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ABSTRACT
Novel attacks on dataset privacy are usually met with the same
range of responses: surprise that a route to information gain exists
from information previously thought to be safe; disputes around
the viability or validity of the attack in real-world contexts; and, in
the case of the computer science community, a drive to produce
techniques that provably protect against the new class of attack.

The result is a disjointed landscape with no shared approach to
modelling threats to dataset privacy, and a toolbox of technically
complex systems whose guarantees come with narrow assumptions
and whose application in real-world contexts is hard to achieve.

In this paper we aim to understand these issues by charting
the history of dataset privacy attacks and systematising breaches
through the lens of data linkage. We show how identification or
information gain on a dataset’s subjects can be expressed as data
linkage, and use this to present a taxonomy of threat models which
we apply to ninety-four attacks from across the literature.

Our work demonstrates that dataset privacy must be approached
first as a risk management problem, rather than one of strict guar-
antees, an approach which aligns well with law and practice. Our
taxonomy of attacker intents provides a coherent language for ex-
pressing the wide variety of threat models in dataset privacy, and a
framework for understanding how risks identified under one model
can be understood within another. We also present insights around
the factors that affect the feasibility and severity of attacks, and
proposals for practical techniques that can be used for risk appraisal
and management by practitioners, researchers, and regulators alike.
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1 INTRODUCTION
In 1997 Latanya Sweeney demonstrated the inadequacy of contem-
porary anonymisation techniques by retrieving the health records
of the then-Governor of Massachussetts from a supposedly sani-
tised dataset. The breach motivated a rethinking of dataset privacy,
including a new generation of privacy legislation.

In the decades since, we have seen a parade of dataset pri-
vacy breaches—from Narayanan and Shmatikov’s attack on the
anonymity of Netflix movie ratings to the outing of a Catholic
priest via commercially available advertising data. Each new breach
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brings not only surprise but criticism over its validity or utility as
an instructive example.

In 2012 the legal scholar Paul Ohm dubbed this issue ‘the sur-
prising failure of anonymisation’ and argued for new approaches to
anonymity. While the legal community accepted this challenge, the
computer science community has continued to search for perfect,
provable guarantees against unwanted disclosure.

The result is an approach to dataset privacy that is not fit for pur-
pose: we lack a coherent threat modelling approach, which leaves
us flat-footed in the face of novel attacks. Too often research fo-
cuses on narrowly applicable cryptographic protocols or statistical
transformations which often severely limit data utility.

We propose a new, risk-based approach to dataset privacy based
on two insights. First, the route to information gain in all dataset
privacy attacks can be understood as data linkage—the combina-
tion of data with other sources of information. And secondly, we
can rarely guarantee that there exists no potential linkage that
breaks the data subject’s privacy—instead we must use a risk-based
approach to minimise the likelihood of those unwanted linkages.

In this paper we systematise the space of attacks on dataset
privacy by describing the linkage process performed, and capturing
the nature of an attack in terms of the descriptive record produced.
The result is a threat modelling framework that yields a logically
related taxonomy of attacker intents, which we apply to 94 dataset
privacy attacks across the literature. From this systematisation, we
extract a series of insights and recommendations for appraising
risks of linkage attacks, and discuss how to improve upon the
current practical state of the art in dataset privacy protection.

Our contributions are as follows:
• a critical analysis of the history of dataset privacy breaches;
• a definition of linkage attacks and a threat modelling frame-
work that captures attacks in terms of the intended linkage;

• a categorisation of 94 dataset privacy attacks across technical
and non-technical literature in this framework;

• an argument that protecting dataset privacy must be ap-
proached as a risk management exercise, with reference to
legal framings;

• a discussion of the challenges to appraising linkage attack
risk and the impropriety of a guarantees-focused approach;

• and recommendations for risk-based approaches to apprais-
ing threats to dataset privacy.

2 PRIOR PROBLEM DEFINITIONS
We begin by charting how the object of data protection law—
personal data—as a concept has evolved over time away from the
notion of identifiers toward a question of linkage. With reference to
legislation and accompanying guidance, we discuss how the legal
community approaches privacy threat modelling as a risk exercise,
and to what extent the law formalises breaches of privacy.
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We then discuss themovement in technical privacywork that has
mirrored this shift toward understanding identification and privacy
attacks more generally as information gain through linkage, and
present a review of attacks and their stated threat models.

2.1 Legal
The majority of data-related legal burdens arise when data allows
the identification of an individual. Historically, identification was
thought of in terms of ‘identifiers’—data points that unambiguously
refer to a natural person, subject to eligibility criteria taken from
cultural norms or by decree. In the twentieth century, mass data
collection and retention—particularly by governments in social
welfare initiatives—became commonplace, and digital technologies
allowed processing at scale and with granularity, greatly increasing
the salience of privacy risks to individuals. This precipitated the
task of data protection, and legislation was required to define which
data should be subject to this protection.

2.1.1 PII: Personally Identifying Information. Early data protection
legislation concerned the concept of Personally Identifiable Infor-
mation (PII ). Some narrowly scoped data protection laws, such as
HIPAA in the United States and the California data breach law
SB1386, prescribed datatypes that constitute PII, such as names
alongside social security numbers or credit card numbers.

Such definitions described the presence of ‘identifying infor-
mation’ which is globally unique, providing a perfect one-to-one
mapping of data points to individuals. Datatypes declared in scope
were limited to a few whose practical use in identification (link-
ing against a database of social security numbers, for example) is
already known. It is clear at first glance that a prescriptive, datatype-
driven definition of personal information is insufficient for practical
purposes, as it would be impossible to enumerate all data items that
might be globally unique (or locally unique in some constrained
context) to an individual. A more general definition of PII given by
NIST [82] includes ‘information that can be used to distinguish or
trace an individual’s identity’ and ‘any other information that is
linked or linkable to an individual’.

This definition establishes a principle, rather than a prescription;
instead of defining identification by reference to known datatypes
and their usage, it considers the potential use of the data in distin-
guishing an individual. This definition’s key contribution is the
introduction of data linkage as the means of indirect identification.
NIST defines linkable information as ‘about or related to an individ-
ual for which there is a possibility of logical association with other
information about the individual.’

This language—‘can be used’, ‘linkable’—opens the door to new
datatypes and new means of inferring logical relationships between
data, which is essential in the modern landscape of novel datatypes
and unexpected correlations. Despite the broader scope given by the
NIST definition, the association of the term PII to specific datatypes
has led to its use waning in recent years in favour of personal data,
definitions of which are more reliably generalist and principled.

2.1.2 GDPR and personal data. The GDPR is the most internation-
ally influential data protection regulation of recent years [61]—its
economic centrality to much of the world’s data processing has

sparked a generation of data protection laws, with many jurisdic-
tions following its lead in scope and definitions.

Finck and Pallas [50] provide a comprehensive overview of the
definitional intricacies of the GDPR, including the extent to which
it formalises the notions of singling out, linkability, and inference.
We summarise the relevant material here.

The scope of the GDPR is all personal data, defined as ‘any in-
formation relating to an identified or identifiable natural person
(‘data subject’); an identifiable natural person is one who can be
identified, directly or indirectly...’ (emphasis added)

As in the NIST definition of PII, note the centrality of the po-
tential use of data in ‘directly or indirectly’ identifying an indi-
vidual. This phrasing continues the definitional shift away from
concrete datatypes—‘identifiers’ and pseudonyms, the tools of ‘di-
rect’ identification—and towards the act of identification itself.

Recital 26 clarifies the definition of indirect identification: ‘Per-
sonal data which have undergone pseudonymisation, which could
be attributed to a natural person by the use of additional in-
formation should be considered to be information on an identifi-
able natural person.’ This mirrors NIST’s definition of linkage—the
assertion of a relationship between a given set of data and a natural
person with the aid of logically related information.

2.1.3 Data protection is a risk management exercise. While the
task of seeking out direct identifiers is somewhat straightforward,
by including indirect identification via linkage against arbitrary
additional information, the GDPR imposes a difficult task on prac-
titioners seeking to determine whether they hold ‘personal data’.

On this question Recital 26 advises that ‘account should be
taken of all the means reasonably likely to be used, such as
singling out... to identify the natural person directly or indirectly...
of all objective factors, such as the costs of and the amount of time
required for identification, ... the available technology at the time
of the processing and technological developments.’

In computer security parlance, this advice outlines the space of
threat models that the GDPR requires the practitioner to consider.
This space is undeniably vast, and a comprehensive appraisal of
all potential third parties, the data they might use in linkage, and
their technical and economic capabilities, is clearly an intractable
problem. As such, the term ‘reasonably likely’ does significant
heavy lifting here, and the consensus within the legal community is
that the GDPR should be interpreted as imposing a riskmanagement
problem upon practitioners. This contrasts with the prior NIST
approach to PII which required total risk mitigation.

Concrete risk appraisal tests are still a matter of debate amongst
the legal community. For example, there is disagreement on the
scope of the GDPR; while most national authorities have issued
guidance instructing practitioners to reduce risks of reidentification
to within acceptable levels of harm to individuals, the Article 29
Working Party takes a more hardline stance, proposing a skeleton
test that requires data to be reduced to ‘anonymous information’—
i.e. completely eliminating the risk of reidentification.

Questions of scope notwithstanding, the practical burdens im-
posed by the GDPR where it does apply are explicitly risk manage-
ment exercises, such as data minimisation or impact assessments.

2.1.4 Key takeaways. There are two key lessons to take from legal
efforts to formalise the task of data protection. First, individual
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privacy risks associated with data arise from its potential to be
linked against other data in a way that identifies a subject. Second,
the task of data protection is fundamentally a risk management
exercise—the practice of identifying potential linkages, appraising
the risks they pose, and either mitigating or eliminating those risks.

2.2 Technical
Technical communities have understood for decades that protecting
the privacy of dataset subjects is more than a matter of ‘direct identi-
fiers’ or PII [90]. Dataset privacy work falls into the broad categories
of: demonstrating that individual-level signals are retained even
after measures that were thought to obscure them [45, 99, 100, 121];
showing statistical properties of certain categories of dataset or
datatypes, particularly with regard to the unicity of subjects both
within the dataset and globally [35, 37, 49, 57, 132]; or the construc-
tion of novel attacks which either identify subjects [85, 88, 133] or
allow inferences to be made about them [105].

Where proposed attacks do not describe an attacker with access
to a subset of the dataset under attack, or some limited profile of a
target, they often explicitly cite linkage against side information (or
auxiliary information) in their threat model as the route to privacy
breach. For example, Shokri et al. [112] define an attacker in terms
of two factors: the knowledge they have to support an attack and
the nature of privacy breach they seek. A major theme in the past
decade has been attacks that link seemingly innocuous information
to enable more significant privacy breaches [55, 85, 87, 114]. The
phrasing of linkage attacks is now common, as is ‘linkability’ to
mean the propensity of data to retain signals that might be found
in another dataset (the ‘linkage set’).

2.2.1 Technical guarantees and metrics. Technical research is prone
to trends towards ever more concrete and provable guarantees, even
for problems that are known to be intractable in practice. It has been
known at least since 2002 [48] that the signals contained within
rich datasets are largely unknown a priori (by definition, else there
would be no need for data mining), and so the enumeration of
all semantic connections to other sources of information (linkable
data) is intractable. We discuss this problem in more depth in Sec-
tion 6 but mention it here to clarify that while there is a wealth
of good research into strong privacy guarantees—as Wagner and
Eckhoff have thoroughly surveyed [126]— practical data protection
problems are rarely solved by these approaches, either because the
assumptions and threat models are too tightly specified or because
the solutions impose unworkable constraints.

2.2.2 Threat models. There are some general terminologies used
to describe attacks on dataset privacy, which we can categorise into
the following threat model types.

Singling out. Following the definition of singling out given by
the GDPR, these attacks pick an individual’s data out of a dataset,
perhaps by partially reversing aggregation or by demonstrating the
unicity of individual-level data [35, 37, 49]. Notable work on unicity
has studied location data—for example, Golle and Partridge [57]
showed that the census block of a person’s home and workplace is
sufficient to uniquely identify the majority of US workers, while

Farzanehfar et al. [49] showed that four points of location informa-
tion are sufficient to uniquely specify 93 percent of subjects in a
population of 60 million people.

Reidentification/deanonymisation. Reidentification (some-
times deanonymisation) attacks [33, 55, 88, 89, 104, 114] show that
the identity of a data subject can be inferred from a dataset—this
may be by demonstrating a means of linking the dataset to an ‘iden-
tifier’ for a person, or by showing that some set of attributes can be
retrieved about the person that are sufficiently unique to be used
as an identifier—a quasi-identifier (QID). Fingerprinting attacks
demonstrate the construction of a profile about an entity that can
be used to infer their presence in another dataset—in a sense this
is the construction of a QID, but one that is often a derived, novel
datatype [107]. Some attacks construct a fingerprint that is reliably
reconstructable every time the target’s data is present, and has a
low chance of being computed for a different entity [133], while
others may be more probabilistic, with some amount of uncertainty
when the same fingerprint is computed from subsequent data [33].

Membership inference. These attacks determine whether or
not data for a particular subject is in a given dataset. This has been
shown to be possible after aggregation [100] and perturbation [99].
The problem has been formalised a number of times, for example
as a risk parameter by Nergiz et al. [92], or with a game-based
definition by Pyrgelis et al. [99]. The problem has been studied in
many contexts, including DNA [67] and microRNA [12].

Attribute inference. Other attacks do not explicitly attempt to
locate or extract the information of a subject from a dataset, but
aim to gain information on a person. That person may be a subject
of the dataset [45] or may not—for example, it has been shown that
location visit information can be linked against aggregate location
traces to infer the target’s ethnicity [105].

2.2.3 Record linkage. Gkoulalas-Divanis et al. describe the evolu-
tion of record linkage [54], culminating in the current generation
of privacy-preserving techniques. Record linkage [62], data match-
ing [27], or entity reconciliation [28] is the task of asserting the
equivalence of QIDs found in separate tables or databases that hold
data in a record-based format. This assertion serves to combine
information from multiple sources that describe the same entity.

This task has been well studied in in medical and social sci-
ence since 1946 [42]. The use of record linkage as an automated or
speculative process has gained traction in ‘big data’ [69, 91]. As an
information retrieval technique, the quality of a linkage is described
in terms of precision and recall.

Probabilistic record linkage [108] (or fuzzy matching) does not
require correspondences to be proven, but incorporates degrees of
belief and uncertainty into a proposed linkage. This enables data to
be matched without a strict rule-based model, and instead matching
weights can be trained from sample data. Probabilistic record link-
age allows the reconciliation of data items where a linkage cannot
be perfectly proven, at the cost of introducing uncertainty.

3 A BRIEF HISTORY OF REIDENTIFICATIONS
IN THEWILD

In this section we discuss a few notable instances of reidentification
or identity-related privacy breaches, and how each illuminates key
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tensions and disagreements surrounding the definition of identifi-
cation. The purpose of this comparison is to show the variety of
factors that one might consider when evaluating an ‘identification’.

3.1 Governor WilliamWeld
In one of the first high-profile health data privacy scares, in 1997
Latanya Sweeney [118] identified then-Governor of Massachussetts
William Weld within a state health insurance dataset, which had
been released publicly after being stripped of direct identifiers.
The reidentification was a key motivating example for U.S. de-
identification rules in the HIPAA legislation. The attack linked the
dataset’s gender, date of birth, and ZIP code fields against a voter
registration list for the Cambridge, MA area. Following this linkage,
Weld was identified by finding the record for his well-publicised
hospitalisation following a collapse whilst giving a speech.

Barth-Jones in 2012 published a critical analysis [16] of this
breach and whether the ‘astonishing ease’ of reidentification holds
in general and in practice, arguing that the ability to retrieve prov-
ably unique QID for Governor Weld was not a generalisable attack.

Barth-Jones describes ‘the myth of the perfect population regis-
ter’, arguing that an attacker could not guarantee that the average
resident of the Cambridge area was present within the dataset,
which covered a subset of the local population. Similarly for the
linkage set, not all residents of the areawere registered to vote, intro-
ducing uncertainty into the correspondence between the datasets.

In the case of Governor Weld, his presence in both the target and
linkage datasets were verifiable—his public hospitalisation on a date
in the records’ scope guaranteed his membership, and photo-ops
showing him casting a ballot at past elections guaranteed that he
was registered to vote, and so recorded in the linkage set. Each of
these pieces of information reduces the reidentification problem:
the question of identifying the Governor’s records then only hinges
upon whether he can uniquely be identified within the datasets by
the quasi-identifier made up of gender, date of birth, and ZIP code.

3.1.1 Takeaways. Proving comembership. The preconditions
that enabled Weld’s reidentification and Barth-Jones’ ‘myth of the
perfect population register’ demonstrate how the feasibility of rei-
dentification hinges upon proving that a given target is present
within the target and linkage datasets. In cases where a globally
unique identifier of a subject cannot be constructed, we must then
calculate the probability of successful reidentification based on lo-
cal uniqueness of records within both target and linkage datasets,
degree of comembership across datasets, and the extent to which
each dataset spans the potential space of subjects.

Targeted vs. opportunistic attacks. It is also important to note
that this was a targeted attack—Sweeney had a particular subject in
mind. The success of an attack under a different intent, such as to
reidentify any person with no prior preference as to their identity,
would be influenced by a different calculus: instead of matching a
preselected quasi-identifer, the attacker’s task is to piece together
information to construct a globally-unique identifier. This is in one
sense an easier task than a targeted attack and in another a more
difficult one: Census or voter roll data can be trivially trawled for
highly unique entries that are likely to be globally unique, even
given only partial coverage of the dataset, and then this identifier
is linked to the medical dataset; but the resulting identifier, while

globally unique, may have low utility (a gender-ZIP-date of birth
tuple is less valuable to the attacker than a name or email address).

Membership inference and local vs. global unicity. As Barth-
Jones points out, the QID retrieved for William Weld may not have
truly been globally unique, and an attack that requires a proof of
global unicity is unlikely to be generally applicable.

In this case, retrieval of a globally unique QID is not necessary
for the reidentification to hold; instead, the attack was successful by
linking two locally unique (within each dataset) QIDs, paired with
the side information that Weld was represented in each dataset.

Proving this fact is known as themembership inference prob-
lem [99, 111]. As the membership inference problem for Weld was
simple for each dataset, finding locally unique QIDs that matched
a known profile of his was sufficient to unambiguously tie the data
to him. Relaxing either of these conditions—that membership was
known in each dataset and that Weld’s record happened to be lo-
cally unique—would weaken the claim that the data retrieved is
unique to Weld. Each of these relaxations would reduce the attack
to a probabilistic one. This intuition was the basis for Sweeney’s
later introduction of k-anonymity [119]. This example highlights
that retrieving a globally unique data item is often not strictly
necessary—a successful reidentification simply shows that the data
in question was in fact collected on a particular individual.

Repeatability. The particulars of Weld’s case do not hold for
every, or even most subjects of the patient database. Even in an-
other case where a locally unique QID could be matched across
datasets, this would not constitute a reidentification unless the data
assembled could be usefully interpreted—in this case, linked again
to information held on a particular person.

This should not be taken as a sign that this attack is not salient,
but that the success criteria for a reidentification can vary. The
particular chain of inferences performed by Sweeney might not
be repeatable for a majority of the data subjects, but it may be
sufficient to pick out a few, high-value targets.

3.2 AOL search query logs
In 2006, AOL released a text file containing twenty million search
strings for over 650,000 users over a 3-month period. The data was
made available publicly for research purposes. Entries in the dataset
were pseudonymised, such that all queries from one data subject
carried a unique identifier for that individual. The privacy breach
came via the presence of PII in search queries, most notably in
the case of subject no. 4417749, Thelma Arnold [14]. Journalists
were able to discover Ms Arnold’s name, location, and marital status
amongst other information. In a handful of other cases, users’ sexual
proclivities or personal interests could be discovered.

The main criticism of this breach as an instructive case study
is the difficulty and maximum scope of the reidentification; of the
650,000 users, only very few have been reidentified, and even then
by efforts that would not be considered scalable. Arguments that the
scale of the breach was overblown point to the fact that it would
take an especially motivated actor to reconstruct a profile for a
subject, and even then the attacker would have no certainty that
the subject could be reidentified or be of any particular value.

Nonetheless, it is clear that there is the capacity for harm to
a user, even if they are a proverbial needle in a haystack. This
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distribution of victims illustrates a key quandary in data release: the
reidentification of a subject is a ‘black swan event’—highly difficult
to predict, and with impact vastly disproportionate to its likelihood.
This poses a difficult risk mitigation question for the data owner
who must not only consider the average case of their subjects, but
protect against unknown, uncommon worst-case scenarios.

3.2.1 Takeaways. Target scale and selection. This example moti-
vates two distinctions around threat models: between attacks which
reidentify subjects in the average case and/or at scale, versus only
a small subset of subjects; and around the attacker’s target, since a
given attack may be likely to fail if targeted at a preselected subject,
but could succeed if the attacker does not care who they reidentify.

3.3 The Netflix Prize
In 2007, Narayanan and Shmatikov [88] reidentified individual users
within a dataset published by Netflix as part of a recommendation
algorithm competition. The dataset contained film ratings (rating
and date of rating) from 480, 189 users over 17, 770 movies. Each
unique user and movie was given a unique integer pseudonym,
which were consistent across entries.

Narayanan and Shmatikov reidentified subjects by linking the
Netflix dataset against publicly available movie ratings from IMDB.
Their algorithm was shown to be robust against incomplete or
imprecise information in both the Netflix dataset and the linkage set;
this result was one of the first notable examples of how supposedly
sanitised or anonymised rich microdata retains reidentification risk
through the presence of external sources of matching microdata.

The chief criticisms of this case as a cautionary tale of reidenti-
fication risk are twofold: first that it may be rare to find a linkage
dataset with sufficient richness and similarity in datatype; and even
if one exists, this may have been a case where the data subjects
were uncommonly likely to be members of both—the type of Netflix
user who rates many of the films they have watched is likely to
also have an IMDB account where they do the same.

3.3.1 Takeaways. Linkage data availability. In data publishing,
the presence of rich, correlated datasets which are not collected con-
temporaneously with the dataset in question is a rapidly growing
contributor to reidentification risks.

Instead of data which was collected or derived alongside the pub-
lished data, which could be used to directly reverse the anonymi-
sation function, the trend towards high-dimensionality microdata
provides globally-unique ‘behavioural fingerprints’ for individuals,
which can be found and linked across datasets.

This is a difficult risk to appraise—data publishers must anticipate
which implicit signals might be embedded in their dataset, and
estimate the availability of other datasets now and in the future
which might capture those same signals from the same subjects.

Unicity. The sparsity and high dimensionality of the Netflix rat-
ings microdata yielded a high degree of unicity—as dimensionality
and sparsity increases, local unicity of a record will approximate
global unicity (i.e. unique amongst all possible subjects). This also
ensures that even a partial overlap between datasets with sparse
microdata has a high likelihood to truly capture comembership.

3.4 Data brokerage reidentifications
Our most recent examples are a set of publicised privacy breaches
due to the data brokerage industry [32], where highly detailed
microdata, including cellphone location data, is sold into complex
data supply chains and aggregated by companies who provide
‘identity resolution’ services which can easily be used as tools of
privacy invasion. One companywas found to offer one-shot location
services for as low as $4.95, and real-time tracking for $12.95 [30].

The trade in microdata includes the targeted advertising industry,
which collects detailed user profiles, valuable to advertisers for
targeting and attribution. This data collection has been shown to be
almost ubiquitous in mobile apps and websites: third party libraries
which collect targeting data are common in apps, to the point that
their inclusion is a sufficient business model for ‘free’ apps [123].

This infrastructure is exploitable by malicious actors—Vines et
al. [125] described an online attack in which buying targeted ads
could be used as ameans of extracting the profiling information held
on data subjects, including but not limited to location information.

The New York Times demonstrated the viability of an offline
attack after obtaining a database containing location traces of indi-
viduals involved in the storming of the U.S. Capitol on January 6,
2021, from which they were able to establish identities and poten-
tially incriminating evidence.

In another case, a Catholic official was identified in data col-
lected through the app Grindr [20, 98]; location traces were linked
against his known residence and workplace (among other signals)
to identify him, and showed his attendance at various gay bars.
In a response to the reporting of this case, Grindr claimed the
reidentification was ‘infeasible from a technical standpoint and in-
credibly unlikely to occur’. Despite this claim, the official resigned
his position—we argue this case demonstrates the viability ‘in the
wild’ of the ad-based attack class described by Vines et al. [125].

3.4.1 Takeaways. Embedded signals. The Capitol riot dataset
demonstrates that simple heuristics on the regularity of human
behaviour can be used to invade privacy—location traces which did
not contain a phone number or name, could be mined for home
addresses, inferable by a lack of movement overnight, and work-
places. This echoes Golle and Partridge [57] who demonstrated that
the anonymity set of U.S. residents given the census tracts of their
home and workplace is 5 for 24.5% of the working population, and
2 or fewer for 7.4%. Even aggregate location data is not immune to
regularity heuristics—Xu et al. demonstrated [131] reconstruction
of location traces at scale from aggregate cell tower ping data.

Increasing availability of ‘infeasible’ side info. Criticisms
of ‘incredibly unlikely cases’ dismiss the attacks demonstrated
or theorised on the grounds that they cannot be perpetrated at
scale, for a significant proportion of users, and require access to an
unpredictable source of side information. However, this conflates
an attack’s repeatability and transferability—while the exact same
attack using the same auxiliary dataset might not reidentify other
subjects, it may be trivial to perform the same attack pattern using
some other auxiliary information to identify another subject.

In some cases, as the availability of datasets that could be linked
against increases, we expect that a data source is likely to be vulnera-
ble to a range of partial attacks, which eventually form a patchwork
that provides mass reidentification of the source’s subjects.
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3.5 Other takeaways
Validity of hypothesised attacks. There is often hand-wringing
in the data science community regarding the validity of attacks
shown ‘in the lab’ or at small scales. A key example is de Montjoye
et al.’s work [35, 37] on the unicity of microdata, and an ensuing
debate that occurred between the authors and Barth-Jones[15, 36]
regarding the validity of the threat model. Barth-Jones argues that
the attacks ‘reflect unrealistic data intrusion threats’, as they do
not reidentify data subjects en masse, and claims that it would be a
misplacement of effort to seek to mitigate these outlier cases.

This is something of a false equivalence between threat models—
mass attacks and individual attacks, targeted and untargeted attacks
alike can all result in harm to data subjects, and represent different
but nonetheless valid threat models. Rather than arguing for the
investigation only of a particular threat model, the response to
this variety of threats ought to be to investigate each, and if possi-
ble construct an understanding of where risks are shared, so that
mitigations designed for one model might be adapted for others.

Existence of side information. A related criticism of Barth-
Jones’ [15] levelled at de Montjoye et al. and similar works com-
plains that the authors do not demonstrate that the hypothesised
auxiliary data linked against in the attack actually exists. We would
posit that this is, in fact, instructive in and of itself—there is evi-
dence that data that resembles the required linkage dataset exists
somewhere, and appreciating this fact is the best defence against
what would otherwise be a ‘black swan’ reidentification attack.

Demonstrating that an attack is possible with a particular set of
datasets, even ‘in the lab’, is useful because each of these datasets
reflects a class of similar datasets—it is not unreasonable to expect
that an attacker exists with access to such a similar dataset and
thus is able to perpetrate a similar attack.

This criticism is also given in Barth-Jones’ rebuttal of the Weld
case [16], where the argument is made that the demonstrated attack
only places an upper bound on per-subject reidentification risk, due
to the absence of a ‘perfect population register’ to link against.

This may have been the case in 1997, but the modern availability
of data (Section 3.4.1) suggests that a single ‘perfect register’ might
be substituted for a large number of overlapping registers. Indeed,
the Netflix prize case study demonstrated that sparse microdata
yields high local unicity, and deMontjoye et al. showed that sparsity
is often not needed for unicity—and as we saw from the Weld case,
once membership of the dataset can be established local unicity is
sufficient to reidentify the target.

Ease of linkability. The feasibility of a linkage also depends
on the ease of extracting linkable attributes from the auxiliary data.
A useful example might be to compare the ‘sensitivity’ of a photo
album versus an address book (or contacts list). This is a common
concern in mobile apps. Mobile operating systems prompt the user
to grant or deny permissions to access the address book or photo
library on a per-app basis—apps such as Clubhouse and Houseparty
for the former, apps like Instagram for the latter.

In the past, the greater risk might have been thought to be the
sharing of contacts—one has high confidence that it contains one-
to-one ‘direct identifiers’, a goldmine of classic PII. However, once
photos can be mined at scale with ease, extracting faces, time and

location metadata, relationships between subjects, patterns of be-
haviour, all become extractable—as evidenced by mobile operating
systems’ ‘memories’ features. This is reflected by the current op-
tions given by the prompts for each of these datatypes—iOS allows
all-or-nothing sharing of the contact book, whereas photos can be
permissioned on a photo-by-photo basis.

This reflects a perennial trend of data technologies: where once
only structured data could be handled mechanically and at scale,
now useful information can be mined even from innocuous data
sources; where the use-case of data had to be justified prior to
extracting that utility, data is now amassed and linked speculatively.

The same trends apply to privacy risk: intuitively ‘anonymous’
data can be identifying, even if the information it confers about a
person is implicit; and logical relationships between information
can be found speculatively or after the fact.

4 SYSTEMATISATION
We have presented a range of notions of identification and related
attacks on data subjects’ privacy, and discussed ambiguities and
contentions surrounding their use as definitions of privacy breach.

In this section we lay out our approach to resolving this am-
biguity, by expressing all routes to privacy breach as variations
on a single process—the linkage attack. Using the language of
record linkage, we describe a linkage attack as the assembly of an
identifying record—a collection of information that pertains to
one or more natural persons—and discuss how to characterise the
quality of the assertion that this record represents.

While this definition describes the process of the generic data link-
age attack, a specific attack is characterised by the attacker’s success
criteria and the information in question that is being linked—the
dataset under attack and the linkage set. We capture the success
criteria as the attacker’s intent—a description of a successful attack
in terms of the final identifying record it produces. We will discuss
the other aspect of the threat model, the linkage set, in Section 6.

We demonstrate the utility of our approach by defining natural
(face-to-face) identification and the identification of persons by
‘direct identifiers’ as record linkage attacks, before presenting a
family of intents that describes a range of threat models (with
reference to known attacks). We round out the systematisation by
presenting a discussion of distributional or semantic properties
of the information context of an attack, and how the viability of
certain threat models depends on these properties.

4.1 Defining linkage
4.1.1 The identifying record. Following the well-established con-
cept of record linkage in information retrieval, and the QID-based
conceptual model of dataset privacy used in k-anonymity [118], we
define linkage attacks as the building of an identifying record.

The record consists of a set of facts which are either descriptive
or contextual; descriptive facts assert information about a natural
person, while contextual facts provide additional information that
has some bearing on how other facts are to be interpreted or applied
to individuals. Semantically, the identifying record is an assertion
that all facts it contains are true of at least one natural person.
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4.1.2 Linking records. The process of record linkage is the incorpo-
ration of additional facts into the identifying record. For example,
in the Weld case, Sweeney linked a record from a hospital dataset
to information that uniquely described William Weld.

We might represent the candidate medical record as contain-
ing descriptive facts such as ‘person was hospitalised on May 18,
1996’, and the information in Sweeney’s ‘profile’ of Weld as a record
containing descriptive facts such as ‘person is the natural person
understood to be William Weld’, ‘person was Governor of Mas-
sachusetts on May 18, 1996’, and ‘person resides within ZIP 02138’.

4.1.3 Evaluating identifying records. The quality of an identify-
ing record can be captured in two factors—the record’s specificity
and its coherence. During a linkage attack, we describe the at-
tacker’s evaluation of their identifying record—and by extension
the success of the attack—as the factors: ã the estimated size of
its anonymity set (all natural persons about whom the facts con-
tained are true), and c the linkage confidence, a degree of belief
that all facts describe the same person(s). Going forward we will
use the notation (ã, c), and express c as a number between 0 and
1. Note that the anonymity set is not the set of all natural persons
about whom the facts were collected—this is themembership which
we will discuss later.

There are many quantitative metrics that might represent or
model these qualities, and these have been a subject of much re-
search [126]. For our purposes we are not concerned with strict
quantitative modelling of these factors, but choose these two met-
rics as they are intuitive and align with existing work on reidentifi-
cation. Similarly, we do not prescribe a means of estimating values
for these factors, as this might be subjective or vary according
to an attacker’s methodology, and is not materially important to
defining threat models, where we are primarily concerned with
directionality—whether the anonymity set can be winnowed down
to a useful number (1 in the case of many attacks on individuals),
and how high a confidence can be achieved.

The linkage confidence is the attacker’s confidence that all facts
are jointly true about the described natural person(s). This is up-
dated with each linkage—the strength of the linkage depends on
the confidence that either the records were collected from the same
subject, or that the information contained within one record is
representative of the subject of the other. This measure is equiva-
lent to the confidence in the estimate ã, as all information used in
that estimate is contained within the record—logical connections
between facts, including probabilistic connections such as distri-
butional information, are captured as contextual facts, and their
addition can be used to strengthen the case for coherence.

The fact that the two factors cannot be captured jointly, or why
the confidence is not simply a Bayesian probability of correctness
of the estimate ã, can be illustrated by the distinction between prob-
abilistic and fractional attacks. Tradeoffs exist between specificity
and linkage confidence. We might give up specificity of an identify-
ing record in exchange for a higher linkage confidence. For example,
we might assert fewer facts about the person, therefore describing a
fraction of the previous anonymity set, but increasing our certainty
that all the asserted facts are true. Similarly, the converse tradeoff
might be made, where an absolutely certain assertion is weakened
to a probabilistic claim about a more informative record.

4.2 Threat modelling
Note. We denote a person’s natural identity ι, an atomic element
that represents that person independently of any naming system
or real-world descriptors.

4.2.1 Examples: intuitive or ‘direct’ identification. Before we sys-
tematise the whole space of privacy attacks discussed in Section 2.2,
let us demonstrate how the record linkage-based definition of at-
tacks given above can be used to understand common and intu-
itively understood notions of identity.

‘Direct’ identifiers. The term ‘direct’ identifier has historically
been applied to special datatypes that were ordained by common
wisdom or law to be a sufficient means of uniquely describing a nat-
ural person. The distinguishing characteristic of a direct identifier
is that its use in linkage is so well known as to be implicit.

Consider a record containing an 11-character string and a con-
textual fact that states that this string is a driving license number.
The assertion that this record uniquely identifies a person is the
result of linking it to a linkage set that has information about the
distribution of driving license numbers—specifically that the map-
ping of strings to persons is one-to-one. Because the contextual
information in the record tells us that this collection of individual
facts can only describe one person, we estimate ã = 1, and if we
believe that the linkage set truly describes the distribution of the
driving license number in the record, we would also estimate c = 1.
This is the linkage we implicitly perform when we take a driving
license number to be a direct identifier.

Personal facial recognition.. Recognising a person on the
street is a similar process to identification by ‘direct’ identifier,
except that the data linked against is a part of one’s personal mem-
ory; the visual stimulus of a face is our identifying record, linked
against a private dataset which maps faces to natural identities.

Personal name recognition.. A slightly less trivial example is
the identification that occurs when a letter sender is recognised
from their full name, written on the sheet of paper. Let us informally
describe the building and linking of an identifying record towards a
satisfactory ‘identification’ end state. Consider an initial identifying
record containing the facts ‘the writer signed this letter P. Sherman’,
‘this letter is addressed to me’, ‘this letter was written by hand all
in a single style of handwriting’, and ‘person wrote this letter’.

A cursory evaluation would estimate the size of the anonymity
set as 1, as it is unlikely that there exist multiple identities referenced
by person, given the single style of handwriting, and c = 1, since
there is no source of uncertainty in the joint truth of any two facts.

As with the previous example, the recipient implicitly links this
record to a profile in their memory about a person ι. This profile
record might include the facts ‘person goes by the name Priscilla
Sherman’, ‘I know person personally’, and ‘person is ι’. Because the
record explicitly references one natural identity as the subject, this
can be the only member of its anonymity set and so (ã, c) = (1, 1).

Finally, the recipient implicitly links in some contextual infor-
mation about letters: ‘handwritten letters are usually from people
known personally by the recipient’. The recipient’s internal evalua-
tion of this record would yield ã = 1 by the same reasoning as the
initial record. Their linkage confidence would be less than certain
due to potential sources of error: the name Priscilla Sherman is not
equal to P. Sherman; neither name is likely to be globally unique;
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and the writer may sign a name falsely. However, the coherence
of the record is bolstered by the final contextual fact, which con-
tributes confidence to the joint truth of the facts that state that
the letter was hand-written by the described person, and that the
recipient knows that person. The linkage confidence would thus be
less than 1, but likely still high enough for the recipient to recognise
the sender as their friend Priscilla.

4.2.2 Attacker intents. The criteria by which a dataset privacy
attack might be considered successful can vary greatly. We will
now present a language that captures these success criteria, which is
the basis for threat modelling of linkage attacks. An evaluation (ã, c)
describes the quality of the identifying record, and so factors into
success criteria, but other—sometimes subjective—factors specific
to an attacker’s intended information gain must also be captured.

We describe a successful attack as the achievement of an at-
tacker’s intent. This is a description of the record an attacker starts
with, and the final identifying record they produce—in mechanical
terms such as the (ã, c) evaluation as well as subjective assessments
such as the presence of a useful QID.

We present a taxonomy of intents that spans the most commonly
discussed threat models in dataset privacy attacks. Figure 1 sum-
marises this taxonomy, showing each intent and the relationships
between them (i.e. where an intent is a strengthening or specific
case of another, and how). Specifying the relationships between
these intents helps to disambiguate between attacks, and should
provide a basis for future threat modelling practices that consider
attack escalation or adaptation.

4.2.3 Dimensions of intents. Before we define each intent in the
taxonomy, we present some high-level properties of intents, which
can be seen as orthogonal dimensions within the space of intents.

Perfect confidence vs. probabilistic. As we noted in the exam-
ples presented above, an attacker may be satisfied by some margin
of error in their linkage confidence, as long as the confidence re-
mains sufficiently high (close to 1). Therefore an intent may specify
either that the final record evaluates to c = 1 or c > ct where ct is
their subjective threshold below 1. This applies to all intents that
we might formulate, so we note it here rather than distinguishing
for each intent its ‘perfect confidence’ and probabilistic variations.

Individual vs. class attacks. While an attacker will always
seek to push c as close to 1 as possible, intents can vary in their
acceptable values for ã. In individual attacks, which comprise
most of the attacks we discuss here, the attacker wishes to winnow
down the anonymity set until they arrive at an evaluation of ã = 1.
All reidentifications are individual attacks.

In contrast to individual attacks, there are class attacks, where
an attacker seeks to gain information on a group of persons. In class
attacks, the attacker can strengthen their record by winnowing
down their estimate of ã until it reaches the class size N : if the
size is known a priori, we can capture this in the intent with the
requirement ã = N ; if not the lowest ã the attacker is able to achieve
is effectively their estimation of the class size.

Repeatability. The scalability of individual attacks is a matter
of their repeatability. In some cases, such as the case of the AOL
search logs, an attacker may only be able to successfully produce
records for a very small number of a dataset’s subjects—we call this
an outlier attack. Where an attack can be repeated on multiple

subjects, we call it a mass attack, and where it can be extended to
all subjects of a dataset a total attack.

Starting records. Another significant differentiating factor be-
tween intents is the attacker’s starting point—the record they begin
with and attempt to incorporate new information into.

In untargeted attacks, the attacker is happy to produce any
identifying record with high confidence, without seeking to estab-
lish any particular fact or identity about the person(s). In these
cases, the starting record is empty.

In profiling attacks, the attacker begins with a collection of facts
that describes their intended target—a profile record—and seeks
to add information, so that the final identifying record is a proper
superset of the profile. Intuitively, in a profiling attack the attacker
is looking to learn information about any subject of the dataset that
satisfies a particular description.

Targeted attacks take profiling attacks a step further, describing
attacks where the attacker intends to produce an identifying record
about a particular person. This can be described in terms of records
as beginning with a target record that contains the natural identity
ι of that person, for which ã = 1 by definition.

4.2.4 Intent definitions. We will now define each intent in the
taxonomy shown in Figure 1. We begin with two intents that are
not necessarily attacks on datasets’ subjects, but more general
information gain efforts that serve as parent intents to many others.
These are the two attribute inference attacks.

Class attribute inference. This intent describes the most basic
profiling attack. The attacker begins with a profile record P and
seeks to produce a final record R that is its proper superset. Intu-
itively, this means that the attacker begins with a description of a
class of persons and seeks to infer with confidence any additional
attribute about that class.

Targeted attribute inference. Similarly, this intent describes
themost basic form of targeted information gain, where the attacker
holds a profile that includes a person’s natural identity (therefore
trivially fixing ã = 1 and making it an individual attack), and
seeking to produce a proper superset of the target record, i.e. adding
a fact (inferring an attribute) about that person.

Class membership estimation. This intent follows from class
attribute inference by adding the requirement that the attribute
inferred is membership of the dataset under attack. Intuitively, this
intent describes an attacker asserting that some subjects of a dataset
match the given profile. This is useful either as an estimation of the
membership of that class amongst the dataset’s subjects, given by
the attacker’s best estimate for ã, or as the starting point for further
attribute inference attacks on the class.

The remainder of the intents presented are individual attacks,
which comprise the majority of attacks discussed in the literature.

Singling out. The simplest attack on a dataset subject, the
extraction of a record that describes a single person. This is trivial in
datasets that represent data at individual-level granularity, but non-
trivial where data is stored at group- or population-level, such as
in aggregate statistical datasets. The singling out attack is not truly
a reidentification attack as it does not necessarily produce a means
of identification that translates to other sources of information.

Untargeted reidentification. A strengthening of the singling
out attack, adding the requirement that the final identifying record
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Figure 1: A taxonomy of notable linkage attack intents.

contains a useful QID—a subjective assessment particular to the
attacker. The attacker might have a particular set of datatypes in
mind as a useful QID prior to performing linkages, but this does
not constitute a profile as a specification of datatypes is not itself a
set of facts about a person.

Individual profiling. This intent is a child of both the untar-
geted reidentification and the class membership estimation. It is
a reidentification attack in that it seeks to prove the existence of
a single dataset subject that matches the profile—this is a strictly
stronger prior requirement than simply seeking a QID. It follows
from the class membership estimation essentially as its individual
case—we simply add the requirement that ã = 1, and so this intent
is simply the process of finding a wider class and winnowing it
down until the record describes only one of them.

The final three intents are all targeted attacks, and so the win-
nowing of ã is no longer necessary—as long as the facts in the target
record (minus the stipulation of the natural identity ι) hold of any
of the dataset’s subject, they will hold of the target.

Membership inference. This is, in a sense, the minimal targeted
attack on a dataset, as the simplest form of attribute inference,
where the attribute is membership of the dataset. This intent is
satisfied simply by proving that the target is a subject of the dataset.

Nosy targeted reidentification. This intent also follows from
the targeted attribute inference attack, but assumes that the mem-
bership inference problem is pre-solved for the attacker (they know
that their target is a subject of the dataset). The attack is thus
simply attribute inference—the intent is satisfied by adding any
information to the target record.

Blind targeted reidentification. This final intent incorporates
the tasks of both of the previous discussed intents—the attacker is
seeking to show that their target is a subject of the dataset, and
then seeks to gain some further information about them from that
dataset. The attacker is thus performing membership inference plus
an additional attribute inference.

4.2.5 Discussion of intents. Other intent formulations. No list
of intents can be exhaustive, due to the subjectivity of attackers’
goals. Some of the intents above might be strengthened, for exam-
ple we might add additional attribute inference to the individual
profiling attack: the resulting intent would require that the final
record be a proper superset of the profile plus the statement of
membership. Other, more complex intents could be formulated that
do not fit neatly into the taxonomy given, such as for attacks that
infer the relationships between dataset subjects. For example, an
attack that reidentifies a pair of people who met at a particular
location at a particular time could be represented as a profiling
intent whose initial profile contains the facts ‘was at location L
at time T ’ and ‘met a single other person at time T ’, and can be
satisfied with two and only two distinct records each evaluating to
(ã, c) = (1, 1)

Fractional vs. probabilistic attacks. We discussed earlier that
intents may have a margin of error in linkage confidence, such that
c < 1. These intents represent probabilistic attacks. This uncertainty
in the assertion may be acceptable due to its subjective utility—if
the intent represents the inference of a highly sensitive attribute, a
significant but not absolute probability of correctness may exceed
a threshold of risk to the subject.

Consider an attack aiming to recover a characteristic of a class of
N persons which yields a record evaluated as (ã, c) = (N , 0.7)might
satisfy some attackers’ intents—they would have a 70% confidence
that the characteristic applies to all N subjects. This successful
evaluation is distinct from fractional attacks, in which the goal of
the attacker is to say that an identifying record describes a certain
fraction of a class of N persons. A record that proves such an
assertion would yield (ã, c) = (0.7N , 1).

Membership inference and global vs. local unicity. The dif-
ference between global and local unicity is important to understand-
ing attack intents. Proving local unicity, i.e. if an attacker can show
that a set of facts is only true of one subject of the dataset under
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attack—is sufficient for singling out attacks, and in nosy targeted
reidentification attacks. However, in other reidentification attacks
the attacker must find a set of facts within the dataset that they
can show to be globally unique—i.e. construct an identifying record
which can be shown to have a single-member anonymity set.

Corepresentative datasets. Rather than showing that the sub-
ject(s) of one identifying record are also subjects of a record to be
linked against, a weaker logical relationship between datasets that
can be used in a linkage is to say that two datasets are corepresen-
tative in a certain profile. Assertion of corepresentation means that
attributes that are true of all subjects that match the profile in one
dataset will also be true of matching subjects in the other.

This captures why the targeted attribute inference intent is a
weakening of blind targeted reidentification, as it replaces the em-
bedded membership inference problem with one of proving corep-
resentativeness between target and identifying record.

Attacks without reidentification. Attack intents that do not
include an assertion that the subject of the identifying record is a
subject of the dataset under attack (the targeted and class attribute
inference attacks) are not true reidentifications, as they can be
successful without linking information within the dataset to their
subject with unicity. These intents, as well as the nosy targeted
reidentification, are only matters of record enrichment—using the
dataset itself as a source of side information to link additional
descriptive facts to the profile record.

Linkage sets. Untargeted attacks do not require an external
source of data to link against, and can be totally implicit, assembling
an identifying record from the dataset under attack and establishing
its local unicity by statistical means.

5 APPLICATION TO LITERATURE SURVEY
We validate our model by applying it to an extensive survey of
dataset privacy attacks in the wider literature. Our successful cate-
gorisation of a large space of attacks validates the expressiveness
of our model, and in the remainder of the paper we will discuss
the utility of this expressiveness using insights drawn from the
experience of applying it.

5.0.1 Methodology. We performed an extensive survey of the aca-
demic literature, capturing a significant sample of papers published
in top security and privacy venues, as well as any other significant
papers which propose or demonstrate attacks on dataset privacy.
This was achieved by searching all previous published proceedings
of ACM CCS and ASIACCS, IEEE S&P and EuroS&P, NDSS, Usenix
Security, and PETS, plus accompanying workshops, and the whole
ACM Digital Library, for a range of keywords: deanonymisation,
reidentification, linkability, linkage attacks, and variations on those
terms. Snowball sampling was then employed to capture influential,
notable, or highly cited examples from ‘grey literature’—such as
self-published research or media reports. From these searches we
drew an initial sample of 418 papers which appeared to have some
relevance to dataset privacy attacks. From this sample we identi-
fied 94 papers which described attacks on datasets which were in
scope, and categorised each using our taxonomy of intents. The
full categorisation, noting for each attack its intent, repeatability,
and (where appropriate) the datatype of the linkage set used, is
tabulated in Appendix A.

5.1 Notes on applying the model
Translating each attack surveyed into intents was straightforward
in most cases, but we encountered some difficulties regarding the
evaluation of deanonymisations—while some papers made a distinc-
tion between ‘open-’ and ‘closed-world’ evaluations, it was more
often unclear whether an attack was evaluated with targets not
present in the dataset. This made it difficult to determine whether
a targeted reidentification was blind or nosy.

Furthermore, many of the attacks surveyed began with the re-
trieval of a highly unique signal within a dataset, which could then
be used en masse as a quasi-identifier, either within a dataset or
across similar data sources. How to express this as an intent is a
matter of framing—if the thrust of the paper was to show a par-
ticular signal’s global unicity, the attack is best described as an
untargeted reidentification (i.e. a proof of a novel QID). However
wemore commonly found this approach used to show how a dataset
can be deanonymised—in this sense the attack presented is better
described as a mass (or total) nosy targeted reidentification.

6 RISK APPRAISAL AND MITIGATION
In Section 4 we stated that the threat model of a linkage attack is
made up of two parts: the attacker’s intent and the information
they hold which can be linked against the dataset under attack—the
linkage set. As we saw in Section 3, the availability of an appropriate
linkage set is a crucial determinant of whether an attack is feasible.

Any risk-based assessment of privacymust consider attack intent
as well as anticipate the linkage sets which might enable the most
successful (and most invasive) attacks. Consideration must also
be given as to whether those linkage sets are likely to exist, and
whether or not they would be available to each attacker.

In this section we will describe the challenges inherent to this
risk appraisal task, and how it must be approached as a best-effort
exercise. We will discuss the various ways in which the uncertainty
of linkage set availability has been addressed in prior work, and
how our systematisation of linkage attacks can be leveraged to
improve risk appraisal in practice.

6.1 Challenges of appraising linkage set
availability

6.1.1 Perfect context anticipation is intractable. A core principle
of ‘big data’ and ‘data-driven’ practices is that, by capturing data,
we are able to identify useful and actionable signals that were pre-
viously unknown. This is reflected in the variety and novelty of
privacy breaches seen over the last decade or so. Data collected
about human beings is embedded with informative signals about
those subjects, and those signals can be present inmultiple instances
of data capture, and later linked—in fact, this is the fundamental
process of inference. (This has been noted as a key failure of syn-
thetic data as a privacy protection [115]—signals remain in the data,
but the nature of their retention is difficult to anticipate.)

We know that linkable data need not be contemporaneously
captured [33], and that attributes of a subject can be reflected in
data that has no direct semantic relationship to those attributes
(such as location traces as an indicator for ethnicity [105]).

To anticipate all possible linkages is to have complete knowl-
edge of what information is contained within a dataset, where
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that information was captured or may someday be captured, and
whether or not the dataset in question will ever be inspected in a
context where that other information is present. This is clearly an
intractable problem—not least because to have complete knowledge
of the information captured by a dataset would entail perfect data
mining and analysis, which can also anticipate all future uses or
interpretations of that information.

6.1.2 Speculative accrual of information and opaque dataflows.
Data-driven economies motivate actors to accrue as much data
as possible [135], with the expectation that signals will eventually
be found within it, or that it will eventually prove a useful link-
age set to interpret future data [91]. The result of this speculative
accrual is not simply that large companies like Google and Face-
book are likely to have the richest linkage sets around (perhaps
even Barth-Jones’ ‘perfect population register’) whose details are
unknown. As we have seen (Section 3.4), data brokerage markets
trade in this information, adding an extra layer of incentive to
obscure the details of what information is moving where—as know-
ing where data resides, in what form, and at what scale is itself
competitively sensitive information.

6.2 Appraisal state of the art
6.2.1 Expert wargaming. Today, in practice, risk appraisal for a
novel dataset is done in one of two ways. The first is simply to
call prior art or guidance in aid—a practitioner may recognise the
datatypes or domains in question and look up sector-specific guid-
ance, or often simply appeal to received wisdom or general consen-
sus on what does and does not constitute personal data.

Where toolkits for risk appraisal do exist, they are often sector-
specific (therefore constrained to narrow contexts) or prescribe
outcomes, rather than providing practical advice for discovering
routes to reidentification or information gain on the data subject.

The second, more intensive approach to identifying risks of
identification we term expert wargaming. In this approach, the iden-
tification of data protection burden is performed by individuals who
have specialised knowledge of the datatypes and domain. These
experts are usually familiar with case studies and known failure
modes, such as those discussed in Section 3, and have a (usually
implicit) working knowledge of what datasets already exist that
could be linked against, or the capabilities of interested adversaries.

Quantitative measures such as k-anonymity may aid in wargam-
ing by establishing bounds on information gain, or orders of mag-
nitude, but due to the intractable context problem, it is almost al-
ways essential to perform some amount of qualitative analysis. For
example, quantitative metrics may not exist to describe the compu-
tational power available to an adversary, or the richness of their
privately-collected datasets. In fact, the existence of those linkage
datasets may be speculative, inferred from the visible data collection
capabilities of the adversary—e.g. speculating that a social network-
ing company could link against direct messaging metadata if they
wished. This method of risk appraisal is clearly not optimal—it is
labour intensive, and relies on domain-specific expertise that is
often difficult to transpose to new settings.

This siloing effect also applies to threat models. For example,
intensive familiarity with the William Weld reidentification case
and the nuances of its critiques may be instructive to a practitioner

applying privacy-enhancing transformations to a medical record
dataset, in order to prevent individual reidentification. Comparison
of the data’s distribution to the case study may give the practitioner
confidence that, while a one-in-a-million case of reidentification
may be possible, it would be prohibitive to reidentify subjects en
masse. However, that line of reasoning would give no sense of
the risk of a class attribute inference, such as discovering the most
common sexual health clinic attended by subjects of a particular
ethnicity, despite such an attack sharing many common factors.

Furthermore, reliance on case studies leads to orthodoxy; assess-
ments of an attack’s infeasibility often fall, as advances in compu-
tational power make previously prohibitive costs manageable, or if
a previously unknown and sufficiently overlapping linkage dataset
arises. In these cases, it can be difficult to re-evaluate risks.

6.2.2 Inference control. An alternative way of approaching risk is
to hedge against it—such approaches have a long history under the
terminologies of data sanitisation, inference control, statistical dis-
closure control, and privacy-preserving data publishing. Generally,
these approaches aim to prevent a given attacker from learning
some specific information held in a dataset, by removing or attenu-
ating information signals within it.

Early inference control [4, 38] focused on the protection of statis-
tical databases which would be queried for aggregate statistics. Po-
tential disclosures were identified by conceptual means—modelling
the relationships between all information captured by the dataset
and thus identifying routes to disclosure to disable—or by blanket
perturbation of data such that the minimal specificity of any query
result is bounded. The conceptual model was rendered obsolete by
modern data science and the inability to completely characterise
the information contained in data [48].

Modern privacy-preserving data publishing (PPDP) [53] is de-
veloping in the face of side information and linkage. Methods such
as k-anonymity and randomised response [46], as well as sanitisa-
tion methods like generalisation and tokenisation, reduce risk by
introducing uncertainty into the dataset.

While most defences still require a model of the potential linkage
sets or attack intent, differential privacy [43, 44] promises strong
protection in the face of arbitrary side information [73] by bound-
ing the information contributed by an individual’s inclusion in the
database within a privacy budget ϵ , by perturbing every data item
by some noise. In the polar opposite of the conceptual model, rather
than capturing all possible logical relationships to information in
all possible release contexts, differential privacy elides the consid-
eration of contexts entirely. However, there are severe practical
limitations of differential privacy, from setting privacy budgets, to
its limitation to perturbable datatypes, to difficulty in applying it
to time-varying or sequential releases [44]. As a result, its uptake
in large-scale rich dataset release has been slow, with its largest
(transparent) deployment to date being the 2020 U.S. Census [1].

It must be noted that even the strong promises of differential
privacy are effectively a risk management solution to the problem
of privacy—the privacy parameter ϵ represents the probabilistic
nature of the protection, which is achieved by (albeit targeted)
information attenuation. This reinforces the lesson of the intractable
context problem—a perfect guarantee that no linkage can occur is
impossible if data is to remain informative. (This insight should not
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be seen as controversial—almost all forms of encryption provide
probabilistic protection, relying on the incredibly low likelihood of
guessing the correct encryption key. An exception is the one-time
pad where, without the key, all messages are equally likely.)

6.3 Better practices based on linkage risk
The way forward for the practice of dataset protection must be
a toolkit of practices based on the appraisal and minimisation of
linkage-based privacy breach. This toolkit must be clearly exten-
sible, without relying on increasingly siloed expert experience, as
is the current state of the art. We must also have clear ways of
updating collective wisdom around what attacks are possible and
where risks may arise, so that novel attacks and harms can be easily
incorporated into the known attack surface that is tested against.
We will now discuss how our record linkage framing, and intents
in particular, provides a basis for this new risk-based toolkit.

6.3.1 A common language for novel attacks. The most straightfor-
ward application of our model is as a language for future literature,
to avoid the historical confusion around threat models. This is use-
ful not only to understand what a novel attack claims to achieve,
but its limitations—a clear presentation of an attack would show not
only how the intent is satisfied, but the extent to which escalations
are possible. For example, if a novel dataset is published and a re-
searcher identifies a possible individual profiling attack, by clearly
stating the linkages performed that researcher should also be able
to justify whether that profiling attack is repeatable as a mass or
total attack, or whether the linkage data used is rare enough that
the attack is only possible as an outlier attack. Our survey of papers
validated this use case—once attacks are expressed in terms of in-
tents their claims gain useful context, and the evolution of classes
of attacks over time and by context can be charted. An example is
the range seen in stylometry attacks [2, 5, 6, 23, 84, 128]. Variance
in the attacked datasets (by language, context, or features captured)
led to a range of attacks distinct in intent and repeatability (with
some achieving total)—a prime candidate for comparative guidance
for future publishers of text corpora.

6.3.2 Directed wargaming with risk pattern heuristics. The linkage
attack language can also be used to replace the current status quo of
expert wargaming with a more mechanical, directed methodology.
Because potential sources of side information are so diverse and
enumerating them is intractable, this will necessarily remain a best-
effort exercise. We propose the building of a library of risk pattern
heuristics, to augment qualitative and quantitative risk evaluations.

Risk pattern libraries could be collected around a number of
commonalities, such as datatype, the availability of particular link-
age datasets, or the specific failure modes prescribed by legislation.
A comprehensive library of risk patterns dedicated to a certain
datatype in a given domain would significantly lessen the need for
imagination and extensive knowledge of information security on
the part of the data protection practitioner.

These heuristics would be used as follows: if a data holder is
preparing to publish or otherwise share a dataset, they would con-
sult the library for risk patterns common to the datatypes involved,

heuristics that might help identify potential sources of side infor-
mation that their data could be linked against, and a checklist of
data properties that are known to invite particular classes of risks.

Furthermore, once a potential attack under a particular intent
is identified, patterns that leverage intent taxonomy could show
when that risk might propagate to other intents—for example, the
conditions that must be met for the attack to be repeatable.

6.4 Example risk patterns
The remainder of this section gives an initial set of risk patterns
drawn from our survey of the literature, which describe observed
relationships between certain properties of the datasets or linkage
sets and the risk due to the linkage.

6.4.1 Membership. Global-capture linkage sets. In some cases,
the attacker may have access to a linkage set whose set of subjects
contains all (or a vast majority) of the data subjects of the target
set—what we might call an almost-perfect population register, per
Barth-Jones [16]. A prime example of such a linkage set is the US
Census, which is collected on the majority of US residents, though
in many cases direct linkages are not possible due to pre-publishing
transformations applied to combat singling-out, meaning its utility
is greatest as a corepresentative linkage set.

Difficulty ofmembership inference. In many cases, especially
where individuals’ data is not sparse, there is insufficient informa-
tion about the data collection to solve the membership inference
problem—this prevents the success of blind targeted reidentification
attacks. By contrast, there are cases where the contents of a dataset
are high-risk, and solving the membership inference problem takes
an unfeasible or probabilistic attack to a guaranteed breach.

6.4.2 Temporality. Fresh vs. stale data. The recency of data col-
lection can impact the risk posed by attacks. Often, old data con-
tributes minimal risk, as there are no longer clear routes to harm—
for example in most cases where the subject is long deceased.

Proximity of linkage set to victim set. Even if there are routes
to harm, linkage attacks may not be feasible if they rely on contem-
poraneous data, which may not have been collected at the time and
might not be constructable after the fact.

Increasing availability of linkage data. Conversely, some
data may exhibit an increase in risk due to an increased availability
of linkage data, due to the creation of other semantically related
datasets in the intervening time. This pattern applies when a dataset
contains information that remains sensitive throughout the sub-
ject’s (or their family’s) lifetime, such as race or medical conditions,
or where the subject has some temporally persistent property, (or
‘fingerprint’), which enables linkages across long periods of time.

6.4.3 Linkage sets. Maximally informative linkage set. In some
cases, the act of linking to a linkage set confers no information gain
for the attacker in terms of features, over what already was avail-
able in the linkage set. This may happen in cases where the target
dataset is a subset of the linkage set. The only information gained
for the attacker is instead the solution to the membership inference
problem—i.e. learning that a subject of the linkage dataset is also a
subject of the target dataset.

Information gain without risk gain. In a similar but slightly
subtler case, while a linkage attack may identify a subject within a
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dataset and confer information that was not present in the linkage
set, this information may not contribute significant additional po-
tential for harm. This often occurs with highly informative linkage
sets—reducing to the previously mentioned case.

Public vs. private linkage sets. The availability of information
that can be linked against is hard to appraise. If data is collected in
a commercial or industrial setting, there may exist other datasets
within the organisation that could be linked against—for example,
employee payroll might form the perfect population register for
a workplace. This is a complicating factor when assessing the ca-
pabilities of large data collectors such as Google or Facebook due
to their dominance in data brokerage markets. In these cases, risk
analyses may have to assume these actors have linkage sets with
global coverage for certain datatypes, such as web search history.

6.4.4 Cardinality. High unicity datasets. The Netflix Prize [88]
showed that sparse data or high-entropy datatypes (such as location
traces) exhibit global unicity with even a handful of data points.
Global unicity rapidly increases the chances of successful member-
ship inference, as well as providing excellent candidate QIDs for
linkage to other data sources.

Outlier attacks can’t scale. In many cases, outlier reidentifi-
cation attacks do not scale to mass attacks. This occurs when the
former only retrieves with high precision a minority of subjects
with extraordinarily high local unicity within the dataset.

Outlier risk. For some datasets the majority of information
contained would not be particularly harmful in the hands of an
adversary, but it is possible that highly sensitive information may
be contained, particularly in free text fields. For example, in the
Enron dataset a vast majority of emails discuss trivial matters such
as scheduling meetings, but some contain details of doctor’s ap-
pointments or the names, ages, and schools of a subject’s children.

7 WAYS FORWARD FOR LINKAGE RISK
MANAGEMENT

We expect that by aligning the language of threat modelling for
dataset privacy with the legal burdens and risk-based nature of
linkage attacks, our framework will provide a platform for bridging
the gap between privacy attacks in the literature and practice.

The greatest practical utility of the linkage framework is to
regulators and other bodies offering guidance on data protection
practice. Beyond simply the disambiguation of threat models and a
clear correspondence to the phrasing of legal burdens, risk patterns
can alleviate the expertise burden on practitioners.

The approach of propagating risks across intents can be mir-
rored for risk mitigation—a complementary library of patterns
could describe the risk-damping effect a certain PET has over a
group of intents. For example, a k-anonymity pattern would reduce
risks under intents which require ã < k ; similarly, l-diversity and
t-closeness can be expressed as forcing lower bounds on ã as a
function of the specificity of the facts in the record.

The attacks identified could also be used in privacy parameter
tuning; since the differential privacy budget ϵ bounds the informa-
tion gain for arbitrary membership inference attacks, the linkage
confidence when linking data to a differentially private dataset is
a function of ϵ . We could thus disrupt an identified linkage attack
on this dataset by identifying a ‘pressure point’ fact—one which

is crucial to proving comembership—and tuning ϵ so as to bound
confidence in that assertion.

We also believe it is important to reassess the ‘end-to-end princi-
ple’ that many data protection frameworks have inherited from the
original Privacy by Design framework [24], which charges prac-
titioners with securing data from collection to destruction—we
now know that if further information is derived from the use of
data, information on the subjects will persist. In these cases, we
must establish accountability for the ‘downstream’ effects of data
collection, and design governance measures with them in mind.

We noted in Section 2.2 that our model of linkage builds on
existing concepts of probabilistic record linkage. We illustrated an
identifying record’s specificity and coherence in this paper with
the factors ã, c; risk appraisal methodologies may pursue concrete
information-theoretic metrics or statistical methods which build
on probabilistic linkage literature or other inference techniques, to
provide mathematically rigorous methods for well-specified subsets
of intents and available side information. Recent work on privacy-
preserving microdata sharing by Alvim et al. [7] is a good example
of such a methodology; the work clearly defines its threat models
(which map well into our intent formulation) and provides strong
Quantitative Information Flow modelling tools for attacks that
leverage well-defined types of side information.

The intents we present are by no means exhaustive of dataset
privacy attacks and were chosen to cover prominent reidentifica-
tion attacks. Future work will expand the set of intents to express
other privacy failures, such as joint (two-subject) attacks—e.g. find-
ing subject co-locations within a location trace dataset, or profile
assertions that describe familial relationships. While we have de-
fined the identifying record in terms of asserting information about
natural persons, our conceptual framework can be extended to any
information gain process where the goal is to produce a description
of some entity.

8 CONCLUSIONS
In this paper we traced the development of the understanding of
linkage attacks as the basis for dataset privacy breach in legal and
technical work. Through a definition of linkage attacks, we were
able to systematise the diverse and often ambiguous landscape of
threat models in dataset privacy, and articulate the relationships
between attacker intents.

We also discussed the shortcomings of and challenges facing
existing risk appraisal and privacy protectionmethodologies as they
relate to risks of side information. Through our risk management
we approach the risk appraisal problem as a ‘best effort’ exercise,
and propose a new methodology of heuristic risk patterns. We
initiated the development of these heuristics with a selection of
insights from our systematisation.

Finally, we have recommended a number of future directions
for data protection practice—our risk-based problem framing har-
monises the legal and technical approaches to data privacy breach,
which we hope will provide a foundation for integrating existing
and future work on privacy attacks with the legal and operational
challenges of data protection.
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A CATEGORISATION OF SURVEYED
ATTACKS AS INTENTS

Our literature survey, described in Section 5, yielded 94 attacks
from a sample of 418 papers. Table 1 shows these 94 attacks cate-
gorised by intent and repeatability (outlier, mass, or total), as well

as the primary data type of the dataset in question. Repeatability
is not applicable in cases of class attacks, as well as some papers
which were ambiguously presented. Similarly, some attacks were
presented in a datatype-agnostic way, sometimes as a break of a
particular aggregation technology or PET, or were validated across
a number of datatypes and contexts, and in those cases that column
is left blank. There are entries in the table (membership inference
on ML models and deanonymisation of online social networks)
which represent multiple attacks each—this is in the case of attacks
that all have the same intent and properties. These attacks often
build on each other, representing their own mini-literatures.
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Table 1: A systematisation of 94 identified attacks from across top academic literature and influential work in the field of
anonymity and identifiability. Eachpaper’s title is given exceptwhere series ofwork on the sameproblemhave been condensed
(in italics). Each attack is described in terms of its intent, its repeatability—# for Outlier,G# for Mass, and for Total—and the
data type under attack.

Title Reference(s) Intent Repeatability Data type

PinMe: Tracking a Smartphone User around the World [83] Singling out # Onboard phone sensors

Genotype Extraction and False Relative Attacks: Security Risks to Third-
Party Genetic Genealogy Services Beyond Identity Inference.

[93] Singling out G# Genomic

Trajectory recovery from ash: User privacy is not preserved in aggre-
gated mobility data

[121] Singling out G# Aggregate location data

Full Database Reconstruction in Two Dimensions [47] Singling out  -

On the Inference of User Paths from Anonymized Mobility Data [120] Singling out  Location instances

Unique in the crowd: The privacy bounds of human mobility [35] Singling out  Location traces

The risk of re-identification remains high even in country-scale location
datasets

[49] Singling out  Location traces

AOL search logs [14] Untargeted reidentification # Search logs

Herbert {West—Deanonymizer} [84] Untargeted reidentification G# Academic text

Howmuch is too much? Leveraging ads audience estimation to evaluate
public profile uniqueness

[26] Untargeted reidentification G# Ad audiences

Browsing Unicity: On the Limits of Anonymizing Web Tracking Data [39] Untargeted reidentification G# Browsing history

Dissecting Privacy Risks in Biomedical Data [17] Untargeted reidentification G# DNA methylation

On the Unicity of Smartphone Applications [3] Untargeted reidentification G# App installs

Provable De-anonymization of Large Datasets with Sparse Dimensions [34] Untargeted reidentification G# Movie ratings

Re-identification of Smart Meter data [21] Untargeted reidentification G# Energy usage

Reidentification of Individuals in Chicago’s Homicide Database: A Tech-
nical and Legal Study

[95] Untargeted reidentification G# Municipal records

Revisiting the uniqueness of simple demographics in the US population [56] Untargeted reidentification G# Census data

Unique on Facebook: Formulation and Evidence of (Nano)Targeting
Individual Users with Non-PII Data

[60] Untargeted reidentification G# Facebook profiles

Why johnny can’t browse in peace: On the uniqueness of web browsing
history patterns

[96] Untargeted reidentification G# Browsing history

A study on the re-identifiability of Dutch citizens [74] Untargeted reidentification  Census records

Even Black Cats Cannot Stay Hidden in the Dark: Full-band De-
anonymization of Bluetooth Classic Devices

[29] Untargeted reidentification  Bluetooth packets

Identifying Personal DNA Methylation Profiles by Genotype Inference [10] Untargeted reidentification  DNA methlyation

Privacy in epigenetics: temporal linkability of MicroRNA expression
profiles

[11] Untargeted reidentification  MicroRNA expression

Privacy through Pseudonymity in Mobile Telephony Systems. [8] Untargeted reidentification  Cell tower records

Quantifying privacy loss of human mobility graph topology [80] Untargeted reidentification  POI

Replication: Whywe Still Can’t Browse in Peace: On the Uniqueness
and Reidentifiability of Web Browsing Histories

[18] Untargeted reidentification  Browsing history

WristPrint: Characterizing User Re-Identification Risks from Wrist-
Worn Accelerometry Data

[106] Untargeted reidentification  Wrist-worn accelerometer
logs

SensorID: Sensor calibration fingerprinting for smartphones [133] Untargeted reidentification  Onboard phone sensors

On the anonymity of home/work location pairs [57] Untargeted reidentification  Coarse location pairs

You are what you like! information leakage through users’ interests [25] Class attribute inference Facebook profiles

Birds of a Feather Flock Together: How Set Bias Helps to Deanonymize
You via Revealed Intersection Sizes

[64] Class membership estimation -

Exploring ADINT: Using Ad Targeting for Surveillance on a Budget -
or - How Alice Can Buy Ads to Track Bob

[125] Class membership estimation Ad impressions

Privacy Risks with Facebook’s PII-Based Targeting: Auditing a Data
Broker’s Advertising Interface

[124] Class membership estimation Facebook profiles

Exploring ADINT: Using Ad Targeting for Surveillance on a Budget -
or - How Alice Can Buy Ads to Track Bob

[125] Individual profiling Ad impressions
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Table 1: A systematisation of 94 identified attacks from across top academic literature and influential work in the field of
anonymity and identifiability. Eachpaper’s title is given exceptwhere series ofwork on the sameproblemhave been condensed
(in italics). Each attack is described in terms of its intent, its repeatability—# for Outlier,G# for Mass, and for Total—and the
data type under attack.

Title Reference(s) Intent Repeatability Data type

You Might Also Like: Privacy Risks of Collaborative Filtering [22] Individual profiling G# Transactions

Geo-locating Drivers: A Study of Sensitive Data Leakage in Ride-Hailing
Services.

[134] Individual profiling G# Ride share trips

Privacy Vulnerability of Published Anonymous Mobility Traces [78] Individual profiling G# Location traces

Capitol rioters [129] Individual profiling G# Location, advertising data

General Graph Data De-Anonymization: FromMobility Traces to Social
Networks

[72] Individual profiling  -

Re-Identification Attack to Privacy-Preserving Data Analysis with
Noisy Sample-Mean

[116] Individual profiling  MNIST

I Don’t Have a Photograph, but You Can HaveMy Footprints.: Revealing
the Demographics of Location Data

[105] Targeted attribute inference Location traces

Human Attributes Prediction under Privacy-Preserving Conditions [113] Targeted attribute inference -

ML-DOCTOR: Holistic Risk Assessment of Inference Attacks Against
Machine Learning Models

[76] Targeted attribute inference G# -

How Much Do Your Friends Know about You? Reconstructing Private
Information from the Friendship Graph

[19] Targeted attribute inference G# Social network

An Inference Attack on Genomic Data Using Kinship, Complex Corre-
lations, and Phenotype Information

[40] Targeted attribute inference G# Genomic and phenotypic

Attribute Inference Attacks in Online Social Networks [59] Targeted attribute inference G# Social network

Recognizing Gender of Stack Overflow Users [75] Targeted attribute inference G# StackOverflow profiles

You are who you know and how you behave: Attribute inference attacks
via users’ social friends and behaviors

[58] Targeted attribute inference G# Social network

Analysis of Privacy Protections in Fitness Tracking Social Networks-or-
You can run, but can you hide?

[65] Targeted attribute inference  Location traces

Membership inference on machine learning models [76, 77, 99, 101, 111] Membership inference G# -

The Inevitable Weaponization of App Data Is Here [20, 31] Blind targeted reidentification # Location, advertising data

Deanonymisation of online social networks [41, 51, 52, 63, 89,
94, 109, 110, 130]

Blind targeted reidentification G# Social network

Integration of Static and Dynamic Code Stylometry Analysis for Pro-
grammer De-Anonymization

[128] Blind targeted reidentification G# Code

De-Anonymizing Web Browsing Data with Social Networks [117] Blind targeted reidentification G# Browsing history

Exploiting innocuous activity for correlating users across sites [55] Blind targeted reidentification G# Social media posts

Fraud De-Anonymization for Fun and Profit [66] Blind targeted reidentification G# Fraud posts

Measuring Membership Privacy on Aggregate Location Time-Series [100] Blind targeted reidentification G# Location

Robust De-anonymization of Large Sparse Datasets [88] Blind targeted reidentification G# Movie ratings

The ’Re-Identification’ of Governor William Weld’s Medical Informa-
tion: A Critical Re-Examination of Health Data Identification Risks and
Privacy Protections, Then and Now

[16] Nosy targeted reidentification # Medical records

Deanonymisation of online social networks [19, 70, 71, 87, 97] Nosy targeted reidentification G# Social networks

Doppelgänger Finder: Taking Stylometry to the Underground [5] Nosy targeted reidentification G# Forum posts

Exploring Linkability of User Reviews [6] Nosy targeted reidentification G# Yelp reviews

A Study on Data De-Pseudonymization in the Smart Grid [122] Nosy targeted reidentification G# Energy usage

AP-Attack: A Novel User Re-Identification Attack On Mobility Datasets [81] Nosy targeted reidentification G# Location traces

Betrayed by my shadow: learning data identity via trail matching [79] Nosy targeted reidentification G# Location traces

De-Anonymization Attacks on Neuroimaging Datasets [103] Nosy targeted reidentification G# MRI

De-anonymization of mobility trajectories: Dissecting the gaps between
theory and practice

[127] Nosy targeted reidentification G# Location traces

De-anonymizing genomic databases using phenotypic traits [68] Nosy targeted reidentification G# Genome, phenotype
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Table 1: A systematisation of 94 identified attacks from across top academic literature and influential work in the field of
anonymity and identifiability. Eachpaper’s title is given exceptwhere series ofwork on the sameproblemhave been condensed
(in italics). Each attack is described in terms of its intent, its repeatability—# for Outlier,G# for Mass, and for Total—and the
data type under attack.

Title Reference(s) Intent Repeatability Data type

Deanonymizing Mobility Traces: Using Social Network as a Side-
Channel

[114] Nosy targeted reidentification G# Co-locations

Exploring re-identification risks in public domains [102] Nosy targeted reidentification G# Census, OSN

Genome Reconstruction Attacks Against Genomic Data-Sharing Bea-
cons

[9] Nosy targeted reidentification G# Genomic data

Linking Users Across Domains with Location Data: Theory and Valida-
tion

[104] Nosy targeted reidentification G# Location

On the Feasibility of Internet-Scale Author Identification [86] Nosy targeted reidentification G# Blog posts

Walk2friends: Inferring Social Links from Mobility Profiles [13] Nosy targeted reidentification G# Location traces

De-anonymizing programmers via code stylometry [23] Nosy targeted reidentification  Code

Large-Scale and Language-Oblivious Code Authorship Identification [2] Nosy targeted reidentification  Code

Dissecting Privacy Risks in Biomedical Data [17] Nosy targeted reidentification  DNA methylation
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