of existing mobility synthesis
schemes are mainly categorized into two approaches: one is a more
traditional, simulation-based approach, while the other is a more
recent, neural network-based generative modeling approach that
utilizes recurrent autoencoders and generative adversarial networks
to produce realistic trajectories [50]. Simulation-based approaches
generate mobility traces by modeling overall user behavior as a
stochastic process, such as a Markov chain model of transition
probabilities between locations, and then drawing random walks,
potentially with additional stochastic noise added, as demonstrated
in Xiao et al [58]. These approaches require considerable feature en-
gineering effort and struggle to capture longer-range temporal and
spatial dependencies in the data [38] and are thus limited in their
ability to preserve the utility of the original datasets. In contrast,
the generative neural network approach synthesizes user mobility
traces by learning via gradient descent back-propagation, and then
the optimal weights are utilized for decoding a high-dimensional
latent vector representation into sequences that closely resemble
the original data. Such traces can maintain important statistical
properties of the original data while taking advantage of noise in-
troduced in the reconstruction process, to improve data subject
anonymity. Huang et al [31] demonstrates the use of a variational
autoencoder network to reconstruct trajectory sequences, while
Ouyang et al [46] utilizes a convolutional GAN, but neither work
directly makes a quantitative assessment of the extent of privacy
protection that their algorithms provide [31, 46]. The TrajGAN by
Rao et al [48] is a state of the art example of the generative trajec-
tory modeling approach, which quantifies its privacy protection by
demonstrating a significant decline in the performance of a second
user ID classifier model on the synthetic outputs compared to the
original input trajectories. For these reasons, we used TrajGAN as
a baseline for comparison.

Our proposed model takes the neural network-based genera-
tive modeling approach, but differs from existing methods, where
we utilize a combined, multi-task adversarial neural network to
simultaneously reconstruct trajectories, predict next locations, and
re-identify users, from the same learned latent vector representation.
We seek an optimal trade-off between the three tasks’ individual
losses by optimizing a sum loss function with per-task weights,
improving the controllability of the relative utility and privacy of
the outputs.

3 DESIGN OF MO-PAE
3.1 Definition of Important Terms
3.1.1 Mobility Trace. The raw geolocated data or other mobility
data commonly contain three elements: user identifiers u ∈ U ,
timestamps t ∈ T , and location identifiers l ∈ L. Hence, each loca-
tion record r could be denoted as r(u ,i) = [u, ti , li ], while each loca-
tion sequence S is a set of ordered location records S(u ,n) = {r(u ,1),
r(u ,2), r(u ,3), · · · , r(u ,n)}, namely mobility trace of user u. Therefore,
given the past mobility trace S(u ,n), the mobility prediction task is
to infer the most likely location ln+1 at the next timestamp tn+1 for
the user u. The data fed into the proposed architecture are a list of
traces with a specific sequence length (i.e., SL). For instance, if the
sequence length is 10, that indicates each trace contains 10 history
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location records r, S10 = {r1, r2, r3, · · · , r10}, and SL = 10. In this
paper, we assume that different users’ mobility traces are collected
and aggregated (denoted as data X ) by trusted telecom operators
or social platforms and shared with third-party SPs.

3.1.2 User Re-identification. The user re-identification risk arises
because of the high uniqueness of human traces [13] and could be
the origin of many unexpected privacy leakages. We assume each
trace S is originally labeled with a corresponding user identifier
u, and the user re-identification is to infer the user u to whom the
target trace Sn = {r1, r2, r3, · · · , rn } belongs. We thereby leverage the
user identifiers u as the ground-truth values for the user identity
classes. This identity information is what we want to protect in the
proposed adversarial network.

3.2 Problem Definition
3.2.1 Definition of Utility and Privacy. On the one hand, mobility
datasets are of great value for understanding human behaviour
patterns, smart transportation, urban planning, public health issue,
pandemic management, etc. Many of these applications rely on
the next location forecasting of individuals, which in the broader
context, can provide an accurate portrayal of citizens’ mobility over
time and inform the allocation of public resources and community
services. Therefore, we focus on the capability ofmobility prediction
(next location forecasting) in this paper, and leverage the accuracy
of the prediction as an important metric for quantifying the data
utility. On the other hand, with increasing intelligent devices and
sensors being utilized to collect information about human activities,
the traces also increasingly expose intimate details about users’
lives, from their social life to their preferences. In this manner,
the capability of user re-identification is important to balance the
risks and benefits of mobility data usage, for all data owners, third
parties, and researchers. We then leverage the efficient reduction
of data reconstruction risk and user re-identification risk as the
privacy protection metrics. Moreover, research in [52] shows that
the predictability of users’ mobility, and the particular constraints
of users’ movements, are sufficient to reconstruct and/or identify
anonymous or perturbed locations [52]. This confrontation makes
the trade-off between keeping mobility predictability and reducing
the chance of user re-identification more interesting. For instance,
an adversary can re-identify anonymous users’ traces given the
users’ mobility profile [12]; infer the users’ next activities from the
frequency of location visits [22]; even obtain the personal home or
working address from the trajectories [47].

In this work, we design a model to protect location privacy re-
garding users’ identity and data integrity while simultaneously
minimizing the service quality (i.e., accuracy of next location fore-
casting) degradation stemming from the obfuscation of true data.
Specifically, users’ mobility traces are collected and fed into this
proposed model, encoded as privacy-preserving representations
that allow third parties and other SPs freely access. At the same
time, two built-in adversaries, which try to achieve maximum ac-
curacy in user re-identification and trace reconstruction during the
adversarial training, are simulating the strong privacy adversaries
that can attain disclosed sensitive information and examine the
quality of feature representations instantly. Overall, the encoded

privacy-preserving representations should retain as little user iden-
tifiable information as possible, as well as the data reconstruction
information, to decrease the user re-identification accuracy and
increase the location obfuscation.

Hence, we summarize the Utility, Privacy I and Privacy II of the
encoded feature representations as follows:

Utility (U ): the encoded representations should retain informa-
tion about mobility predictability (i.e., forecasting accuracy, higher
accuracy indicates higher utility).

Privacy I (PI ): the encoded representations should contain lit-
tle information advantage to the data reconstruction (i.e., more
information loss in the reconstruction process); represented as the
distortion increment (i.e., Euclidean [3] andManhattan distance [7])
between the reconstructed data X ′ and the original data X .

Privacy II (PII ): the encoded representations should contain lit-
tle information advantage to the user re-identification task (i.e., the
user de-identification effectiveness); measured by the degradation
of the user re-identification accuracy.

3.2.2 Privacy vs. Utility Trade-off. An effective LPPM must con-
sider three fundamental elements: i). the privacy requirements of
the users (namely privacy gain); ii). the adversary’s knowledge
and capabilities; iii). and maximal tolerated service quality degra-
dation stemming from the obfuscation of true locations (namely,
utility loss) [52]. There is an inherent trade-off between location
privacy protection and utility degradation [33]. That is, achieving
a better level of privacy protection may require sacrificing the ser-
vice quality provided by the data. Such trade-off is omnipresent
in various privacy protection mechanisms, especially in location
obfuscation mechanisms. Higher privacy protection is achieved
when the probability of an adversary inferring the true location
of the user decreases, however, the result of a query based on the
obfuscated location is significantly different from the actual inter-
est of the user. The privacy-utility trade-off, hence, needs to be
examined and analyzed to guarantee the efficiency of the privacy
protection mechanism.

In this work, utility loss denotes the accuracy degradation after
the proposed privacy protection mechanism is applied, and the
privacy gain (in terms of PI and PII ) quantifies the protected privacy
information. To be specific, a more obfuscated dataset will tend to
perform better at preserving privacy, but worse at preserving utility,
and vice versa. Hence, monitoring these two performance metrics
in tandem allows users to select the optimal privacy-utility trade-
off for their use cases, given their hyperparameter selections. Our
Mo-PAE model is designed to train a features Encoder EncL(X ) that
could convey more information on the utility but less on privacy
and investigate a better trade-off between them. More details will
be discussed in the following sub-section.

3.3 Mo-PAE Overview
Our proposed privacy-preserving adversarial feature encoder on
mobility data, denoted as the Mo-PAE, is based on representation
learning and adversarial learning and aims to ease data sharing
privacy concerns. Figure 2 presents the basic workflow of the pro-
posed Mo-PAE. It composes of three crucial units: data reconstruc-
tion risk unit (DRU), mobility prediction unit (MPU), and user
re-identification risk unit (URU).
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Figure 2: (a) Schematic overview of the proposed privacy-preserving adversarial architecture (Mo-PAE), consisting of data
reconstruction risk unit (DRU), mobility prediction unit (MPU), and user re-identification risk unit (URU); (b) The baseline
LSTM network for optimal classifiers (Optimal-IMs).

3.3.1 Composition Units of Mo-PAE.
I. Mobility Prediction Unit (MPU):
The MPU unit is composed of three parts, the input part with

the multi-modal embedding of trace information, the sequential
part with LSTM layers [29], and an output part with the softmax
activation function. As per the definition mentioned earlier, the
traces in this work are shown as location sequences S. First, the
location identifiers l and timestamps t are converted into one-hot
vectors. We then employ LSTM layers to model the mobility pat-
terns and sequential transition relations in these mobility traces.
As a prominent variant of the recurrent neural network, LSTM
networks exhibit brilliant performance in modeling the entire data
sequences, especially for learning long-term dependencies via gra-
dient descent [61]. Following the sequential module, the softmax
layer outputs the probability distribution of the prediction results.
This probability distribution is converted to the top-n accuracy
metrics to illustrate the unit performance.

II. Data Reconstruction Risk Unit (DRU):
The DRU is the encoder EncL unit in reverse, also denoted as

DecL , which is regarded as the first privacy discriminator P1D in the
proposed architecture. It is designed to evaluate the distance d(·, ·)
(i.e., Privacy I ) between the reconstructed data X ′ and the original
input data X . A malicious party is free to explore any machine
learning model and reconstruct the data if they have the shared
extracted features f . We use a layer-to-layer reverse architecture
of our encoder EncL to build the data reconstruction unit to act
as a robust built-in adversary. To compare with baseline models
and keep the comparison in a line, we measure the distance d(·, ·)
between the X and X ′ by leveraging the Euclidean and Manhattan
distance as our metrics. Both of them are widely used in location
privacy literature [2, 16].

III. User Re-identification Risk Unit (URU):
The URU is regarded as the second privacy discriminator P2D

in the proposed architecture. The unit is composed of three parts,
the input part with the one-hot embedding of user identity, the
sequential part with LSTM layers, and an output part with soft-
max function. First, the user identity list is converted into one-hot

vectors. Similar to the MPU, the URU also applies LSTM layers to
better extract the spatial and temporal characteristics of the context.
A softmax function with a cross-categorical entropy loss function
is applied to output a categorical probability distribution of the
user re-identification task. We then use the top-n accuracy of this
classifier as the metric of user re-identification privacy risk (i.e.,
Privacy II ). The more accurately a classifier can re-identify the user
when given a trajectory, the higher the risk of disclosing private
data. Same as P1D , P

2
D is designed as the built-in adversary to in-

fer the ability of generated features in protecting users’ sensitive
information.

The overall architecture eventually learns to fool both built-in
adversaries, P1D and P2D , while maintaining mobility predictability.
In this manner, both adversaries are assumed to be free to access
the exclusive feature representations and the entire encoder net-
work, which allows them to have the optimal decoder setting. We
will discuss the effectiveness of two privacy inference attacks in
Section 5.3.

3.3.2 Overall Design.
When three units train concurrently, the MPU is regarded as the

utility discriminator UD , while DRU and MPU act as two built-in
adversaries and are regarded as the two privacy discriminators, P1D
and P2D , respectively. The built-in adversary has been used as an
effective adversarial regularization to prevent inference attacks, e.g.
in the classification setting [43] or in various GAN models [42]
for privacy-preserving purpose. In this work, P1D and P2D are simu-
lating malicious SPs, who attempt to obtain sensitive information
(i.e., maximize the accuracy of privacy inference tasks), while the
encoder EncL is trained to produce feature representations f to the
advantage ofUD but to the disadvantage of P1D and P2D , by jointly
optimizing the hybrid losses of the DRU, MPU, and URU simultane-
ously, during adversarial training. Therefore, in the Mo-PAE, the en-
coder EncL , and three discriminatorsUD , P1D , P

2
D play amulti-player

game to minimaximize the value function V (EncL,UD , P
1
D , P

2
D ):
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min
(EncL ,UD )

max
(P 1
D ,P 2

D )
V (EncL,UD , P

1
D , P

2
D ) = Ex∼X [loдUD (EncL(x))]+

Ex∼X [loд(1 − P1D (EncL(x)))] + Ex∼X [loд(1 − P2D (EncL(x)))]
(1)

As described in the Eq.1, we design a multi-task adversarial net-
work to learn an LSTM-based encoder EncL(X ;θ ) with parameter
set θ ∈ Θ, which can generate the optimized feature representa-
tions f = EncL(X ;θ ) via lowering the privacy disclosure risk of
user identification information and improving the task accuracy
(i.e., mobility predictability) concurrently. Two potential malicious
privacy leakages from URU and DRU, are attempted to retrieve sen-
sitive information from the feature representations f . As built-in
adversaries, they have full access to the feature representations f
and the entire encoder network with parameter set f = EncL(X ;θ ).
In this manner, they have the optimal decoder setting. Hence, the
notion of privacy (privacy gain), is measured by the decline of the
effectiveness of target inference attacks (i.e., user re-identification
attack and data reconstruction attack).

3.3.3 Details of Mo-PAE.
We define the raw mobility data we want to protect asX, trained

features as F , and reconstructed data as X′. Given mobility raw
data X for P1D (DRU), the ground-truth label zi for P2D (URU), and
the ground-truth labelyi for utilityUD (MPU), we train the encoder
EncL to learn the representation F = EncL(X;θE ). We design a
specific loss function, namely sum loss Lsum , for this optimization
process.

Specifically, when reconstructing the data X′, a decoder DecL
attempts to recreate the data based on the features F , that is
DecL(F ;θ ′D ) : F → X′. This DRU, the first privacy discriminator
P1D , is trained as a built-in adversary and tries to achieve sensi-
tive information as much as possible. Hence, the DRU is primarily
trained by minimizing the reconstruction loss LR :

minLR ⇒ LR = d(X,X
′) = argmin

F;θ ′
R

∥DecL(F , θ
′
R ) − X∥2 (2)

The URU, the second privacy discriminator P2D (F ;θ ′), is trained
to re-identify whom the target trajectory belongs to. It outputs
a probability distribution of predicted user identifiers among Z
potential classes. Then in this privacy discriminator, the user re-
identification loss LP is primarily trained to minimize, denoted as
minLP :

minLP ⇒ LP = argmin
F;θ ′

P

Z∑
i=1

zi log(P1D (F ;θ ′P )) (3)

TheMPU, the utility discriminatorUD (F ;θ ′), is trained to output
a probability distribution of the next location of interest, and this
distribution has Y potential classes. Discriminative training ofUD
maximizes the prediction accuracy by minimizing the utility loss
LU concurrently with minimizing the Lsum , denoted as minLU .

minLU ⇒ LU = argmin
F;θ ′

U

Y∑
i=1

yi log(UD (F ;θ ′U )) (4)

Algorithm 1: Training of the Mo-PAE (Model II )
Input :Mobility data X, real mobility prediction labels Y,

real user identification labels Z, weights: λ1, λ2, λ3
Output :Adversarial Encoder EncL(X ;θE , θR , θU , θP )

1 Initialize model parameters θE , θR , θU , θP ;
2 for n epochs do
3 for k = 1, · · · ,Kt do
4 1. Sample a mini-batch of mobility trajectories x,

prediction labels y, identification labels z
5 2. Update θE with Adam optimizer on mini-batch

loss Lsum (θE , θR , θU , θP , λ1, λ2, λ3)
6 3. Update θR with Adam optimizer on mini-batch

loss LR (f ;θR )(x ,x̂ ): minLR
7 4. Update θU with Adam optimizer on mini-batch

loss LU (f ;θU )(y,ŷ): minLU
8 5. Update θP with Adam optimizer on mini-batch

loss LP (f ;θP )(z,ẑ): minLP
9 end

10 Update with the gradient descent on
Lsum (θE , θR , θU , θP , λ1, λ2, λ3): minLsum

11 end

The overall training is to achieve a privacy-utility trade-off by
adversarial learning on LR , LU , and LP , concurrently. The en-
coder EncL(X;θE ) should satisfy high predictability (min LU ) and
low user re-identification accuracy (max LP ) of the mobility data
when maximizing the reconstruction loss (max LR ) in reverse en-
gineering, where the training objective transformed from Eq.1 can
be written as:

minLsum = min
LU

max
LR ,LP

(

X∑
x=i

(LU (fi ) ,LP (fi ) ,LR (fi ))) (5)

We use Eq. 5 to guide the first version of Mo-PAE, denoted as
Model I. In order to fully investigate the range of trade-offs, we lever-
aged the Lagrange multipliers [4] as hyperparameters to control
the privacy-utility trade-offs in the Mo-PAE, and this weighted-
controlled model is denoted as Model II. Accordingly, the optimiza-
tion function of the training objective is:

minLsum = min
LU

max
LR ,LP

(

X∑
x=i

(λ1LR (fi ) , λ2LU (fi ) , λ3LP (fi )))

= −λ1 (maxLR (fi ))︸                 ︷︷                 ︸
Privacy I

+ λ2 (minLU (fi ))︸               ︷︷               ︸
Utility

−λ3 (maxLP (fi ))︸                  ︷︷                  ︸
Privacy II

= −λ1∥DecL(F ) − X∥2 + λ2(
Y∑
i=1

yi log(UD (F )))

− λ3(
Z∑
i=1

zi log(PD (F )))

(6)
where yi is the ground-truth label for Utility, zi is the ground-truth
value for Privacy II ; λ1, λ2 and λ3 are non-negative, real-valued
weights, as the hyperparameters that control the privacy-utility
trade-off in the Mo-PAE.
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Dataset-City Bounding Box Record Counts Number
Latitude Longitude Train Test User ID POI

MDC-Lausanne 46.50 46.61 6.58 6.73 77393 19429 143 149
Priva’Mov-Lyon 45.70 45.81 4.77 4.90 62077 16859 58 129
GeoLife-Beijing 39.74 40.07 116.23 116.56 95038 24578 145 960
FourSquare-NYC 40.55 40.99 -74.28 -73.68 43493 11017 466 1712

Table 1: Overview of four mobility datasets after pre-processing. The bounding box represents the range of the considered
locations/traces.

As shown in the Algorithm 1, the gradient of the loss (i.e., θE , θR ,
θU , θP ) back-propagates through the LSTM network to guide the
training of the encoder EncL . The encoder is updated with the sum
loss function Lsum until convergence. It is tricky to investigate
all possible weight combinations practically, and we look for the
optimal combinations through training [39] with the Eq.6 by brute-
force evaluation. Then we approximate the required data utility
reserved and reformulate the optimization problem in Eq.6 as a
maxima privacy optimization problem.

min
EncL

max
(P 1
D ,P 2

D )
Vλ→UD (EncL, P

1
D , P

2
D ) = Ex∼X [loд(1 − P1D (EncL(x)))]

+ Ex∼X [loд(1 − P2D (EncL(x)))]
(7)

Additionally, another key contribution is the flexibility of the sum
loss function Lsum , which could be regulated to satisfy different
requirements on privacy protection level and service quality. That is,
different combinations of weights control the relative importance
of each unit and guide the overall model to find the maxima or
minima given the specific trade-off choices.

4 EXPERIMENTAL SETTING
4.1 Datasets
Experiments are conducted on four representative mobility datasets:
Mobile Data Challenge Dataset (MDC) [36], Priva’Mov [5], Geo-
Life [62], and FourSquare [59].
MDC: it is recorded from 2009 to 2011 and contains a large amount
of continuous mobility data for 184 volunteers with smartphones
running a data collection software in the Lausanne/Geneva area.
Each record of the gps-wlan dataset represents a phone call or an
observation of a WLAN access point collected during the cam-
paign [36].
Priva’Mov: the PRIVA’MOV crowd-sensing campaign took place
in the city of Lyon/France, from October 2014 to January 2016. Data
collection was contributed by roughly 100 participants, including
university students, staff, and family members. The crowd-sensing
application collected GPS, WiFi, GSM, battery, and accelerometer
sensor data. For this paper, we only used the GPS traces from the
dataset [5].
GeoLife: it is collected by Microsoft Research Asia from 182 users
in the four and a half year period from April 2007 to October 2011
and contains 17,621 trajectories [62]. This dataset recorded a broad
range of users’ outdoor movements, including life routines like
going home and going to work and some entertainment and sports
activities, such as shopping, sightseeing, dining, hiking, and cycling.
It is widely used in many research fields, such as mobility pattern

mining, user activity recognition, location-based social networks,
location privacy, and location recommendation.
FourSquare NYC: it contains check-ins in NYC and Tokyo col-
lected during the approximately ten months from 12 April 2012 to
16 February 2013, containing 227,428 check-ins from 1,083 subjects
in New York City [59].

Once imported into our architecture, each dataset was filtered
and pre-processed individually to derive their respective train and
test sets illustrated in Table 1. We filter locations to a bounding box
defining a city or region of interest and then transform continuous
GPS coordinates by tessellating the space and encoding location as
a discrete grid position to attain the location identifiers (i.e., POI).
In these spatial transformations, we convert the GPS coordinates
to the discretizing locations via the Geohash algorithm [41] with
rectangular cells. For instance, each bounding box defines the grid
size of the interested region, and the grid granularity is 0.01 degrees,
where each grid represents a 0.01 longitude x 0.01 latitude area.

4.2 Baseline Models
4.2.1 I. Optimal InferenceModels (Optimal-IMs). Optimal-IMs com-
prise three independent inference models, namely data reconstruc-
tion model, mobility prediction model, and user re-identification
model. Each model has a similar layer design as the corresponding
unit in the Mo-PAE, however, these three models are completely
independent and have no effect on each other. Unlike the Mo-PAE,
which leverages adversarial learning to finally attain an extracted
feature representation f that satisfies the utility requirements and
privacy budgets simultaneously, the Optimal-IMs are only trained
for optimal inference accuracy at the individual tasks to character-
ize the original data.

4.2.2 II. LSTM-TrajGAN (TrajGAN) [48]. It is an end-to-end deep
learning model to generate synthetic data which preserves essential
spatial, temporal, and thematic characteristics of the real trajec-
tory data. Compared with other standard geo-masking methods,
TrajGAN can better prevent users from being re-identified. The
TrajGAN work claims to preserve essential spatial and temporal
characteristics of the original data, verified through statistical anal-
ysis of the generated synthetic data distributions, which aligns with
the mobility prediction-based utility metric in our work. Hence, we
train an optimal mobility prediction model for each dataset and
evaluate the mobility predictability of synthetic data generated by
the TrajGAN. In contrast to the TrajGAN that aims to generate
synthetic data, our proposed Mo-PAE is training an encoder EncL
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that forces the extracted representations f to convey maximal util-
ity while minimizing private information about user identity via
adversarial learning.

4.2.3 III. GI-DP [8]. The principle of geo-indistinguishability (i.e.,
GI) [2], is a formal notion of privacy that protects the user’s exact
location with a level of privacy that depends on radius r, which
corresponds to a generalized version of differential privacy (DP).
GI-DP is a mechanism for achieving geo-indistinguishability when
the user releases his location repeatedly throughout the day. It
fulfils desired protection level by perturbing the actual location
with random noises and achieving an optimal trade-off between
privacy and utility (i.e., service quality). We re-implement the
geo-indistinguishability of optimal utility with graph spanner [8],
namely GI-DP in this paper, to attain the released version data that
satisfied the DP guarantees.We then train a series of Optimal-IMs to
evaluate the effectiveness of target inference attacks on the released
version data in a line to compare with our proposed mechanism.

4.3 Training
4.3.1 Training of Mo-PAE. The main goal of the proposed adversar-
ial network is to learn an efficient feature representation based on
the utility and privacy budgets, using all users’ mobility histories.
In most experiments in this work, the trajectory sequences consist
of 10 historical locations with timestamps (i.e., SL = 10), and the
impact of the varying sequence lengths is discussed in Section 6.2.
After data pre-processing, 80% of each user’s records are segmented
as the training set and the remaining 20% as the testing set. We
utilize the mini-batch learning method with the size of 128 to train
the model until the expected convergence. We take a gradient step
to optimize the sum loss Lsum (i.e., Equation 6) in terms of LR , LU ,
and LP concurrently. Meanwhile, the sum loss Lsum is optimized by
using the Adam optimizer. All the experiments are performed with
the Tesla V100 GPU; a round of training would take 30 seconds on
average, and each experiment trains for 1000 rounds.

4.3.2 Training of the TrajGAN. To provide a state-of-the-art ma-
chine learning-based model for comparison, we re-implement the
TrajGAN model described in [48] using the same hyperparame-
ters, setting latent vector dimension to 100, using 100 LSTM units
per layer, a batch size of 256, utilizing the Adam optimizer with
learning rate 0.001 and momentum 0.5, and training for 200 epochs
(where one epoch is a pass through the entire training set). We train
TrajGAN independently on the training split of each benchmark
mobility dataset, and then use it to generate synthetic trajectories
from the test set. Then we train the proposed Mo-PAE on the same
training data and use it to generate a feature extraction from the
same test data. Finally, we evaluate the performance of the user
re-identification unit and mobility prediction unit on the real and
synthetic test sets generated by TrajGAN, and compare the changes
in accuracy to assess the relative utility and privacy of the TrajGAN
and Mo-PAE.

4.3.3 Training of the DP-GI. We re-implement the DP-GI model
described in [8] using the default settings. That is, we set epsilon
ϵ = 0.5, dilation δ = 1.1, the distance matrix dx is defined by
Euclidean distance. From [8], let X be a set of locations with metric
dx , and letG(X , E) be a δ − spanner of X , if a mechanism K for X is

ϵ
δ dG -private, then K is ϵdx -private. The dilation of G is calculated
as:

δ = max
x,x ′∈X

dG (x, x
′)

dx (x, x ′)
(8)

dG (x, x
′) ≥ dx (x, x

′) ∀x, x ′ ∈ X (9)
We re-implement the GI-DP to attain the released version data

that satisfied the DP guarantees. We then train a series of Optimal-
IMs to evaluate the effectiveness of target inference attacks on
the released version data in a line to compare with our proposed
mechanism.

4.4 Metrics
We set Euclidean [3] and Manhattan distance [7] as our evaluation
metrics for the DRU to evaluate the quality of the reconstructed
data X ′ generated from extracted features f . Both distance metrics
are widely used in location privacy literature [2, 16]. For instance,
the work introducing Geo-Indistinguishability [2] utilizes a privacy
level that depends on the Euclidean distance. Euclidean distance
gives the shortest or minimum distance between two points. In
contrast,Manhattan distance applies only if the points are arranged
in a grid, and both definitions are feasible for the problem we are
working on. Note that these two distances have limited capability
in showing the quality of the reconstructed data X ′, however, they
intuitively capture the differences between the original data X and
the reconstructed data X ′.

For both MPU and URU, we leverage the top-n accuracy as our
evaluation metric. The accuracy of the MPU is one of the most
important factors in evaluating the utility of the extracted feature
representation f, where predictability of the f increases as much
as it can during the adversarial training. On the other hand, the
competing training objective is to decrease the accuracy of the user
re-identification unit to enhance the privacy of f. The top-n metric
computes the number of times the correct label appears among the
predicted top n labels. The top-n metric takes n predictions with
higher probability into consideration, and it classifies the prediction
as correct if one of them is an accurate label. The top-1 to top-5
accuracies are leveraged in our paper to discuss the performance
of the proposed model.

5 ARCHITECTURE EVALUATION
In this section, we present the comparison results between the pro-
posed Mo-PAE and three baseline models under the same training
setting. Our evaluation is mainly on the trade-off between U and
PII, as the main contribution of the Mo-PAE is to protect users’
identities, while we also consider the scope of users’ locations as
an auxiliary measurement.

5.1 Performance Comparison
We first compare our proposed models with the Optimal-IMs, Traj-
GAN, and DP-GI on four representative mobility datasets, as shown
in Table 2. The overall performance is evaluated in terms of the
utility level provided by the MPU and the privacy protection pro-
vided by DRU and URU. The Model I is our proposed architecture
but without applying the Lagrange multipliers (i.e., where each
unit is weighted equally). The Model II is the one with Lagrange
multipliers (i.e., λ1, λ2, λ3 ) and different weights are given to units
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Datasets Models Privacy I Utility (% for loss) Privacy II (% for gain) Utility-PII
Euc Man top-1 top-3 top-5 top-1 top-3 top-5 trade-offs (%)

MDC

Optimal-IMs 0.0000 0.0000 0.9347 0.9837 0.9922 0.9247 0.9819 0.9911 -
TrajGAN 0.0434 3.6923 -46.32% -24.16% -15.98% +20.32% +8.13% +4.02% -26.00%
GI-DP 0.2341 56.8764 -97.34% -93.25% -89.44% +97.47% +93.71% +90.12% 0.13%

Our Model I 0.0025 0.4501 -54.56% -34.74% -25.10% +69.80% +50.44% +39.95% 15.24%
II 0.0697 13.6168 -13.43% -6.26% -3.95% +65.51% +45.11% +34.86% 52.08%

Priva’Mov

Optimal-IMs 0.0003 0.0058 0.9482 0.9878 0.9954 0.5643 0.8215 0.8765 -
TrajGAN 0.0815 9.6843 -6.60% -1.89% -0.93% +14.17% +14.35% +8.88% 7.57%
GI-DP 0.1899 38.6712 -91.20% -83.53% -72.37% +85.49% +63.80% +53.31% -5.71%

Our Model I 0.0009 0.0437 -3.36% -1.59% -0.81% +27.02% +14.19% +9.19% 23.66%
II 0.2347 10.2239 -10.81% -6.83% -4.91% +35.29% +14.97% +10.05% 24.48%

Geolife

Optimal-IMs 0.0008 0.0670 0.4705 0.6842 0.7636 0.6572 0.8690 0.9294 -
TrajGAN 0.4010 50.3620 -62.31% -50.45% -43.72% +66.73% +47.89% +37.22% 4.42%
GI-DP 1.2332 312.9972 -97.74% -96.56% -95.36% +91.57% +84.13% +78.65% -6.17%

Our Model I 0.0006 0.0310 -31.45% -25.02% -21.90% +54.88% +39.59% +30.81% 23.43%
II 0.4351 89.2209 -21.13% -18.78% -17.11% +55.49% +40.40% +32.34% 34.36%

FourSquare

Optimal-IMs 0.0052 0.6691 0.6468 0.8210 0.8823 0.8780 0.9735 0.9892 -
TrajGAN 1.4341 117.9181 -26.30% -22.30% -18.75% +51.86% +32.49% +23.49% 25.56%
GI-DP 0.5826 86.096 -69.35% -59.23% -53.36% +77.29% +66.58% +59.82% 7.94%

Our Model I 0.0060 0.7845 -51.05% -41.45% -35.20% +53.47% +35.26% +25.86% 2.42%
II 0.7985 99.9212 -2.54% -3.14% -2.84% +51.08% +34.39% +26.16% 48.54%

Table 2: Performance comparison between Mo-PAE with other baseline models. The Model I is our proposed architecture
without weights, and the Model II is the one with multipliers (λ1 = 0.1, λ2 = 0.8, and λ3 = 0.1). The results shown in this table
are all with trace sequence length 10 (i.e., SL = 10). The Privacy I intuitively shows the difference between the raw data and
reconstructed data; the Utility (%) represents the utility loss; and the Privacy II (%) represents the privacy gain calculated via
the decline of the user re-identification accuracy.

(i.e., λ1 = 0.1, λ2 = 0.8, λ3 = 0.1 for the results in Table 2). In this
table, the sequence length of the input traces is 10, that is SL = 10.
We will discuss why we choose SL=10 and the impact of the SL in
Section 6.

As we mention in Section 4.2, Optimal-IMs are trained without
considering the privacy-utility trade-offs; hence, they can be lever-
aged to explain the optimal inference accuracy achieved. That is,
before any privacy-preserving mechanism applies, the accuracy
of the target or private tasks with raw data. For instance, the ac-
curacy of the Privacy II (0.9247 (MDC), 0.5643 (Priva’Mov), 0.6572
(GeoLife), 0.8780 (FourSquare)) demonstrates that an adversary can
accurately infer user identity from raw data before any privacy
protection.

Different from Optimal-IMs, the other models consider privacy-
utility trade-offs, and we measure the privacy protection and data
utility by the effectiveness of the inference units. First, for the Pri-
vacy I, the distance indexes (i.e., "Euc" and "Man") are leveraged
to intuitively represent the difference between the original data X
and reconstructed data X ′, where a larger value indicates numeri-
cal differences between X and X ′. For the distance index, we are
interested in the distance between each trace, hence, we consider
the quantity of trace for datasets XD and get these distance indexes
by averaging the corresponding record numbers ND , that is (take
"Euc" for example):

Euc(XD ,X
′
D ) =

√∑ND
i=1 (xi − x ′i )

2

ND
, ND = N ′

D (10)

Different to the Privacy I, the Utility loss and Privacy II gain are
in a percentage format (%), compared with the accuracy of Optimal-
IMs. To compare the trade-off between them more intuitively, we
list the "Utility-PII trade-off" column, where "trade-offs = Utility
(% for loss) + Privacy II (% for gain)". Table 2 demonstrates that
our proposed models, especially Model II, outperform the TrajGAN
and GI-DP across various datasets. For instance, with the MDC
dataset, our Model II achieves the best trade-offs when compared
with other models, as the utility loss is only 13.43% but with 65.51%
privacy gain, while 46.32% utility loss and 20.32% privacy gain with
the TrajGAN, and 97.34% utility loss and 97.47% privacy gain with
the GI-DP. The extreme performance on the GI-DP illustrates that
while the DP paradigm is a robust privacy-preserving technique
in protecting user’s location, it is not appropriate in protecting the
user’s identities.

More intuitively, in the column of "trade-off", Model II achieves
all the best trade-offs among four datasets (52.08% (MDC), 24.48%
(Priva’Mov), 34.36% (GeoLife) and 48.54 (FourSquare)). Model I has
worse performance than Model II, in general, but is still superior
to TrajGAN and DP-GI, where the latter two might even get neg-
ative trade-offs (i.e., TrajGAN got -26.00% with MDC and GI-DP
got -5.71% with Priva’Mov). Moreover, for the Priva’Mov dataset,
although the utility loss of the TrajGAN is 4.21% smaller than our
Model II, both two privacy metrics of the TrajGAN are worse than
theModel II. Again, our model has better overall trade-offs, as 23.66%
for Model I and 24.48% for Model II. The performance on Geolife
and FourSquare are similar but inverse, where the utility of our
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Figure 3: Pareto Frontier trade-off analysis on four datasets. The hollow squares and diamonds present the results of the
proposed models Mo-PAE. solid points present the results of the TrajGAN. Blue color means SL = 5. Black color means SL = 10.

model is better than TrajGAN and with slightly weaker privacy
preservation.

In summary, GI-DP always has the highest privacy gain among
the four datasets, however, the utility loss is also very high, resulting
in inadequate and unexpected privacy-utility trade-offs. This trend
also shows that the DP mechanism is not an appropriate metric
for the location privacy of user’s identity, which is also in line with
the conclusions from other related work [16, 51]. The comparisons
between Model I and Model II also illustrate the importance of the
Lagrange multipliers, which provides flexibility to our proposed
architecture, enabling its application in different scenarios and
enhancing the privacy-utility trade-offs in this case.

5.2 Trade-off Comparison
In this section, we present the privacy-utility trade-off analysis
between the proposed Mo-PAE and TrajGAN in terms of mobility
prediction accuracy (i.e., U ) and user de-identification efficiency
(i.e., PII ). Figure 3 presents the trade-off comparisons of the four
datasets, where the hollow squares and hollow diamonds show the
trade-offs provided by the proposed Mo-PAE in SL = 5 and SL = 10,
respectively. The solid points present the results of the TrajGAN
under the same experimental setting. As can be seen from these
results, in all four cases, the synthetic dataset generated by the
TrajGAN is not Pareto-optimal. That is, the proposed Mo-PAE is
able to achieve a better privacy level for a dataset with the same
utility value. Comparedwith the TrajGAN,Mo-PAE improves utility
and privacy simultaneously on four datasets. Especially for the
performance of MDC, the privacy improves 45.21% more than the
TrajGAN, while the utility also increases by 32.89%. These results
illustrate that our proposed model achieves promising performance
in training a privacy-sensitive encoder EncL for different datasets.

After evaluating the superior performance of our proposedmodel,
we discuss the privacy guarantee that Mo-PAE provided in terms of
data reconstruction (PI, "Euc" in Table 3) and user re-identification
(PII, privacy gain in Figure 4). As we mentioned in Section 2, the
privacy guarantee of Mo-PAE differs from that of DP paradigms
and is given in the declined effectiveness of inference attacks.

5.3 Privacy Guarantee Analysis: Effectiveness
of Privacy Inference Attacks

In this section, we discuss the impact ofMo-PAE on the effectiveness
of two privacy inference attacks (i.e., PI and PII ), respectively.

5.3.1 Effectiveness of Data Reconstruction Attacks - PI. Table 3
shows the impact of the proposed mechanisms on the data recon-
struction accuracy(PI ). The "Euc" in the table follows the definition
in Eq.10. Overall, Model II performs better than Model I in limit-
ing the accuracy of data reconstruction regardless of the value of
weights. Take the result of GeoLife dataset as an example, Model
II-i achieves bigger distance than Model I (i.e., 0.4343 > 0.0057),
while it still gets better utility (i.e., -9.94% > -17.9%). Nevertheless,
both Model I and Model II have effectively defended the data recon-
struction attack (MDC: 0.0697 > 0.0017 > 0.0000; Priva’Mov: 0.0453
> 0.0009 > 0.0003; GeoLife: 0.4343 > 0.0057 > 0.0008; FourSquare:
0.7933 > 0.0069 > 0.0052), while only at the marginal cost of mo-
bility utility (MDC: -12.55%; Priva’Mov: -2.71%; GeoLife: -9.94%;
FourSquare: -1.64%). The data of the Optimal-IMs are in Table 2.
We list four representative settings here to make a comprehensive
comparison of PII and U. From setting i to iv, one can expect more
original data features loss to result in a more significant utility loss.
This trend is indeed the case with different weights’ combinations.
However, as the results show, especially for setting i, the privacy of
the traces attains decent protection at the marginal cost of mobility
utility.

5.3.2 Effectiveness of User Re-identification Attacks - PII. Figure 4
presents the impact of the Model II on the user re-identification
accuracy(PII ). In this figure, we list five different settings, I to V
(λ1 = 0.1, over the range of λ2 = {0.5, 0.6, 0.7, 0.8, 0.9}), respectively.
The Zero line (i.e., y = 0%) in each sub-figure is leveraged to indi-
cate the original accuracy of the raw data (i.e., Optimal-IMs). The
"Privacy Gain Rate" (blue square line) shows the effectiveness of
the Mo-PAE in defending the user re-identification attacks. That is,
after applying Model II, the decline range of effectiveness of user
re-identification attacks. For instance, with the MDC dataset, in set-
ting I, the effectiveness of user re-identification attacks declines as
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Settings MDC Priva’Mov Geolife FourSquare
λ1 λ2 λ3 Euc Utility Euc Utility Euc Utility Euc Utility

Model I - - - - +0.0017 -30.27% +0.0009 -2.72% +0.0057 -17.9% +0.0069 -33.75%

Model II

i 0.1 0.8 0.1 +0.0697 -12.55% +0.0453 -2.71% +0.4343 -9.94% +0.7933 -1.64%
ii 0.2 0.6 0.2 +0.0791 -33.29% +0.0738 -10.72% +0.4889 -18.21% +1.2722 -50.50%
iii 0.3 0.4 0.3 +0.0889 -58.10% +0.0782 -16.56% +0.5220 -29.95% +1.9586 -60.71%
iv 0.1 0.6 0.3 +0.0822 -49.27% +0.0776 -10.28% +0.4717 -18.64% +1.4139 -57.40%

Table 3: Impact of Mo-PAE on the data reconstruction accuracy (PI ) and relative utility loss (U ) on four mobility datasets. We
list Model I and four different settings ofModel II ’s weight combinations to discuss the potential range of the trade-offs.
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Figure 4: Impact ofMo-PAE on the user re-identification accuracy (PII) and relative utility loss (U ) on four datasets. The orange
area represents the utility loss, while the light-green area represents privacy gain. The dark-green area represents the trade-
offs between utility achievement and privacy budgets. The x-axis shows five different model settings, and the y-axis shows
the trade-offs.

high as 80%. At the same time, this high privacy protection is at the
cost of nearly 55% of utility (orange triangle line). Things are better
in setting V, where the Mo-PAE can get 60% privacy protection only
at the cost of less than 10% utility. The x-axis shows five settings
of the model, and the y-axis shows the trade-offs (i.e., trade-offs =
privacy gain + utility loss). The orange area represents the utility
loss while the light-green area represents the privacy gain when
compared with Optimal-IMs. The dark-green area represents the
trade-offs between utility and privacy budgets.

In summary, these trade-offs are all positive in different model
settings on four different datasets. The performance on the GeoLife
data is the best, while less than 20% utility loss but more than 50%
privacy gains. The performance on MDC and FourSquare also show
promising privacy-utility trade-offs, especially for setting V on
the FourSquare dataset, and both the utility and privacy increase.
The uniqueness of human mobility trajectories is high, and these
trajectories are likely to be re-identified even with a few location
data points [13]. Our results emphasize that the concern of user re-
identification risk could be alleviated effectively with our proposed
model.

In real applications, the trade-off of Mo-PAE is achieved con-
tinuously over time. New trajectories will be encoded with the
pre-trained encoder to attain respective feature representation and
utilized by SP for following task-oriented scenarios (no need to
retrain). The pre-trained encoder and discriminators are assumed
to be updated offline within a fixed duration for best performance

purposes. Additionally, while the architecture focuses on specific
application scenarios (i.e., mobility prediction), it could generally
be applicable to different task-oriented scenarios.

6 DISCUSSIONS
In this section, we further discuss the impact of the temporal gran-
ularity of traces, the varying sequence length and weights on the
composition units on the Mo-PAE performance.

6.1 Impact of Temporal Granularity
The timestamp is one of the essential components of the mobility
trace, and different choices on the temporal granularity affect the
final performance of any dataset. Figure 5 shows the impact of the
varying temporal granularity on the proposed architecture. We
present the top-1, top-5, and top-10 accuracies for both utility and
privacy dimensions. For instance, when temporal granularity is
10-min, it indicates a location record r is taken every 10 minutes
from the raw data. When using more coarser temporal granularity,
the number of points of interest decreases so does the difficulty
of mobility prediction. However, the uniqueness of the trajectory
decreases due to ignoring many of the unique locations of each
user, resulting in better privacy. To summarize from Figure 5, the
impact of temporal granularity on the Priva’Mov is minimal. In
terms of utility (mobility prediction), Priva’Mov is the only dataset
for which accuracy decreases with increasing temporal granularity.
This subtle decline emphasizes the trajectory features only have a
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Figure 5: The effect of temporal granularity on the model performance of four mobility datasets.
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Figure 6: Mobility prediction accuracy and user re-identification accuracy change with the trace sequence length (SL) in our
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and the top-5 one is 0.802.

small change when varying granularity, in line with the university
students’ mobility.

6.2 Impact of Varying Sequence Lengths
The performance of the utility discriminator UD (MPU) and the
privacy discriminator P2D (URU) exert a significant impact on the
overall performance of the proposed Mo-PAE. The trace length is
the most critical factor affecting these units’ performance. We use
two representative datasets (i.e., MDC and Priva’Mov) to present
the impact of the varying sequence length on both discriminators.

As shown in Figure 6, by changing the lengths of trace sequence
SL from 1 (SL = 1) to 50 (SL = 50), we observe that SL has a signifi-
cant impact on different tasks’ accuracy (i.e., mobility prediction
accuracy forUD and user re-identification accuracy for P2D ) of two
different datasets. Overall, the impact in the MDC dataset is much
higher than in the Priva’Mov dataset. Comparing the Figure 6a and
Figure 6c, there is a much sharper increase on the MDC dataset.
More specifically, when the sequence length is increased from 2 to
20, the top-1 mobility prediction accuracy on MDC increases from
0.473 to 0.978 (i.e., +50.5%), while accuracy on Priva’Mov increases
from 0.918 to 0.959 (i.e., only +4.1%). Similarly, more rapid growth

appears in the user re-identification accuracy on MDC, which is
+68.0%, while the increase for Priva’Mov is only +30.8%. We con-
clude that the mobility predictability and user re-identification
accuracy of a dataset might have a special link. The mobility pre-
dictability of Priva’Mov is very high, almost higher than 90%, but
the user re-identification accuracy is always lower than 80%, which
also means the uniqueness of trajectories in this dataset is low.
This low uniqueness suggests that the users in this dataset might
share similar daily routes, which is reasonable, as we know these
trajectories are collected from students at the same university. For
the MDC dataset, when SL = 10, the user re-identification accuracy
is relatively high, indicating that the locations are more sparse in
this dataset. However, the mobility predictability here is also high,
which emphasizes that this sparseness does not affect predictabil-
ity. These phenomena indicate that the deep training of MPU and
URU might share similar extracted features, while our proposed
architecture attempts to extract features more suitable for mobility
predictability but less suitable for user re-identification.

We note that the varying trace sequence length not only exerts
impacts on the model performance but also has a significant in-
fluence on the computation time. For instance, the computation
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Figure 7: Varying weights can tune the privacy-utility trade-
offs. The primary y-axis (dashed line) represents utility, and
the secondary y-axis (solid line) represents privacy. The x-
axis represents the value of the target λ.

time at SL = 50 costs six times as much as that at SL = 5. The com-
putation time also varies between datasets. Hence, an appropriate
choice of trajectory sequence length can avoid time-consuming
computation and achieve expected task inference accuracy. In our
work, we place greater focus on the trace sequence lengths ranging
from 5 to 10, which exhibits great performance in both the UD and
PD while also keeping a low computation time.

6.3 Impact of Varying Weights
As we discussed in Section 3.3, the sum loss function Lsum of Model
II is a linear combination of LR , LU , and LP with different weights
(i.e., Lagrange multipliers). We evaluate the influence of different
weights’ combinations (λ1, λ2, and λ3) on theModel II, as the results
shown in Figure 7.

We compare the overall model performance in UD and P1D by
fixing the λ3 = 0, and vary the other two multipliers by subjecting
to λ1 = 1 − λ2, as shown in Figure 7a. Figure 7b illustrates the
effect between UD and P2D by setting the λ1 = 0. We could observe
in both settings that the utility increases with a larger λ2, which
means when the MPU is given more weight in the Mo-PAE model,
it would exert a positive impact on the data utility. We conclude
that the privacy-utility trade-offs could be tuned by varying these
weights; the results in Figure 7 also verify the effectiveness of our
adversarial architecture. We note that the balance of three units is
far more complicated than the balance of two. From the extensive
experiment we conducted, initialing λ1 = 0.1, λ2 = 0.6, λ3 = 0.3
can guide the model achieve the trade-off most efficiently. However,
as the experiment results show, there is no dataset independent

privacy interpretation for λ1, λ2 and λ3, and we leave a more ef-
ficient approach using reinforcement learning to initialise these
hyperparameters for different datasets in future work.

7 CONCLUSION
In this paper, we presented a privacy-preserving architecture Mo-
PAE based on adversarial networks. Our model considers three
different optimization objectives and searches for the optimum
trade-off for utility and privacy of a given dataset. We reported an
extensive analysis of our model performances and the impact of
its hyperparameters using four real-world mobility datasets. The
weights λ1, λ2, and λ3 bring more flexibility to our framework,
enabling it to satisfy different scenarios’ requirements according to
the relative importance of utility requirements and privacy budgets.
We evaluated our framework on four datasets and benchmarked
our results against an LSTM-GAN approach and a DP mechanism.
The comparisons indicate the superiority of the proposed frame-
work and the efficiency of the proposed privacy-preserving feature
extractor EncL . Expanding this work, we will consider other util-
ity functions for our models, such as community detection based
on unsupervised clustering methods or deep embedded cluster-
ing methods. In future work, we will leverage automated search
techniques, such as deep deterministic policy gradient algorithm
and reinforcement learning, for efficiency in searching for optimal
weight combinations.
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