
An Efficient Data-Independent PriorityQueue and its
Application to Dark Pools

Sahar Mazloom

J.P. Morgan AI Research

New York, NY, United States

sahar.mazloom@jpmorgan.com

Benjamin E. Diamond
∗

Coinbase

New York, NY, United States

benediamond@gmail.com

Antigoni Polychroniadou

J.P. Morgan AI Research

New York, NY, United States

antigoni.polychroniadou@jpmorgan.com

Tucker Balch

J.P. Morgan AI Research

New York, NY, United States

tucker.balch@jpmorgan.com

ABSTRACT
We introduce a new data-independent priority queue which sup-

ports amortized polylogarithmic-time insertions and constant-time

deletions, and crucially, (non-amortized) constant-time read-front
operations, in contrast with a prior construction of Toft (PODC’11).

Moreover, we reduce the number of required comparisons. Data-
independent data structures—first identified explicitly by Toft, and

further elaborated byMitchell and Zimmerman (STACS’14)—facilitate

computation on encrypted data without branching, which is pro-

hibitively expensive in secure computation. Using our efficient data-

independent priority queue, we introduce a new privacy-preserving

dark pool application, which significantly improves upon prior con-

structions which were based on costly sorting operations.

Dark pools are securities-trading venues which attain ad-hoc

order privacy, by matching orders outside of publicly visible ex-

changes. In this paper, we describe an efficient and secure dark

pool (implementing a full continuous double auction), building

upon our priority queue construction. Our dark pool’s security

guarantees are cryptographic—based on secure multiparty compu-

tation (MPC)—and do not require that the dark pool operators be

trusted. Our approach improves upon the asymptotic and concrete

efficiency attained by previous efforts. Existing cryptographic dark

pools process new orders in time which grows linearly in the size of

the standing order book; ours does so in polylogarithmic time. We

describe a concrete implementation of our protocol, with malicious

security in the honest majority setting. We also report benchmarks

of our implementation, and compare these to prior works. Our pro-

tocol reduces the total running time by several orders of magnitude,

compared to prior secure dark pool solutions.

KEYWORDS
secure computation, privacy-preserving dark pools, data-independent

data structure

∗
Work done in part while at J.P. Morgan.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(2), 5–22
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0038

1 INTRODUCTION
One cannot implement priority queues naïvely—say, using the stan-

dard binary heap construction—in MPC (secure Multi-Party Com-

putation) or FHE (Fully Homomorphic Encryption)-based environ-

ments, as Toft [Tof11, §5] observes. Indeed, these computing envi-

ronments operate on encrypted or secret-shared data, and cannot

execute branching code directly. So-called data-independent data
structures—first identified explicitly by Toft, and further elaborated

by Mitchell and Zimmerman [MZ14]—serve exactly to accommo-

date this constraint. To evade the necessity of expensive linear-time

insertions in MPC or FHE, we introduce a data-independent data

structure which admits better asymptotic complexity than that of

prior work [Tof11]. In the taxonomy of [MZ14, §2], Toft’s work

presents, in fact, an efficient, deterministically data-independent
priority queue.

We pause to emphasize the difference between data-independent
data structures and oblivious data structures, in the sense of, e.g., Shi

[Shi20]. Oblivious data-structures hide access patterns from a mali-

cious RAM. In the data-independent setting, even the “CPU”—that

is, the entity which executes the algorithm—is itself deprived of

the inputs’ plaintexts. Whereas oblivious algorithms must avoid

revealing anything on the basis of their branching patterns, data-

independent algorithms cannot branch at all. We refer to Mitchell

and Zimmerman for a thorough comparison [MZ14]. In the setting

of MPC, data-independence is the most suitable paradigm; indeed,

oblivious algorithms are less suitable, since the participants in an

MPC protocol possess no information about the data on which the

protocol operates (and cannot branch directly).

We show by construction that since it is not possible to branch,

an operation cannot traverse the queue by a path that depends on

the data. Therefore, splitting into buckets as it is introduced by

Toft [Tof11] allows us to ignore the data and pay attention only to

the priorities of the data. In our work we maintain these invariants

from Toft but improve its efficiency. Our main argument about the

combination of oblivious algorithms and MPC is that they are not

as efficient as the ones of using deterministic data independent data

structures. In particular combining MPC and oblivious algorithms,

such as the work of [Shi20], introduces an overhead ofO(logN) per
min-extraction operation where N denotes the maximum number

of elements the priority queue can store. Unlike the other oblivious

MPC solutions which all incur O(logN) overhead for extraction,

5

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0038

Proceedings on Privacy Enhancing Technologies 2023(2) Mazloom et al.

our crucial contribution is a "constant time" extraction operation

on our data independent priority queue.

1.1 Priority Queues in Dark Pools
We observe that buy and sell lists in continuous double auctions are

naturally conceived as (respectively, max and min) priority queues,
where “priority” is given throughout by price. In particular, a con-
tinuous double auction is a standard mechanism for asset exchange,

implemented by all major stock markets. This mechanism accepts

buy and sell orders—for each among a number of assets—from mul-

tiple market participants. Each order specifies an asset, along with

a direction (buy or sell), a desired trading volume, and a price (in-
dicating the “worst” price at which the participant would accept

an exchange). For instance, a client can submit a sell order for 1000

shares of the Apple stock with minimum price of $100 per share.

The market venue “matches” compatible orders, which, by defini-

tion, have opposite directions, and for which the price of the buy

order (the “bid”) is at least the price of the sell order (the “ask”). We

refer to [BBDG18, §3] for details on this fundamental mechanism.

Standard continuous double actions (CDAs), however, leak in-

formation in at least two related ways. For one, orders which do

not immediately fill reside in the order book in a public manner.

On the other hand, all orders (i.e., regardless of whether or not they
immediately fill) are necessarily exposed, before being processed,

to the market’s operators, who in turn can act in advance of them.

Front-running—the illegal practice whereby brokers act preemp-

tively upon their clients’ orders—remains a persistent threat, and

has been the subject of numerous federal enforcement actions; we

refer to [CSA19] for a thorough bibliography on front-running. In

response to this challenge dark pools have arisen which are trading

venues running CDAs in which submitted orders are hidden from

public view. Only the operator(s) of the dark pool can see the sub-

mitted orders. Dark pools now account for 14% of trading volume in

the United States (we refer to [BRW17] for background). Yet while

dark pools (in theory) eliminate the first source of leakage identified

above, they do not prevent the second, as their operators likewise

gain privileged access to their clients’ hidden orders. Dark pools

operators too have been targeted by law enforcement [CSA19] for

front-running.

A recent line of research has attempted to protect the informa-

tion contained in orders cryptographically. The systems described

in these works allow users to submit orders in an “encrypted” form;

the dark pool operators then compare orders “through the encryp-

tions”, unveiling them only if matches occur. Specifically, a proposal

of Cartlidge, Smart and Alaoui [CSA19] secret-shares order infor-

mation across a number of participating servers which take the

role of the dark pool operators. These servers check new orders for

matches using the “SPDZ” secure multi-party computation protocol

of [DPSZ12], revealing the orders’ contents only when indicated.

For each new order processed, [CSA19] requires that a number of

messages which grows quadratically in the number of participating

servers be exchanged; it also requires a number of rounds of com-

munication which grows linearly in the number of standing orders.

Asharov et al. [AJLA
+
12, ABPV20] proposed a general approach

based on the use of threshold fully homomorphic encryption. Their

dark pool accepts orders encrypted under a “master” public key,

and matches them homomorphically; matched orders are finally

threshold-decrypted. The communication of [ABPV20]’s approach

is only linear in the number of participants (for each match pro-

cessed), and moreover is independent of the overall size of the order

book. It also supports t-out-of-n decryption (for arbitrary t). This
approach conveys an additional benefit whereby its architecture

is “star-shaped”, and clients need to communicate only with the

service provider (and not with each other). While [CSA19] and

[ABPV20] differ in their underlying cryptographic mechanisms,

both employ similar—and naïve—sorting (by the price of the or-

der) and searching algorithms. In particular, both protocols’ online

order-processing algorithms incur linear-time passes, either during

order insertion (in the case of [CSA19]) or during match evaluation

(in the case of [ABPV20]).

1.2 Our Contributions

Dark Pools. In order to avoid the expensive use of sorting of prior

privacy-preserving dark pools [CSA19, ABPV20], we introduce to

the dark pool setting the use of data-independent data structures.
As we have already mentioned buy and sell lists are naturally

conceived as (respectively, max and min) priority queues, where
“priority” is given throughout by price. Matching a new order re-

quires access to the front-most order of opposite type (or direc-
tion), as well as the ability to remove this order; finally, after being

processed, each new order must be inserted into its own queue.

The prior work of [CSA19] represents both queues as sorted lists,

and inserts elements using linear-time "insertion sort"-style passes.

Meanwhile, [ABPV20] represents both queues as unsorted lists,

and extracts elements using linear-time searches. We introduce a

new data-independent priority queue and our adaptation of Toft’s

queue, which finally, supports (amortized) polylogarithmic-time

operations, as the costs of all operations are shown in Table 1 (see

Theorem 3.1). Furthermore, in this work, we build on [CSA19], by

introducing data-independent data structures to the MPC setting

to achieve better asymptotic complexity (see Table 2 for a detailed

comparison).

Data-Independent Priority Queues. Toft’s queue, unfortunately,
supports only the insertion and removal of elements, and admits

no constant-time ’read-front’ operation. This capability is crucial

in many applications, and in particular in our dark pool construc-

tion. Of course, read-front can easily be ’emulated’ by performing

a removal and an insertion in succession. On the other hand, this

approach fails to be constant-time, and moreover is unacceptably

inefficient in practice. In fact, an efficient read-front operation is

surprisingly difficult to incorporate directly into Toft’s construc-

tion. We thus introduce a substantially modified priority queue in

which we are able to significantly reduce the number of compar-

isons (which are costly) required to perform different operations on

Toft’s priority queue. In a nutshell, we require no comparisons for

the read-front operations and amortized constant comparisons for

deletion operations. We do so by maintaining a (tree-like) structure

of sorted subsequences which we process in a different way than

Toft in order to avoid and minimize the comparison operations. In

particular, our queue allows for O(log2 N)-time insertions as Toft’s

queue. Our queue’s deletions, on the other hand, require zero amor-

tized cost (in that they can be fully funded using prior insertions);

6

An Efficient Data-Independent Priority Queue and its Application to Dark Pools Proceedings on Privacy Enhancing Technologies 2023(2)

moreover, its read-front operation requires zero comparisons even
in the worst case. We stress that worst-case constant time is stronger

than amortized constant time. Section 3 describes our approach.

1.3 Implementation
We will describe an end-to-end implementation of our framework

including the queue data structure, fully done in MPC. We im-

plement our scheme in the honest majority three-server setting

(three-dark pool operators), tolerating one corruption in the pres-

ence of a malicious adversary, as the security model in [CSA19].

The underlying MPC scheme is an efficient honest-majority MPC

scheme based on Replicated Secret Sharing and is introduced by

[ADEN19] which supports secure computations over rings Z
2
k . We

use the MP-SPDZ library [Kel20] to implement our scheme. To

demonstrate the performance of our privacy-preserving dark pool

construction, we conduct several experiments in order to bench-

mark our performance with two other schemes, [CSA19] and our

implementation of our proposed dark pool, constructed based on

threshold Fully Homomorphic Encryption (tFHE). The result of

these benchmarks are given in Tables 3, 4, 5, and show that our

construction outperforms other solutions by several orders of mag-

nitude. More concretely, for the case where the number of incoming

orders is 30, our construction can process almost 20 transaction per

second, whereas the FHE-based solution can only process almost

0.07 orders per second. And in the case that there is already a sorted

order book as in [CSA19], assuming the scenario that the incoming

buy order gets matched with one sell order, the throughput of our

system is 136 vs 0.6 as in [CSA19]; considering the throughput as

the number of transactions per second.

1.4 Related Work
The MPC-based construction of [CSA19] derives its security by

separating the system’s service operator/provider into several (e.g.,

three) distinct entities, whose collusion would void the system’s se-

curity guarantees. [CSA19] proposes, in fact, that a regulatory body

can be given control of one of the servers. The fully homomorphic

approach [ABPV20], on the other hand, imposes a computational

burden on a single server in a star topology network inwhich clients

only communicate with the server. However, the concrete efficiency

of FHE schemes is notoriously slow. While our data-independent

data structure-based approach, we emphasize, is generic—it can

equally serve both settings. We pursue the MPC-based approach in

this paper.

The work of Massacci et al. [MNN
+
18] considers a distributed

Market Exchange for futures assets which has a different function-

ality from the one considered in dark pools. Part of the futures

exchange functionality includes a double auction as in the dark

pools but the authors consider a different topology model which

is only feasible for a small number of traders. They run a protocol

across all the traders in which all traders have to participate in all

the steps of the protocol, unlike our model where traders partici-

pate only in the registration phase in which they just secret share

their input to the operators. Also, orders are not fully concealed;

in particular an aggregated list of all waiting buy and sell orders is

revealed which is not the case in our dark pool. The authors leave

as an open problem to extend their functionality to the dark pool

setting where the orders are not fully public.

Note that there are works which propose dark pool construc-

tions on the blockchain [NMKW21, GY21, BHSR19] which is not

the focus of our work. Moreover, these solutions have different

guarantees and security goals.

2 BACKGROUND AND DEFINITIONS
In Section 2.1 we give background material on priority queues and

in Section 2.2 on dark pools.

2.1 Priority Queues
In this section, first we recall the general notion of a priority queue
(following the classic treatment of Cormen, Leiserson, Rivest and

Stein [CLRS09]) and introduce the operations supported by our

priority queue in this work. Abstractly, each priority queue Q main-

tains a direction d (either Min or Max), and supports the following

external operations:

• Q.Initialize(d): Assigns the direction Q.d , and initializes Q

to empty.

• Q.Insert(x): Adds x to the Q.

• Q.Size(): Returns the size of Q.
• Q.Extract-Front(): Returns and removes the highest-priority

element from Q.

• Q.Front(): Only returns the highest-priority element from

Q, without removing the element.

We assume that the operation Q.Insert(x) is stable, in the sense

that the oldest (i.e., first inserted) among equally-keyed elements

is necessarily prioritized. In both Q.Extract-Front() and Q.Front()
operations, the highest-priority element directly depends on the

direction of the priority queue, so that if Q.d = Max they return the

largest element, and if Q.d = Min they return the smallest element.

The important difference between these two operation–which also

relates to our contribution–is that, Q.Extract-Front() returns and
removes the element from the queue (which affects the structure of

the queue), whereas Q.Front() only returns the value of the element

and does not remove it from the queue. As a side note, our queue

does not allow element priorities to be changed.

Here in this preliminary section, we only declare the main oper-

ations designed for our priority queue, and more comprehensive

explanations will be given in following section where they are be-

ing utilized. The following internal operations are used to build the

aforementioned external operations;

• Q.Flush(arдs): Move and relocates the data elements inside

Q. The arguments determine which elements and how they

should be flushed throughout the Q.

• Q.Retrieve(arдs): Arranges the Q’s contents, and also re-

turns the requested element from Q. The arguments deter-

mine which elements at what location should be processed.

• Merge(·, ·): Merges two pre-sorted lists and converts them

to a larger sorted list, where its length is the sum of their

initial lengths.

• Merge-Split(·, ·): Merges two pre-sorted lists and splits them

to two separate sorted lists with the same size as their initial

sizes, whose concatenation re-constructs the merged list.

7

Proceedings on Privacy Enhancing Technologies 2023(2) Mazloom et al.

It is important to note that our priority queue has a special

internal structure, where it consists of several sub-queues. These

sub-queues unlike the ones used in previous work by Toft [Tof11],

shown in Figure 1(a)
1
, are not regular FIFO queues; instead we use

a basic "double-ended queue"–that is a generalized version of a

FIFO queue–which allows insertion and removal of elements from

both ends of the queue. The standard double-ended queue supports

four basic operations in order to access the data from each end,

as depicted in Figure 1(b). Q.Push-Front(x) inserts the element x
at the front end of the queue, Q.Push-Back(x) inserts the element

x to the back end of the queue. Q.Pop-Front() deletes an element

from front end of the queue, and Q.Pop-Back() deletes an element

from back end.

x

front back

enqueue(x)

dequeue()

x x

front back

push-front(x) push-back(x)

pop-back()pop-front()

(a) (b)

Figure 1: The structure of internal queues used as build-
ing blocks in constructing priority queues (a) The priority
queue by Toft [Tof11] uses FIFO queues as building block,
(b) Our data-independent priority queue uses double-ended
queues as its building block.

2.2 Dark Pool Model and Functionality
We start by defining our model and then present the dark pool

functionality.

2.2.1 ThreatModel &Network Topology. Considern parties P1, . . . ,
Pn that hold private inputs x1, . . . , xn and wish to compute some

arbitrary function (y1, . . . ,yn) = f (x1, . . . , xn), where the output
of Pi is yi . MPC [Yao86, GMW87, BGW88, CCD87] enables the par-

ties to compute the function using an interactive protocol, where

each party Pi learns exactly yi , and nothing else.

A semi-honest adversary (also known as “honest-but-curious”

or “passive”), follows the protocol specification but may attempt

to learn secret information about the private information of the

honest parties from the messages it receives. A malicious adversary
(also known as “active”) may, in addition, deviate from the protocol

specification and follow any arbitrary behavior.

For the dark pool application, we run an MPC protocol in the

pre-processing model across three computation servers, S1, S2, S3
to emulate the operator of the dark pool. Each client Pi is connected
to the servers, Si s, and can submit his/her orders in a secret shared

form. For our application, we consider a three-server maliciously

secure protocol in the honest majority setting with one corruption

and security with abort; it is the same threat model as [CSA19].

Note that in this threat model, clients, Pi , only secret share their

private input (orders) with computation servers, Si , and do not

1
The operations enqueue(x) and dequeue() are the standard operations in FIFO queue,

and we use a solid line at the front of the queue to emphasize that the data cannot be

inserted to the front of the queue; we use the same solid line in sub-queues shown in

Figure 3.

participate in the computation themselves. No single operator can

recover the secret shared orders. The model is depicted in Figure 2.

The use of our new data independent priority queue is not tight to

any cryptographic technique, the values of the queue can remain

private either using secret sharing, homomorphic encryption etc.

S1 S2

S3

P1

P2 P3

P4

P5

P6 P7

P8

Figure 2: Three-server privacy-preserving dark pool.

2.3 Secret Sharing
We recall the general notation for secret sharing [Sha79].

Definition 2.1 (Secret-sharing). Let F be a finite field and let n, t ∈
N. A pair of algorithms S n

t = (Share,Recover) where Share is

randomized and Recover is deterministic, are said to be a secret-

sharing scheme if for every n, t ∈ N, the following conditions hold:

• Reconstruction: For any setT ⊆ {1, . . . ,n} such that |T | > t
and for any s ∈ F it holds that

Pr[Recover(ShareT (s,n, t)) = s] = 1

where ShareT is the restriction of the outputs of Share to
the elements in T .

• Privacy: For any set T ⊆ {1, . . . ,n} such that |T | ≤ t and
for any s, s ′ ∈ F it holds that

ShareT (s,n, t) ≡ ShareT (s
′,n, t)

where we use ≡ to denote that two random variables have

the same distribution.

2.4 Order Books and Dark Pool Functionality
We now describe the abstract functionality which our dark pool

implements. An order x consists of a name n (an identifier reflecting

who submitted the requested order), a direction d (either Buy or

Sell), a price p and a volume v (both real numbers). Abstractly, our

dark pool functionality DP maintains two priority queues, one for

the Sell orders, called S, and one for the Buy orders, called B; each

queue contains orders and keyed by the price of the orders, and

implements the following operations:

• Fmain.Initialize():
Calls B.Initialize(Max) and S.Initialize(Min) keyed by the

price p.
• Fmain.Process(x): Calls the appropriate matching algorithm

on order x .

We also assume access to the routine Execute that executes the
trade if a match between a buyer and a seller is found. Depending

on the order of arguments, it can represents a buy transaction or a

sell transaction; we define both of them as follows:

• Execute(nb ,ns ,v,p): Executes a trade in which nb buys v
units from ns , at the price p.

8

An Efficient Data-Independent Priority Queue and its Application to Dark Pools Proceedings on Privacy Enhancing Technologies 2023(2)

• Execute(ns ,nb ,v,p): Executes a trade in which ns sells v
units to nb , at the price p.

The dark pool consists of two main functionalities FMatch-Buy
and FMatch-Sell, that are presented in Functionality 2.3 and Func-

tionality A.1. In what follows we describe our main functionality

assuming a new order x enters the dark pool.

FUNCTIONALITY 2.2 (Fmain–Dark Pool Functionality).
Upon initialization, Fmain initializes two empty queues, B for the

buy orders and S for the sell orders and an empty list T for the

orders to be executed.

Input: Buy and sell orders processed one-by-one. For simplicity of

exposition, we denote each individual order by x .

1: procedure Fmain.Initialize()
2: B.Initialize(Max)

3: S.Initialize(Min).

4: T := []

5: procedure Fmain.Process(x)
6: if x .d = Buy then call FMatch-Buy(x)
7: else call FMatch-Sell(x)

In Functionality 2.3 we present FMatch-Buy. At the beginning of

FMatch-Buy, when a new buy order arrives, if the sell order queue

is empty, then it simply inserts the incoming buy order to the buy

queue. But in case the sell queue is not empty, if the price of the

incoming buy order is more than the price of the sell order standing

at the Front of the sell queue, it indicates that there is a potential
match. In that case, it finds the minimum volume between the in-

coming buy order and Front order in the sell queue, followed by

storing the matching order on the list T . In the next step, it com-

putes the remaining volume of the Front sell order. If the remaining

volume is 0, then it calls the function Extract-Front to remove the

Front sell order from the sell queue and consequently re-arranges

the queue. It also computes the remaining volume of the incoming

buy order; if it has no remaining volume, meaning it is fully filled,

the while loop ends and that buy order is added to the buy queue

with zero price. We note that, if a match takes place, the price of the

Front order is used in the match, and not the price of the incoming
order. This is an important—and standard—feature of continuous

double auctions (see for example [BBDG18, §3.1.8]).

FUNCTIONALITY 2.3 (FMatch-Buy–Matching Buy Functionality).
Input: A buy order x .

1: while S.Size()! = 0 and x .p ≥ S.Front().p do
2: v ← min(x .v,S.Front().v)
3: T .Insert(x .n,S.Front().n,v,S.Front().p)
4: S.Front().v −= v
5: if S.Front().v = 0 then S.Extract-Front()
6: x .v −= v
7: if x .v = 0 then x .p = 0

8: B.Insert(x)
9: if T .Size()! = 0 then Execute(T)

A similar procedure happens when a sell order enters the dark

pool, as presented in FMatch-Sell in Functionality A.1 given in Ap-

pendix A.

Our secure construction hides each order’s sender, price, and

amount, but not its symbol (i.e., which asset pair it concerns) or

its direction (whether it’s a buy or a sell). This corresponds to the

setting of [CSA19]. The leakage of the orders in T is unavoidable

since the orders have to be executed by the operators of the dark

pool. We also conceal whether the incoming new order x was fully

matched or not. In particular, in line 7 if an order is fully matched

it is inserted in the queue with the minimum 0 price for the case

where x is a buy order. (Likewise, the order is inserted with the

maximum∞ price if x is a sell order). Since the buy order is inserted

in the queue at the lowest priority, there is no leakage on whether it

was fully matched or not. Jumping ahead, our secure approach also
conceals whether or not the last processed standing order inS, to be

matched with x , is fully filled (orB for the FMatch-Sell functionality),

in addition to whether or not the new order fully fills. This contrasts

with [CSA19], which hides only whether the incoming new order

fully fills, but does not conceal the final processed standing order’s

status.

3 AN IMPROVED DATA-INDEPENDENT
PRIORITY QUEUE

In order to understand how we improved the construction of a

data-independent priority queue, first we need to recall how a data-

independent priority queue works by describing an existing priority

queue, by Toft [Tof11].

3.1 Overview of Toft’s Queue
Toft [Tof11] constructs a priority queue which is deterministically
data-independent, in a sense described explicitly by Mitchell and

Zimmerman [MZ14, §2]. Before going to technical details, first

we need to understand the intuition behind this data-independent

priority queue. The primary goal in any priority queue is to have all

the data stored in a list D in sorted order (based on their priority).

However, sorting the list is an expensive operation, if done naively.

Toft’s queue, inspired by the bucket heap of Brodal et al. [BFMZ04],

operates with the aid of an auxiliary data structure called buffer B
(which intrinsically is a FIFO queue, Figure 1(a)). The high level idea

is simple; rather than inserting d data elements directly into the

queue to their correct locations (according to their priority), which

is very expensive, the data elements will be placed temporarily into

the buffer as they arrive, until there are sufficient data elements

available in the buffer to be inserted to the queueD at once. Inserting

the elements this way pays for the combined cost of all insertions.

Technically, the data is split into sub-queues, called bucketsQ.D0,

Q.D1, ..., such that the elements ofQ.Di are greater (higher priority)

than those of Q.Di+1, assuming the sorting order is descending by

priority. The size of each bucket doubles with each step, meaning

that the size of bucket in level i , Q.Di , is double the size of the

bucket in the upper level, Q.Di−1. In addition to this, the bucket

B is also splits to sub-queues, such that at each level i , there is a
buffer Q.Bi of the same size as Q.Di , as depicted in Figure 3. Both

of these (FIFO) queues, D and B, consist the priority queue Q.

Now we need to understand how the data is being processed

and sorted inside this priority queue. Figure 3 provides an example

of a priority queue consisting of buckets and buffers; where (a)

shows the initial state of the queue when it is empty, and there is

9

Proceedings on Privacy Enhancing Technologies 2023(2) Mazloom et al.

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

(a)

1

3 4 2

5 7

Bucket D Buffer B

(b)

Input: 5, 3, 7, 4, 1, 2

x

front back

enqueue(x)

dequeue()

x x

front back

push-front(x) push-back(x)

pop-back()pop-front()

(a) (b)

1

3 4

Bucket D Buffer B

level i = 0

i = 1

i = 2

2

5 7

(a)

3 4 2

5 7

Bucket D Buffer B

(b)

2 3

Bucket D Buffer B

level i = 0

i = 1

i = 2

4

5 7

(c)

3

2 4

5 7

Bucket D Buffer B

(d)Bucket D Buffer B

Bucket D Buffer B

0

1 2

3 4 5 7

(a) (b) (c)

(g) (h) (i)

Input: 4, 1, 2

Bucket D Buffer B

5 3

3 7

5

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

Bucket D Buffer B

5

Input: 3, 7, 4, 1, 2 Input: 7, 4, 1, 2

Bucket D Buffer B

3

5 7

4

Input: 1, 2 Input: 2

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

Bucket D Buffer B

level i = 0

i = 1

i = 2

(d) (e) (f)

3

5 7

1

4

1

3 4

2

5 7

Bucket D Buffer B

Input: 0

1

3 4

0

2

5 7

3

4

5 7

Bucket D Buffer B

(e)

level i = 0

i = 1

i = 2

(a)
Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

(b)
Bucket D Buffer B

5

Input: 3, 7, 4, 1, 2

(c)

Bucket D Buffer B

5 3

Input: 7, 4, 1, 2

level i = 0

i = 1

i = 2

Input: 1, 2

(e)
Bucket D Buffer B

3

5 7

4level i = 0

i = 1

i = 2

Bucket D Buffer B

0

1 2

3 4 5 7

(i)

(g)

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

1

3 4

2

5 7

(h)

Bucket D Buffer B

Input: 0

1

3 4

0

2

5 7

level i = 0

i = 1

i = 2

Input: 2

(f)
Bucket D Buffer B

3

5 7

1

4

Input: 4, 1, 2

3 7

5

Bucket D Buffer B
(d)

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5 , 3, 7, 4, 1, 2, 0

5

(a)

3

5 7

4

Bucket D Buffer B

(b)

Input: 5,, 1, 2, 0

Bucket D Buffer B

0

1 2

3 4 5 7

(c)

Input:

Figure 3: Buckets Di and Buffers Bi as building blocks of the
priority queue by Toft [Tof11]. (a) initial state of the queue
when it is empty and the input list (5, 3, 7, 4, 1, 2, 0), (b) state of
the queue after inserting some elements into the queue, and
(c) state of the queue after all input elements are inserted
into the queue.

an input list (5, 3, 7, 4, 1, 2, 0) to be inserted to the queue; and (b)

state of the queue after inserting some elements into the queue,

and (c) shows the state of the queue after all the input elements are

inserted to the queue in their correct locations. We provide a step

by step explanation of this example in Appendix B.1. It is important

to note that the size of buffers and buckets at each level i + 1 is

double their size at level i , later we will explain why this property

is important and should be maintained throughout the entire queue

structure.

There are two main operations on the priority queue, as intro-

duced by [Tof11], which are Q.Insert(x) and Q.Extract-Front()2.
There is also an important internal operation called Q.Flush that

has a fundamental role in moving the data throughout the queue.

The details of these operations are shown in Algorithms 1, 3 and

2, respectively. Here we explain each of these operations in more

details
3
. There are two primitive operations that are invoked inside

these algorithms, calledMerge(·, ·) andMerge-Split(·, ·), as declared
in section 2.1. TheMerge operation takes two arguments, both need

to be sorted lists with some known length l , and it has the ability to
merge these two sorted lists to a larger sorted list. In case these in-

put lists have different sizes, the shorter list should be padded—with

some elements e∞ which have the lowest priority than others—to

become of equal length. This padding will be removed from the end

of the merged list after the merge is done.Merge-Split(·, ·) has sim-

ilar behaviour as Merge(·, ·), only difference is that, after it merges

the two input sorted lists, it splits the merged list to two new lists

whose concatenation re-constructs the merged list. The length of

the new lists must be equal to the lengths of the original ones. The

effect of a Merge-Split is that the most significant elements end up

2
In [Tof11], this operation is called Q .DelMin() which refers to returning and re-

moving the smallest element from the queue, however we change the name to

Q .Extract-Front to generalize it to support both Min and Max queues.

3
For their correctness and security analysis please refer to [Tof11].

in one of the lists, while the least significant ones end up in the

other one. Naturally, both new lists are still sorted. Both of these

primitives can be constructed using Batcher’s even–odd merge net-

work (see e.g., Knuth [Knu98, §5.3.4]). Merging alone requires only

O(l log l) conditional swaps inO(log l) rounds.Merge-Split has the
same complexity as Merge (as the split merely only renames the

variables).

The high level idea of Q.Insert(x) is that, the data is initially

being inserted to the buffer, and as soon as the buffer becomes

full, its content will be processed. To be more precise, as shown in

Algorithm 1, when a new data element x arrives, it is first inserted

into the top bufferQ.B0, and eventually being processed and pushed
downwards whenever the buffer gets full—or so called "flushed" in

[Tof11]—through the buffers, until it reaches the buffer at the correct
level, then it will be moved to the bucket in that level; the correct
level refers to the level i in which the input element x is bigger than

some elements p in the bucket at that level; more formally, x will

be inserted to the bucket Q.Di if ∃p ∈ Q.Di s.t. x ≥ p.

Algorithm 1 Q.Insert(x) [Tof11]: Inserting new data element x to

the queue Q

1: if |Q.B0 | = 0 then
2: Q.B0 ← x

3: Q.Flush(0) ▷ Flush elements of level 0

In other words, the data arrives and being stored in the buffers,

and when a buffer Q.Bi gets full, elements of that buffer that are

bigger than some elements p ∈ Q.Di are pushed to the bucket Q.Di
which is at the same level i , and the rest of the elements are flushed

down to the buffer at the lower level Q.Bi+1. Hence, according to
Algorithm 2, there are two possible states when flushing a buffer

Q.Bi : either i is the last level where data exists and Q.Di is empty;

or (line 6) there is data in Q.Di or i is not the last level. In the first

case, where the bucket Q.Di is empty and i is the last level, we may

simply move the 2
i
top elements into the data bucket Q.Di (line 2),

since all the elements in the buffer Q.Bi have lower priority than

the elements in the buckets Q.D0 to Q.Di−1.

In the second case there may be data in the bucket Q.Di at

level i or lower levels i + 1, i + 2, ..., which have lower priority

than the elements of the buckets in upper levels 0, 1, ..., i − 1. The
Merge-Split ensures that the highest-priority elements of any level

i end up in the bucket and the rest stay in the buffer. At this point it

is guaranteed that the elements of Q.Di have higher priority than

those of Q.Bi , hence the latter can be pushed into the buffer Q.Bi+1
when Q.Bi gets full. A comprehensive example on how arriving

data elements are being processed and inserted into the queue using

the Flush operation is given in Appendix B.1.

Algorithm 3, describes the operation Q.Extract-Front(i) by Toft

[Tof11]; it takes an argument i as an input, which indicates 2
i

number of elements to be extracted from the level i and any level j
where i < j . Note that if i = 0, this algorithm extracts the front-most

element from the queue. A comprehensive example on how the

data elements are being extracted from front of the queue is given

in Appendix B.2. In order to extract the highest-priority element

from the queue, Algorithm 3 returns the value of the front-most
4

4
We use the terms "front-most", "top-most", and "highest-priority" interchangeably.

10

An Efficient Data-Independent Priority Queue and its Application to Dark Pools Proceedings on Privacy Enhancing Technologies 2023(2)

Algorithm 2 Q.Flush(i) [Tof11]: Flushing buffer Q.Bi at level i

1: if |Q.Di | = 0 and i is last level then
2: Q.Di ← Q.Bi [1 : 2

i] ▷ Move 2
i
elements from Bi to Di

3: Q.Bi ← Q.Bi [2
i + 1 : |Q.Bi |] ▷ Shift remaining elements

4: if |Q.Bi | ≥ 2
i then

5: Q.Flush(i) ▷ Flush elements at level i

6: else
7:

(
Q.Di ,Q.Bi

)
← Merge-Split

(
Q.Di ,Q.Bi

)
8: Q.Bi+1 ← Merge

(
Q.Bi ,Q.Bi+1

)
9: Set Q.Bi empty

10: if |Q.Bi+1 | ≥ 2
i+1 then

11: Q.Flush(i + 1)

element, that technically must come from a bucket. Only if there

are no elements in any buckets can an element be taken from

a buffer (line 5). It is clear that the highest-priority element will

either be in the front-most, non-empty bucket or a buffer above that.

Hence, starting with level 0, the buffers are flushed (mergedwith the

buffer below) one after the other until a non-empty bucket is found

(lines 6 and 10). Note that this simply merges buffered elements

above any full buckets. Once a non-empty bucket is found, it is

Merge-Split with the buffer at that level to ensure that it contains

the 2
i
highest-priority elements, not only at this level, but overall:

buckets and buffers above are empty, and any element in the bucket

has higher priority than any at a level below. The present bucket is

then emptied into the buckets above, which fills them and leaves

one element that can be returned – this task is trivial as the elements

of the bucket are sorted, and the concatenation of the buckets above

should be a sorted list. If all buckets are empty, then all buffers are

merged until only a single non-empty one exists (at the last level,

i).

Algorithm 3 Q.Extract-Front(i) [Tof11]: Return the top 2
i
ele-

ments from level i and below

1: if |Q.Di | = 2
i then

2:

(
Q.Di ,Q.Bi

)
← Merge-Split

(
Q.Di ,Q.Bi

)
3: return Q.Di and set it empty

4: else if i is the last level then
5: return Q.Bi and set it empty

6: else
7: Q.Bi+1 ← Merge(Q.Bi ,Q.Bi+1)
8: Set Q.Bi empty

9: if |Q.Bi+1 | ≥ 2
i+1 then

10: Q.Flush(i + 1)
11: Q.D̃ ← Q.Extract-Front(i + 1)
12: if

��Q.D̃�� ≥ 2
i+1 then

13: Q.Di ← Q.D̃
[
2
i + 1 : 2i+1

]
14: Q.Bi+1 ← Q.D̃

[
2
i+1 + 1 :

��Q.D̃��]
15: return Q.D̃

[
1 : 2

i]
16: else
17: return Q.D̃

The data is being processed (whether inserted or extracted) in

a sorted order as described above, however there are two funda-

mental constrains or so called invariants. The invariants need be

maintained constantly throughout the queue to have a priority

queue, and all the operations we described above maintain them

after they finish. We follow [Tof11, §5.2] in defining these invari-

ants, with an exception for our improved queue which we indicate

at the end. Namely, upon the termination of each external routine:

1) At each level i , |Q.Bi | < 2
i
and |Q.Di | ∈ {0, 2

i } (our invari-

ant is more relaxed s.t. |Q.Di | ≤ 2
i
).

2) At levels i, j where i < j, each element of Q.Di is of higher

priority than any elements of either Q.D j or Q.Bj .

The first invariant of [Tof11] indicates that the buffers Q.Bi must

contain strictly less than 2
i
elements, because as soon as it gets full,

its data should be processed and moved to its appropriate location.

On the other hand, the bucket Q.Di can contain 2
i
elements, and it

is either completely full or completely empty whichmeans |Q.Di | ∈

{0, 2i }. However unlike Toft, we do not have this requirement and

|Q.Di | ≤ 2
i
. The second invariant assures that the elements of

buffer Q.Bj are less (have lower priority) than the elements of the

higher-lying buckets, Q.Di where i < j. And finally, the data with

highest-priority can be obtained by returning the contents of the

top of the queue at the location Q.D0.

Toft’s priority queue admits the following complexities:

Its Q.Insert(x) and Q.Extract-Front() operations each take amor-

tizedO(log2 N) time; Q.Empty() and Q.Initialize(d) each takeO(1)
time. Operation Q.Initialize(d), assigns the direction d, and initial-

izes Q to empty.

3.2 Technical Challenges
As previously introduced in 2.1, the Q.Front() operation only re-

turns the element of the queue with the highest-priority without

removing it from the queue. The operation is an interesting and

useful operation when we only need to read the front-most element

of the queue and do not need to remove it–which consequently

can lead to change the order and structure of other elements in

the queue. However, Toft’s queue [Tof11] does not, unfortunately,
support a Q.Front() operation, let alone one which runs in constant

time. In fact, this operation is surprisingly challenging to incorpo-

rate directly into Toft’s construction. For completeness, we briefly

explain the nature of the difficulty, before introducing our own

approach.

The highest-priority element of a queue satisfying the above

invariants cannot in general be inferred directly from its internal

state. This determination is possible only when the queue’s top-

most non-empty bucket Q.Di∗ also satisfies |Q.Bi | = 0 for each

i ≤ i∗. In fact, the essential purpose of Toft’s Extract-Front routine
[Tof11, Prot. 2] is to make this state obtain, by repeatedly flushing

buffers until it encounters a non-empty bucket. After finding one—

say, Q.Di∗—the algorithm [Tof11, Prot. 2] returns its front-most

element, and packs its remaining contents into the higher buckets

(for which i < i∗). Pack intuitively means that the set of data

elements all together are being moved.

Toft’s deletion protocol—and its efficiency analysis—rely cru-

cially on the size assumption |Q.Di∗ | = 2
i∗

(and the equality

2
i∗ − 1 =

∑i∗−1
i=0 2

i
). This assumption guarantees that, upon the

Extract-Front’s termination, all buckets i < i∗ become completely
full, and, heuristically, that a deletion of level i∗ need only occur

once every 2
i∗
deletions. This approach fails when the front-most

11

Proceedings on Privacy Enhancing Technologies 2023(2) Mazloom et al.

element only needs to be read, and not extracted (removed). In

fact, the requirement |Q.Di | ∈ {0, 2
i } completely fixes the queue’s

bucket structure, at least given their combined capacity; so long as

no element is removed, the buckets’ arrangement cannot change.

Leaving Q.Di∗ as it is—that is, reporting its front-most element,

without moving its contents upward—would violate [Tof11, Prot.

2]’s invariant on Extract-Front. Simply removing and re-inserting

the front-most element would discard information (namely, the

fact that the newly inserted element is of higher priority than all

others). Another intermediate approach would pack Q.Di∗ ’s front-

most 2
i∗ − 1 elements and move into higher buckets, while stowing

its last element in the buffer Q.Bi∗ (flushing it if necessary). This
approach also yield a correct Extract-Front operation; however, it
also discard information, and in particular the fact that Q.Di∗ ’s

last element is of higher priority than those buffers Q.Bj for which
j > i∗. Both approaches perform significantly worse than ours in

practice.

3.3 Our Approach
Wenow describe our improved queue construction.We significantly

modify the queue’s internal algorithms, so as to facilitate our in-

troduction of the Q.Front() operation. As previously introduced in

2.1, the Q.Front() operation returns the element of the queue with

the highest-priority. In fact, we relax the requirement (see [Tof11,

§5.2]) whereby each bucket must be either full or empty at all times,

that is |Q.Di | ∈ {0, 2
i }. We achieve this relaxation by replacing

the internal sub-queues of Toft’s priority queue with double-ended

queues which allows to insert or remove the elements from both

ends of the queue, rather FIFO queues that only allow the insertion

at the back end and removal from front end of the queue. By relax-

ing this invariant, buffers do not require to be over loaded in order

to be processed (flushed). We also develop appropriate generaliza-

tions of [Tof11, Prot. 1] and [Tof11, Prot. 2]. In fact, we separate the

“flushing logic”—used by both Q.Insert(x) and Q.Extract-Front()—
and the “retrieval logic”—used by Q.Extract-Front()—into distinct

routines. This approach generalizes and unifies [Tof11].

To introduce our unified internal method Q.Flush(i, t, e), it is
important to note that it accepts an additional parameter e , valued
either Regular or Extract, and parameter t to record cumulative

bucket size. This method, Q.Flush(i, t, e), flushes the buffer Q.Bi
at the level i . Q.Flush(0, 0, Regular) operates essentially as does

[Tof11, Prot. 1], by flushing only over loaded buffers. If e equals

Extract, then the routine flushes all buffers—i.e., even non-full

ones—until encountering an adequately full bucket. Specifically,

Q.Flush(0, 0, Extract) flushes buffers until finding a bucket i∗ for

which

∑
j≤i∗

��Q.D j
�� ≥ 2

i∗
. This condition exactly recovers that

of [Tof11, Prot. 2] in case each |Q.Di | ∈ {0, 2
i }. For technical

reasons, we also require that i∗ > 0 (see Subsection 3.4 for fur-

ther discussion). Notably, these two procedures differ only sub-

tly, and can be subsumed into a single method. The latter method

Q.Flush(0, 0, Extract) serves to free up certain bucketsQ.Di , which

can then be packed upwards. We abstract this latter logic into a

second internal routine, which is almost free as it executes no com-

parisons. This routine, which we call Q.Retrieve(i,v), recursively
packs the queue’s contents using the vector-valued parameter v ,
and also returns the queue’s front-most element. These internal

operations can be summarized as follows, and more discussion will

be given in Correctness Subsection 3.4:

• Q.Flush(i, t, e): Assumes inductively that any buffer in levels

above i are empty,

��Q.Bj �� = 0 for each j < i; as well as that

t =
∑
j<i

��Q.D j
��
. It ensures that

��Q.Bj �� < 2
j
for each j ≥ i , as

well as, if e = Extract, that

��Q.Bj �� = 0 for each j ≤ i∗, where

either

∑
j≤i∗

��Q.D j
�� ≥ 2

i
and i∗ > 0 or else i∗ = |Q.D | − 1.

• Q.Retrieve(i,v): Assumes inductively that

��Q.D j
�� = 0 and��Q.Bj �� = 0 for each level j < i , and that vector v gives a

consecutive sequence of the queue’s front-most elements,

with size |v | < 2
i
. Extends vector v so as to contain as

many elements as 2
i
of the queue’s consecutive front-most

elements, after packing any element with higher priority

than those 2
i
’s, into those buckets Q.D j for which their

level j ≥ i .

Algorithm 4 Q.Insert(x)

1: if Q.Empty() then
2: Q.D.Push-Back([]) ▷ Initialize the Bucket

3: Q.B.Push-Back([]) ▷ Initialize the Buffer

4: Q.B0.Push-Back(x)
5: Q.Flush(0, 0, Regular)

Algorithm 5 Q.Read-Front()

1: return Q.D0[0]

Algorithm 6 Q.Extract-Front()

1: Q.Flush(0, 0, Extract)
2: assign v := []

3: Q.Retrieve(0,v)
4: return v[0]

Algorithm 7 Q.Flush(i, t, e)

1: (Q.Di ,Q.Bi) ← Merge-Split(Q.Di ,Q.Bi)
2: if i = |Q.D | − 1 then
3: while |Q.Di | < 2

i and |Q.Bi | , 0 do
4: Q.Di .Push-Back(Q.Bi .Pop-Front())

5: if |Q.Bi | = 0 then return
6: Q.D.Push-Back([])
7: Q.B.Push-Back([])
8: Q.Bi+1 ← Merge(Q.Bi ,Q.Bi+1)
9: t += |Q.Di |

10: if i > 0 and t ≥ 2
i then e = Regular

11: if |Q.Bi+1 | ≥ 2
i+1 or e = Extract then

12: Q.Flush(i + 1, t, e)

For completeness, we record the additional algorithm 13,Q.Size(),
given in Appendix A that returns the current size of the queue.

12

An Efficient Data-Independent Priority Queue and its Application to Dark Pools Proceedings on Privacy Enhancing Technologies 2023(2)

Algorithm 8 Q.Retrieve(i,v)

1: if |Q.Bi | > 0 and (i < |Q.D | − 1 or |Q.Di | > 0) then
2: return
3: while |Q.Di | , 0 do v .Push-Back(Q.Di .Pop-Front())

4: while |Q.Bi | , 0 do v .Push-Back(Q.Bi .Pop-Front())
5: if i < |Q.D | − 1 then
6: Q.Retrieve(i + 1,v)
7: while |v | > 2

i do Q.Di .Push-Front(v .Pop-Back())

8: if i = |Q.D | − 1 and |Q.Di | = 0 then
9: Q.D.Pop-Back()
10: Q.B.Pop-Back()

3.4 Correctness
We begin by observing a basic, but important, fact, whereby, at any

given moment, the concatenation of those top-most Q.Di for which
|Q.Bi | = 0 gives a vector containing the queue’s highest-priority

elements. An exception is givenwhen i isQ’s "last level" and Q.Di is

empty; in this case, Q.Bi too can be concatenated (in this case there

are no lower levels, so invariant 2) becomes vacuous). These facts,

which directly follow from the invariants, are summarized by the

illustrative algorithm 12, Q.Highest-Priority(), given in Appendix

12 (which we never call directly).

This free, read-only algorithm necessarily returns a (possibly

empty) vector v consisting of a contiguous subsequence of Q’s fully
sorted contents, starting from its highest-priority element. In fact,

the vector v returned by this algorithm gives the longest such con-

tiguous subsequence whose correctness can be directly inferred

from the queue’s present state (i.e., without making additional

comparisons). Our algorithms make essential use of this “longest

contiguous sorted subsequence”, as we now explain. The algorithm

Q.Flush(i, t, e) operates in two modes. If e = Regular, then the

function’s purpose is merely to re-establish the first part of invari-

ant 1), whereby the size buffer |Q.Bi | < 2
i
for each i . The rou-

tine proceeds by ensuring, for each i , that each element of bucket

Q.Di is of higher priority than each element of buffer Q.Bi—by
calling Merge-Split(Q.Di ,Q.Bi)—before pushing the contents of

buffer Q.Bi into the next buffer, and finally calling Q.Flush(i +
1, t, Regular) recursively if Q.Bi+1 becomes over loaded. A special

case arises when i is the queue’s “last level”, in which case, again by

invariant 2), the contents of buffer Q.Bi may be moved to bucket

Q.Di .

The parameter e = Extract, on the other hand, establishes

a stronger guarantee; that is, it additionally serves to attempt to

make the vector v “adequately long”. Notably, this latter purpose

can be achieved by subtly adjusting Q.Flush. Indeed, vector v can

be lengthened simply by successively flushing all buffers Q.Bi (i.e.,
regardless of whether they are over loaded |Q.Bi | ≥ 2

i
) until some

i∗ is reached for which
∑
i≤i∗ |Q.Di | satisfies an appropriate length

condition; at this point, the flag is flipped to Regular in all sub-

sequent recursive calls; the procedure may continue, but only for

the purposes of maintaining invariant 1). Concretely, e = Extract

flushes until encountering some bucket Q.Di∗ for which i∗ > 0

and

∑
i≤i∗ |Q.Di | ≥ 2

i∗
. On one hand, these conditions together

ensure that |v | ≥ 2, so thatv[0]—necessarily the queue’s front-most

element—can be returned, and moreover that v[1]may be placed in

Q.D0. On the other hand, they also makev sufficiently long so as to

“re-pack” all flushed buffers. This latter property, which is important

for efficiency reasons, is discussed further in Subsection 3.5; we

also discuss there the degenerate case in which no appropriate i∗ is
found. It remains to explain Q.Retrieve(i,v). The essential purpose
of Q.Retrieve(i,v) is to “pack” the vector v upwards—wherever it

resides—so that it comes to contiguously occupy the queue’s highest

buckets (it is essentially a recursive variant of Q.Highest-Priority(),
which also rearranges). Specifically, Q.Retrieve(0, []) packs the sub-
vector v[1 :], and returns its front-most element v[0]. This algo-
rithm maintains the queue’s correctness, by definition of v .

The external routine Q.Insert(x) therefore inserts x into Q.B0,
before using Q.Flush(0, 0, Regular) to re-establish 1). On the other

hand, Q.Extract-Front() uses Q.Flush(0, 0, Extract) to ensure that
|v | ≥ 2 (while moreover preserving 1)); finally, the latter routine

calls Q.Retrieve(0, [], Extract). This latter routine, among other

things, returns v[0] and lifts v[1] into Q.D0[0]. Both routines pre-

serve all invariants, as well as the non-emptiness of Q.D0[0], which

itself guarantees immediate access to the queue’s front-most ele-

ment. This concludes the explanation of correctness.

3.5 Efficiency
We now discuss the asymptotic efficiency of our priority queue. We

follow the amortized analysis paradigm of [Tof11, §5.5], in which

each “comparator module”—i.e., each including a comparison and

twomultiplexers (see [Knu98, §5.3.4])—incurs a unit cost.We also in-

corporate certain ideas from the bucket heap of [BFMZ04, §2], which

itself inspired Toft’s construction (see [Tof11, §1.1]). In particular,

our potential function is inspired by theirs. A brief explanation on

the potential function and the (coin) method used to analyze the per-

formance cost of construction is given in Appendix C. As [BFMZ04]

does, we use the letter q to denote the size of buckets |Q.D | at any
given time; this size is dynamically allocated (and is always less

than logN). We note that for exactly those i ∈ {0, . . . ,q − 1}, either
Q.Di or Q.Bi is non-empty. We show that an O(log2 N) amor-

tized cost, paid up-front upon each insertion, suffices to fund all

future deletions; as a result, the latter routine requires “eventually

non-positive”—or, in other words,O(1)—amortized cost. By the cor-

rectness explanation above, Q.Front() requires O(1) comparisons,

even in the worst case (its complexity analysis is not amortized).

These facts make our queue highly efficient, both in theory and in

practice.

Theorem 3.1. Consider an arbitrary sequence of intermixed queue
operations, and denote by N an upper bound on the capacity attained
by the queue throughout the sequence of operations. Then there exists a
potential function for which Q.Insert(x) and Q.Extract-Front() have
amortized costs of O(log2 N) and O(1), respectively, measured in
comparator modules. Q.Front() has a worst-case cost of O(1).

For the proof, refer to Appendix C.1.

Remark 3.2. The proof of Theorem 3.1 (in Appendix C.1) shows

that there is some flexibility in the choice of i∗. Indeed, the proof
goes through so long as i∗ is chosen so that i∗ > 0,

∑
j≤i

��Q.D j
�� ≤ 2

i

for each i < i∗, and finally
∑
j≤i∗

��Q.D j
�� ≥ 2

i∗
. Our approach simply

uses the smallest i∗ for which these conditions hold.

13

Proceedings on Privacy Enhancing Technologies 2023(2) Mazloom et al.

We summarize these asymptotic results in Table 1. We note that

our queue is essentially asymptotically optimal, at least barring

the use of sophisticated technology like the AKS network (see for

example [Knu98, §5.3.4]). Indeed, our queue yields anO(N log
2 N)-

time, data-independent sorting algorithm in the obvious way.

Operation Cost (in comparators modules)

Insertion O(log2 N), amortized

Extraction O(1), amortized

Read-Front O(1) worst-case

Table 1: Asymptotic performance of our priority queue.

We note that these bounds could be achieved rather trivially

from Toft’s queue, simply by increasing the constant factor hidden

in the initial O(log2 N) cost of insertion. Indeed, the total number

of deletions which occur throughout a sequence of operations is

bounded by the number of insertions; moreover, the total amount

of read-front operations is also bounded by double the number of

insertions (at least if one restricts to “non-redundant” read-front

operations, which immediately follow a state change). Because each

read-front, in Toft’s queue, involves a removal and an insertion,

this would require multiplying the initial constant factor by 6. Our

queue, on the other hand, has superior constants factors, doesn’t

require an ad-hoc restriction on read-front operations, and finally

admits a more “intrinsic” proof that the latter operations have 0

cost.

3.6 Queue Stability
Our queue construction, like Toft’s, lack the “stability” property

whereby equally keyed elements are prioritized in a first-in, first-out
manner. In fact, Batcher’s merge network itself fails to be stable.

Moreover, the queue remains unstable even if Batcher’s network

is artificially made stable (i.e., by temporarily adding extra bits to

the elements’ keys before conducting the merge). In order to make

our queue construction stable, the goal is to help it to preserve the

relative order of elements with equal values. We provide a naïve

solution to preserve the order of elements, by assigning them a

sequence ID upon their arrival, such that these IDs indicate their

relative order. Another alternative solution is to tag the orders

with a timestamp, to indicate which elements arrived earlier if they

have equal values, and hence provide stability for our queue. These

approaches impose a cost, in that all comparisons must be made

on numbers containing more bits. We do not currently see a more

efficient solution.

4 APPLICATION: PRIVACY-PRESERVING
DARK POOL

4.1 Our Construction
In this section, we show how to instantiate the functionalities

FMatch-Buy, FMatch-Sell and Fmain of Subsection 2.4 in the MPC set-

ting where the orders x are secret shared across three computation

servers in the honest majority setting, and implement all priority

Algorithm 9 ΠMain–Server Dark Pool Protocol

Upon initialization, each Server initializes two empty queues,

B for the buy orders and S for the sell orders and an empty

list T for the orders to be executed.

Input: Each party P secret shares the volume and the price

of its order x to the three servers invoking (x1, x2, x3) ←
Share(x, 3, 1).
Each server Si given xi proceeds as follows:

1: procedure Πmain.Initialize()
2: Bi .Initialize(Max)

3: Si .Initialize(Min)

4: Ti := []

5: procedure Πmain.Process(xi)
6: if x .d = Buy then call ΠMatch-Buy(xi)
7: else call ΠMatch-Sell(xi)

queues using our improved queue. In Algorithm 9 we present our

main protocol.

In Algorithm 10 and Algorithm 11 we present the buy and the

sell matching protocols which run on secret shared values. The

routine Execute, in this setting, accepts secret shared arguments; we

assume that it internally performs all necessary share recovering

operations (perhaps asynchronously). Execute is the only process

that recovers the shares revealing the orders. However, this leakage

is acceptable since the orders need to be executed.

Algorithm 10 ΠMatch-Buy(x)

1: t← Null

2: while not S.Empty() and
3: Recover(x .p ≥ S.Front().p) do
4: v ← min(x .v,S.Front().v)
5: T .Insert(x .n,S.Front().n,v,S.Front().p)
6: S.Front().v −= v
7: x .v −= v
8: x .p ← (x .v = 0) ? 0 : x .p
9: t← S.Extract-Front()
10: B.Insert(x)
11: if t , Null then
12: t .p← (t .v = 0) ? ∞ : t .p
13: S.Insert(t)
14: if not T .Empty() then Execute(T)

4.2 Correctness
In each matching algorithm’s main loop, we “recklessly” pop the

front-most standing order from the stack (after matching it), and

store it in the temporary variable t , in line 8. The event whereby the

next iteration’s condition passes implies in particular that x .p was

not set to an extreme value in line 9, and hence that x .v , 0; this

in turn implies that t .v = 0 and that t ’s removal was (in retrospect)

justified. The failure of the loop’s condition, on the other hand,

implies either that x was fully exhausted or that the next-most

standing order’s price simply failed to cross (or both, in the case

of a simultaneous full match). In this event, we insert x , and also

14

An Efficient Data-Independent Priority Queue and its Application to Dark Pools Proceedings on Privacy Enhancing Technologies 2023(2)

Algorithm 11 ΠMatch-Sell(x)

1: t← Null

2: while not B.Empty() and
3: Recover(x .p ≤ B.Front().p) do
4: v ← min(x .v,B.Front().v)
5: T .Insert(B.Front().n, x .n,v,B.Front().p)
6: B.Front().v −= v
7: x .v −= v
8: x .p ← (x .v = 0) ? ∞ : x .p
9: t← B.Extract-Front()
10: S.Insert(x)
11: if t , Null then
12: t .p← (t .v = 0) ? 0 : t .p
13: B.Insert(t)
14: if not T .Empty() then Execute(T)

re-insert the popped item t , after possibly changing its price to an

extreme value. That said, we conceal whether there was a full or a

partial match.

4.3 Security
Our approach leaks only those matches which occur and have

to be executed in the list T , as well as the fact of each non-final
standing order’s having been fully filled. This represents exactly

the information leakage which is inherent to the setting of this

subsection (where only price and volume are concealed), and is

thus optimal. The remaining security properties reduce to those of

the underlying MPC protocol based on secret sharing. Moreover,

our priority queue provides a significant advantage and only leaks

whatever the priority queue leaks given the organization of orders

into a tree like structure. Namely, top-priced orders but maintaining

the contents private since the orders are secret shared among three

servers. The exact price is revealed only if there is a match. A linear

scanned structure as in [CSA19] is not leak-free since an insertion

sort is used which can leak info about the order of the prices.

We note that both [CSA19] and this work could be extended

so as to hide the direction of each new order (i.e., whether it’s a

buy or sell), in addition to its sender, price, and volume. In effect,

each client should submit—for each actual order—two secret-shared

orders, one of whose prices is “extreme” (i.e, guaranteed not to

trigger matches). On the other hand, this approach could be self-

defeating, at least if matches are instantly revealed. The fact of one
among two newly submitted orders’ immediately inducing partial

matches reveals, of course, which among the two was honest. This

recourse, therefore, would be effective only when even the non-
dummy order fails to immediately match. In our implementation

(see Subsection 5), we do not include this feature.

4.4 Efficiency
We use N in what follows to denote the total number of orders

processed throughout a period of amortization. The algorithms

ΠMatch-Buy and ΠMatch-Sell each perform a number of MPC opera-

tions and queue extractions proportional to the number of matches

executed, along with up to two insertions. Each insertion incurs

O(log2 N) amortized cost (where N reflects the appropriate queue);

extractions are free, amortized. In one sense, theworst-case per-case
per-order complexity depends on the number of “partial matches”—

say, M—which occur while any given order is processed. On the

other hand,M itself is bounded by N—even when aggregated across

all orders—and so “disappears” throughout the course of amortiza-

tion. We thus excludeM from our analyses of order-processing cost,

which itself must be amortized. We preserveM in our analyses of

messages and rounds, which are not amortized (they reflect worst

case complexity per-order).

Our total order processing complexity is thus O(log2 N) atomic

operations per order. This contrasts favorably with [CSA19] and

[ABPV20], which both take O(N) time. (These latter protocols’

analyses are not amortized; in fact, they respectively requireO(M +
N) and O(M · N) operations per order in the worst case.) Each call

to ΠMatch-Buy and ΠMatch-Sell results in at most one “dummy” (i.e.,

empty) order being added to one of the two lists, in addition to the

actual unfilled order (except in the unusual case of a “simultaneous

full match”, after each such one dummy is added to each list). On the
other hand, all non-final standing orders (which are necessarily fully

matched) are removed. This situation—like that of [CSA19]—results

in linear growth, over time, in the sizes of the two lists. We deem this

acceptable, as dummies can be removed “overnight” using generic

MPC when new orders are not submitted. How we add dummies is

as follows: At the end of the sell or buy procedures, any remaining

volume will be added to the corresponding buy or sell queue. For

example if the remainder of a buy order is 0, to avoid leakage,

we still add it to the queue, however we set the price to 0 and

consider it as a dummy order, which can be removed later when the

market is closed. For applications where this leakage is not crucial,

dummies can be discarded. We summarize these results in Table 2.

We write N for the total number of orders processed; P refers to the

total number of parties in the system (i.e., the number of service

providers in [CSA19], and the number of clients in the remaining

two works). “Atomic operations” include integer operations (like

comparison and addition) whose complexity is independent ofM
and N . “Messages” refers to those sent by the operators, not by

clients. Each entry reflects cost per order, amortized in the first

column only.

Protocol Operations Messages Rounds

(Amortized)

[CSA19] O(N) O(P ·M · N) O(M · N)

[ABPV20] O(N) O(P ·M) O(M)

This work O(log2 N) O(P ·M) O(M)

Table 2: Performance comparison with other protocols.

5 IMPLEMENTATION AND EVALUATION
5.1 Implementation
We provide an end-to-end implementation of our framework in-

cluding the queue data structure, fully in MPC. We use MP-SPDZ

(Multi-Protocol SPDZ) compiler - introduced by [Kel20] - which is a

fork from SPDZ-2 library and extends it to 34 protocols; it supports

15

Proceedings on Privacy Enhancing Technologies 2023(2) Mazloom et al.

commonly used security models as well as binary and arithmetic

computation circuits. MP-SPDZ library supports several protocols,

especially in the three-party setting which we used to instantiate

our dark pool scheme; among the honest majority three party set-

ting protocols we choose ’ps-rep-ring’ which supports an efficient

scheme introduced in [ADEN19], over the ring Z
2
k and uses repli-

cated secret sharing. We set the statistical security parameter to 40
5

and the computation is done over a 64-bit ring. We conduct exper-

iments in the three-party honest majority setting, tolerating one

corruption in the presence of a malicious adversary. There are three-

parties and each of them is deployed on a separate c5.9xlarge
AWS instance, with 36 vCPUs and 72 GiB memory, located on the

same AWS region, while they are connected through a network

channel established by sockets, with 10 Gbps bandwidth. To imple-

ment the order-book, namely the buy and sell lists, we use 64-bit

secure-integer (sint) data types to represent name, price and volume,
which we aim to keep secret during the auction. We compare the

performance of our privacy-preserving dark pool with two other

schemes. The first benchmark scheme is introduced in [CSA19]

as a CDA (Continuous Double Auction) method which has been

originally implemented using SCALE-MAMBA library [ACC
+
21]

(SCALE-MAMBA is another MPC library forked from SPDZ)
6
. The

second benchmark scheme is our implementation of our proposed

dark pool construction using threshold fully homomorphic encryp-

tion (tFHE) instead of MPC, that we have implemented using the

GPU FHE library of [BDP20].

5.2 Experiments
Our first set of experiments, compares the performance of our

privacy-preserving scheme versus the CDA method of [CSA19].

The benchmark scenario in [CSA19] is as follows: There is a pre-

generated order book that contains a pre-sorted list of buy orders

(bids) with size n and a pre-sorted list of sell orders (asks) with size

m, in which bids are ordered by price descending, and asks are

ordered by price ascending. When an incoming buy order arrives,

the goal is to match it against the ask list. [CSA19] measures the

performance of their scheme by calculating how much time it takes

to match an incoming buy order with the sell orders in the sell

order-book, which depends on how many sell orders are opened

and filled (either fully or partially filled) by that incoming buy

order. They considered 4 different scenarios, where the number

of opened sell order are s ∈ {0, 1, 2, 3}. To mimic this scenario,

the incoming buy order should be tailored such that it can match

with specific number of sell orders in each scenario
7
. We extend

this experiment by increasing the number of opened sell orders

to s ∈ {2, 4, 8, ..., 1024} and show the results in Table 5 given in

Appendix D

[CSA19] algorithm runs in two main phases; Matching phase,

where they try to match the incoming buy order against any offer

5
40 is the default statistical security parameter for the underlying protocol we use

from [CDE
+
18]. MP-SPDZ uses a trick in SPDZ2K [CDE

+
18] where it takes a ring

mod 2
(k+sec)

to work (mod 2
k
). Note that [CSA19] also uses 40 bits.

6
We chose to implement our scheme using MP-SPDZ over SCALE-MAMBA since it

provides variety of protocols under different security models, and supports computa-

tions over extended rings as well as prime fields. It gives more flexibility to benchmark

our platform, and also provides better performance for the functionalities we need.

7
For example, when s = 0, it means the buy order cannot match with any of the sell

orders in the sell order-book

on the sell list, and the Insertion phase, where they insert any

remaining volume of the buy order to the buy list (meaning it

is partially-fulfilled) according to its price. In case the remaining

volume is zero (meaning it is fully-fulfilled), first they set the price

to also be zero, then insert it to the buy list, which in this case

the order will be inserted at the bottom of the buy list. In Table 6

in Appendix D, we provide the total run time (latency) as well as

the run time of each phase separately. Note that the latency of the

first phase of the [CSA19] algorithm, the Matching phase, depends

on the number of fulfilled sell orders, whereas the latency of the

Insertion phase depends on the size of the buy list and where the

remaining of the buy order is being inserted into the buy list which

depends on its price; in the best case when the price is high the

remaining of the buy order will be inserted to the top region of

the list, and in worst case when the price is low, or even zero (in

case remaining volume is zero, we set the price to zero as well),

it will be inserted at the bottom region of the list. Therefore in

this experiment, the latency is shown as a range, where Insertion

latency varies between [0.8150− 0.83214] seconds (to consider best

and worst cases scenarios). The Total Latency which is the sum of

the Matching latency and the Insertion latency, is also shown as

a range. We re-created their experiments in our dark pool scheme

to benchmark the results, with the same experimental parameters

and setting where we use three computation parties, each deployed

on an AWS instance. The result are given in Table 3.

The reported metrics are: Total Latency which is the total time

takes to process transactions in each case (in seconds), Approximate
Latency per order which is the total latency divided by the number

of opened sell orders, and the Throughput which is one over the

latency and measures the number of transactions per second. In

all of these tests, we set the size of order books as n = m = 40,

that means there are 40 pre-sorted bid orders in the buy list, and 40

pre-sorted ask orders in the sell list. The latency includes the time

for both online and offline phases, and it is the sum of computation

and communication costs. Note that the Total Latency is reported as

a range to demonstrate the effect of Insertion Latency in the Total

Latency. While the amortized cost of Insertion in our construction

is O(log2 N).

Protocol Opened Total Approx Latency Throughput

Sell Orders Latency (S) per Order (S)

[CSA19]

0 1.567-1.584 1.567-1.584 0.631-0.637

1 1.571-1.588 1.571-1.588 0.629-0.6363

2 1.575-1.592 0.787-0.796 1.255-1.269

3 1.579-1.598 0.526-0.532 1.878-1.898

This work

0 0.00516 0.00516 193.74

1 0.00732 0.00732 136.56

2 0.00937 0.00468 213.37

3 0.01161 0.00387 258.34

Table 3: Performance of CDA method [CSA19] vs our
privacy-preserving dark pool scheme. The latency is in sec-
onds (S). The size of the book is chosen to be n =m = 40.

We extend the experiment by running it with larger order book,

n = m = 1024, and increase the number of open sell orders, s ∈

16

An Efficient Data-Independent Priority Queue and its Application to Dark Pools Proceedings on Privacy Enhancing Technologies 2023(2)

{2, 4, 8, ..., 1024}. We report the running time and the variance
8

of our results in our experiments, since we reported the average

of 5 runs of the algorithm in each benchmark in Table 5 given in

Appendix D. The result of this experiment shows that as we increase

the number of opened orders, the latency also increases over time,

however the growth was close to linear and no sudden jump was

observed. In order to increase the number of requests significantly

(to help finding the peak performance of our solution), we need

to upgrade the computation machines to stronger machines with

higher RAM capacity, to be able to run these experiments.

For the second set of experiments, we depart from the scenario

of [CSA19] and design a more realistic experiment in which a pre-
sorted order book does not exist at the beginning of the trade day.

We assume the orders, both buy and sell, are entering the order

book randomly, and as they enter the book, they will be matched

against any existing order in the order book. In that case, the in-

coming order either will be matched immediately as they enter

the book, otherwise, they will be inserted into their correspond-

ing priority queue for future potential matches. We choose the

price of the orders randomly from the range [1..512] according to a

binomial distribution with probability-of-success 0.5, and set the

volume of the orders uniformly. To demonstrate the performance

of our privacy-preserving dark pool construction in a more realistic

setting, we assume the order book is initially empty and as the

incoming orders arrive randomly, they will be matched against the

opposite side. If an order does not get matched or gets partially

matched, any remaining will be added to the corresponding list,

and in case it is fully fulfilled, meaning the volume becomes zero,

we set its price to zero, if it is a buy order, or to infinity, if it is a sell

order. The results are given in Table 7 in Appendix D. The order

book is initially empty, and the number of incoming orders are

n +m = {10, 20, 30, 40, 50, 60}. We measure the total computation

time that it takes to process all the incoming orders, as well as

the communication cost which indicates the amount of the data

transferred between the parties during the computation, per party.

To illustrate the efficiency of our queue construction based on

MPC, as opposed to other approaches, we conduct the aforemen-

tioned experiment on our privacy-preserving dark pool as well as

on a dark pool construction based on threshold fully homomor-

phic encryption (tFHE) that we implemented using the GPU FHE

library of [BDP20]. Note that, in the threshold FHE construction,

we consider only a single server doing the computation, where

it receives the orders in encrypted format from the clients and

securely instantiates the priority queue data structure based on

FHE. And it securely processes the incoming orders against the

order book to find matches and execute trades. The FHE imple-

mentation of the dark pool framework with its priority queue is

using GPU-enabled library to leverage the GPU-based parallelism,

which can compute some of the operations almost over twenty-fold

faster than its CPU-based TFHE implementation does. Therefore,

we conduct this experiment on an AWS instance that supports GPU

programming. The specs of the AWS instance is p3.2xlarge machine

with 1 Tesla V100 GPUs, 16 GPU Memory and 8 vCPUs. For a better

depiction on how our MPC-based solution performs as compare

8
Variance is a measure that is used to quantify the amount of variation of a set of data

values from its mean in a low variance for a variable indicates that the data points

tend to be close to its mean, and vice versa.

to FHE based construction, we run our MPC-based dark pool with

the same experimental setup and on the same AWS instance, how-

ever it uses the cpu cores available on that machine and not the

GPUs. For this experiment, we run all the three parties on the same

machine, however they still use virtual sockets to establish their

communication channel, and do not rely on the shared memory. We

conduct the experiments on different number of incoming orders

n +m = {10, 20, 30, 40}, and report the Total Latency, Approximate

Latency per Order, as well as the Throughput for each case in Table

4.

Protocol No. Incoming Total Approx Latency Throu-

Orders Latency (S) per Order (S) ghput

FHE-based

10 64.618 6.4618 0.15475

20 213.364 10.6682 0.09373

30 438.242 14.60806 0.06845

40 618.737 15.468425 0.06464

This work

10 1.39325 0.13932 7.17746

20 1.43245 0.07162 13.96209

30 1.45972 0.04865 20.55188

40 1.50177 0.03754 26.63523

Table 4: Performance comparison between our privacy-
preserving dark pool construction based on MPC vs. FHE.
The order book is initially empty, and the number of incom-
ing orders are n +m = {10, 20, 30, 40}.

5.3 Discussion and Conclusion
The results in the Table 3 show that our privacy-preserving dark

pool has a throughput almost two orders of magnitude better than

the previous scheme in dark side [CSA19]. For instance, in the

case of 1 opened sell order, our scheme can process almost 136

transaction per second, whereas [CSA19] can only process less

than 1 (≈ 0.6) orders per second. However, it is important to note

that, the assumption in this experiment is that the order book is

sorted beforehand, however our data structure handles sorting,

as the orders arrives, more efficiently than that of [CSA19] with

complexity O(log2 N).
As the results show in Table 4, our MPC-based construction out-

performs the FHE-based construction by two order of magnitude.

For example in the case the number of incoming orders are 30, our

construction can process almost 20 transaction per second, whereas

FHE-based solution can only process almost 0.07 orders per second.

Although, it is important to note that the implementation results

given for FHE based solution in this table, do not contain the cost

of the threshold key generation phase, as well as distributed de-

cryption, as in reality they are expensive operations and as a result,

it will reduce the performance of FHE-based construction even

further significantly, as compared to our MPC-based construction.

ACKNOWLEDGMENTS
This paper was prepared for informational purposes by the Ar-

tificial Intelligence Research group of JPMorgan Chase & Coȧnd

its affiliates (“JP Morgan”), and is not a product of the Research

Department of JP Morgan. JP Morgan makes no representation and

17

Proceedings on Privacy Enhancing Technologies 2023(2) Mazloom et al.

warranty whatsoever and disclaims all liability, for the complete-

ness, accuracy or reliability of the information contained herein.

This document is not intended as investment research or investment

advice, or a recommendation, offer or solicitation for the purchase

or sale of any security, financial instrument, financial product or

service, or to be used in any way for evaluating the merits of par-

ticipating in any transaction, and shall not constitute a solicitation

under any jurisdiction or to any person, if such solicitation under

such jurisdiction or to such person would be unlawful.

REFERENCES
[ABPV20] Gilad Asharov, Tucker Hybinette Balch, Antigoni Polychroniadou, and

Manuela Veloso. PPDPs: Privacy-preserving dark pools. In 19th In-
ternational Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2020), 2020. Extended abstract.

[ACC
+
21] A. Aly, K. Cong, D. Cozzo, M. Keller, E. Orsini, D. Rotaru, O. Scherer,

P. Scholl, N.P. Smart, T. Tanguy, and T. Wood. Scale-mamba v1.2: Docu-

mentation, 1.4, 2021. https://homes.esat.kuleuven.be/~nsmart/SCALE/

Documentation.pdf.

[ADEN19] Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof. An

efficient passive-to-active compiler for honest-majority mpc over rings.

Cryptology ePrint Archive, Report 2019/1298, 2019. https://eprint.iacr.

org/2019/1298.

[AJLA
+
12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod

Vaikuntanathan, and Daniel Wichs. Multiparty computation with low

communication, computation and interaction via threshold FHE. In David

Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, pages 483–501, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[BBDG18] Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin

Gould. Trades, Quotes and Prices: Financial Markets Under the Microscope.
Cambridge University Press, 2018.

[BDP20] Tucker Balch, Benjamin E. Diamond, and Antigoni Polychroniadou. Se-

cretmatch: Inventory matching from fully homomorphic encryption. In

Proceedings of the First ACM International Conference on AI in Finance,
ICAIF ’20, New York, NY, USA, 2020. Association for Computing Machin-

ery.

[BFMZ04] Gerth Stølting Brodal, Rolf Fagerberg, Ulrich Meyer, and Norbert Zeh.

Cache-oblivious data structures and algorithms for undirected breadth-

first search and shortest paths. In Torben Hagerup and Jyrki Katajainen,

editors,Algorithm Theory – SWAT 2004, pages 480–492, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness

theorems for non-cryptographic fault-tolerant distributed computation

(extended abstract). In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10,
1988.

[BHSR19] Samiran Bag, Feng Hao, Siamak F Shahandashti, and Indranil Ghosh

Ray. Seal: Sealed-bid auction without auctioneers. IEEE Transactions on
Information Forensics and Security, 15:2042–2052, 2019.

[BRW17] Sabrina Buti, Barbara Rindi, and Ingrid M. Werner. Dark pool trading

strategies, market quality and welfare. Journal of Financial Economics,
124(2):244–265, 2017.

[CCD87] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty uncondi-

tionally secure protocols (abstract). In Advances in Cryptology - CRYPTO
’87, A Conference on the Theory and Applications of Cryptographic Tech-
niques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings,
page 462, 1987.

[CDE
+
18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaop-

ing Xing. Spd Z2k : efficient mpc mod 2k for dishonest majority. In

Annual International Cryptology Conference, pages 769–798. Springer,
2018.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms. The MIT Press, third edition, 2009.

[CSA19] John Cartlidge, Nigel P. Smart, and Younes Talibi Alaoui. Mpc joins the

dark side. In Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security, pages 148–159. Association for Computing

Machinery, 2019. Full version.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multi-

party computation from somewhat homomorphic encryption. In Rei-

haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, 2012.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any

mental game or A completeness theorem for protocols with honest ma-

jority. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, pages 218–229, 1987.

[GY21] Hisham S Galal and Amr M Youssef. Publicly verifiable and secrecy

preserving periodic auctions. In International Conference on Financial
Cryptography and Data Security, pages 348–363. Springer, 2021.

[Kel20] Marcel Keller. Mp-spdz: A versatile framework for multi-party compu-

tation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 1575–1590, 2020.

[Knu98] Donald E. Knuth. The Art of Computer Programming, volume 3 / Sorting

and Searching. Addison–Wesley, second edition, 1998.

[MNN
+
18] F. Massacci, C.N. Ngo, J. Nie, D. Venturi, and J. Williams. Futuresmex:

Secure, distributed futures market exchange. In Proceedings - IEEE Sym-
posium on Security and Privacy, pages 335–353, 2018.

[MZ14] John C. Mitchell and Joe Zimmerman. Data-oblivious data structures. In

Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium
on Theoretical Aspects of Computer Science (STACS 2014), volume 25, pages

554–565. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014.

[NMKW21] Chan NamNgo, Fabio Massacci, Florian Kerschbaum, and JulianWilliams.

Practical witness-key-agreement for blockchain-based dark pools finan-

cial trading. In Financial Cryptography and Data Security: 25th Interna-
tional Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected
Papers, Part II 25, pages 579–598. Springer, 2021.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Shi20] Elaine Shi. Path oblivious heap: Optimal and practical oblivious priority

queue. In IEEE S&P 2020, 2020.
[Tof11] Tomas Toft. Secure data structures based on multi-party computation.

In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, pages 291–292, 2011. Full version.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended

abstract). In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 162–167, 1986.

A SOME FUNCTIONALITIES AND QUEUE
OPERATIONS

FUNCTIONALITY A.1 (FMatch-Sell-Matching Sell Functionality).
Input: A sell order x .

1: while B.Size()! = 0 and x .p ≤ B.Front().p do
2: v ← min(x .v,B.Front().v)
3: T .Insert(x .n,B.Front().n,v,B.Front().p)
4: B.Front().v −= v
5: if B.Front().v = 0 then B.Extract-Front()
6: x .v −= v
7: if x .v = 0 then x .p = ∞

8: S.Insert(x)
9: if T .Size()! = 0 then Execute(T)

Algorithm 12 Q.Highest-Priority()

1: assign v := []

2: for i ∈ {0, . . . , |Q.D | − 1} do
3: if |Q.Bi | > 0 and
4: not (i = |Q.D | − 1 and |Q.Di | = 0) then
5: break
6: v .Extend(Q.Di) ▷ adds all elements of Di to end of v
7: v .Extend(Q.Bi) ▷ adds all elements of Bi to end of v ▷ at

most one can be non-empty.

8: return v

B EXAMPLE OF QUEUE OPERATIONS
Here we give some step by step examples of main operations sup-

ported in the data-independent priority queue. Explaining these

18

https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://eprint.iacr.org/2019/1298
https://eprint.iacr.org/2019/1298

An Efficient Data-Independent Priority Queue and its Application to Dark Pools Proceedings on Privacy Enhancing Technologies 2023(2)

Algorithm 13 Q.Size()

1: assign s := 0

2: for i ∈ {0, . . . |Q.D | − 1} do
3: s += |Q.Di | + |Q.Bi |

return s

fundamental operations is helpful in understating how the data-

independent priority queue essentially works and consequently

how it is being improved and used in our dark pool application.

B.1 An example for Toft’s Insert Operation
Figure 4, demonstrates a step by step example for Q.Insert(x) and
Q.Flush(i) operations in Toft [Tof11], and how the content of its

internal data structures, buckets and buffers, changes after each

operation. In step (a), the input is an array of unsorted elements 5,

3, 7, 4, 1, 2, 0, and queue is empty. The goal is to sort this array in

ascending order, so assume the elements with smaller value have

higher priority.

In step (b), a new element 5 arrives and invokes Q.Insert(5),
from Algorithm 1. In line 1, since |Q.B0 | = 0, 5 will be moved to

front-most buffer, Q.B0 ← 5. Line 3 invokes the flush operation at

level 0, i = 0, Q.Flush(0). In algorithm 2, in line 1, it checks if the

bucket in that level i is empty and if the level i is the last level with
data. Since in (b) both conditions are true, the operation proceeds to

line 2, where Q.D0 ← Q.B0[1 : 2
0]. This line means any data from

buffer Q.B0 in positions [1 : 2
0] should be "move"d to the bucket

Q.D0 (in the same level). Since there is only one element in buffer

Q.B0, it will be moved to the bucket, Q.D0 ← 2.

It is important to note that, as we mentioned in 2.1, buffers and

buckets are intrinsically FIFO sub-queues and as shown in Fig-

ure 1(a), they support two operations, Enqueue(x) and Dequeue().
When we "move" data elements between these sub-queues, the el-

ement is being de-queued from the source queue, and then being

en-queued to the target queue. However, for the ease of demonstra-

tion, we omit these primitive operations and use← to abstract these

operations to only show the movement of the data. In line 3, any

remaining element from buffer Q.B0 in positions

[
2
0 + 1 : |Q.B0 |

]
will be moved inside the the same buffer Q.B0 (i.e. the elements are

shifted from positions

[
2
i + 1 : |Q.Bi |

]
to [1 : 2i]. In line 4, if the

buffer is still over loaded (|Q.Bi | ≥ 2
i
), Flush will be re-invoked

for level i . Now the insertion of first element, 5, is finished and the

front-most buffer Q.B0 is empty.

In step (c), new element 3 is inserted to Q.B0 and Q.Flush(0)
is invoked. Since Q.D0 is not empty, the condition in line 1 is not

satisfied and the algorithm proceeds to else in line 6. In line 7,

we call

(
Q.D0,Q.B0

)
← Merge-Split

(
Q.D0,Q.B0

)
. The elements

5 and 3 are being merged, sorted and split to 3 and 5, so that 3

moves to Q.D0 and 5 moves to Q.B0. In line 8, it invokes Q.B1 ←
Merge

(
Q.B0,Q.B1

)
, where it merges and sorts the buffers at level

0 and 1, and move the result to buffer Q.B1. In line 9, we set the

buffer Q.B0 to empty. Since the buffer at level 1 is not overloaded,

we do not go to line 11 and algorithm finishes here. At the end of

this step (c), element 3 is in Q.D0, 5 is in Q.B1 and Q.B0 is empty.

Note that both invariants are being maintained at the end of each

insertion operation. According to the first invariant, at each level

i , no buffer is full, |Q.Bi | < 2
i
, and the buckets are either full or

empty, |Q.Di | ∈ 0, 2i . The second invariant is also held since at

any level i, j, if i is at level above j, any element in buckets at level

i , Q.Di , has higher priority than any element of either bucket or

buffer at lower level j, Q.D j , Q.Bj .
In step (d), new element 7 is being inserted to the queue. It is

placed in Q.B0 and then Q.Flush(0) is invoked. Since the bucket
Q.D0 is not empty, we move to line 7, where

(
Q.D0,Q.B0

)
←

Merge-Split
(
Q.D0,Q.B0

)
, since 3 has higher priority than 7, it stays

in Q.D0 and 7 in Q.B0. Then in line 8, Q.B1 ← Merge
(
Q.B0,Q.B1

)
,

5 and 7 are merged and sorted and placed into buffer Q.B1, and
buffer Q.B0 is set to empty. In line 10, since the buffer Q.B1 is

overloaded and |Q.B1 | ≥ 2
1
, Q.Flush(1) is invoked (for the first

time). Since Flush is a recursive function and takes level i as its
argument, now it is being called at level i = 1. In line 1 ofQ.Flush(1),
since Q.D1 and it is the last level with data, elements 5 and 7 are

being moved to the bucket at the same level, Q.D1 ← Q.B1[1 : 2
1]

and any remaining elements (which there is nothing in this case),

will be moved inside the buffer Q.B1 ← Q.B1
[
2
1 + 1 : |Q.B1 |

]
.

Since the buffer is not overloaded, the algorithm ends here. In this

state, all elements are in buckets and buffers are empty.

In step (e), element 4 inserted into Q.B0, and since the Q.D0

is not empty,

(
Q.D0,Q.B0

)
← Merge-Split

(
Q.D0,Q.B0

)
is being

revoked; since 3 has higher priority than 4, it stays in Q.D0 and 4

is being merged with buffer Q.B1, and Q.B0 is set to empty. Since

the buffer is not overloaded, the algorithm ends.

In step (f), new element 1 is being inserted into Q.B0, and since

the Q.D0 is not empty,

(
Q.D0,Q.B0

)
← Merge-Split

(
Q.D0,Q.B0

)
is being revoked; this time since 1 has higher priority than 3,

it moves to Q.D0 and 3 placed in Q.B0. Then we call, Q.B1 ←
Merge

(
Q.B0,Q.B1

)
. 4 and 3 are being merged and sorted to 3 and

4. Since the buffer Q.B1 becomes overloaded we need to invoke

Q.Flush(2). When i = 1 in Flush operation, since the bucket Q.D1

is not empty, even though it is the last level, we should invoke(
Q.D1,Q.B1

)
← Merge-Split

(
Q.D1,Q.B1

)
in line 7. By invoking

Merge-Split, the element 5,7 and 3,4 are being merged and sorted

and replaced in Q.D1,Q.B1 with their new order. However, since

the buffer Q.B1 is now overloaded, Q.Flush(2) should be invoked

in line 11. When i = 2 in Flush operation, since the bucket Q.D2 is

empty, and it is the last level, the content of buffer can be moved to

the bucket in the same level, as we have Q.D2 ← Q.B2[1 : 2
2]. At

the end of this insertion, the elements 5,7 are in the last level buffer

Q.B2 and 3,4 are in the buckets at level 1, and 1 at bucket level 0.

In step (g), the new element 2 is being inserted into Q.B0 and
since bucketQ.D0 is not empty, it is beingMerge-Splitwith element

1, and since 1 has higher priority, it stays in front-most bucket Q.D0

and 2 is beingMerge with the empty buffer Q.B1 and consequently
placed in lower buffer Q.B1.

At this point, before step (h), all the input elements are correctly

placed into their corresponding locations in the queue and as can

be observed, both queue invariants are being maintained. These

elements can be extracted correctly any time, despite the fact that

they are not all in the buckets and seem to be spread between

buckets and buffers. However, for the sake of demonstration, we

decided to insert one more element 0 to the queue, at step (h).

In step (h), the element 0 is being inserted into Q.B0 and since

bucket Q.D0 is not empty, it is beingMerge-Split with element 1,

19

Proceedings on Privacy Enhancing Technologies 2023(2) Mazloom et al.

since 0 has higher priority than 1, it moves to Q.D0 and 1 placed

in Q.B0. Then we call, Q.B1 ← Merge
(
Q.B0,Q.B1

)
. 2 and 1 are

being merged and sorted to 1 and 2. Since the buffer Q.B1 becomes

overloaded, we need to invoke Q.Flush(1). Since the bucket at

level 1, Q.D1, is not empty,Merge-Split is being invoked; it merges

elements 1,2 in buffer and 3,4 in bucket at level 1, then sorts and

splits them to 1,2 in bucket and 3,4 in buffer. Then it calls Q.B2 ←
Merge

(
Q.B1,Q.B2

)
to merge the elements 3,4 in buffer at level 1

with elements 5,7 in buffer at level 2, sort them and place them in

buffer at level 2, and set the buffer at level 1 to empty. However,

now the buffer at level 2 is overloaded and needs to be flushed.

When we call Flush(2), since the bucket Q.D2 is empty and i = 2

is the current last level, the content of buffer Q.B2 move to bucket

at the same level Q.D2. As demonstrated in state (i), all the inputs

elements now are placed inside buckets in the correct order, and all

the variants are still maintained.

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

(a)

1

3 4 2

5 7

Bucket D Buffer B

(b)

Input: 5, 3, 7, 4, 1, 2

x

front back

enqueue(x)

dequeue()

x x

front back

push-front(x) push-back(x)

pop-back()pop-front()

(a) (b)

1

3 4

Bucket D Buffer B

level i = 0

i = 1

i = 2

2

5 7

(a)

3 4 2

5 7

Bucket D Buffer B

(b)

2 3

Bucket D Buffer B

level i = 0

i = 1

i = 2

4

5 7

(c)

3

2 4

5 7

Bucket D Buffer B

(d)Bucket D Buffer B

Bucket D Buffer B

0

1 2

3 4 5 7

(a) (b) (c)

(g) (h) (i)

Input: 4, 1, 2

Bucket D Buffer B

5 3

3 7

5

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

Bucket D Buffer B

5

Input: 3, 7, 4, 1, 2 Input: 7, 4, 1, 2

Bucket D Buffer B

3

5 7

4

Input: 1, 2 Input: 2

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

Bucket D Buffer B

level i = 0

i = 1

i = 2

(d) (e) (f)

3

5 7

1

4

1

3 4

2

5 7

Bucket D Buffer B

Input: 0

1

3 4

0

2

5 7

3

4

5 7

Bucket D Buffer B

(e)

level i = 0

i = 1

i = 2

Figure 4: An example of Q.Insert(x) operation and con-
sequently Q.Flush(i) operation in Toft [Tof11] queue, (a)
shows the initial state of the queue when it is empty, ev-
ery state from (b) to (g) shows the content of the queue as
soon as a new element from the input is being inserted to
the front-most buffer in the queue and will be processed ac-
cordingly. In (h) a new element arrives and is being added
to the queue, (i) shows the content of the queue when all
inserted elements are processed and are being placed in the
correct location.

B.2 An example for Toft’s Extract-Front
Operation

In order to understand the intuition behind Extract-Front operation,
we provide a simple example on Extract-Front operation of Toft.

Assume we have access to the queue shown in Figure 5 (a). The

Extract-Front operation in Algorithm 3, takes an argument i which
indicates 2

i
number of elements should be extracted from the level

i and any level j where i < j. Note that if i = 0, this algorithm

extracts the front-most element from the queue–which is what our

modified Extract-Front operation does in our improved queue, it

does not take any arguments and only removes and returns the

front-most element).

For this example, imagine i = 0 and the goal is to extract the

front-most element from the queue. In line 1, it checks whether the

bucket at level 0 is full or not; if it is full, it invokes

(
Q.D0,Q.B0

)
←

Merge-Split
(
Q.D0,Q.B0

)
, to insure that the element in bucketQ.D0

still has the higher priority than the element in buffer Q.B0. Then
it return the Q.D0 and set the Q.D0 to empty. The algorithm ends

here. However, if in state (b), we would like to extract the front-most

element of the queue, since Q.D0 is not full anymore, we check

the first else if at line 4, where is asking if the level i = 0 is the

last level in the current queue; since this condition fails, algorithm

goes to the else at line 6. It calls Q.B1 ← Merge(Q.B0,Q.B1), since
Q.B0 was empty, nothing moves and 2 stays in Q.B1. Since the

buffer Q.B1 is not overloaded, algorithm proceeds to line 11 and

invokes Q.Extract-Front(1) for level 1.
At first line of Q.Extract-Front(1), since Q.D1 is full, it invokes(
Q.D1,Q.B1

)
← Merge-Split

(
Q.D1,Q.B1

)
, which merges the ele-

ments 3,4 and 2, and sort them into 2,3,4 and split them to 2,3 in

bucket Q.D1 and 4 in buffer Q.B1, as depicted in step (c). Then at

line 3, it returns the content of Q.D1 and set it to empty. We return

from Q.Extract-Front(1) and back to line 11 in Q.Extract-Front(0),
the returned elements, 2 and 3, are placed into temporary bucket

called Q.D̃. In line 12, since the temporary bucket is considered

full, s.t.

��Q.D̃�� ≥ 2
1
; hence in line 13, any element from Q.D̃ at

position 2
0 + 1 to 2

0+1
(since i = 0), should be moved to bucket

Q.D0, formally Q.D0 ← Q.D̃
[
2
0 + 1 : 20+1

]
. Since only element 3

has this condition and is at the position Q.D̃
[
2

]
, it will be moved

to bucket Q.D0, shown in step (d).

At line 14, any element in Q.D̃ that has positions above 2
0+1

should be moved to buffer at lower level, Q.B1 ← Q.D̃
[
2
0+1 + 1 :��Q.D̃��] , and since no such element(s) exist(s), nothing will be moved.

Finally, at line 15, the algorithms returns the content of Q.D̃
[
1 : 2

0
]

which is element 2, as shown in step (e). If the temporary buffer

Q.D̃ were not full at line 12, the algorithm would execute the line

17 and return the whole content of it. It is important to note that

the queue invariants are still maintained after the execution of

Extract-Front.

C EFFICIENCY ANALYSIS
The potential method, in computational complexity theory, is a

method to analyze the amortized time and space complexity of

a data structure, a measure of its performance over sequences of

operations that eliminates the cost of infrequent but expensive

operations. Usually the change in potential should be measured

as positive for low-cost operations and negative for high-cost op-

erations. There is an interesting analogy between the potential

function and a bank account: if we can take our cheap operations

(those whose cost is less than our bound) and put our savings from

them in a bank account, using coins, then use our savings to pay for

expensive operations (those whose cost is greater than our bound),

and somehow guarantee that our account will never go negative,

then we will have proven an amortized bound for our procedure.

20

An Efficient Data-Independent Priority Queue and its Application to Dark Pools Proceedings on Privacy Enhancing Technologies 2023(2)

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

(a)

1

3 4 2

5 7

Bucket D Buffer B

(b)

Input: 5, 3, 7, 4, 1, 2

x

front back

enqueue(x)

dequeue()

x x

front back

push-front(x) push-back(x)

pop-back()pop-front()

(a) (b)

1

3 4

Bucket D Buffer B

level i = 0

i = 1

i = 2

2

5 7

(a)

3 4 2

5 7

Bucket D Buffer B

(b)

2 3

Bucket D Buffer B

level i = 0

i = 1

i = 2

4

5 7

(c)

3

2 4

5 7

Bucket D Buffer B

(d)Bucket D Buffer B

Bucket D Buffer B

0

1 2

3 4 5 7

(a) (b) (c)

(g) (h) (i)

Input: 4, 1, 2

Bucket D Buffer B

5 3

3 7

5

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

Bucket D Buffer B

5

Input: 3, 7, 4, 1, 2 Input: 7, 4, 1, 2

Bucket D Buffer B

3

5 7

4

Input: 1, 2 Input: 2

Bucket D Buffer B

level i = 0

i = 1

i = 2

Input: 5, 3, 7, 4, 1, 2

Bucket D Buffer B

level i = 0

i = 1

i = 2

(d) (e) (f)

3

5 7

1

4

1

3 4

2

5 7

Bucket D Buffer B

Input: 0

1

3 4

0

2

5 7

3

4

5 7

Bucket D Buffer B

(e)

level i = 0

i = 1

i = 2

Figure 5: An example of Q.Extract-Front(i) operation in
Toft [Tof11] queue, (a) shows the initial state of the queue
when it has some elements; state (b) shows the content
of the queue after front-most element at level i = 0 is
extracted. steps (c) to (e) shows how to extract the next
front-most element after the previous extraction, by calling
Q.Extract-Front(0) again.

We use the potential function and coin method to analyze the amor-

tized time complexity of our data-independent priority queue and

its operations.

C.1 Proof of Theorem 3.1
TheoremC.1. Consider an arbitrary sequence of intermixed queue

operations, and denote by N an upper bound on the capacity attained
by the queue throughout the sequence of operations. Then there exists a
potential function for which Q.Insert(x) and Q.Extract-Front() have
amortized costs of O(log2 N) and O(1), respectively, measured in
comparator modules. Q.Front() has a worst-case cost of O(1).

Proof. We first describe our potential function, Φ, which con-

trols the cost of both insertions and deletions; each unit of potential

funds one comparator module. We set Φ equal to:

q−1∑
i=0

(
|Q.Bi | · (2 · logN − i) + |Q.Di | · i + 2

i
)
· Θ(logN).

(In this setting, the implicit constant in Θ(logN) is fixed and inde-

pendent of N). Put differently, each element of each buffer Q.Bi has
at least (2 · logN − i) · Θ(logN) coins, while each element of each

bucket Q.Di has at least i ·Θ(logN) coins. Finally, each non-empty

level itself has 2
i · Θ(logN) coins.

We first remark upon Q.Flush(i, t, e)’s movement of elements

from Q.Bi to Q.Di , i.e. at line 4 (possible only when i = |Q.D | −1 =
q − 1). Because each element of the last level buffer Q.Bi loses at

least 2 · Θ(logN) in potential when it is moved to Q.Di (because

(2 · logN − i) − i ≥ 2 for each level i), the algorithm may place

exactly 2 ·Θ(logN) coins on the next level—i.e., at level |Q.D | = q—
for each such element moved (without increasing overall poten-

tial). By the time the algorithm executes lines 6 and 7, at least

2
q−1

elements have necessarily been moved in this way, so that

level q has 2 · 2q−1 · Θ(logN) = 2
q · Θ(logN) coins, and q can be

incremented safely. An exceptional case occurs when q is incre-

mented from 0 to 1 by the external routine Q.Insert(x); this act
increases the queue’s potential by Θ(logN). On the other hand, it

occurs only during insertions, which already cost O(log2 N) in any

case (as we discuss below). The insertion of each new element x
into Q.B0 increases the queue’s potential by 2 · logN · Θ(logN) =
O(log2 N). We now argue, essentially as in [Tof11, §5.5], that each

call to Q.Flush(i, t, Regular)—regardless of which routine calls

it—can be funded by an adequate drop in the queue’s potential.

Indeed, this routine is only called when |Q.Bi | ≥ 2
i
, and moreover

empties the contents of Q.Bi into Q.Bi+1; by consequence, it de-

creases the queue’s potential by least 2
i · Θ(logN). On the other

hand, Q.Flush(i, t, Regular) itself costs at most Θ(2i log 2i); in-
deed, the callsMerge-Split(Q.Di ,Q.Bi) andMerge(Q.Bi ,Q.Bi+1)
involve lists whose sizes exceed 2

i
by at most a constant factor.

We now analyze Q.Flush(i, t, Extract). The essential idea is

that the routine funds its cost by moving “sufficiently many” ele-

ments from Q.Di into higher level buckets. We distinguish between

typical and degenerate executions of Q.Extract-Front(). We call an

execution typical if and only if there exists some i for which line

10 of Q.Flush(i, t, Extract) executes; otherwise, we call the execu-
tion degenerate. In a typical execution, we write i∗ for the minimal

such i (i.e., at which e is first flipped to Regular).

In a typical execution, Q.Extract-Front() proceeds by executing

Q.Flush(i, t, Extract) for each i up to and including i∗. (Further
executions of Q.Flush(i, t, Regular), if they take place—i.e., for

i > i∗—may be funded in themanner described above). By definition

of i∗, upon the termination of Q.Flush(0, 0, Extract), each i < i∗

satisfies

∑
j≤i

��Q.D j
�� ≤ 2

i
(in fact, the inequality is strict for posi-

tive i); on the other hand,

∑
j≤i∗

��Q.D j
�� ≥ 2

i∗
. Moreover, |Q.Bi | = 0

for each i ≤ i∗. By consequence, for each positive i ≤ i∗, the in-
put v passed into Q.Retrieve(i,v) has length |v | ≤ 2

i−1
, whereas

Q.Retrieve(i,v) necessarily returns a vector of length exactly 2
i
. It

follows that, for 0 < i ≤ i∗, Q.Retrieve(i,v) single-handedly moves

at least 2
i−1

elements from Q.Di into those buffers Q.D j for j < i .

The resulting drop in potential—of at least 2
i−1 · Θ(logN)—suffices

to fund the cost ofQ.Flush(i, t, Extract), itself at mostΘ(2i log 2i);
indeed, bothMerge-Split(Q.Di ,Q.Bi) andMerge(Q.Bi ,Q.Bi+1) in-
volve lists whose sizes exceed 2

i−1
by at most a constant factor.

Q.Retrieve(0,v) does not change the queue’s potential; on the other
hand, Q.Flush(0, t, Extract) imposes no cost. Finally, additional

calls Q.Retrieve(i,v)—that is, for i > i∗—can only further decrease

potential. We note that no work is exerted at these levels.

In a degenerate execution, upon the termination of flush op-

eration Q.Flush(0, 0, Extract), each i satisfies
∑
j≤i

��Q.D j
�� ≤ 2

i

(again with strict inequalities for positive i). We observe that, for

each i , Q.Retrieve(i,v, e) either returns exactly 2
i
elements or re-

moves the level i altogether (or both, in case |v | = 2
i
exactly before

21

Proceedings on Privacy Enhancing Technologies 2023(2) Mazloom et al.

line 7 begins). In the former case, the reasoning given above demon-

strates that Q.Retrieve(i,v, e) sends at least 2i−1 elements from

Q.Di into the higher buckets, and hence reduces the queue’s po-

tential by 2
i−1 · Θ(logN). In the latter case, the removal of level

i reduces the queue’s potential by 2
i · Θ(logN). Both reductions

suffice to fund the cost of Q.Flush(i, t, Extract), itself at most

Θ(2i log 2i). In other words, reducing the cost of some queue’s op-

erations such as insertions and deletion, can cover the high cost of

Flush operation. □

D EXPERIMENTAL RESULTS

Opened Computation Variance

Sell Orders Time (S)

2 0.008200467 1.26272E-08

4 0.015145233 2.81649E-08

8 0.030181933 3.03158E-07

16 0.0578681 7.29808E-07

32 0.113870333 8.36937E-07

64 0.224520333 9.07922E-06

128 0.449528 1.79212E-05

256 0.923293 6.19776E-05

512 1.950453333 0.000315694

1024 4.006068386 0.001091776

Table 5: Performance of our Privacy-Preserving Dark pool
with higher number of open sell orders. n =m = 1024

Protocol Opened Matching Total

Sell Orders Latency (S) Latency (S)

[CSA19]

0 0.7526 1.567-1.584

1 0.7565 1.571-1.588

2 0.7608 1.575-1.592

3 0.7649 1.579-1.597

Table 6: The total latency (i.e. run time) of CDA method
[CSA19] and its two phases, Matching and Insertion, are
all in seconds (S). The insertion latency which measures
the time to insert the remaining volume of incoming buy
order to the buy list, and depending where on the list it
will be inserted (top, middle or bottom) can vary between
[0.8150 - 0.83214] seconds. The size of the book is chosen to
be n =m = 40.

No. Incoming Computation Communication

Orders Time (S) Cost (MB)

10 1.34675 1.51988

20 1.37065 1.72196

30 1.38397 1.78091

40 1.40503 2.036708

50 1.41043 2.27555

60 1.43180 2.3816225

Table 7: Performance of our Privacy-Preserving Dark pool
in the honestmajority three-party setting tolerating onema-
licious adversary, with random incoming orders. The order
book is initially empty, and the number of incoming orders
are n +m = {10, 20, 30, 40, 50, 60}. Computation time is the to-
tal time it takes to process all the incoming orders, while
communication cost is the transmitted data per party.

22

	Abstract
	1 Introduction
	1.1 Priority Queues in Dark Pools
	1.2 Our Contributions
	1.3 Implementation
	1.4 Related Work

	2 Background and Definitions
	2.1 Priority Queues
	2.2 Dark Pool Model and Functionality
	2.3 Secret Sharing
	2.4 Order Books and Dark Pool Functionality

	3 An Improved Data-Independent Priority Queue
	3.1 Overview of Toft's Queue
	3.2 Technical Challenges
	3.3 Our Approach
	3.4 Correctness
	3.5 Efficiency
	3.6 Queue Stability

	4 Application: Privacy-Preserving Dark Pool
	4.1 Our Construction
	4.2 Correctness
	4.3 Security
	4.4 Efficiency

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Experiments
	5.3 Discussion and Conclusion

	Acknowledgments
	References
	A Some Functionalities and Queue Operations
	B Example of Queue Operations
	B.1 An example for Toft's Insert Operation
	B.2 An example for Toft's Extract-Front Operation

	C Efficiency Analysis
	C.1 Proof of Theorem 3.1

	D Experimental Results

