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ABSTRACT
Dynamic searchable symmetric encryption (DSSE) enables the data

owner to outsource its database (document sets) to an untrusted

server and make searches and updates securely and efficiently.

Conjunctive DSSE can process conjunctive queries that return the

documents containing multiple keywords. However, a conjunctive

search could leak the keyword pair result pattern (KPRP), where

attackers can learn which documents contain any two keywords

involved in the query. File-injection attack shows that KPRP can

be utilized to recover searched keywords. To protect data effec-

tively, DSSE should also achieve forward privacy, i.e., hides the link
between updates to previous searches, and backward privacy, i.e.,
prevents deleted entries being accessed by subsequent searches.

Otherwise, the attacker could recover updated/searched keywords

and records. However, no conjunctive DSSE scheme in the literature

can hide KPRP in sub-linear search efficiency while guaranteeing

forward and backward privacy.

In this work, we propose the first sub-linear KPRP-hiding con-

junctive DSSE scheme (named HDXT) with both forward and back-

ward privacy guarantees. To achieve these three security properties,

we introduce a new cryptographic primitive: Attribute-updatable

Hidden Map Encryption (AUHME). AUHME enables HDXT to effi-

ciently and securely perform conjunctive queries and update the

database in an oblivious way. In comparison with previous work

that has weaker security guarantees, HDXT shows comparable, and

in some cases, even better performance.
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1 INTRODUCTION
Searchable symmetric encryption (SSE) enables the client to out-

source an encrypted database to an untrusted server and then search

it securely. Dynamic SSE (DSSE) allows the client to securely up-

date the database. In a typical setting of SSE, the database DB is a

collection of documents associated with a search index, commonly

represented by a set of keyword-document pairs. If a keyword-

document pair is in the index, it means that the document contains

the keyword. A search query returns the documents that have a spe-

cific relationship with searched keyword(s). The index, documents,

and queries are all encrypted before being sent to the server.

An ideal goal of SSE is to efficiently and securely support query

types as rich as the plaintext database, such as single-keyword query

[7, 8, 11, 13, 15, 28, 43–45, 53, 56], Boolean query [12, 25, 31, 37, 39],

range query [48, 55], and update query. However, there exists a

trade-off among performance, security, and functionality for SSE.

Existing SSE schemes usually achieve better performance and/or

functionality at the cost of information leakage. For instance, Cash

et al. [11] designed a SSE, called OXT, that sub-linearly supports

conjunctive query, represented as w1 ∧ · · · ∧ wn , i.e., search the

documents containing the n keywords, where n > 1. However, it

leaks DB(w1) ∩ DB(w j ), where DB(w) is the set of the documents

containing the keywordw , and 2 ≤ j ≤ n. Such leakage is referred

to as keyword pair result pattern (KPRP), and it can be generalised

to DB(wi ) ∩ DB(w j ), where 1 ≤ i < j ≤ n. The file-injection

attack [54] shows that KPRP leakage is not acceptable as attackers

could leverage KPRP to first recover DB(wi ) and then learnwi for

1 ≤ i ≤ n, by injecting documents into the database.

In the dynamic setting, forward and backward privacy has been

identified by the literature [8, 13, 39, 48, 55, 56] as two crucial

security notions for DSSE. Forward privacy hides the link between

an update query to previous searches. Achieving forward privacy is

essential to resist the file-injection attack [54], otherwise updated

keywords can be recovered. Backward privacy ensures that search

queries do not reveal the results that were deleted. Bost et al. [8]
introduce three types of backward privacy: from Type-I that has

the least leakages to Type-III which reveals the most information.

A naive solution to hide the KPRP is to search each keyword with

response-hiding single-keyword SSE, such as MITRA [13], and inter-

sect the results on the client. Response-hiding SSE does not reveal the
search result (i.e., the identifiers of matching documents) in plain-

text to the server. Despite the adopted single-keyword SSE could be
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Table 1: Comparison with Existing Conjunctive SSE Schemes

Schemes Search Update Storage Forward Backward KPRP
Computation Communication Round Add Edit Delete Client Server Privacy Privacy Hiding

Blind Seer[35] O (γnm log |D |) O (γnm log |D |) log |D | static O (1) O ( |W | |D |) - - ✓
HXT[31] O (γn |DB(w1) |) O (γn |DB(w1) |) 2 static O (1) O (ξN ) - - ✓

DIEX[25] O (π1 + n |DB(w1) |) O (n +m) 1 O (Wd ) O (v) O (1) O ( |W | log |D |) O ( |W |2h) ✓ ✗ ✗
VBTree[50] O (τ |DB(w1) | log |D |) O (n +m) 1 O (log |D |) O ( |W | log |D |) O (N log |D |) ✓ ✗ ✗
BDXT[39] O (π1 + n |DB(w1) |) O (π1 + n |DB(w1) |) 2 O (1) - O (1) O ( |W | log |D |) O (N ) ✓ Type-II ✗
ODXT[39] O (nπ1) O (nπ1) 1 O (1) - O (1) O ( |W | log |D |) O (N ) ✓ Type-II ✗
FBSSE-CQ[57] O (τ |D |) O (n + |D |) 1 O ( |D |) O ( |W |(log |D | + λ) O (N |D |) ✓ Type-II ✓

HDXT O (π1 + n |DB(w1) |) O (π1 + n |DB(w1) |) 2 O ( |W |/Wd ) O ( |D |) O (1) O ( |W |(log |D | + λ) O ( |W | |D |) ✓ Type-II ✓

|W |, |D |, and N are the number of keywords, documents, and keyword-document pairs in the database, respectively. N ≤ |W | |D |. n denotes the number of keywords involved in the query.m is the number

of documents matching the query. π1 is the number of updates related tow1 . τ =
∑n
i=1 τi , where τi is the number of updates related towi since the last search involvedwi . γ and ξ are the parameters for

Bloom filter, which typically are 20 and 29. For an update,Wd denotes the number of keywords contained in the updated document and v denotes the number of keywords involved in an edit operation. λ is

the security parameter and h denotes the average number of documents matched by any two keywords in the database.

forward and backward private, the naive solution causes computa-

tional and communication overhead worse than O(
∑n
i=1 |DB(wi )|),

which is inefficient especially when one or more of the keywords

in the search query have high-frequency occurrence.

To the best of our knowledge, no DSSE scheme in the literature

can support conjunctive queries securely and efficiently. As shown

in Table 1, existing SSE schemes that support conjunctive queries

are either static or leak KPRP (the static ones with KPRP leakage are

not included in the table). Only Zuo et al.’ scheme FBDSSE-CQ [57]

hides KPRP while ensuring forward and Type-II backward privacy,

but at the expense of linear search overheads.

OurWork. In this paper, we aim to fill this gap, i.e., design a for-

ward and backward private DSSE scheme that sub-linearly supports

conjunctive queries and hides the KPRP. Our solution is inspired

by HXT [31], a static SSE that supports KPRP-hiding conjunctions.

However, compared with HXT [31], our solution is more efficient

and supports update queries with solid security guarantees: thus,

we named our approach HDXT. As done in OXT [12] and HXT [31],

the big idea of HDXT is to perform the conjunctive search in two

steps: searches for DB(w1), and filters out those results that do

not match w2 ∧ · · · ∧ wn . w1 is the keyword with the minimum

occurrence among the n keywords, and it is called s-term. The other

keywords are called x-terms. In HDXT, DB(w1) is obtained with a

response-hiding single-keyword DSSE scheme. The challenge lies

in how to perform securely and efficiently the second step.

To overcome the challenge, we introduce a new cryptographic

primitive: attribute-updatable hidden map encryption (AUHME).

AUHME allows us to query if a set of pairs mp is a subset of a

larger set ma securely. If the answer is no, it does not leak which

pair(s) in mp does not belong to ma. This property enables us

to perform the second step without leaking KPRP. Specifically,

assume W is the set of all the keywords in DB and D contains

all the document identifiers of DB. HDXT has an index structure

DB
′ = {(w | |id,v) | w ∈ W, id ∈ D}, where v is either 1 or 0, indi-

cating whether document id containsw or not, respectively. DB
′
is

encrypted with AUHME. For performing the second step, the client

constructs Iid = {(w2 | |id, 1), · · · , (wn | |id, 1)} for each id ∈ DB(w1)

and queries whether Iid is a subset of DB
′
with AUHME. If the sub-

set query succeeds, id matches the conjunctive query. Otherwise,

AUHME ensures whether (wi | |id, 1) is in DB
′
for every 1 ≤ i ≤ n

is concealed, which protects DB(w1) ∩ DB(wi ), indicating KPRP is

hidden successfully.

DB
′
can be securely updatedwith the update function of AUHME.

Basically, the client caches recent updates locally and evicts the

cache toDB
′
when it is full. The eviction is processed in an oblivious

way such that the server cannot learn which entries of DB
′
were

updated. Also, for any subset query for Iid (id ∈ DB(w1)) in a sub-

sequent search, the server only learns the query result with respect

to the latest DB
′
, which will not reveal any information about the

deleted keyword-document pairs. Consequently, the queries and

updates over DB
′
satisfy forward and the highest level of backward

privacy. That is, HDXT achieves forward and backward security as

long as the adopted single-keyword DSSE does.

In Table 1, we summarise the performance overheads and se-

curity properties achieved by HDXT and other conjunctive DSSE

schemes
1
. Compared with FBDSSE-CQ, HDXT has much less com-

putational and communication overhead for search queries. HDXT

also has less storage overhead on the server side. In Section 5.2, we

compare HDXT with other schemes in detail.

We also experimentally compare the performance of HDXT with

HXT and MITRACONJ [39] (the naive solution implemented by Pa-

tranabis andMukhopadhyay). The results show that HDXT is 10.7×

and 13× faster than HXT andMITRA
CONJ

respectively, for the queries

involving 11 keywords.

Our Contributions. Overall, our contribution can be summa-

rized as below.

(1) We are the first to introduce the concept of AUHME and

design a selectively-semantically secure AUHME scheme.

(2) We propose the first conjunctive DSSE scheme HDXT that

hides KPRP while preserving sub-linear search efficiency.

HDXT also achieves forward privacy and backward privacy

with the level of at least Type-II.

(3) We implement a prototype of HDXT and evaluate its perfor-

mance with real-world datasets.

(4) We prove that our AUHME scheme is selectively-semanti-

cally secure, and HDXT is adaptively secure while achieving

the three security properties mentioned above.

2 PRELIMINARIES
In this section, we first introduce the notations used in the following

sections. Then we provide the definitions for AUHME and DSSE.

1
When analyzing HDXT, we assume that single-keyword DSSE is instantiated with

MITRA [13], which is the state-of-art that realizes forward and Type-II backward

privacy. Note that HDXT further satisfies Type-I backward privacy when the adopted

single-keyword DSSE is Type-I backward private, such as ORION [13].
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2.1 Notations
Throughout this paper, {0, 1}l denotes the set of all binary strings

of length l . {0, 1}∗ denotes the set of arbitrary strings. 0l represents
the binary string of length l where every bit is 0. | | denotes the

concatenation of two strings. ⊥ represents an empty string. a1
$

←

S means a1 is sampled uniformly at random from the set S . |X |
represents the cardinality of a set/map/list X .

A map X is a data structure that associates keys to values, where

each entry contains exactly one unique key and its corresponding

value. We also considerX as a set that contains (key, value) pairs.We

use X : S1 7→ S2 to represent that the space for keys is S1 and the

space for values is S2, X ⊑ S1 7→ S2 to denote that the key space of

X is a subset of (or equal to) S1 and the value space of X is S2.

2.2 Attribute-updatable Hidden Map
Encryption

Predicate encryption can encrypt a message associated with an

attribute A to a ciphertext and generate a key SK corresponding to

a predicate f such that the ciphertext can be correctly decrypted

using SK if and only if f (A) = 1, while ensuring that nothing about

the message is leaked if f (A) = 0. This security property is called

payload-hiding. The predicate encryption is attribute-hiding if the

ciphertext also conceals information about A.
In this paper, we introduce a special attribute-hiding predicate

encryption: HiddenMap Encryption (HME), where the attributeA is

a map. LetK ,Ka , andV be three finite sets, whereKa ⊆ K . HME

works for a class of predicates Φhme = {ϕhme

mp |mp ⊑ Ka 7→ V}

where, for an attribute map ma : Ka 7→ V ,

ϕhme

mp (ma) =


1 if mp[k] = ma[k] for each key k in mp

0 otherwise

That is, ϕhme

mp (ma) is satisfied when the pairs in mp are all included

in ma, and we say mp is a subset of ma in this case.

We introduce the attribute-updatability property to HME, which

means the attribute map can be updated without reproducing

the ciphertext from scratch. Specifically, attribute-updatable HME

(AUHME) supports two kinds of updates: adding a pair intoma and
editing the value of an existing pair in ma. Deleting a pair can be

achieved through editing the value of the pair to ⊥. Formally, in the

symmetric-key setting, it consists of the following six algorithms:

• Setup(1λ) → (msk, δ ): On input the security parameter 1
λ
,

it outputs a master secret keymsk and a state δ .
• Enc(msk,ma : Ka 7→ V,M) → C: Taking as input the

master secret keymsk , an attribute map ma, and a message

M , it outputs the ciphertext C .
• GenKey(msk, δ ,mp ⊑ Ka 7→ V) → dk : Taking as input

themaster secret keymsk , the current state δ , and a predicate
map mp, it outputs a decryption key dk .
• Query(dk,C) → M or ⊥: On input a decryption key dk and

the ciphertext C , it outputsM or ⊥.

• GenUpd(msk, δ ,op,u1 ∈ K,u2 ∈ V) → (UTok, δ
′
): On

input the master secret keymsk , the current state δ , an op-

erator op ∈ {add, edit}, and a pair (u1,u2), it produces an

update token UTok and a possibly updated state δ ′. Note
that if op = add , u1 is inserted into Ka .

• ApplyUpd(UTok,C) → C ′: On input a tokenUTok and the

ciphertext C , it outputs the updated ciphertext C ′.

The correctness of an AUHME scheme requires that, for all pos-

sible legal inputs, after running Enc, GenKey, and even after per-

forming a polynomial number of updates onma with GenUpd and

ApplyUpd, if ϕhme

mp (ma) = 1, then Query(dk,C) = M , otherwise

Query(dk,C) =⊥ with all but negligible probability.

A variation of predicate encryption is a predicate-only scheme

where the inputs of Enc do not include any M , and Query only

reveals whether the predicate is satisfied. For a predicate-only HME,

Query(dk,C) = ϕhme

mp (ma) for any dk ← GenKey(msk, δ ,mp).

AUHMEREALA (λ):
(1) A(1λ ) outputs an attribute map ma : Ka 7→ V . Setup(1λ ) is run

to generate (msk , δ ).
(2) A may make ρ1 queries in an adaptive way. For a key

generation query on a predicate map mp, A is given dk
generated by GenKey(msk , δ ,mp). For an update query

(op, u1, u2), A is given the update token UTok outputted by

GenUpd(msk , δ , op, u1, u2).
(3) A chooses a messageM and is given the ciphertext C generated by

Enc(msk ,ma,M ).
(4) A may make ρ2 queries adaptively, which are processed as in (2)

(5) With the view observed by A as the input, A outputs a bit b .

AUHMEIDEALA,S(λ) :

(1) A(1λ ) outputs an attribute map ma : Ka 7→ V .

(2) A may adaptively makes ρ1 queries. For a query onmp, A is given

dk outputted by S(Lhq (mp), ϕhme

mp (ma)). For an update (op, u1, u2),

A is given UTok generated by S(Lhu (op, u1, u2).
(3) A chooses a messageM and is given the ciphertext C generated by

S(1|M | , |ma |).

(4) A may make ρ2 queries adaptively as in (2).

(5) Taking as input the view observed by A, A outputs a bit b .

Figure 1: Selective Simulation-Based Definition of AUHME

Intuitively, the security for AUHME requires that the adversary

learns nothing aboutM and ma, a query only reveals the query re-

sult, and an update discloses nothing. Here we consider the relaxed

security where queries and updates might leak a little information.

We denote the allowed leakage as Lh = (Lhq (mp),L
h
u (op,u1,u2)),

which captures the query and update leakages, respectively. Briefly,

we require that Lhq (mp) only exposes which keys exist in the pred-

icate map mp, which is called key pattern. Lhu (op,u1,u2) can reveal

op but leak nothing about (u1,u2). In Definition 2.1, we provide the

security definition for AUHME in the simulation-based setting.

Definition 2.1. We say an AUHME scheme is Lh -selectively-
semantically secure if, for any security parameter λ and any proba-
bilistic polynomial-time adversary A, there exists a simulator S and
a negligible function negl such that;

|Pr(AUHMEREALA (λ) = 1) − Pr(AUHMEIDEAL
A,S,Lh (λ) = 1) |

⩽ negl(λ)

where AUHMEREALA (λ) and AUHMEIDEAL
A,S,Lh (λ) are shown in Fig.12.

2
For predicate-only AUHME, we omit the message M in Fig.1.
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2.3 Dynamic Searchable Symmetric Encryption
Let the database DB be {(idi ,Wi )}

|D |

i=1, where idi ∈ {0, 1}
l
is the

identifier of a document and Wi ⊆ {0, 1}
∗
is the set of keywords

contained in the document idi . D = {idi }
|D |

i=1 and W = ∪
|D |

i=1Wi
store all the document identifiers and keywords in the database,

respectively. Given a search formulaψ (w) involving a collection of

keywords w ⊆ W, DB(ψ (w)) represents the identifiers of the docu-
ments that satisfyψ (w).ψ (w) is a conjunctive query if it combines

every keywordw ∈ w with the operator ‘∧’ (AND). An identifier

idi satisfies a conjunction over w iff w ⊆ Wi . Moreover, we de-

fine the extended database DB
′
to be {(w | |id,b) | w ∈ W, id ∈ D},

where b is 1 if id ∈ DB(w), and is 0 otherwise. Finally, note that

a dynamic database supports inserting a new document into the

database (add), adding keywords in W to an existing document

(edit+), removing keywords from an existing document (edit−),
and deleting documents from the database (del). Formally, DSSE

consists of the following three protocols:

• Setup(λ,DB;⊥) → (K, s; EDB): On input the security pa-

rameter λ, and a database DB, the client outputs a secret key
K and a state s . The server outputs an encrypted database

EDB without any input.

• Search(K, s,ψ (w); EDB) → (s ′,DB( ψ (w)); EDB′): The cli-
ent takes as input the secret key K , the current state s , and
a search formula ψ (w). The server has EDB as the input.

Eventually, the client outputs a possibly updated state s ′ and
the search result DB(ψ (w)). The server outputs a possibly
updated encrypted database EDB

′
.

• Update(K, s,op, in; EDB) → (s ′; EDB′): The client has five
parameters as inputs that include the secret key K , the cur-
rent state s , an operator op ∈ (add, edit+, edit−,del), and the
updated information in = (id,Wid ) where id is a document

identifier and Wid is a collection of keywords. The server

takes as input the encrypted database EDB. Finally, the client

outputs an updated secret state s ′, and the server outputs an
updated encrypted database EDB

′
.

The correctness for SSE requires that for every database DB,

every encrypted database EDB generated from DSSE.Setup or

DSSE.Update, and every supported search formula ψ (w), the
search query onψ (w) should return DB(ψ (w)) to the client.

As done in previous literature [7, 11, 28], we use three functions

L = (LStp (DB),LSrch (DB,ψ (w)),LUpdt (DB,op, in)) to capture

the leakages for the setup, search, and update protocols, respectively.

We borrow the formal definition for DSSE from [11, 28], which is

shown in Definition 2.2.

Definition 2.2. Let
∏

= {Setup, Search,Update} denote a DSSE
scheme. We say

∏
is L − adptively − secure if for any security

parameter λ, any probabilistic polynomial-time adversaries A, there
exist a a simulator S and a negligible function negl such that:

|Pr(SSEREAL
∏
A
(λ) = 1) − Pr(SSEIDEAL

∏
A,S,L

(λ) = 1) | ⩽ negl(λ)

where SSEREAL
∏
A
(λ) and SSEIDEAL

∏
A,S,L

(λ) are defined as:

• SSEREAL

∏
A
(λ): At first, A chooses a database DB, and obtains EDB

by invoking the function Setup(λ, DB). Then it repeatedly performs
search queries Search(ψ (w)) and update queries Update(op,w , id )
in an adaptive way. A receives all the transcripts generated during
the above operations, and outputs a bit b .

• SSEIDEAL
Σ
A,S,L

(λ): A chooses a database DB, and calls S(LStp (
DB)) to get the encrypted database EDB. After that, it adaptively per-
forms search queries (update queries) by calling S(LSrch (DB,w))
(S(LUpdt (DB, op,w , id ))). A observes the transcripts of all oper-
ations and outputs a bit b .

Forward Privacy. Forward privacy requires that an update re-

veals nothing about the updated keyword. We borrow the definition

from [7, 8], which is shown in Definition 2.3.

Definition 2.3. (Forward Privacy of Conjunctive DSSE) A
L−adptively−secure DSSE Σ = {Setup, Search,Update} is forward
private iff the update leakage function LUpdt can be written as:

LUpdt (DB, op, (id ,Wid )) = L
′(op, id , |Wid |)

where L′ is a stateless function.

Backward Privacy. Backward privacy limits what the server

could learn about a deleted entry from the queries issued after the

deletion. Bost et al. [8] introduce three types of backward privacy

for single-keyword DSSE, from Type-I to Type-III. Briefly, Type-I

requires that a single-keyword search on w only reveals DB(w),
when each document in DB(w) is inserted, and the total number

of updates related tow . Type-II additionally leaks the timestamps

of the updates related to w . The leakages of Type-III also include

which deletion cancels which addition. To extend the definition

to conjunctive DSSE, similar to [48], we say that a multi-keyword

DSSE is backward private iff the update and search leakages about

every keyword do not exceedwhat is revealed by a backward private

single-keyword DSSE. Nevertheless, Bost et al.’ definition has two

assumptions: the initial database is empty; a keywordw cannot be

inserted into the document from whichw was previously removed.

We generalize their definition by eradicating the two assumptions.

Since our DSSE scheme at least achieves Type-II, we only define

Type-I and Type-II backward privacy.

We use Q to represent the list of the issued queries, (t,q) to
denote a conjunctive query, and (t,op, in) to stand for an update,

where t is the timestamp. For a conjunction q, q[i] is the i-th term

involved in q. t ▷ denotes the timestamp of the setup protocol and

DB
▷
is the initial database. For a conjunction q, π ▷

i records the

number of documents containing the keyword q[i] in DB
▷
.

For a keywordw , TimeDB(w) outputs the identifiers currently
matchingw and the timestamps these identifiers were first inserted

into the database. Formally, TimeDB(w) = {(t, id)|id ∈ DB(w)
and ∃Wid : (t,add, (id,Wid )) ∈ Q} ∪ {(t

▷, id)|id ∈ DB(w)
and id exists in DB

▷}. Updates(w) is the list of timestamps of

updates related to w . Formally, Updates(w) = {t |∃Wid that

contains w : (t,add, (id,Wid )) ∈ Q or (t, edit+, (id,Wid )) ∈

Q or (t, edit−, (id,Wid )) ∈ Q or (t,del, (id,Wid )) ∈ Q}.

For a conjunctive q, we write (TimeDB(q[i]))ni=1 as TimeDB(q),
(Updates(q[i]))ni=1 as Updates(q), (π

▷
i )

n
i=1 as π

▷(q), (πi )
n
i=1 as π (q),

where πi is the sum of π ▷
i and the number of updates related to

q[i]. We give the definition in Definition 2.4. Note that the existing

definitions [39, 57] either have strict assumptions or are specialized

to their own schemes.

Definition 2.4. (Backward Privacy of Conjunctive DSSE) A
L − adptively − secure DSSE Σ = {Setup, Search, Update} is
Type-I backward private iff
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LUpdt (DB, op, (id ,Wid )) = L
′(op, |Wid |)

LSrch (DB, q) = L′′(TimeDB(q), π (q))

Type-II backward private iff
LUpdt (DB, op, (id ,Wid )) = L

′(op,Wid )

LSrch (DB, q) = L′′(TimeDB(q), Updates(q), π ▷(q))

where L′ and L′′ are stateless functions.

Definition 2.4 is applicable to single-keyword DSSE by consid-

ering a search onw as a conjunction q = w . Our definition differs

slightly from Bost et al.’s definition [8] due to the complex setting

we consider, for which we make a detailed analysis in Appendix C.

KPRP-hiding. The KPRP is a leakage related to the keywords

involved in the same search query. A conjunction query q aims to

obtain the documents containing all the keywords involved in q,
i.e., DB(q). The KPRP-hiding property means that the server could

know DB(q) after the search, but otherwise cannot learn which

other documents contain any two keywords involved in q. We

define KPRP-hiding in Definition 2.5.

Definition 2.5. (KPRP-hiding of Conjunctive DSSE) A L −
adptively−secure conjunctive DSSE Σ = { Setup, Search,Update}
is KPRP-hiding iff the search leakage function LSrch (DB,q) does
not reveal which identifiers belong to DB(q[i]) ∩ DB(q[j]) for any
1 ≤ i < j ≤ n except for the ones in DB(q).

3 AUHME CONSTRUCTION
This section presents our predicate-only AUHME construction. In

our construction, for the attribute map, the key can be an arbitrary

string and the value belongs to {0, 1}, i.e., K is a finite set of arbi-

trary strings and V is {0, 1}. For update operations, the mapped

value of any pair can only be updated to 0 or 1. Moreover, the new

value must be different from the stale one; otherwise the update is

invalid, which is forbidden in our construction. For simplicity, our

construction does not consider deleting pairs from ma.

3.1 Overview of AUHME Construction
Query Process. The main purpose of our AUHME construction is

to securely query if a predicate map mp is a subset of the attribute

map ma, i.e., query if all the pairs in mp are also included in ma,
with two requirements: R1) the pairs of the two maps should be

protected in any case; and R2) if mp is not a subset of ma, which
pairs in mp are included in ma should not be leaked.

To achieve R1, every pair in the two maps is encrypted with a

pseudorandom function (PRF) F : {0, 1}λ × {0, 1}∗ → {0, 1}λ . The

ciphertexts of ma’s pairs are stored in a map C , where every entry

is indexed by its associated encrypted key. Our strategy to achieve

R2 is based on the XOR MAC technique [4], where we XOR the

ciphertexts of mp’s pairs and get a string xors . To conceal xors , we
generate d ← H (r | |xors) as the query token, where r is a random

string and H : {0, 1}∗ → {0, 1}λ is a hash function. During the

query, only the ciphertexts of the pairs whose keys are included

in mp are picked out from C and XORed into xors ′. Given r , we
can check if H (r | |xors ′) = H (r | |xors), which is true only when

xors ′ = xors , indicating mp is a subset of ma. The query process

exposes the query result, |mp |, and the access pattern overma, from
which the adversary cannot break R1 and R2.

Update Process. For an update, we aim to break the link be-

tween the update and previous queries, i.e., conceal whether the
updated key is included in any ever queried mp. As mentioned

before, the attribute map ma can be updated in two different ways:

add a new pair, or edit the value of an existing pair. For an addition,

the newly added pairs must have new keys, which means they

must be not related to any mp. Thus, we can directly encrypt the

new pairs with F and add their ciphertexts into C . However, it is
challenging to edit pairs. During the query, the access pattern over

ma is leaked in order to generate xors ′. To break the link between

editing updates and queries, we have to edit the pairs obliviously;

otherwise, they can be linked based on the access pattern.

To protect editing updates efficiently, we leverage an ORAM-like

idea where we create a local cache for saving the recent editing

updates and evict them to C when the cache is full. In the eviction

procedure, we re-randomise all the pairs in C so as to hide the

access pattern. Specifically, the pairs without updates are XORed

with a string that does not affect their values, and the pairs with

updates are XORed with a string that can change their values to the

updated ones, which can be easily achieved as the value is either

1 or 0 in plaintext. The strings generated for the two cases are

indistinguishable as they are encrypted with F . Thus, the adversary
cannot tell which pairs are actually updated.

3.2 Details of AUHME Construction
Fig.2 gives the construction details, which are summarised as below.

• AUHME.Setup(1λ) : It generates the secret key msk = (k1,
k2, k3) and the initial state δ = (cnt,T , ζ , S). Specifically, cnt
counts the number of evictions that were executed. T is the

cache for editing updates, which is a map with a capacity of ζ .
S is ⊥ except when performing an eviction. Within an eviction,

S stores F (k1,k) for every key k ∈ ma. S can be pre-computed

or pre-requested from C before the eviction.

• AUHME.Enc(msk,ma) : The algorithm produces the cipher-

text C , which is in the form of a map. For every element

(ka,va ) ∈ ma, the corresponding element in C is (ℓ,ν ), where
ℓ ← F (k1,ka ) and ν ← F (k2, ℓ | |va ) ⊕ F (k3, ℓ | |cnt).

• AUHME.GenUpd(msk, δ ,op,ku ,vu ) : Given the pair (ku ,vu )
and operator op, the algorithm generates the update token

tok and updates the state δ . tok is initialized to be an empty

map. Hereafter we denote the attribute map associated with C
as cma, which is outdated when the local cache is not empty.

Specifically, if op = add , the algorithm computes (ℓ,ν ) from
(ku ,vu ) and the global counter cnt , and sets tok[ℓ] = ν . If
op = edit , (ku ,vu ) is inserted to the cache T with CInsert
algorithm, and T is evicted to C with CEvict when it is full.

During CInsert, if ku is already in T , it means cma[ku ] = 1 −

T [ℓ] = vu , where ℓ = F (k1,ku ), because we assume all the

updates are valid, i.e., the new value must be different from the

stale one. In this case, CInsert deletes T [ℓ]; otherwise, it sets
T [ℓ] to vu . Recall that each value in C will be re-randomised

with a string during an eviction. Such a string is derived from

the encrypted key in C . So before running CEvict, we need
obtain all the encrypted keys either fromC or by re-encrypting

all the keys ofma (if they are accessible), and store them into S .
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AUHME.Setup(1λ ):

1: k1, k2, k3
$

← {0, 1}λ , cnt ← 0, S ←⊥
2: T ← empty map

3: Choose ζ as the capacity for T
4: msk ← (k1, k2, k3), δ ← (cnt ,T , ζ , S )
5: return (msk , δ )

AUHME.Enc(msk ,ma):
1: C ← empty map, (k1, k2, k3) ←msk
2: for each pair (ka , va ) ∈ ma do
3: ℓ ← F (k1, ka )
4: C[ℓ] ← F ( k2, ℓ | | va ) ⊕ F ( k3, ℓ | | 0)
5: end for
6: returnC

AUHME.GenUpd(msk , δ , op, ku , vu ):
1: (k1, k2, k3) ←msk , (cnt ,T , ζ , S ) ← δ
2: tok ← empty map

3: if op = add then
4: ℓ ← F (k1, ku )
5: tok [ℓ] ← F ( k2, ℓ | | vu ) ⊕ F ( k3, ℓ | | cnt )
6: UTok ← (add , tok )
7: return (UTok , δ )
8: end if

▷ When op = edit
9: T ← CInsert(msk , ku , vu ,T )
10: if |T | + 1 < ζ then

11: δ ← (cnt ,T , ζ , ⊥)
12: return (⊥, δ )
13: else
14: S ← all the keys inC
15: tok ← CEvict(msk , cnt , S ,T )
16: T ← CClear(T )
17: δ ← (cnt + 1,T , ζ , ⊥)
18: UTok ← (edit , tok )
19: return (UTok , δ )
20: end if

AUHME.ApplyUpd(UTok ,C):
1: (op, tok ) ← UTok
2: for each pair (ℓ, u) ∈ tok do
3: if op = add then
4: C[ℓ] ← u
5: else if op = edit then
6: C[ℓ] ← C[ℓ] ⊕ u
7: end if
8: end for

AUHME.GenKey(msk , δ ,mp):
1: (k1, k2, k3) ←msk , (cnt ,T , −, −) ← δ
2: L ← empty set, xors ← 0

λ , β ← 1

3: for each pair (kp , vp ) ∈ mp do
4: ℓ ← F (k1, kp ), L ← L ∪ {ℓ }
5: if CFind(msk , kp ,T ) = 1 − vp then

6: β ← 0

7: else if CFind(msk , kp ,T ) = vp then
8: ν ← F ( k2, ℓ | | (1 − vp )) ⊕ F ( k3, ℓ | | cnt )
9: xors ← xors ⊕ ν
10: else if CFind(msk , kp ,T ) =⊥ then
11: ν ← F ( k2, ℓ | | vp )⊕ F (k3, ℓ | | cnt )
12: xors ← xors ⊕ ν
13: end if
14: end for
15: if β = 1 then

16: r
$

← {0, 1}λ , d ← H (r | |xors)
17: else

18: r
$

← {0, 1}λ , d
$

← {0, 1}λ

19: end if
20: return dk = (L, r , d )

AUHME.Query(dk ,C):
1: (L, r , d ) ← dk , xors′ ← 0

λ

2: for each ℓ ∈ L do
3: xors′ ← xors′ ⊕ C[ℓ]
4: end for
5: d′ ← H (r | |xors′)
6: if d′ = d then
7: return 1

8: else
9: return 0

10: end if

Figure 2: Our AUHME Construction

CFind(msk , k ,T ):
1: (k1, −, −) ←msk
2: ℓ ← F (k1, k )
3: if T [ℓ] exists then
4: return T [ℓ]
5: else
6: return ⊥
7: end if

CInsert(msk , k , v ,T ):
1: (k1, −, −) ←msk
2: ℓ ← F (k1, k )
3: if T [ℓ] exists then

▷ This means cma[k ] = v .
4: Delete T [ℓ]
5: else
6: T [ℓ] ← v
7: end if
8: return T

CEvict(msk , cnt , S ,T )
1: tok ← empty map

2: for each ℓ ∈ S do
3: if T [ℓ] does not exist then

▷ No update for ℓ
4: u ← F ( k3, ℓ | |cnt )⊕

F ( k3, ℓ | |cnt + 1)
5: else ▷ There is an update for ℓ
6: b ← T [ℓ]
7: u ← F ( k2, ℓ | |b) ⊕

F (k2, ℓ | |(1 − b)) ⊕ F ( k3, ℓ | |cnt ) ⊕
F (k3, ℓ | |(cnt + 1))

8: end if
9: tok [ℓ] ← u
10: end for
11: return tok

CClear(T )
1: Delete all entries of T
2: return T

Figure 3: Cache Algorithms Used in AUHME Construction

CEvict traverses through each ℓ ∈ S and generates the string u
for updating C[ℓ] according to whether T [ℓ] exists. Assuming

ℓ = F (k1,ka ), if T [ℓ] does not exist, meaning no update on

(ka,va ) is cached, C[ℓ] should be updated without modifying

va . We achieve that by generating u that will only increase cnt
by 1. If T [ℓ] exists, it implies that cma[ka ] = 1 −T [ℓ], and we

produce u that will update va to T [ℓ] and increase cnt .
When CEvict is done, CClear is called to clear T . Finally, the
algorithm returns (UTok, δ ), where δ = (cnt + 1,T , ζ ,⊥).

• AUHME.ApplyUpd(UTok,C) : This algorithm updates the

ciphertext C withUTok = (op, tok). In the case that op = add ,
C is updated to the union of C and tok . If op = edit , which is

for an eviction, the algorithm computes C[ℓ] = C[ℓ] ⊕ tok[ℓ]
for each key ℓ in tok .

• AUHME.GenKey(msk, δ ,mp) : It generates the decryption

key dk = (L, r ,d), i.e., the token for querying if mp is a subset
ofma. Since the most recent editing updates are cached locally,

the values stored in C may be out of date. Thus, for a pair

(kp ,vp ) ∈ mp and ℓ = F (k1,kp ), we have 3 cases to process:

1) an update for kp is cached in T but vp does not match the

cached value, i.e., T [ℓ] ,⊥ and T [ℓ] , vp ; 2) an update for kp
is cached in T and vp matches the cached value, i.e., T [ℓ] = vp ;
and 3) no update for kp is cached in T , i.e., T [ℓ] =⊥. The first
case indicatesmp is not a subset of the latestma for sure, and if
all the pairs in mp are in the second case, mp must be a subset

of ma. However, to avoid leaking information about updates,

we generate dk and perform the query for all cases.

L and r are generated in the same way, yet d is generated

in different ways for the three cases. Specifically, L stores

ℓ = F (k1,kp ) for every kp ∈ mp. r is a random string. For

the first case, d is also a random string as we already know the

query result. For the last two cases, d is H (r | |xors), where xors
is generated by XORing all the encrypted pairs ofmp. In partic-

ular, in the second case (i.e., when T [ℓ] = vp ), C[ℓ]’s plaintext
must be 1 −vp ; otherwise the update in T is invalid, which is

forbidden. To ensure the correctness of the query, we encrypt

(kp , 1 −vp ) for such pairs.

• AUHME.Query(dk,C) : It first parses dk to (L, r ,d). Then it

XORs every value in C whose key belongs to L and obtains

the result xors ′. If H (r | |xors ′) = d , which demonstrates that

xors ′ = xors , the algorithm outputs 1, otherwise it outputs 0.
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1: Run (KT , sT , TMap) ←

RHS.Setup(1λ , DB)

Client:
2: DB

′ ← empty map

3: for eachw ∈ W do
4: for each id ∈ DB(w ) do
5: DB

′[w | |id ] ← 1

6: end for
7: for each id′ ∈ ID \ DB(w ) do
8: DB

′[w | |id′] ← 0

9: end for

10: end for
11: Randomly permute the entries of DB

′

12: (msk , δ ) ← HME.Setup(1λ )
13: XMap← HME.Enc(msk , DB′)
14: K ← (KT ,msk )
15: s ← (sT , δ )
16: Send XMap to the server

17: return (K , s)

Server:
18: return EDB=(TMap, XMap)

Figure 4: HDXT.Setup(1λ,DB)

3.3 Complexities of AUHME
Encryption. Each pair in the map is encrypted with F , thus
AUHME.Enc causesO(|ma |) computational complexity. The storage

overhead added by C is also O(|ma |).
Query. AUHME.GenKey generates dk through traversing each

pair inmp, resulting inO(|mp |) computational overhead and token

size. AUHME.Query procedure only processes each entry of C
whose key is in L, also causing O(|mp |) computational cost.

Update. To add a pair (ku ,vu ), AUHME.GenUpd derives two

strings, resulting in O(1) computational overhead and token size.

When op = edit , if the cache is not full, O(1) computational cost

is paid to cache (ku ,vu ) and the token size is zero, otherwise an

eviction happens. An eviction pseudorandomly derives |ma | strings,
which incurs O(|ma |) computational overhead and token size. On

average, the editing overhead amortized to each pair is O(|ma |/ζ ).
For AUHME.ApplyUpd, the number of processed pairs is equal

to the token size. Therefore, the incurred overhead is O(1) for an
addition and O(|ma |/ζ ) for an edit operation.

3.4 Security of AUHME
To capture the query leakage, we first define a vector K. Initially,
each key in ma is inserted into K in sequence. When an addition

involving (ku ,vu ) comes, ku is inserted into K. Then we define a

function Loc(mp) that outputs the key pattern about a predicate

map mp. Formally, Loc(mp) outputs a vector v that satisfies for all

1 ≤ i ≤ |mp |

v[i] =
{

j ∃j : K[j] = the i-th key in mp
⊥ otherwise

We allow Lhq (mp) include Loc(mp) and ϕ
hme

mp (ma).

An addition reveals the operator add . An edit operation leaks

nothing except for whether it incurs an eviction. We define a func-

tion IfEvic(ku ,vu ). If the edit operation (edit,ku ,vu )makes an evic-

tion occur, IfEvic(ku ,vu ) outputs 1, otherwise it outputs nothing.

Formally, Lhu (op, ku , vu ) is add when op = add , It only contains

IfEvic(ku ,vu ) when op = edit . We have Theorem 3.1.

Theorem 3.1. If F is a secure PRF and H is modeled as a random
oracle, our AUHME construction is L-selectively-semantically secure.

Proof: The proof is presented in Appendix A.

1: Run (sT ; TMap) ← RHS.Update(KT ,
sT , op, in; TMap), where the client up-

dates sT and the server updates TMap

Client:
2: (id ,Wid ) ← in
3: if op = add then
4: UT ← empty map

5: for eachw inW do
6: if w ∈ Wid then
7: (UTok , δ ) ← HME.

GenUpd(msk , δ , add , (w | |id , 1))
8: else
9: (UTok , δ ) ← HME.

GenUpd(msk , δ , add , (w | |id , 0))
10: end if
11: (add , ut ) ← UTok
12: UT ← UT ∪ ut
13: end for
14: Randomly permute the entries of

UT
15: tokx ← (add ,UT )
16: Send tokx to the server

17: ID← ID ∪ {id }
18: else if op = edit+/edit− then
19: for eachw ∈ Wid do
20: (tokx , δ ) ← Edit-

Pair(msk , δ ,
op, id ,w )

21: if tokx ,⊥ then
22: Send tokx to the server

23: end if
24: end for
25: end if
26: return s = (sT , δ )

Server:
27: XMap←HME.ApplyUpd(

tokx , XMap)

28: return EDB = (TMap, XMap)

EditPair(msk , δ , op, id ,w )
1: (cnt ,T , |W |, ⊥) ← δ
2: if |T | + 1 ≥ |W | then
3: S ← empty set

4: for eachw ′ ∈ W do
5: for each id′ ∈ ID do
6: ℓ ← F (k1,w ′ | |id′)
7: S ← S ∪ {ℓ }
8: end for
9: end for
10: δ ← (cnt ,T , |W |, S )
11: end if
12: if op = edit+ then
13: (tokx , δ ) ← HME.GenUpd(

msk , δ , edit , (w | |id , 1))
14: else if op = edit− then
15: (tokx , δ ) ← HME.GenUpd(

msk , δ , edit , (w | |id , 0))
16: end if
17: return (tokx , δ )

Figure 5: HDXT.Update(K, s,op, in)

1: Run DB(w1) ← RHS.Search(
KT , sT ,w1 ; TMap), where the client

receives DB(w1).

Client:
2: R1, DK ← empty lists

3: Insert DB(w1) into R1 and Randomly

permute the entries of R1
4: for j = 1 to |R1 | do
5: id ← R1[j], Ij ← empty map

6: for i = 2 to n do
7: Ij [wi | |id ] ← 1

8: end for
9: dkj ← HME.GenKey(msk , δ , Ij )
10: DK ← DK ∪ {dkj }
11: end for
12: Send DK to the server

Server:
13: Pos ← empty set

14: for j = 1 to |DK | do
15: r ← HME.Query(DK [j], XMap)

16: if r = 1 then
17: Pos ← Pos ∪ {j }
18: end if
19: end for
20: Send Pos to the client

Client:
21: R ← empty set

22: for each j ∈ Pos do
23: R ← R ∪ {R1[j]}
24: end for
25: return R

Figure 6: HDXT.Search(K, s,w1 ∧ · · · ∧wn )

4 HDXT- OUR CONJUNCTIVE DSSE SCHEME
This section presents our conjunctive DSSE construction: HDXT.

4.1 Overview of HDXT
In HDXT, the encrypted index consists of TMap and XMap. TMap

is a structure produced by a response-hiding single-keyword DSSE

scheme (denoted as RHS). Initially, XMap is obtained by using

predicate-only AUHME to encrypt the extended database DB
′
de-

fined in Section 2.3. Within a conjunctionw1 ∧ · · · ∧wn , the client

first makes a single-keyword query on w1 with TMap to obtain

DB(w1). Then for each id ∈ DB(w1), it builds a predicate map I
that stores a mapping fromwi | |id to 1 for 2 ≤ i ≤ n and issues an

AUHME query to check if I is a subset of DB′. If the AUHME query
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returns 1, id matches the conjunction. The security of AUHME guar-

antees that the server cannot learn DB
′[wi | |id] for all 2 ≤ i ≤ n if

the AUHME query returns 0. Thus, KPRP-hiding can be ensured.

To update a keyword-document pair, TMap is trivially updated

with RHS, and AUHME enables DB
′
to be updatable. As we have

described in Section 3, to achieve secure edit operations, AUHME

preserves a local cache of fixed size. For HDXT, the cache is kept by

the client, and the cache capacity is set to |W|. Note that the incurred

client storage is comparable to many SSE schemes [7, 29, 30, 43].

Following the mainstream SSE, we assume there is an authentica-

tion scheme in place that enables the client and the server to verify

each other’s identities before exchanging any data. This can be

implemented with the transport layer security (TLS) protocol, two-

factor authentication [47, 49], or human-memorizable password-

based authentication [14]. In addition, In line with [25, 39, 50], we

prohibit incorrect updates introduced in [53].

4.2 Details of HDXT
Fig.4, Fig.5, and Fig.6 show the pseudocodes for HDXT. RHS is

adopted in a black-box way, and AUHME is abbreviated as HME.

• (K, s ; EDB) ←HDXT.Setup(λ,DB;⊥): The setup phase gener-
ates EDB = (TMap, XMap) from DB, with RHS and AUHME.

• (s; EDB) ← HDXT.Update(K, s,op, in; EDB): Within an up-

date, RHS is executed to update TMap. The update token for

XMap is a map tokx .
When op = add , {(w | |id, 1)|w ∈ Wid } ∪ {(w | |id, 0)|w ∈ W \

Wid } should joinDB
′
. As shown in Line 3 - 17 (Fig.5), the client

generates an AUHME addition token UTok for each pair and

then merges these addition tokens into tokx .
In the case that op = edit+/edit−, DB′[w | |id] should be

changed to 1 (op = edit+) or 0 (op = edit−) for eachw ∈ Wid .

As presented in line 18 - 24 (Fig.5), for each w ∈ Wid , the

client calls EditPair (msk, δ ,op, id,w) to generate tokx , which
is either empty or an eviction token.

In EditPair (msk, δ ,op, id,w), to make an eviction to be com-

pleted in one round, if the cache will overflow, the client com-

putes all the keys in XMap and include them into the state of

AUHME before calling HME.GenUpd.

If op = del , XMap is unchanged. This will not affect subsequent

searches, because the client will find that id was deleted during

the related single-keyword searches on the s-term.

• (DB(w1∧con(w2, · · · ,wn )); EDB) ←HDXT.Search (K, s,w1∧

· · · ∧wn ; EDB): Within a search onw1 ∧w2, · · · ,∧wn , HDXT

first executes the search protocol of RHS, after which only the

client gets DB(w1). Then for each identifier id ∈ DB(w1), it

tests whether id satisfiesw2 ∧ · · · ∧wn .

Specifically, the client storesDB(w1) into a list R1 and randomly

shuffles the elements of R1. For 1 ≤ j ≤ |R1 |, it takes id from

R1[j] and builds a map Ij = {(wi | |id, 1)}
n
i=2. The client calls

AUHME to generate the decryption key dk for Ij , which is then

inserted into the j-th position of a list DK . DK is sent to the

server. With DK[j], the server calls AUHME to query whether

Ij is a subset of DB
′
. If the AUHME query returns true, the

server inserts j into a set Pos . Pos is then returned to the client.

The final search result is R = {R1[j]}j ∈Pos .

5 SECURITY AND PERFORMANCE ANALYSIS
In this section, we comprehensively analyze the security and per-

formance achieved by HDXT.

5.1 Security of HDXT
To analyze the security of HDXT, we continue using the notions and

functions introduced in Section 2.3. We denote the leakage function

for RHS as LRHS , and also introduce the other four functions.

For a set Ids of document identifiers, TimeIds(Ids) outputs
these identifiers and when each document was added. Formally,

TimeIds(Ids) = {(t, id)|id ∈ Ids and ∃Wid : (t,add, (id,Wid )) ∈

Q}∪{(t ▷, id)|id ∈ Ids and id exists in DB
▷}. Note that TimeDB(w)

defined in Section 2.3 is equivalent to TimeIds(DB(w)).
IP(q) records the conditional intersection pattern with re-

spect to a conjunction q. It is expressed as (IP(q[1],q[i]))ni=2.
For 2 ≤ i ≤ n, if there exists a previous search q′ that sat-
isfies the following two conditions: 1) the j-th (j ≥ 2) term

is q[i]; 2) DB(q′[1]) ∩ DB(q[1]) , ∅, IP(q[1],q[i]) outputs the

timestamp of q′, j, and TimeIds(DB(q′[1]) ∩ DB(q[1])). Formally,

IP(q[1],q[i]) = {(t, j,TimeIds(DB(q[1]) ∩ DB(q′[1]))|(t,q′) ∈
Q and q[i] = q′[j] and DB(q[1]) ∩ DB(q′[1]) , ∅}.

AddTims(q[1]) outputs when the documents that belong to

DB(q[1]) were added to the database. Formally, AddTims(q[1]) =
{t |∃id ∈ DB(q[1]) and Wid : (t,add, (id,Wid )) ∈ Q}.

Based on Q and |W|, the timestamps of the evictions can be

obtained. If an eviction occurs within (op, in), Evic(op, in) outputs
1, otherwise it outputs nothing.

Within an update (op, in), updating TMap could expose L
Upd
RHS (

DB,op, in). When updating XMap, if op = add , the server could

learn the operator add and |W|, otherwise it learns Evic(op, in).
For a conjunction q, the single-keyword query on q[1] reveals

LSrchRHS (DB,q[1]). From the queries to XMap, the server could di-

rectly learn |DB(q[1])| through the number of the issued AUHME

queries in q. Since an AUHME query could leak key pattern, it first

could be linked to previous additions related to DB(q[1]), which
is captured by AddTims(q[1]). Through the leaked key pattern,

an AUHME query can also be associated with the previous con-

junctions that have the same keys in predicate maps. The leakage

caused by this association is no more than the information cap-

tured by IP(q). After each conjunction, the server could obtain

TimeIds(DB(q)). Formally, we can get Theorem 5.1.

Theorem 5.1. If RHS is LRHS -adaptively secure and AUHME
is selectively-semantically secure as defined in Section 3, HDXT is
LHDXT-adaptively secure where

(1) LStpHDXT(DB) = (L
Stp
RHS (DB), |W | · |D |)

(2) LUpd
HDXT(DB, op, in) ={

(L
Upd
RHS (DB, op, in), add , |W |), op = add

(L
Upd
RHS (DB, op, in), Evic(op, in)) op , add

(3) LSrchHDXT(DB, q) = (L
Srch
RHS (DB, q[1]), TimeIds(DB(q)),

|DB(q[1]) |, IP(q), AddTims(q[1]))

Proof: The formal proof is presented in Appendix B.

KPRP-hiding & Forward Privacy. Theorem 5.1 demonstrates

that the server cannot learn which identifiers belong to DB(q[i]) ∩
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DB(q[j]) for any 1 ≤ i < j ≤ n, except for DB(q). It demonstrates

that HDXT successfully hides KPRP. The update leakage function

clearly shows that HDXT inherits forward privacy from RHS.

Backward Privacy. The conditional intersection pattern

IP(q) captures much less information than TimeDB(q); thus,

(TimeIds(DB(q)), |DB(q[1])|, IP(q),AddTims(q[1]) outputs less

than TimeDB(q). Naturally, the level of backward privacy achieved

by HDXT only depends on that of RHS. Particularly, if we use

MITRA [13] to instantiate RHS, which reveals (π ▷
1
,Updates(q[1]))

within a conjunction q and |Wid | during an update, HDXT realizes

Type-II backward privacy. When RHS is instantiated with ORION

[13] that only leaks |DB(q[1])| during q and |Wid | within an

update, HDXT is Type-I backward private.

Mitigating Other Attacks. Existing attacks can be classi-

fied into: known-data/query attacks [5, 10, 23], inference attacks

[21, 33, 34, 41], and injection attacks [40, 54]. For the first two types,

the adversary is passive and requires an amount of auxiliary infor-

mation, such as a subset of target databases/queries or a statistical

distribution similar to the target databases/queries. For injection

attacks, the adversary is active and capable of injecting a number

of documents, without (or with quite less) auxiliary information.

Injection attacks [40, 54] are devastating for DSSE. HDXT mit-

igates the file-injection attack [54] by ensuring KPRP-hiding and

forward privacy. Achieving forward privacy also helps to mitigate

the injection attack [40] proposed by Poddar et al.. Their attack
leverages the response length for search queries, whereas the ad-

versary should be able to replay search queries after a round of

updates independently. Forward private SSE updates the token of

a search query after each related update, which makes the search

unreplayable by anyone but the client.

Among the passive attacks, most of them [10, 21, 23, 41] exploit

co-occurrence patterns, i.e., the number of documents containing

bothwi andw j for any two queried keywordswi andw j . We claim

that achieving KPRP-hiding is essential to prevent such attacks,

otherwise KPRP directly exposes co-occurrence patterns. The other

attacks demand explicit search patterns of single-keyword queries

[33, 34] or volume patterns [5] that capture the number of keywords

contained by the document that matches a query. To mitigate them,

we can further reduce the leakages by instantiating the RHS of

HDXT with search-pattern-hiding DSSE [18], which prevents RHS

from revealing search and volume patterns. Furthermore, before

making AUHME queries within a conjunction, the client can insert

some randomly selected document identifiers into R1 (Fig.6). This
step adds noise into the leakages caused by queries over XMap.

Besides, the client could issue searches on negated terms described

in Section 6 to further perturb the above leakages.

5.2 Performance of HDXT
For clarity, we initialise RHS with MITRA [13] for performance

analysis. In the following, unless otherwise specified, the overhead

refers to the computational and communication overhead.

The setup phase generates TMap and XMap directly with RHS

and AUHME, which results in O(|DB▷ |) and O(|W| |D|) overheads,
respectively. Within an update on (op, (id,Wid )), HDXT uses RHS

to update TMap, which costs O(1) overhead for each keyword-

document pair. To update XMap when op = add , HDXT invokes the

addition procedure of AUHME |W| times, which causesO(|W|) total
overhead and O(|W|/Wd ) average overhead per pair. When updat-

ing XMap during an edit query, an edit procedure of AUHME is in-

voked for every involved keyword-document pair. This edit process

results in the same complexity as AUHME, which is O(|W| |D|/ζ )
as shown in Section 3.3. HDXT sets ζ to |W|, hence the overhead

amortized to each pair is O(|D|). Because a deletion only updates

TMap, so its overhead is O(1). For a conjunction q, RHS searches
on q[1] that brings O(π1) overhead. Then HDXT issues |DB(w1)|

AUHME queries. Each AUHME query is about a predicate map of

size n − 1, which incurs O(n − 1) overhead. The total overhead for

a conjunction is O(π1 + n |DB(q[1])|).
TMap and XMap cost O(N ) and O(|W| |D|) server storage

overheads, respectively. For the client storage, RHS causes

O(|W| log |D|) overhead. The client also requires O(|W|λ) bits to
keep the local cache. The total client storage is O(|W|(log |D| + λ)).
Note that the eviction procedure in HDXT could be processed in a

streaming manner to avoid excessive consumption of client storage.

Performance Comparison with Previous Work. Table 1

shows that HDXT outperforms FBDSSE-CQ [57] in every respect,

especially search and storage efficiency. Compared with other

schemes [25, 31, 35, 39, 50] that have weaker security, HDXT

achieves very competitive search efficiency and might be less effi-

cient in editing and storage efficiency.

We claim that the less efficient editing efficiency is a price HDXT

pays for small leakages. In Section 6, we describe an extension

of HDXT (called HDXTSU ), which achieves much better editing

efficiency at the cost of increasing the leakage. Note that HDXTSU
still guarantees KPRP-hiding and forward privacy.

The server storage of HDXT is higher than the KPRP-hiding

static solution HXT [31]. In HXT, the essential plaintext index

structure is a Bloom filter [6] built from the database, which makes

its server storage smaller than ours. However, Bloom filter is not

friendly for updates. DB
′
adopted by HDXT enables secure updates

while preserving efficient KPRP-hiding searches, at the cost of

larger size. In the current literature, it is common to achieve better

security or functionality at the expense of increasing server storage

as the storage is getting much cheaper. For instance, compared with

OXT[12], IEX [25] and CNFFilter [37] support disjunctive searches

sub-linearly, yet they need much higher server storage than OXT.

5.3 Cache and Eviction Strategy
HDXT needs a cache T on the client to process updates. Its size ζ
only affects the amortized edit complexity and has no impact on

security and search performance; thus, it can be configured based

on the storage capacity of the client.

Specifically, T is only used within edit and search queries. For

an edit query on a keyword-document pair, it is either inserted

into the cache or evicted to XMap with all the cached updates. An

eviction is oblivious and reveals nothing. For performance, Section

5.2 shows that the amortized edit complexity is inversely propor-

tional to ζ . During a search, the client uses the cache in the second

round. To test whether an identifier id ∈ DB(w1) matches the re-

maining keywords, the client issues an AUHME query that first

accesses the cache (n − 1) times and then generates a decryption

key dk = (L, r ,d). L remains constant for the same predicate map, r
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is randomly generated, and d is also random from the perspective

of the server. Therefore, neither the cached content nor the capacity

has any impact on the search performance and security. In practice,

the client could evict the cache to XMap in any state, such as when

the server is idle, as long as the client storage is affordable.

6 EXTENSION
In this section, we first briefly describe HDXTSU and then discuss

how HDXT supports queries involving negated terms.

Performance Enhanced Update. HDXT updates all the en-

tries of XMap in an eviction, which achieves high-level security

guarantees but is costly. HDXTSU improves the update perfor-

mance by reducing the pairs to be updated in the eviction. Basically,

HDXTSU only updates the entries related to the documents that

were edited since the last eviction (or the setup if no eviction hap-

pened). In this case, the server could learn which documents were

edited since the last eviction. It cannot infer which keywords were

updated, so forward privacy is still guaranteed.

HDXTSU creates XMap in a slightly different way. In the setup

phase, instead of building DB
′
for all the documents, the client

builds DB
′
id = {(w,b)|w ∈ W} for each id ∈ D separately, where

b is 1 if id ∈ DB(w), otherwise b = 0. The collection of all the

encrypted DB
′
id is the XMap of HDXTSU . For search queries, after

obtaining DB(w1), the client builds I
′ = {(wi , 1)}

n
i=2 and queries

whether I ′ ⊆ DB
′
id for each id ∈ DB(w1). Within an eviction, for

every document id that has at least one related edit operation in the

local cache, HDXTSU evicts the edit operations associated with id
to DB

′
id . By doing so, the overhead caused by an eviction is only

linear with |W| · t , where t is the number of edited documents since

the last eviction. The amortized edit complexity can be reduced to

O(t). We present the detailed HDXTSU in Appendix D.

Conjunctions on Negated Terms. HDXT can be trivially ex-

tended to support conjunctions on negated terms. A negated term

aims to return the documents that do not contain the given key-

word. Given a conjunction on negated terms (e.g.,w1 ∧¬w2 ∧¬w3),

RHS is first invoked to search for DB(w1). After that, ifw1 is a non-

negated term (negated term), the client insertsDB(w1) (ID\DB(w1))

to a list R1. Then for every id ∈ R1, it constructs the predicate map

I = {[wi | |id,bi ]}
n
i=2, where if wi is a non-negated term, bi is set

to 1, otherwise it is 0. The client launches an AUHME query to

check whether I is a subset of DB′ as in Fig.6. If the query returns

1, id matches the conjunction. Note that HXT [31] cannot support

conjunctions with negated terms, mainly due to its index structure.

7 PERFORMANCE EVALUATION
We implement a prototype of HDXT and compare its performance

with the state-of-art conjunctive SSE schemes with KPRP-hiding.

7.1 Experiment Setting
Baselines. There currently exist four KPRP-hiding conjunctive

SSE solutions: the naive solution shown in Section 1, Blind Seer [35],

HXT [31], and FBDSSE-CQ [57]. Table 1 shows that HDXT is more

efficient than Blind Seer and FBDSSE-CQ for search queries. This

is because Blind Seer heavily relies on expensive secure two-party

computation and requires non-constant rounds of client-server

interactions, and FBDSSE-CQ incurs linear overheads for a search

query. In this section, we compare the search performance of HDXT

with the naive solution and HXT, and the update performance with

the naive solution and FBDSSE-CQ. As done in [39], we use MITRA

[13] to instantiate the naive solution, called MITRA
CONJ

. MITRA is

also used to instantiate RHS used in HDXT.

We use MITRA
CONJ

as one baseline to present the performance of

HDXT. But note that, as described in [39], MITRA
CONJ

has serious

leakages: the number of updates related to every keyword involved

in a conjunction and the repetition of every searched keyword.

Implementation. We implement a prototype [52] for

MITRA
CONJ

, HXT, FBDSSE-CQ, HDXT, and HDXTSU with C++. The

cryptographic primitives are implemented based on Crypto++ li-

brary [16]. In particular, we use AES-ECB-128 + SHA-256 for pseu-

dorandom functions, SHA-256 for hash functions, the C++ Bloom

filter library [36] for the Bloom filter used in HXT, and the ellip-

tic curve secp256r1 for group operations in HXT. RocksDB [17] is

deployed for the storage on the client and the server. gRPC [20] is

adopted for communication between the client and the server.

Test-bed. We use two machines to conduct the experiments.

Both machines run Ubuntu 18.04 LTS: the first machine has 16×

Intel Core Processor (Broadwell, IBRS 2.15GHz), 64GB RAM, and

4TB hard disk drives; the second has 16 cores (Intel Core i9-9900

CPU 3.10 GHz), 31GB RAM, and 483 GB SSD disk space. The experi-

ments are executed in the network setting, where the first machine

runs as the server and the second plays as the client.

Dataset. We extract two datasets from Wikimedia [1]. The first

dataset contains 23643 documents, 60879 keywords, and 8373977

keyword-document pairs. The second one comprises 86386 docu-

ments, 188096 keywords, and 27850059 keyword-document pairs.

7.2 Search Performance in Static Database
We first measure the search performance of our solutions for the

static database. For this experiment, we take the first dataset as

input, set up the encrypted database, and perform a series of con-

junctive queries. We measure the time cost by the client and the

server and the end-end search latency for each search query. Mean-

while, we measure the costed communication overheads.

7.2.1 2-Conjunctions. We start by testing the performance of con-

junctions involving two keywords. We choose two terms v and

a. The term v is variable with |DB(v)| ranging from 1 to 20604.

|DB(a)| is fixed to 1096. When |DB(v)| ≤ DB(a), we perform the

conjunctionv ∧a. a∧v is searched when |DB(v)| > DB(a). For our
solutions, this can be easily done by checking the local counters

produced by MITRA [13]. The search time for these conjunctions is

described in Fig.7, and the communication overheads are presented

in Fig.9(a). For HDXT, HDXTSU , and HXT, when |DB(v)| < 10
3
,

the search time for v ∧ a rises as |DB(v)| increases, and the ef-

ficiency for a ∧ v remains almost constant when |DB(v)| > 10
3
.

This result is consistent with the asymptotic complexity given in

Table 1. For 2-conjunctions, the efficiency for the three schemes

is only proportional to the number of documents matched by the

s-term. In contrast, the search time for MITRA
CONJ

is linear with

|DB(v)| + |DB(a)|. The results show that the 2-conjunctions in our

solutions outperform MITRA
CONJ

and HXT in the respects of com-

putational and communication overheads. Note that HXT costs
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Figure 7: Search Time of 2-Conjunctions
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Figure 8: Search Time of n-Conjunctions
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Figure 9: Communication Overheads of Conjunctions

relatively larger computation time because it involves a number of

exponential operations for each search.

7.2.2 n-Conjunctions. We also test the performance for conjunc-

tions of n (2 ≤ n ≤ 11) keywords. Here a conjunction is expressed

as a ∧ v1 ∧ · · · ∧ vn−1, where a is the s-term. Fig.8 presents the

search time, and Fig.9(b) gives the communication overheads. The

two figures clearly show that n-conjunctions in our two solutions

perform better than MITRA
CONJ

and HXT in every respect. Moreover,

we can see that the performance gap between HDXT and HXT and

the gap between HDXT and MITRA
CONJ

become larger as n increases.

In particular, when n = 11, HDXT is 10.7× and 10.5× faster than

HXT and MITRA
CONJ

, respectively. The communication overhead is

12.7× and 9.2× better than HXT and MITRA
CONJ

, respectively.

7.3 Search Performance in Dynamic Database
This sub-section tests the search performance in the dynamic data-

base for the dynamic solutions: HDXT, HDXTSU , and MITRA
CONJ

.

Here we generate a sequence of queries that involve ten keywords

w1, · · · ,w10. 99% of them are update queries, and 1% of them are

conjunctions of the ten keywords. Among the update queries, 2%
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Figure 10: Search Time in Dynamic Database

of them edit pairs related tow1, 10% edit the pairs related towi for

2 ≤ i ≤ 10, and 1% delete pairs related towi for 4 ≤ i ≤ 10.

Fig.10 shows the search time spent by every conjunction. We can

see that the search performance of our two solutions is significantly

better than MITRA
CONJ

. For instance, the end-to-end search latency

in our solutions is 13× better than that in MITRA
CONJ

.

7.4 Update Performance
We use the sequence of update queries generated in Section 7.3

to evaluate the update performance. Specifically, we test the time

cost by editing a keyword-document pair, the results of which are

shown in Fig.11(a). Meanwhile, we compute the amortized update

time per pair by first taking the total time it takes to update an

increasing number of pairs and then dividing the obtained time by

the number of updated pairs. Fig.11(b) shows the result. Fig.11(a)

demonstrates that the update efficiency of HDXT and HDXTSU
is close to that of MITRA

CONJ
and much better than FBDSSE-CQ,

except for the query that incurs an eviction. HDXT and HDXTSU
spend 5.8 and 1.6 hours for an eviction, respectively. Regarding the

amortized efficiency, as shown in Fig.11(b), HDXT and HDXTSU
are 8.2× and 32× better than that of FBDSSE-CQ, respectively. The

amortized update performance of the three schemes is much weaker

than MITRA
CONJ

. Nevertheless, MITRA
CONJ

achieves quick updates at

the cost of search efficiency and security.

7.5 Storage
We test the storage overheads for HDXT, HDXTSU , HXT,

MITRA
CONJ

, and FBDSSE-CQ [57]. In the experiment for the server

storage, to demonstrate that the server storage caused by our

schemes is acceptable, we also test several other schemes proposed

in recent years, including DIEX [25], IBTree [32], and CNFFilter [37].

Note that DIEX, IBTree, and CNFFilter do not achieve KPRP-hiding.

7.5.1 Server Storage. We encrypt the two datasets with the five

schemes and show their storage overhead in Table 2. From the table,

we can see that although the server storage required by HDXT

and HDXTSU is larger than that needed by HXT and MITRA
CONJ

,

it is less than or comparable to some previous conjunctive SSE

schemes. This is because there exists a trade-off between security,

performance, and functionality for the design on conjunctive SSE.

In order to improve security or functionality without sacrificing

search efficiency, increasing the server storage moderately becomes

a choice considering that the storage is becoming much cheaper.

7.5.2 Client Storage. For static SSE, the client only keeps the se-

cret keys, which commonly puts O(1) storage overhead on the

client. However, for DSSE, the client needs to store a state s to
support updates securely. So here we just test the client storage

required by the dynamic KPRP-hiding and forward secure solutions,

which include HDXT, HDXTSU , MITRA
CONJ

[39], and FBDSSE-CQ.

For MITRA
CONJ

[39] and FBDSSE-CQ, we measure the size of the

RocksDB database on the client after creating the encrypted data-

base with the above datasets. Considering that the client keeps a

cache in our two solutions, we generate an update sequence for

HDXT and HDXTSU to fill the cache, before measuring their client

storage. Table 3 presents the results. HDXT needs less client storage

than FBDSSE-CQ. HDXTSU requires 13%more client storage space

than FBDSSE-CQ. Note that the size of the client storage required

by FBDSSE-CQ is the same as many previous forward secure SSE

schemes, such as [7, 29, 30, 43].

8 RELATEDWORK
SSE was first introduced by Song et al. [42] in 2000. It is a technique

that allows slight leakages (such as search and access patterns) to

ensure practicability. This motivates the research on leakage-abuse

attacks [5, 10, 21, 23, 33, 34, 40, 41, 54] that exploit leakages to un-

dermine security guarantees. In response, some literature develops

leakage-suppression techniques [2, 13, 18, 22, 26, 27, 38, 46] to coun-

teract the above attacks. However, these techniques have rather

high overheads and focus on single-keyword searches. For example,

Hoang et al. [22] hide response length for single-keyword queries,

but their search complexity scales linearly with |D|. Chamani et al.
[13] leveraged Path-ORAM to achieve ORION, which only reveals

the response length. Nevertheless, ORAM brings impractical over-

head and O(logN ) rounds of interactions. The search performance

could be improved by replacing Path-ORAM with more efficient

ones, such as Root ORAM [46] that pays the price of reducing secu-

rity to the level of differential privacy. However, this solution still

suffers from O(logN ) round complexity. As described in Section 1,

these single-keyword schemes can be extended to securely process

conjunctions, but their performance will become more unaccept-

able. As shown in Section 5, HDXT proposed in this paper achieves
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Figure 11: Update Performance

Table 2: Comparison of Server Storage

|W | |D | N Schemes
HDXT HDXTSU HXT[31] MITRA

CONJ
[39] DIEX[25] IBTree[32] CNFFilter[37] FBDSSE-CQ[57]

6 × 104 2.3 × 104 8.4 × 106 44G 44G 8.6G 237M 187G 22G 258G 623G

1.9 × 105 8.6 × 104 2.8 × 107 498G 498G 28G 819M 692G 243G 1T 3.3T

Table 3: Comparison of Client Storage

|W | |D | N Schemes
HDXT HDXTSU MITRA

CONJ
[39] FBDSSE-CQ

6 × 104 2.3 × 104 8.4 × 106 1.6M 2.5M 1M 2.2M

1.9 × 105 8.6 × 104 2.8 × 107 4.2M 6.9M 2.4M 6.1M

a desirable trade-off between search efficiency and security. In the

following, we review the existing conjunctive DSSE and mainly

concern three crucial security properties: KPRP-hiding, forward

privacy, and backward privacy.

Golle et al. [19] proposed the first conjunctive SSE scheme in

2004. Their scheme was extended in [3, 9] for better performance.

However, they all suffer from linear search complexity.

In 2013, Cash et al. [12] achieved a nice trade-off between security

and efficiency by designing OXT, yet OXT leaks KPRP. Afterward,

HXT [31], BDXT [39], and ODXT [39] were proposed based on

OXT. HXT [31] achieves KPRP-hiding, but only works for the static

database. BDXT and ODXT gain forward and Type-II backward

privacy, but do not hide KPRP.

In 2014, Pappas et al. [35] proposed Blind Seer. They adopt a tree-
based index and use security computation to process searches. Blind

Seer only reveals the search pattern, but it requires non-constant

rounds of interactions. The schemes given in [24, 32, 50, 51] are also

built on trees, with significant performance improvements. VBTree

[50] also achieves forward privacy. However, three [32, 50, 51]

of them leak the identifiers matched by every searched keyword,

which is more severe than KPRP. Rphx [24] hides KPRP in the static

setting, but it relies on hardware security provided by Intel SGX.

In 2017, Kamara and Moataz [25] proposed IEX by utilizing the

inclusion-exclusion principle in the set theory. However, IEX leaks

KPRP to the server. In [37], Patel et al. designed CNFFilter, a static

scheme that reduces the leakages in IEX while ensuring efficiency.

However, CNFFilter reveals the documents that contain both the

first and the second keywords involved in a search.

Zuo et al. [57] utilize a bitmap index and symmetric homo-

morphic encryption to achieve FBDSSE-CQ. FBDSSE-CQ supports

KPRP-hiding conjunctions, while reaching forward and Type-II

backward privacy. However, their scheme suffers from linear search

complexity and huge server storage.

Overall, there is no existing conjunctive DSSE schemes that

achieve KPRP-hiding in sub-linear search efficiency, while ensuring

forward and backward privacy.

9 CONCLUSION
In this work, we introduce a new cryptographic primitive: attribute-

updatable hidden map encryption (AUHME), and design a secure

AUHME construction. With AUHME as the primary tool, we pro-

pose HDXT, which is the first KPRP-hiding conjunctive DSSE solu-

tion with sub-linear search efficiency. Furthermore, HDXT simul-

taneously supports two crucial security properties: forward and

backward privacy. The analysis and experiments show that the

performance of HDXT is competitive compared with the previous

schemes that do not have such strong security. In our future work,

we aim to extend HDXT to process more complex searches and

work for multi-client settings.
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A PROOF OF THEOREM 3.1
Proof. The construction for the ideal experiment is presented

in Fig.12. This experiment AUHMEIDEALA,S(λ) could be obtained

by gradually building the following three experiments.

Exp
0
: Exp

0
is the real experiment AUHMEREALA (λ).

Exp
1
: To obtain Exp

1
, every call to the PRF F (k, x) in Exp

0
is

replaced in the following way: if x is a new input, Exp
1
chooses

the output y uniformly at random from {0, 1}λ and inserts the

pair (x,y) into a table F , otherwise it outputs F [x]. The ability to

distinguish Exp
0
and Exp

1
could be reduced to that of breaking the

security of the PRF.

Exp
2
:Whenϕhme

mp (ma)) = 0 and β = 1, Exp
2
selectsd uniformly

at random from {0, 1}λ , instead of computing d = H (r | |xors) in
Exp

1
. Since H is modeled as a random oracle, the two experiments

might be distinguished only when r | |xors could be used as the

input to H by the adversary, which is called the event break by us.

r is randomly chosen but will be exposed to A in the query. When

ϕhme

mp (ma)) = 0 and β = 1, following Exp
1
, xors is indistinguishable

from a random value. Therefore, for the adversary that makes α

AUHMEIDEALA,S (λ) :

(1) A(1λ ) outputs an attribute map ma : Ka 7→ {0, 1}. For 1 ≤ i ≤ |ma |, S first

selects ℓi
$

← {0, 1}λ and νi
$

← {0, 1}λ . Then it sets E1[i] = ℓi and E2[i] = νi for

1 ≤ i ≤ |ma |. After that, S sets z = |ma | andC0 = {(ℓi , νi )}
|ma |
i=1 .

(2) A may adaptively makes ρ1 queries.

⋆ A Key Generation Query on mp : Let Loc( mp) = {κi }
l
1

i=1 . S( Loc( mp), ϕhme

mp (

ma)) generates the decryption key dk in the three steps: ❶ For 1 ≤ i ≤ l1 , S sets ℓi =

E1[κi ]; ❷ If ϕhme

mp (ma) = 1, S first computes xors = ⊕l1i=1E2[κi ], then selects r
$

←

{0, 1}λ and computes d = H (r | |xors). If ϕhme

mp ( ma) = 0, S chooses r
$

← {0, 1}λ

and d
$

← {0, 1}λ ; ❸ S gives A the decryption key dk = ({ℓi }
l
1

i=1, r , d ).
⋆ An Update Query on (op, ku , vu ): S initializes tok to an empty map.

If Lhu (op, ku , vu ) = add , S works as follows: ❶ S first selects ℓ
$

← {0, 1}λ and

ν
$

← {0, 1}λ , and sets tok [ℓ] = ν ; ❷ S sets E1[z + 1] = ℓ and E2[z + 1] = ν . It
updates z to z + 1; ❸ S givesUTok = (add , tok ) to A.

If Lhu (op, ku , vu ) = 1, ❶ For 1 ≤ i ≤ z , S selects ui
$

← {0, 1}λ and sets

tok [E1[i]] = ui . ❷ For 1 ≤ i ≤ z , S sets E2[i] = E2[i] ⊕ ui ; ❸ S gives

UTok = (edit , tok ) to A.

(3) S sendsC0 to A.

(4) A may make ρ2 queries in an adaptive way, and each query is processed as in 2).

(5) Taking as input the view observed by A in the above operations, A outputs a bit b .

Figure 12: AUHMEIDEALA,S(λ)

queries to H , the event break on (mp, cnt) happens with less than

α/2λ probability. Assuming that there are a total of n∗ distinct

queries on (mp, cnt) that satisfy ϕ
hme

mp ( ma)) = 0 and β = 1, the

chance of distinguishing Exp
1
and Exp

2
is less than n∗α/2λ

AUHMEIDEALA,S( λ) : The ideal experiment is Exp
2
.

In conclusion, if F is a secure PRF and H is modeled as a random

oracle, we can get that:

|Pr[AUHMEREALA (λ) = 1] − Pr[AUHMEIDEALA,S(λ) = 1] |

≤ Adv
pr f
B1
+ n∗α/2λ

where B1 is an efficient adversary for PRF.

□

B PROOF OF THEOREM 5.1

1: Run SRHS .Setup(L
Stp
RHS (DB)),

where the server obtains TMap

Client:
2: Γ, Ψ, Z1, Z2, ϒ← empty maps

3: SHME
works as the step (1) in Fig.12,

where it produces the vectors E1 and

E2 , the integer z , and the mapC0 .

4: Γ[t ▷ ] ← {1, · · · , |W | · |D | }
5: t ← t ▷ , XMap← C0

6: Send XMap to the server

Figure 13: S.Setup(LStpRHS (DB), |W| · |D|)

Proof. In this section, we prove HDXT is adaptively secure

with the leakage functions shown in Theorem 5.1 by constructing

a simulator S for HDXT.

As shown in Section 4, HDXT only adopts two cryptographic

primitives: RHS and AUHME. The simulator S for HDXT could

be constructed by invoking the simulators for RHS and AUHME.

We denote the simulator for RHS and AUHME as SRHS
and SHME

,

respectively. The simulator S for the setup, update, and search

protocols is presented in Fig.13, Fig.14, and Fig.15, respectively.
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1: Parse L
Upd
HDXT (DB, op, in) as

(L
Upd
RHS (DB, op, in), LX )

2: Run SRHS .Update(L
Upd
RHS ( DB, op,

in))

Client:
3: if LX = (add , |W |) then
4: UT ← empty map

5: for i = 1 to |W | do
6: Run SHME (add ) to process an

update query, where the update token

UTok is generated, E1 and E2 is ex-

panded, z is updated to z + 1.

7: Γ[t ] ← Γ[t ] ∪ {z }
8: (add , ut ) ← UTok
9: UT ← UT ∪ ut
10: end for
11: tokx ← (add ,UT )
12: else if LX = 1 then
13: Run SHME (1) to process an up-

date query, where the update token

UTok is generated and E2 is updated.

14: end if
15: if UTok ,⊥ then
16: tokx ← UTok
17: Send tokx to the server

18: end if
19: t ← t + 1

Figure 14: S.Update(LUpd
HDXT (DB,op, in))

We can directly get the simulator S for the setup protocol by

invoking SRHS
and SHME

. Notably, S creates five empty maps

Γ,Ψ,Z1, Z2, and ϒ, which are global variables in S. We will detail

these five variables later. S fills Γ[t ▷] that records all the vector
indices in E1.

In the simulator S for the update protocol, S first parses

L
Upd
HDXT (DB,op, in) to (L

Upd
RHS (DB,op, in),LX )). S

RHS
takes as in-

put L
Upd
RHS ( DB,op, in) to simulate the process of updating TMap.

When LX = (add, |W|), S invokes SHME (add) |W| times, where

SHME
produces the tokenUTok . S gets tokx from all the produced

UTok , the process of which is the same as in the real game. Since

fresh vector indices are added into E1 at this timestamp t , S stores

these new indices into Γ[t]. If LX = 1, SHME (1) is run to generate

the eviction tokenUTok . We can see that S.Update is obtained just

by replacing RHS.Update and HME.GenUpd with SRHS
.Update

and the update process in SHME
, respectively. Therefore, to distin-

guish the update protocols in the ideal and real games, A has to

break the security of RHS or AUHME.

To get the simulator S for the search protocol, SRHS
.Search is

first run to simulate the process of searching for DB(q[1]). After
that, the AUHME queries need to be simulated. In the real game, for

each id ∈ DB(q[1]), the client builds a map I = {(q[k]| |id, 1)}nk=2
and calls HME.GenKey(msk, δ , I ) to generate the decryption key dk
for I . dk is inserted into a list DK . The entries of DK are randomly

permuted before sending to the server. To simulate the process

of producing dk , S needs to build Loc(I ) for each id ∈ DB(q[1])
and runs SHME (Loc(I ),ϕHME

I (DB′)). The function Loc is defined

in Section 3.4. Every keyword-document concatenation q[k]| |id
should match an unique vector index in E1. Loc(I ) for id outputs

the list {ϵk ,id }
n
k=2, where ϵk ,id is the vector index matched by

q[k]| |id .
To simulate Loc(I ) for each id ∈ DB(q[1]), S fills or updates the

global maps: Γ,Ψ,Z1, Z2, ϒ as follows:

• Γ[t] records the vector indices that were added to E1 at the

timestamp t and have not been assigned to any keyword-

document concatenation.

• For a conjunction q that occurs at t , ϒ[t] is the number of

documents that satisfy all the following three requirements:

1) belong to |DB(q[1])|; 2) added into the database at t ▷ ; 3)
the document identifiers are not exposed to the adversary.

• Given a conjunctionq that occurs at t , for each id ∈ DB(q[1]),
if id has been leaked, Ψ[t, id,k] outputs the vector index

matched by q[k]| |id for 2 ≤ k ≤ n. If id is not leaked and

was added into the database at the timestamp t1 (t1 > t ▷),
the vector index matched by q[k]| |id is stored in Ψ[t, t1,k]
for 2 ≤ k ≤ n. For each identifier id that is not leaked and

exists in the initial database, id could be denoted by any one

in {∗| |i}
ϒ[t ]
i=1 and the vector index matched by q[k]| |id could

be any one in {Ψ[t, ∗||i,k]}
ϒ[t ]
i=1 .

• For any document identifier id that is leaked and was added

into the database at t1 (t1 > t ▷), Z1[id] is set to t1 and Z2[t1]
is set to id .

As shown in Line 3 - Line 30 in Fig.15, S first analyzes IP(q).
It could get the vector indices matched by keyword-document

concatenation that were already used by previous conjunctions and

store them inL.L[id,k] is the vector index ofq[k]| |id . Meanwhile,S

obtains the setU , which stores all the document identifiers existing

in IP(q). After analyzing IP(q), for each identifier id ∈ U , S builds

the list Loc for id . For 2 ≤ k ≤ n, if L[id,k] is not empty, it is

inserted into Loc . When L[id,k] does not exist, it demonstrates

that q[k]| |id has not been used by previous conjunctions. In this

case, S first determines the timestamp t1 that id was added and

then selects an vector index ϵ from Γ[t1] uniformly at random. ϵ is
used as the vector index of q[k]| |id . After constructing Loc for id ,
S runs SHME (Loc,b) to generate the decryption key dk , where if
id ∈ DB(q), b = 1, otherwise b = 0. dk is inserted into the list DK .

For each entry (t1, id) ∈ TimeIds(DB(q)) that satisfies id < U (t1
is the timestamp that id was added),S builds Loc for id , by selecting
the vector index ϵ from Γ[t1] and inserting ϵ into Loc . (Loc, 1) is
transferred to SHME

that then produces dk . dk is inserted into DK .
After processing the identifiers inU ∪DB(q), S starts to process

every document that satisfy all the following three conditions: 1)

belongs to DB(q[1]); 2) does not exist in IP(q); 3) added after t ▷ .
The timestamps that these documents were added are stored in

AddTimes(q[1]) \ Pt . Pt is the set of the timestamps occurring

in IP(q) and TimeIds(DB(q)). For each t1 ∈ AddTimes(q[1]) \ Pt ,
S selects an vector index ϵ from Γ[t1] and inserts ϵ into Loc for

2 ≤ k ≤ n. SHME (Loc, 0) is run to generate dk , which is inserted

into the list DK .
At last, S processes the documents that: 1) belong to DB(q[1]);

2) do not exist in IP(q); 3) exist in the initial database. Each vector

index ϵ is selected from Γ[t ▷] and inserted into Loc .SHME (Loc, 0) is
run to generatedk , which is inserted intoDK .S randomly permutes

entries of DK and sends DK to the server.

In the simulator S for the search protocol, when q[k]| |id has

not been queried by previous conjunctions, S selects the vector

index of q[k]| |id from Γ[t1] uniformly at random, where t1 is the
timestamp that id was added. This is the only difference with the

real search protocol. Because the entries of DB
′
are randomly per-

muted before calling HME.Enc in the real setup protocol and the

entries of addition token are also randomly permuted after calling

HME.GenUpd, S cannot distinguish the real and the ideal game.

In conclusion, we can get that:
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1: Run SRHS .Search(LSrchRHS (DB, q[1]))

Client:
2: (IP(q[1], q[2]), · · · , IP(q[1], q[n])) ← IP(q)
3: L← empty map

4: U ← empty set

5: for each k = 2 to n do
6: Sort the entries of IP(q[1], q[k ]) in ascending order

according to the timestamp in each entry

7: for each (t1, j , Ω) ∈ IP(q[1], q[k ]) do
8: for each (t2, id ) ∈ Ω do
9: if id < U then
10: U ← U ∪ {id }
11: end if
12: if Ψ[t1, id , j] ,⊥ then
13: ϵ ← Ψ[t ′, id , j], L[id , k ] ← ϵ
14: else
15: if t2 , t ▷ then
16: η ← t2, Z1[id ] ← t2, Z2[t2] ← id
17: else if t2 = t ▷ then
18: l ← ϒ[t1], η ← ∗| |l , ϒ[t1] ← l − 1
19: end if
20: ϵ ← Ψ[t1, η, j], L[id , k ] ← ϵ
21: j′ = 2

22: while Ψ[t1, η, j′] ,⊥ do
23: Ψ[t1, id , j′] ← Ψ[t1, η, j′]
24: Delete Ψ[t1, η, j′]
25: j′ ← j′ + 1
26: end while
27: end if
28: end for
29: end for
30: end for
31: for each id ∈ U do

32: Loc ← empty list

33: for k = 2 to n do
34: if L[id , k ] ,⊥ then
35: ϵ ← L[id , k ], Loc ← Loc ∪ {ϵ }
36: else
37: if Z1[id ] ,⊥ then
38: t1 ← Z1[id ]
39: else
40: t1 ← t ▷
41: end if

42: ϵ
$

← Γ[t1], Γ[t1] ← Γ[t1] \ {ϵ }
43: Ψ[t , id , k ] ← ϵ , Loc ← Loc ∪ {ϵ }
44: end if
45: end for
46: if id ∈ DB(q) then
47: Run SHME (Loc , 1) to process a key generation

query, where the decryption key dk is generated

48: else
49: Run SHME (Loc , 0) to process a key generation

query, where the decryption key dk is generated

50: end if
51: DK ← DK ∪ {dk }
52: end for
53: for each (t1, id ) ∈ TimeIds(DB(q)) s.t. id < U do
54: Loc ← empty list

55: if t1 , t ▷ then
56: Z1[id ] ← t1, Z2[t1] ← id
57: end if
58: for k = 2 to n do

59: ϵ
$

← Γ[t1], Γ[t1] ← Γ[t1] \ {ϵ }
60: Ψ[t , id , k ] ← ϵ , Loc ← Loc ∪ {ϵ }
61: end for
62: Run SHME (Loc , 1) to process a key generation

query, where the decryption key dk is generated

63: DK ← DK ∪ {dk }
64: end for
65: Pt ← empty set

66: Take all the timestamps existing in TimeIds(DB(q)) or
IP(q) and store them in Pt

67: for each t1 ∈ AddTimes(q[1]) \ Pt do
68: Loc ← empty list

69: for k = 2 to n do

70: ϵ
$

← Γ[t1], Γ[t1] ← Γ[t1] \ {ϵ }
71: if Z2[t1] ,⊥ then
72: id ← Z2[t1], Ψ[t , id , k ] ← ϵ
73: else
74: Ψ[t , t1, k ] ← ϵ
75: end if
76: Loc ← Loc ∪ {ϵ }
77: end for
78: Run SHME (Loc , 0) to process a key generation

query, where the decryption key dk is generated

79: DK ← DK ∪ {dk }
80: end for
81: ϒ[t ] ← |DB(q[1]) | − |AddTimes(q[1]) ∪ Pt |
82: for i = 1 to ϒ[t ] do
83: Loc ← empty list

84: for k = 2 to n do

85: ϵ
$

← Γ[t ▷ ], Γ[t ▷ ] ← Γ \ {ϵ }
86: Ψ[t , ∗| |i , k ] ← ϵ , Loc ← Loc ∪ {ϵ }
87: end for
88: Run SHME (Loc , 0) to process a key generation

query, where the decryption key dk is generated

89: DK ← DK ∪ {dk }
90: end for
91: Randomly permute the entries of DK
92: Send DK to the server

93: t ← t + 1

Figure 15: S.Search(LSrchRHS (DB,q[1]),TimeIds(DB(q)), |DB(q[1])|, IP(q),AddTims(q[1]))

|Pr[SSEREALHDXT
A

(λ) = 1] − Pr[SSEIDEALHDXT
A,S,L

(λ) = 1] | ⩽

Adv
RHS
B2

+ AdvAUHME
B3

where B2 and B3 are efficient adversaries for LRHS -adaptively-

secure RHS and selective-semantically secure AUHME, respectively.

□

C BACKWARD PRIVACY DEFINITION
In Definition 2.4, we give the definition for backward private con-

junctive DSSE. The definition also works for single-keyword DSSE

as follows.

DefinitionC.1. (BackwardPrivacy of Single-keywordDSSE)
AL−adptively−secure DSSE scheme Σ = {Setup, Search,Update}
is
Type-I backward private iff

LUpdt (DB, op, (id ,Wid )) = L
′(op, |Wid |)

LSrch (DB,w ) = L′′(TimeDB(w ), π (w ))

Type-II backward private iff
LUpdt (DB, op, (id ,Wid )) = L

′(op,Wid )

LSrch (DB,w ) = L′′(TimeDB(w ), Updates(w ), π ▷(w ))

where π ▷(w) is the the number of document identifiers matchingw
in DB

▷ , π (w) is the sum of π ▷(w) and the number of updates related
tow , L′ and L′′ are stateless functions.

The above definition differs slightly from Bost et al.’s [8] in two

aspects. First,TimeDB(w) in [8] capturesDB(w) and the timestamps

that these document identifiers are inserted into DB(w), while our

TimeDB(w) recordsDB(w) and the timestamps that these identifiers

are first added into the database (when they might not containw).

We argue that the exposed timestamps in our definition reveal

nothing about the deletion information, so they will not influence

backward privacy. Bost et al.’s TimeDB(w) is not suitable for the
complex setting we consider, where a keyword-document pair could

be inserted into the database again after it has been deleted. In this

setting, there might exist multiple timestamps where an identifier

id was added to DB(w), from which the server could infer when

the previous deletions happened. For instance, if the server learns

that a keyword-document pair (w, id) is inserted into the database

in the two timestamps t1, t3, it could get that the pair was deleted

once at the timestamp t2. Second, for Type-II backward privacy,

the search leakage in our definition captures π ▷(w). π ▷(w) is not
included in Bost et al.’s definition just because they assume the

initial database is empty.

D HDXTSU - SUBLINEAR UPDATES
In this section, we propose HDXTSU , which aims to reduce the edit

complexity of HDXT to be sub-linear.

The encrypted index of HDXTSU consists of TMap and XMap2.

TMap is the same as that in HDXT. XMap2 is the new version of

XMap. The pseudocodes of HDXTSU are shown in Fig.16, Fig.17,

and Fig.18. HDXTSU adopts the pseudorandom function F and

our AUHME construction. Every document has an independent

AUHME instance, so in principle the client needs to store the master

secret key and the state per AUHME instance. To reduce the client

storage, the master secret key is pseudorandomly computed from
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1: Run (KT , sT , TMap) ←

RHS.Setup(1λ , DB)
Client:

2: kd
$

← {0, 1}λ

3: XMap2← empty maps

4: for each id ∈ ID do
5: DB

′
id ← empty map

6: for each keywordw contained in id
do

7: DB
′
id [w ] ← 1

8: end for
9: for each keyword w not contained

in id do
10: DB

′
id [w ] ← 0

11: end for
12: kid1 ← F (kd , id | |0)
13: kid2 ← F (kd , id | |1)

14: kid3 ← F (kd , id | |2)
15: (msk , δ ) ← HME.Setup(1λ )

wheremsk is set to be (kid1,
kid2, kid3)

16: ∆[id ] ← δ
17: Cid ← HME.Enc(msk , DB′id )
18: Insert all entries of Cid into XMap2

19: end for
20: Randomly permute entries of XMap2

21: Send XMap2 to the server

22: K ← (KT , kd ), tsiz ← 0

23: EId← empty set

24: s ← (sT , tsiz, EId, ∆)
25: return (K , s)

Server:
26: return EDB=(TMap, XMap2)

Figure 16: HDXTSU .Setup(1λ,DB)

1: Run (sT ; TMap) ← RHS.
Update(KT , sT , op, in; TMap),

where the client updates sT and the

server updates TMap

Client:
2: (id ,Wid ) ← in
3: for eachw ∈ Wid do
4: (tokx , tsiz, EId, ∆) ← Edit-

Pair2(
kd , tsiz, EId, ∆, op, id ,w )

5: if tokx ,⊥ then
6: Send tokx to the server

7: end if
8: end for
9: s ← (sT , tsiz, EId, ∆)
10: return s

Server:
11: XMap2← HME.ApplyUpd(tokx ,

XMap2)

12: return EDB = (TMap, XMap2)

EditPair2(kd , tsiz, EId, ∆, op, id ,w )
1: if op = edit+ then
2: b ← 1

3: else if op = edit− then
4: b ← 0

5: end if
6: EId← EId ∪ {id }
7: if tsiz + 1 ≥ |W | then
8: UT ← empty map

9: for id′ ∈ EId do
10: δid′ ← ∆[id′]
11: (cnt ,T , ⊥, ⊥) ← ∆[id′]
12: kid1 ← F (kd , id

′ | |0)

13: kid2 ← F (kd , id
′ | |1)

14: kid3 ← F (kd , id
′ | |2)

15: msk ← (kid1, kid2, kid
3
)

16: S ← empty set

17: for eachw ′ ∈ W do
18: ℓ ← F (kid1,w

′)

19: S ← S ∪ {ℓ }
20: end for
21: δid′ ← (cnt ,T , 0, S )
22: if id′ = id then
23: (UTok , δid′ ) ← HME.

GenUpd(msk , δid′ , edit ,w , b))
24: else
25: (UTok , δid′ ) ← HME.

GenUpd(msk , δid′ , edit , ⊥, ⊥)
26: end if
27: (edit , ut ) ← UTok
28: UT ← UT ∪ ut
29: ∆[id′] ← δid′
30: end for
31: Randomly permute entries ofUT
32: tokx ← (edit ,UT )
33: tsiz ← 0, Clear EId

34: else
35: kid1 ← F (kd , id | |0)
36: kid2 ← F (kd , id | |1)
37: kid3 ← F (kd , id | |2)
38: msk ← (kid1, kid2, kid

3
)

39: δid ← ∆[id ]
40: Take cache T from δid
41: tsiz ← tsiz − |T |
42: (tokx , δid ) ← HME.GenUpd(

msk , δid , edit ,w , b)
43: Take cache T from δid
44: tsiz ← tsiz + |T |
45: ∆[id ] ← δid
46: end if
47: return (tokx , tsiz, EId, ∆)

Figure 17: HDXTSU .Update(K, s, edit, in)

the corresponding document, instead of being randomly generated.

Moreover, recall that the Query (or ApplyUpd) procedure in our

AUHME construction uses the elements contain in the decryption

key (or the update token) to find the entries that need to be operated

on in the ciphertext. This implies that the two procedures can still

processed correctly when the ciphertext is replaced with a superset

of the ciphertext. In HDXTSU , for reducing the leakages, the two

procedures take XMap2 as the input.

1: Run DB(w1) ← RHS.Search(
KT , sT ,w1 ; TMap), where the client

receives DB(w1).

Client:
2: R1, DK ′ ← empty list

3: Insert DB(w1) into R1 and Randomly

permute the entries of R1
4: for j = 1 to |R1 | do
5: id ← R1[j], I ′j ← empty map

6: for i = 2 to n do
7: I ′j [wi ] ← 1

8: end for
9: kid1 ← F (kd , id | |0)
10: kid2 ← F (kd , id | |1)
11: kid3 ← F (kd , id | |2)
12: msk ← (kid1, kid2, kid3)
13: dk ← HME.GenKey(

msk , ∆[id ], I ′j )

14: DK ′ ← DK ′ ∪ {dk }
15: end for
16: Send DK ′ to the server

Server:
17: Pos ← empty set

18: for j = 1 to |DK | do
19: r ← HME.Query(DK [j], XMap2)

20: if r = 1 then
21: Pos ← Pos ∪ {j }
22: end if
23: end for
24: Send Pos to the client

Client:
25: R ← empty set

26: for each j ∈ Pos do
27: R ← R ∪ {R1[j]}
28: end for
29: return R

Figure 18: HDXTSU .Search(K, s,w1 ∧ · · · ∧wn )

In HDXTSU , the client keeps the secret keyK = (KT ,kd ) and the
state s = (sT , tsiz, EId,∆). The keykd is used for deriving themaster

secret key adopted by every AUHME instance. tsiz is the number

of the edited keyword-identifier pairs since the last eviction. EId

stores the identifiers of the edited documents since the last eviction.

∆ maps every document id to the AUHME state corresponding to

id . We specify that the maximum value of tsiz is |W|.

• (K, s ; EDB) ← HDXTSU .Setup(λ,DB;⊥): As shown in Fig.16,

the setup phase generates EDB = (TMap,XMap2). XMap2

stores {Cid }id ∈ID, where Cid is obtained by using an AUHME

instance to encrypt DB
′
id . The client uses kd to derive the

master secret key from id .

• (s; EDB) ← HDXTSU .Update(K, s,op, in; EDB): The client

parses in to (id,Wid ). TMap is updated as in HDXT. If op =
add , to update XMap2, similar to HDXT, the client calls HME.

GenUpd |W| times to add the ciphertext of DB
′
id into XMap2.

When op = del , as in HDXT, only TMap is updated.

Fig.17 shows the edit procedure. For eachw ∈ Wid , the client

calls EditPair2(kd , tsiz, EId,∆,op, id,w) to produce a token

tokx to update XMap2 and updates (tsiz, EId,∆). The server

uses tokx to update XMap2.

EditPair2 first inserts id into EId. Then it checks whether

tsiz + 1 ≥ |W|. If tsiz + 1 < |W|, HME.GenUpd is invoked to

insert (w,b) into the cache T stored in ∆[id]. tsiz is updated

based on the size of T . (⊥, tsiz, EId,∆) is returned.
If tsiz + 1 ≥ |W|, EditPair2 finds all the non-empty caches

through EId and ∆. for each id ′ ∈ EId, the client forces the

cache of id ′ to be evicted by setting the third parameter ζ in

∆[id ′] to 0. It calls HME.GenUpd to generate the eviction token

UTok for id ′. All the producedUTok are then merged into tokx .

• (DB(w1∧ w2, · · · , ∧wn )); EDB) ← HDXTSU .Search (K, s,
w1 ∧w2, · · · ,∧wn ; EDB): Within a conjunction, as in HDXT,

the client gets DB(w1) and inserts DB(w1) into the list R1 in
random order. Then for each id ∈ R1, the client builds the map

I ′, where I ′[wi ] is set to 1 for 2 ≤ i ≤ n. It queries whether I ′
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is a subset of DB
′
id through the AUHME query. If the query

returns 1, id is inserted into the search result R.

D.1 Security
This sub-section continue using the notations and functions defined

in Section 5.1. For HDXTSU , we claim that in addition to when

the evictions occur, the documents involved in each eviction also

could be obtained based on Q and |W|. If an eviction occurs during

(op, in), we use Evids(op, in) to denote the documents involved in

the eviction, otherwise Evids(op, in) is empty. Below we define a

function EvP(op, in) for an update query (op, in) and a function

TimeEv(q[1]) for a conjunctive query q.
If an eviction occurs within (op, in), EvP(op, in) outputs the evic-

tion pattern, otherwise it outputs nothing. The eviction pattern

includes: 1) when every document in Evids(op, in) (except for the
ones existing in DB

▷) was added into the database; 2) the times-

tamps of the previous evictions that involve the documents that

belong to Evids(op, in); 3) the timestamps of the previous conjunc-

tions whose s-term matches at least one document that belongs

to Evids(op, in). Formally, EvP(op, in) = {t | ∃id ∈ Evids(op, in)
and Wid : (t, add, (id,Wid )) ∈ Q} ∪ {t | ∃id ∈ Evids(op, in) and
(op′, in′) : id ∈ Evids(op′, in′) and (t, op′, in′) ∈ Q} ∪ {t | ∃id ∈
Evids(op, in) and q : id ∈ DB(q[1]) and (t, q) ∈ Q}.

For a conjunctive query q, TimeEv(q[1]) outputs the timestamps

of the previous evictions that involve at least one document iden-

tifiers matching q[1]. TimeEv(q[1]) = {t |∃id ∈ DB(q[1]) and
(op, in) : id ∈ Evids(op, in) and (t,op, in) ∈ Q}.

Within an addition, deletion, or edit operation without an evic-

tion, HDXTSU has the same leakages as HDXT. During an eviction,

the server learns which entries in XMap2 are accessed and could

link this eviction to the previous queries, which exposes the evic-

tion pattern. During a conjunction q, in addition to the leakages in

HDXT, HDXTSU also could associate q to previous evictions that

access the same entries of XMap2, which is captured by TimeEv(q).
Formally, we have the Theorem D.1.

Theorem D.1. If F is a secure PRF, RHS is LRHS -adaptively se-
cure, and AUHME is selectively-semantically secure as defined in
Section 3, HDXTSU is LHDXTsu -adaptively secure where

(1) LStpHDXTsu
(DB) = (L

Stp
RHS (DB), |W | · |D |)

(2) LUpd
HDXTsu

(DB, op, in) =

{
(L

Upd
RHS (DB, op, in), add , |W |), op = add

(L
Upd
RHS (DB, op, in), EvP(op, in)) op , add

(3) LSrchHDXTsu
(DB, q) = (LSrchRHS (DB, q[1]), TimIds(DB(q)),

DB(q[1]), IP(q), AddTims(q[1]), TimeEv(q[1]))

Although HDXTSU leaks more than HDXT, it does not reveal

DB(wi ) ∩ DB(w j ) for all 2 ≤ i < j ≤ n. Therefore, HDXTSU does

not break KPRP-hiding. For an update query, the server cannot

learn any information about the updated keywords, which ensures

forward privacy. However, HDXTSU does not satisfy backward

privacy because it exposes the edited documents within an eviction.

D.2 Performance Analysis
As in Section 5.2, we take MITRA [13] as an instantiation for RHS.

The overheads caused by the setup, addition, deletion, and search

protocols are the same as in HDXT. An edit query without evic-

tions incur O(1) computational complexity. If evictions occur, the

produced overhead isO(t · |W|), where t refers to the involved docu-
ment identifiers in this eviction operation. Therefore, the amortized

overhead for an edit query is O(t).
The cost for the server storage is the same as in HDXT, which is

O(|W| · |D|). As in HDXT, the client costsO(|W|(log |D|+λ)) storage
space for storing the state for MITRA and the caches. For HDXTSU ,

the client additionally requires at most O(|D| log(N /|W|)) bits for
the counters in every AUHME instance. The experiment show that

the additionally incured client storage is very small. As HDXT,

HDXTSU can process evictions in a streaming way to avoid taking

up a lot of working client storage for the evictions.
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