
Privacy Property Graph: Towards Automated Privacy Threat
Modeling via Static Graph-based Analysis
Immanuel Kunz
Fraunhofer AISEC

Garching b. München, Germany
immanuel.kunz@aisec.fraunhofer.de

Konrad Weiss
Fraunhofer AISEC

Garching b. München, Germany
konrad.weiss@aisec.fraunhofer.de

Angelika Schneider
Fraunhofer AISEC

Garching b. München, Germany
angelika.schneider@aisec.fraunhofer.de

Christian Banse
Fraunhofer AISEC

Garching b. München, Germany
christian.banse@aisec.fraunhofer.de

ABSTRACT
Privacy threat modeling should be done frequently throughout
development and production to be able to quickly mitigate threats.
Yet, it can also be a very time-consuming activity. In this paper, we
use an enhanced code property graph to partly automate the privacy
threat modeling process: It automatically generates a data flow
diagram from source code which exhibits privacy properties of data
flows, and which can be analyzed semi-automatically via queries.
We provide a list of such reusable queries that can be used to detect
various privacy threats. To enable this analysis, we integrate a taint-
tracking mechanism into the graph using privacy-specific labels.
Since no benchmark for such an approach exists, we also present
a test suite for privacy threat implementations which comprises
implementations for 22 privacy threats in multiple programming
languages. We expect that our approach significantly reduces time
consumption of threat modeling and show that it also has potential
beyond the threat categories defined by LINDDUN, e.g. to detect
privacy anti-patterns and verify compliance to privacy policies.

KEYWORDS
Privacy Threat Modeling, Cloud Privacy, Automated Risk Assess-
ment, Static Code Analysis

1 INTRODUCTION
Threat modeling heterogeneous architectures like cloud systems
for privacy and security risks has become increasingly harder.
This problem has been explained partly with the shift towards
compartmentalized, service-driven architectures which has made
end-to-end data flow analyses more difficult [23]. Moreover, dis-
tributed systems change frequently—during development and in
production—and so do their attack surfaces and the privacy threats
their users are exposed to [42]. Risk analyses should therefore be
done frequently to identify risks as early as possible. Yet, perform-
ing a thorough risk analysis, including threat modeling and impact
evaluation, can be very time-consuming as the system’s data flows

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(2), 171–187
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0046

have to be modelled, possible attack vectors identified, impacts
evaluated, and risks prioritized, until finally, mitigative measures
can be derived.

Especially in agile development it is difficult to integrate this
time-consuming process into the short development sprints [14, 22];
but also the maintenance of large applications in general requires
privacy risks to be re-assessed frequently to check whether the
system still conforms to initially established privacy requirements.

The standard approach to modeling privacy threats is LIND-
DUN [9, 49] which—similarly to STRIDE [35] in the context of
security threat modeling—describes a threat modeling methodol-
ogy for privacy. Its practical application, however, can suffer from
the problems described above. This conflict calls for an automated
approach to the identification of privacy threats that reduces time
spent on threat modeling, and allows the frequent identification
of threats across multiple services (see also [14, 23, 42]). Previous
works have already proposed automated analyses on extended data
flow diagrams [6, 47] but they do not generate these diagrams au-
tomatically and do not include privacy properties. Thus, they also
suffer from the limitations mentioned above.

In this paper, we leverage an existing code property graph li-
brary [48] to enable (semi-)automated privacy analyses of dis-
tributed applications. A code property graph includes data flow
information—similar to a data flow diagram—that is generated au-
tomatically, and can be extended with dedicated nodes and edges,
to represent privacy-related properties. Based on the threats pro-
posed in LINDDUN GO [49], we show which privacy threats can be
detected automatically in a code property graph. To make privacy
properties, like identifiers, visible in the graph we use a language-
independent taint-tracking approach for code property graphs that
extracts privacy labels from code annotations and comments. We
also extend the graph with further privacy-related properties, like
database operations. The graph can then be inspected via reusable
queries that identify generic or application-specific privacy threats.
We propose a number of such reusable and adaptable queries.

Our approach not only partly automates the privacy threat mod-
eling process, but also allows to identify privacy issues that would
not be detectable as easily in a manually created data flow diagram.
For example, it can be used to identify entry points and exit points
of personal data, which can be utilized for a granular data flow
tracking across services.

171

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0046

Proceedings on Privacy Enhancing Technologies 2023(2) Immanuel Kunz, Konrad Weiss, Angelika Schneider, and Christian Banse

We also propose a test suite of 22 privacy threat implementations
as a benchmark for the evaluation of static analysis tools. Our own
implementation performs with a precision of 0.65 and recall of 0.91
on this test suite.

In summary, we present the following contributions:
• An operationalization of LINDDUN privacy threats for their
detection in a code property graph,

• an enhanced code property graph implementation (called the
Privacy Property Graph) that allows to detect the identified
properties, partly via taint-tracking, as well as a number of
reusable graph queries, and

• a test suite of privacy threats that for the evaluation of graph-
based static analysis tools.

2 BACKGROUND
2.1 Code Property Graphs
Yamaguchi et al. first introduced the concept of a Code Property
Graph (CPG) [51], a directed attributed graph representing source
code that allows the analysis of large source code projects. It con-
sists of nodes that represent the syntactic elements of the source
code, as well as edges that put the nodes into relation. The repre-
sentation of source code in a code property graph allows to search
large code bases for vulnerabilities and patterns that can give in-
sight into whether a program behaves in accordance to compliance
criteria. Constructed from source code or an intermediate represen-
tation, it is stored in a graph database and can then be queried with
declarative languages.

A CPG’s edge types are used to represent different aspects of
source code: First, the program’s syntactic structure, in the form of
an Abstract Syntax Tree (AST), second, the program’s execution
order, e.g. as a Control Flow Graph (CFG) between the AST-nodes,
and third, the program’s data flow, e.g. as a Data Flow Graph (DFG).
The dedicated DFG allows to track data flows and is therefore
essential for our approach to track personal data. Furthermore, AST
and CFG are important to follow the control flow and thus achieve
flow-sensitivity which is important for taint tracking. Alternative
solutions include, e.g., Program Dependence Graphs (PDG) which
can be seen as a combination of a CFG and DFG. Note that we will
consider adding a PDG to our approach in future work, since it
could help to avoid false negative results.

Practical implementations of code property graphs differ in the
abstraction level and the languages that they support: Joern [52] is a
platform for robust analysis of C/C++ code that also supports other
languages. Joern as well as Plume [10] and Graft [21] support the
analysis of Java bytecode. The cpg [48] represents control flow on
a finer granularity, also capturing the order in which expressions
are evaluated. It can represent Java, C/C++ as well as Python, Go
and TypeScript code in a unified format, allowing the analysis of
heterogeneous services written in multiple languages.

2.2 The Cloud Property Graph
The Cloud Property Graph (CloudPG) [5] is an extension of the cpg.
Among others, it adds runtime information of cloud deployments,
e.g. security features like encryption properties and logging func-
tionalities, as well as deployment information like container image
and orchestration configurations, to the graph. The information is

Figure 1: PrivacyPG, CloudPG, and cpg: the basic code prop-
erty graph (cpg) provides node relations of three types (see
Section 2.1), while the Cloud Property Graph (CloudPG)
adds nodes and edges e.g. regarding CI/CD workflows. The
Privacy Property Graph (PrivacyPG, or PPG) adds taint
tracking, library-specific passes and extensions of existing
passes for more languages and implementation variations.

added according to an ontological description of cloud resources
and security features. Since it adds data flows between endpoints,
it also allows to detect security threats across services.

Furthermore, the CloudPG is extendible, e.g. to add dedicated
nodes for specific technologies. Since the detection of privacy
threats requires special properties in the data, we leverage its ex-
tendibility in this paper to add privacy-relevant concepts. Note
that using the CloudPG to analyze an application is not limited to
those deployed in cloud systems. The resulting analysis, however,
benefits from additional cloud-specific information as described
above in case of a cloud deployment.

In this paper, we refer to the CloudPG as the implementation
basis described above and in [5], while we refer to the Privacy
Property Graph (PPG) as the extended version of the CloudPG
which reflects properties that allow to detect privacy threats in the
graph. Figure 1 shows the relation between cpg, CloudPG and PPG.

2.3 Privacy Threat Modeling
In this paper we aim at automating several steps of the privacy
threat modeling process. A popular method for conducting privacy
threat modeling is LINDDUN [9]. LINDDUN considers the privacy
protection goals anonymity, unlinkability, undetectability, plausible
deniability, confidentiality, policy non-compliance, and content un-
awareness, based on the definitions by Pfitzman and Hansen [34].
A more leightweight approach is LINDDUN GO which uses a re-
duced scope and makes LINDDUN easier to apply for non-experts.
Still, the LINDDUN GO authors claim that it is comprehensive if
all proposed threat types are considered. In this paper, we use the
LINDDUN GO threat descriptions [49], since it is the more recent
version and describes the threats in a more compact form. This way,
we can operationalize them one by one without neglecting any of
the original LINDDUN threats.

172

Privacy Property Graph: Towards Automated Privacy Threat Modeling via Static Graph-based Analysis Proceedings on Privacy Enhancing Technologies 2023(2)

Figure 2: A screenshot of a part of the code property graph
generated for an example application. It , which shows a ba-
sic data flow diagram. It can be generated with a reusable
query and shows the microservices of the application, the
HTTP calls that exist between them, as well as the databases
they access: in this case the frontend service employs an
HTTP POST request to call the login endpoint of the auth
service which in turn has a database operation on a Post-
greSQL database defined.

3 APPROACH: GRAPH-BASED PRIVACY
THREAT MODELING

In this section we analyse privacy threats to show if and how they
can be detected in a static, graph-based code analysis. The results
are summarized in Appendix A.

3.1 Creating a Data Flow Diagram
The first step to detect privacy threats is to create a data flow
diagram. We use an existing code property graph library, the cpg
(see Section 2.1) ,to generate a code property graph—essentially an
enriched data flow diagram—via static source code analysis, and
store the graph in a graph database. Figure 2 shows an excerpt of
the graph generated for an example application.

Furthermore, using reusable queries, one can obtain a high-level
graph that resembles a manually created data flow diagram includ-
ing microservices, data flows between them, databases they access,
and further information.

3.2 Operationalizing Privacy Threats
In the following, we identify the general data properties that are
required to detect these privacy threats automatically, ordered by
the LINDDUN GO threat categories. Appendix A includes a short
technical description of each LINDDUN GO threat as well as a
summary of these data properties.

We differentiate between contextual data, i.e. metadata, and trans-
actional data, i.e. payload data. While contextual data can usually

be predicted in a static code analysis, e.g. due to the communication
protocol that is used, transactional data cannot always be predicted,
since it often depends on user inputs. We also identify the technical
operations that need to be recognized to detect privacy threats, e.g.
database operations.

Note that many of the LINDDUN threats [49] aim at helping
users to think of possible threats, partly through scenario descrip-
tions. While this is helpful for brainstorming sessions, we show
in the following that they are redundant in several cases. For ex-
ample, threat ID1 Identifying Credentials suggests to investigate if
user credentials contain identifiers or unique information that can
result in profiling. Technically, however, it can be seen as a more
specific threat than ID3 Identifying Inbound Data which concerns
all personal data flowing from users to the service.

3.2.1 Identifiability. Identifiability is the feasibility of the data
controller to identify a user from the contextual or transactional
data the user sends to the service (or that is collected from the user).

LINDDUN GO identifies seven identifiability threats and differ-
entiates between threats that stem from credentials (ID1), inbound
data (ID3), i.e. data that flows from the user to the server, shar-
ing identifiable data with third parties (ID5), and storing (ID6) and
retrieving (ID7) identifiable data in/from databases. Furthermore,
users may be identified by side-channel information of their actions
(ID2), or through identifiable contextual data (ID4).

Generally speaking, this category includes threats that result
from identifiable transactional data, identifiable contextual data,
or from side-channel threats. In this paper, we do not consider
side-channel attacks (ID2), since the identification of such attacks
requires a broader analysis of the system and its context, e.g. ex-
pected user behavior, which is not available in a static analysis.

Thus, the technical properties that need to be detected, are the
following. First, identifiers need to be detected in the code. For trans-
actional data (ID1, ID3, ID5, ID6, ID7) we need to detect declarations,
e.g. variables, that hold identifiable information, and endpoints that
send and accept such declarations, and we need to detect and follow
the data flows between them. Second, threats result from identifiers
included in contextual data (ID1, ID4). These are usually deter-
mined by the protocol that is used, e.g. IP addresses are included in
metadata of the HTTP protocol. Since this metadata is not directly
available in a code property graph, we need to detect the relevant
protocols and libraries, and detect their usage in the graph. In our
implementation, we therefore use protocol-specific extensions to
determine if a certain technology is used and detect threats ac-
cordingly (see Section 4). Third, database interactions need to be
recognized (ID6, ID7). Since the implementation of database inter-
actions varies with the used technology, they need to be detected
per database technology.

3.2.2 Linkability. Linkability is the feasibility of the data controller
to link together two pieces of information about a user, e.g. two
requests or two pieces of data about the user which are stored in
different databases.

LINDDUN GO lists 7 linkability threats which are analogous to
the identifiability threats: linkability of credentials (L1), user actions
(L2), inbound data (L3), contextual data (L4), shared data with third
parties (L5), and stored (L6) and retrieved data (L7).

173

Proceedings on Privacy Enhancing Technologies 2023(2) Immanuel Kunz, Konrad Weiss, Angelika Schneider, and Christian Banse

While identifiability results from the single transmission of an
identifier, linkability results from multiple transmissions of pseudo-
identifiers. If the transmission of a pseudo-identifier is implemented
in code, it can be assumed that it can also be transmitted more than
one time, i.e. a potential linkability threat can be derived in this
case.

Additionally, pseudo-identifiers may be transmitted from differ-
ent sources, e.g. from several devices pertaining to the same user.
In this case a static analysis needs to detect the services that send
and consume the pseudo-identifiers to detect the linkability threat.
Note that identifiability always entails linkability as well, since
identifiers are always linkable.

The properties we need to detect are therefore similar as for
identifiability, i.e. pseudo-identifiers in transactional and contextual
data, as well as database interactions. Again, we do not consider
linkability threats that result from side-channel information (L2).

3.2.3 Non-Repudiation. Non-repudiation is the inability of the user
to deny an action, such as sending a message. It is the opposite
of plausible deniability. Often, non-repudiation is treated—under
certain assumptions—as the undisputable attribution of an action to
a person, e.g. a message is attributed to a person who is believed to
hold the private key that was used to cryptographically sign a mes-
sage. LINDDUN also considers non-cryptographic measures, such
as logs that record actions and messages, which still can present
credible proof of an action.

The following 5 non-repudiation threats are described in LIND-
DUN GO: Non-repudiation of credentials (NR1), sending a message
(NR2), receiving a message (NR3), storing data (NR4), and retriev-
ing data (NR5). Analogous to other categories, NR4 and NR5 are
extensions of the other threats, but add a database operation. For
example, a non-repudiable credential may be used to log in to a
service (NR1), an event log is created and saved (NR4), and later it
is retrieved by an administrator (NR5).

Similarly to ID1 and L1, NR1 requires the detection of identifiers,
but specifically in credentials. Threat NR2 may occur in various
scenarios of which we target two important ones: First, the usage of
private keys for digital signatures, which presents the classic non-
repudiation property in the cryptographic sense. Second, we cover
loggingmechanisms that record the sending of messages. These two
scenarios are usually not self-implemented in an application but are
usually implemented using third-party libraries. Thus, the usage of
such libraries needs to be detected in combination with (pseudo-)
identifiers. Finally, NR4 and NR5 again require the detection of
database operations.

For NR3, we need to detect automatic acknowledgments of mes-
sage receipts. This threat implies that a message is sent to the user
where it triggers an automated response, indicating the reception.
It therefore requires the detection of a very specific heuristic of data
flows which we do not cover in this paper—encoding this heuristic
in a static analysis can lead to either many false positive or false
negative results, and should be addressed in future work.

3.2.4 Detectability. Detectability is the ability of an attacker to
distinguish a specific user action from others in a set of actions.

LINDDUN GO differentiates between 5 detectability threats: de-
tectable credentials (D1), communication (D2), outliers (D3), storage
operations (D4), and retrieval operations (D5).

Detectability threatsmostly concern responses of a service’s APIs
and what information can be derived from these responses. For
instance, an account registration interface may return an HTTP 409
(“Conflict”) header, indicating that a certain email address is already
in use for the service (D1). Depending on the kind of service, this
information can violate the user’s privacy. Similarly, information
can be derived from API responses to database queries (D4, D5).

To detect an API that leaks personal information, we need to
detect several code operations in combination. First, APIs need to
be identified that accept identifiers or pseudo-identifiers. Second,
a database operation using that (pseudo-)identifier needs to be
detected, and third, a response that leaks information about the DB
state needs to be recognized, i.e. a response of the type “Not Found”
or “Conflict”, i.e. 404 or 409 in the case of HTTP headers. Note that
we focus on HTTP connections here, but expect that the approach
works for other protocols as well1.

We furthermore assume that a detectable communication threat
occurs when an HTTP connection from one trust domain to another
is established, resulting in an observable data flow (D2). Also, data-
base operations need to be identified (D4, D5). As explained above,
threats based on side-channel information are out of scope for this
paper, which is why detectable outliers (D3) is not considered here.

3.2.5 Unawareness. Unawareness threats result from data subjects’
insufficient knowledge or control over their personal data after its
collection. More specifically, this category includes the threats of
insufficient transparency, i.e. insufficient information given to the
user about the handling of personal data (U1), missing mechanisms
for users to access (U3) and modify (U4) their data, as well as
missing checks for user consent (U5). Finally, threats to usable pri-
vacy in general are addressed (U2), including, for instance, privacy-
unfriendly default settings.

To check for mechanisms for managing personal data (U3, U4),
we need to combine the detection of database operations on per-
sonal data with a role-based access control check, since we only
want to detect database operations meant for users on their data.

We would argue that transparency information (U1) should not
be addressed by a static analysis. It can rather be addressed once
the implementation is considered (mostly) finished, since it can
easily be added without impacts on other parts of the code or the
architecture. Still, a graph-based analysis can give guidance on
which transparency notices should be created, e.g. by showing
which personal data flows exist in the system. Similarly, it can help
to uncover threats to usable privacy (U2), which, however, should
be addressed in respective validation tests with users.

Consent checks (U5) are usually obtained once before data collec-
tion starts, e.g. when a user installs a mobile app. This threat is thus
not relevant for our approach, but should be considered together
with the legal ground for the data collection (see NC2 below), e.g.
once before and verified after the implementation.

3.2.6 Policy Non-Compliance. Policy non-compliance refers to the
data controller’s adherence to privacy policies, for instance policies
based on data protection regulations.

1Most file transfer protocols use status codes that indicate availability of a file or
correctness of a username, for example see FTP status 331 (‘User name okay, need
password‘) and 450 (‘Requested action not taken. File unavailable‘), and SCP 6 (‘File
does not exist‘) and 79 (‘Invalid user name‘)

174

Privacy Property Graph: Towards Automated Privacy Threat Modeling via Static Graph-based Analysis Proceedings on Privacy Enhancing Technologies 2023(2)

LINDDUN GO lists violations of the purpose limitation princi-
ple, including disproportionate collection (NC1), processing (NC3),
and storage (NC5), as well as processing personal data without a
legal basis (NC2). Finally, automated decision making about users’
personal data is stated as a threat (NC4).

To detect NC5, we can check if a personal datum is stored in a
storage, e.g. a certain database table, but no access is implemented
which could retrieve it. Regarding NC1, we need to detect if a
(pseudo-)identifier is sent from user to server, and if it is processed
there or not (apart from storage operations). To detect such a pro-
cessing step, we can use the code property graph’s node types to
check, e.g., if the datum is assigned to a variable, but not used in a
processing expression.

The other threats are out-of-scope for our approach: To detect
NC3, one needs to know the purpose of the data collection and how
it should be reflected in code, which cannot be generally addressed
in our approach. Regarding NC2, the legal basis for collecting per-
sonal data does not have to be addressed in a regular threat model-
ing process, but can be a one-time activity before development of
the system starts. Furthermore, automated decision making (NC4)
targets situations where an impactful decision, e.g. the decision
about a loan application, is made completely automatically. This is
rather a design decision that should be addressed by other means
since it requires a contextual consideration of what is “impactful”.

3.2.7 Confidentiality. Confidentiality is not explicitly considered
in LINDDUN GO2. The CloudPG we use as the basis for our imple-
mentation already covers the detection of some types of security
threats (see Section 2). In Section 5 we propose a test library that
also includes test cases that implement unencrypted HTTP connec-
tions. We do not, however, go into further detail regarding security
threat modeling in this analysis.

Summarizing, it can be said that many privacy threats have
common properties in source code, such as the usage of (pseudo-)
identifiers, database interactions, role checks, and the usage of ded-
icated privacy-relevant libraries. These can be detected in a static
analysis, which can therefore support threat modeling activities
and reduce their time consumption.

3.3 Prioritizing Threats
After detecting potential threats, the next step is to prioritize them
according to their relevance.We distinguish general and application-
specific prioritization criteria.

Generally, it is meaningful to prioritize (1) threats that result
from data flows from user to server domain over (2) threats that
result from data flows from the server domain to a third party
domain, and over (3) threats that result from data flows within the
server domain itself, e.g. threats from malicious insiders.

We consider threats of category (1) the most severe since they
entail that users lose control over their personal data in the first
place (see also Gürses et al. [16]). Threats of category (2) further
undermine the users’ control over their data by introducing more
entities that potentially can misuse the data. Threats of category (3)
include threats that, e.g., result from a database access of identifiable

2We assume that this is the case because confidentiality is also covered by security
threat modeling, which commonly uses the security goals confidentiality, integrity,
and availability.

data within the system, and can be considered downstream threats
from (1) and (2).

Furthermore, there can be application-specific prioritization cri-
teria. Evidently, threats that concern more sensitive data should be
prioritized over those that concern less sensitive data. It is, however,
not trivial to classify data regarding their sensitivity in a consistent
way that is also easy to apply for non-experts, and compliant with
data protection regulations (see also our discussion in Section 6.2).
We therefore use the classification by Roßnagel et al. [36] who
developed data protection classes for the GDPR3. They define three
such data protection classes4, since their assignments have the goal
of defining protection measures for the respective data. They also
propose lists of data items for each category that make it better
understandable for non-experts to assign data to the three classes.

4 IMPLEMENTATION
In the previous section we have identified data and code properties
that determine privacy threats: identifiers and pseudo-identifiers in
transactional and contextual data, database operations, data flows,
API responses, role checks, the usage of certain libraries, e.g. for
logging, and data sensitivities. In this section we show which ex-
tensions the PPG implements to enable the detection of potential
privacy threats, and we present a set of queries to reveal such
threats in the generated graph.

4.1 Exposing Privacy Properties in
Transactional Data

To expose privacy properties of transactional data in the graph we
use a taint-tracking approach with systematic labels. Two strategies
to introduce such taints are possible: First, a naming convention
can be defined to mark code entities containing personal data, e.g.
adding a prefix to a variable or class name. The labels would then
become visible in the graph as it reveals such declarations and their
names. Second, the respective code entities can be annotated with
code annotations or comments, e.g. @Identifier. While the for-
mer may introduce less overhead, the latter does not interfere with
existing naming conventions and is less prone to unintentional
mistakes, for example when renaming a variable. In our implemen-
tation we mainly use annotations to introduce taint labels and use
comments where annotations are not available, for instance in the
Go programming language.

As shown in the previous section, such labels are required for
identifiers and pseudo-identifiers, while other properties, like data-
base operations, can be detected without dedicated labels. Code
entities that contain (pseudo-)identifiers are usually variables, e.g. a
variable that holds a string from a user input and is sent to the server
via an HTTP request. The PPG parses these annotations, adds them
as nodes to the graph, and connects them via ANNOTATIONS edges.
This is done via dedicated passes. Passes are modular extensions of
the CloudPG that add special nodes and edges to the graph5.

3The classification was developed in the AUDITOR project which is a candidate scheme
for a GDPR certification.
4They also define a special class “3+” that is not relevant in the context of this paper.
5Further information regarding the development of custom passes is included in the
open-source GitHub project of our implementation; we will submit the source code
for the artifact review and will add a link here.

175

Proceedings on Privacy Enhancing Technologies 2023(2) Immanuel Kunz, Konrad Weiss, Angelika Schneider, and Christian Banse

The PPG’s pass for parsing comments and annotations intro-
duces the following labels:

• Identifier: A code entity that holds data which represents
an identifier. Every identifier is implicitly also handled as a
pseudo-identifier.

• PseudoIdentifier: A code entity that holds data which can
be linked to other pseudo-identifiers and to a person.

• PrivacyLabel: An annotation that holds an additional posi-
tive integer representing an ordinal scale to capture different
sensitivity levels of private information.

The resulting nodes and edges can be used in combination with
the data flow graph (DFG, see Section 2). The DFG connects decla-
rations, statements, expressions and calls that exchange data and
we can use it to track the flow of labeled entities through the code.
We additionally use @Anon<Placeholder> labels that indicate the
sanitization of a tainted code entity. These can be introduced analo-
gously via annotations. We introduce them as dedicated AnonLabel
nodes in the graph and [:ANONYMIZES] edges to the respective
DataLabel they are supposed to anonymize. This way, we can
easily exclude data flows that are processed by an anonymization
function, effectively reducing false-positive results (see Listing 1).

To query the graph, we use Neo4j’s query language Cypher [13].
The Cypher syntax uses round brackets to describe nodes and
their types ((:Expression)), dashes for undirected edges (--), arrows
for directed edges (-->), and square brackets in between dashes to
describe edge types (-[:ANONYMIZES]-). The *-operator denotes a
path of arbitrary length6.

Listing 1: Cypher query which finds tainted data flows that
are used in a function butwhich excludes paths that contain
a node that anonymizes the taint. The *-operator denotes
paths of arbitrary length.
MATCH p=(n : Da taLabe l) −[:LABELEDNODE]− >() −[:DFG ∗] − >(:

P a r amVa r i a b l eDe c l a r a t i o n) <−[:PARAMETERS] − (:
F u n c t i o nDe c l a r a t i o n)

WHERE a l l (a l in nodes (p)
WHERE NOT (a l) <−[:LABELEDNODE] − (: AnonLabel) −[:ANONYMIZES]−>(n))
RETURN p

4.2 Exposing Privacy Properties in Contextual
Data and Code Operations

To expose privacy-relevant code operations, like database interac-
tions, we have implemented further passes which add dedicated
nodes to the graph. These are database read and write operations,
requests between services (e.g. HTTP requests), the use of dedi-
cated libraries, e.g. for logging and cryptographic signatures, as well
as role checks. Some of these properties would also be detectable
without dedicated nodes in the graph, but such dedicated nodes rep-
resent the desired framework-specific properties in a more abstract
form, allowing to write more generic and reusable queries.

4.2.1 Database Operations: To expose database operations in the
graph, we detect the usage of language-specific calls for Post-
greSQL and MongoDB. For instance, we create dedicated nodes
for a PostgreSQL database and its tables, and add DFG edges from

6See also https://neo4j.com/developer/cypher/querying/

the database operation to the table in the direction of the data
flow—depending on if it is a read or a write access.

4.2.2 HTTP Calls and Responses: To correctly identify an endpoint
of an HTTP request in a static analysis, their endpoints need to be
resolved: In our example application (described in the next section),
for instance, a request’s URL is not a static String but a variable
that is initialized via an external configuration file. Consequently,
the URL needs to be resolved during the analysis. We implement
such a path-sensitive value resolver for variables that are initialized
via external configuration files7. We have also added DFG edges
to account for the logic of specific HTTP libraries. For instance,
we add DFG edges from an HTTP endpoint to the variable that is
initialized with the HTTP request’s body. This way, we allow to
easily track data flows across HTTP requests with generic queries.

4.2.3 Contextual data: Contextual data is metadata that can con-
tain (pseudo-)identifiers depending on the communication protocol
that is used. We use the HTTP protocol as an example, which con-
tains pseudo-identifiers by design, i.e. IP addresses. Using the PPG,
a simple query, similar to the one shown in Listing 2, can reveal
all HTTP requests with their sources and targets. To cover more
frameworks, only minor additions to the query are necessary.

4.3 Developing Queries
Having exposed the privacy properties in the graph, we can develop
queries that detect potential privacy threats. In these queries we
utilize the nodes and edges that the passes described above add
to the graph, e.g. identifier nodes, database operation nodes, and
respective DFG edges. We use Neo4j’s query language Cypher to
write the queries which can be executed manually via the Neo4j
user interface, or automatically via the respective API. We aim at
developing all queries in a way that reveals vulnerable paths in the
graph with high precision and recall. At the same time, we aim at
writing them in a generic, i.e. application-independent, fashion.

4.3.1 Identifiability and Linkability. As seen in Section 3, identifia-
bility and linkability threats are highly dependent on transactional
data properties. Since we use generic labels that taint personal data
in code, queries for these threats are simple: We follow DFG edges
of tainted elements and check if they are transmitted, e.g., via HTTP
calls, see Listing 2.

Note that an application, as referred to in different queries, means
one microservice, e.g. a frontend or a database. These are identified
by the CloudPG via CI/CD definitions, e.g. GitHub workflow files8.
The query in Listing 2 can therefore easily be limited to, e.g., the user
frontend to limit the query to the identifiable data flows originating
from the user domain.

Listing 2: Cypher query for HTTP data flows of (pseudo-
)identifiers that are transmitted to an HTTP endpoint. The
PPG implicitly treats identifiers also as pseudo-identifiers
so querying for a pseudo-identifier also reveals identifiers.
MATCH p = (: P s e u d o I d e n t i f i e r)−− () − [:DFG ∗] − > (: H t t pEndp o i n t)
RETURN p

7Note that the CloudPG already implemented such value resolvers, which, however,
were improved for the PPG, e.g. to resolve URLs defined in separate configuration files.
8https://docs.github.com/en/actions/using-workflows

176

https://neo4j.com/developer/cypher/querying/
https://docs.github.com/en/actions/using-workflows

Privacy Property Graph: Towards Automated Privacy Threat Modeling via Static Graph-based Analysis Proceedings on Privacy Enhancing Technologies 2023(2)

The query above also covers D2, detectable communication, since
it reveals potentially observable data flows. Furthermore, it can be
extended to find services that read personal data from more than
one database, i.e. they can link data frommultiple sources, as shown
in Listing 3.

Note that we have not yet implemented dedicated passes and
queries for detecting contextual data, i.e. the LINDDUN threats I4
and L4. Their development would require an in-depth analysis of
communication protocols and the identifiers and pseudo-identifiers
they use which we consider future work.

Listing 3: Query that finds linkability threats resulting from
access to multiple databases that contain personal data. It
first matches requests that include a database read opera-
tion. Then it limits the results to those database storages that
contain (pseudo-)identifiers and to paths where at least two
different such storages are used.
MATCH p=(a : App l i c a t i o n)−− (: H t t p R e q u e s t) <−[:DFG ∗] − () −−(:

D a t a b a s eOp e r a t i o n) <−−(d1 : D a t a b a s e S t o r a g e) ,
(a : App l i c a t i o n)−− (: H t t p R e q u e s t) <−[:DFG ∗] − () −−(: D a t a b a s eOp e r a t i o n)

<−−(d2 : D a t a b a s e S t o r a g e)
WHERE (: P s e u d o I d e n t i f i e r)−− () − [:DFG ∗] − () −−(: D a t a b a s eOp e r a t i o n)−−>(

d1 : D a t a b a s e S t o r a g e) AND (: P s e u d o I d e n t i f i e r) −−() − [:DFG ∗] − ()
−−(: D a t a b a s eOp e r a t i o n)−−>(d2 : D a t a b a s e S t o r a g e)

RETURN p

As an example, consider a scenario where a microservice accesses
both a database of pseudonymized patient health records as well as
the database which holds the assignment of pseudonyms to real user
names. Such a threat may result from design mistakes or forgotten
legacy code, and could be detected with the query above.

We do not differentiate here between the flow of credentials and
other data (see threats ID1, L1, D1, NR1), since we assume that all
relevant data is labeled. Still, the queries can easily be modified to
limit them, e.g., to a certain variable name. Similarly, the queries can
be limited to flows that include a database operation (as required
in ID6, L6, ID7, I7).

4.3.2 Non-Repudiation. As discussed in Section 3, in practice most
non-repudiation threats stem from the usage of certain libraries, like
logging and cryptographic libraries in combination with personal
data. Listing 4 shows a query which detects operations that log
tainted personal data. In our implementation the underlying pass
is implemented for the Go zerolog9 library, and is easily extendible
for other libraries and languages. The respective pass creates ab-
stract LogOutput nodes for the library calls, and adds data flows
accordingly.

Listing 4: Query that finds logging calls which use identi-
fiers.
MATCH p = (: I d e n t i f i e r)−− () − [:DFG ∗] − > () − [:ARGUMENTS] − () − [:CALL] − (:

LogOutput)
RETURN p

Consider that many log outputs are sent to centralized logging
services where they may be accessible to other roles. Such a threat
could be uncovered using the query above.

9https://github.com/rs/zerolog

4.3.3 Detectability. Several detectability threats result from API
responses that potentially leak personal information. In our imple-
mentation we cover these threats by detecting respective responses
in HTTP APIs: we harmonize the naming for HTTP status codes
across languages, and thus make them detectable in generic queries
as shown in Listing 5.

Listing 5: Cypher query that finds tainted entities which are
transmitted via an HTTP request andmay trigger an HTTP
status code of 404 or 409 as response. These responses could
indicate that the transmitted data entity does not or already
exists in the database.
MATCH p = (: P s e u d o I d e n t i f i e r)−− () − [:DFG ∗] − >(h : H t t p Endp o i n t) −−(:

F u n c t i o n D e c l a r a t i o n) − [:EOG ∗] − > ({ name : " H t t p S t a t u s . CONFLICT " })
RETURN p

An example threat that could be detected via this query is a leaking
account registration function for a potentially sensitive service like
a crypto currency exchange.

4.3.4 Unawareness. To detect the unawareness threats U3 and
U4 we need to check if users can read and modify their personal
data. This detection requires three steps. First, we check which
storages contain personal data by following tainted elements to
database write operations. We then check if for those storages, read
operations are implemented, i.e. the data can potentially be accessed
afterwards. Third, it needs to be checked if these operations are
restricted to the users whose data is stored in these storages. To
perform the last step, we need to identify role checks not only in
the application code, but potentially also mechanisms on other
layers, e.g. access control lists on the cloud configuration layer. The
PPG can potentially cover role checks on several such layers. The
implementation, however, is outside the scope of this paper.

Listing 6 shows how the first two steps can be implemented in a
Cypher query.

Listing 6: Cypher query that finds services that write per-
sonal data to database storages but do not have read access
to that data.
MATCH p = (: P s e u d o I d e n t i f i e r)−− () − [:DFG ∗] − >(h1 : H t t p R e q u e s t) − [:DFG

∗] − >(ds : D a t a b a s e S t o r a g e) , (a : A p p l i c a t i o n) , (h2 : H t t p R e q u e s t)
WHERE NOT EXISTS ((: H t tpReques t) −[:DFG∗] − >() −[:CALLS] − () <−[:DFG]− (

ds : Da t aba s eS t o r age)) AND ((h1)−− (a)) AND ((h2)−−(a))
RETURN p

As discussed in Section 3, further unawareness threats concern
missing transparency information about the handling of personal
data. While the detection of such threats is difficult to cover with a
static analysis tool, their mitigation can be supported: using queries
as presented in Listing 2, a list of flows of personal data can be
compiled and used as the basis of creating transparency notices.

4.3.5 Policy Non-Compliance. Policy non-compliance mainly tar-
gets disproportionate collection, processing, and storage. Since
these threats may take various forms in code, many different queries
can be developed to detect such threats. In the graph generated
by our implementation, the data flow graph can be used to track,
e.g., if personal data that is stored in a database is also retrieved, as
shown in Listing 7.

177

https://github.com/rs/zerolog

Proceedings on Privacy Enhancing Technologies 2023(2) Immanuel Kunz, Konrad Weiss, Angelika Schneider, and Christian Banse

Listing 7: Cypher query that finds database tables (in Post-
greSQL) and collections (in MongoDB) which are written
(pseudo-)identifiers to but never read from indicating a dis-
proportionate storage threat.
MATCH p = (: P s e u d o I d e n t i f i e r)−− () − [:DFG ∗] − > (: Da t a b a s eOp e r a t i o n)−−>(s

: D a t a b a s e S t o r a g e)
WHERE NOT EXISTS ((: Da t aba seOpe ra t i on) <−[:DFG]− (s)) RETURN p

To detect disproportionate collection, we check if a (pseudo-
)identifier flows to another service via an HTTP request, but does
not flow through a processing node subsequently. The cpg uses
different node types that can be interpreted as processing nodes.
The query in Listing 8 uses a list of such nodes, e.g. If-Statements
and certain types of Expressions, to reduce false-positive results.

Listing 8: Cypher query that finds flows of personal data to
anHTTP endpointwhere its further data flowdoes not cross
a list of nodes that are considered processing steps like cer-
tain Expressions or If Statements.
MATCH p = (: P s e u d o I d e n t i f i e r)−− () − [:DFG ∗] − >(h : H t t p Endp o i n t)
WHERE NOT EXISTS { MATCH (h) −[:DFG∗]− >(i) WHERE (i : E xp r e s s i on) AND

NOT (i : D e c l a r e dRe f e r e n c eExp r e s s i o n) AND (NOT (i :
B ina ryOpe ra to r) OR i . ope ra to rCode <> " = ") OR (i : I f S t a t em en t)
OR (i : Whi l eS ta tment) }

RETURN p

4.3.6 Confidentiality. As mentioned in Section 3 we do not focus
on confidentiality in this paper. Still, we have implemented a pass
that exposes information about transport encryption of HTTP con-
nections (see Listing 9), to make our approach better comparable
to the LINDDUN example presented in the next section.

Listing 9: Cypher query that finds HTTP endpoints which
havenoTransportEncryptionnode attached i.e. they are not
secured using TLS. TransportEncryption nodes are added
for example if an HTTP request uses an “https” URL.
MATCH p=(h : Ht tpEndpo in t) WHERE NOT ((h)−− (: T r a n s p o r t E n c r y p t i o n))

RETURN p

For more example use cases for the queries please see also the
test cases we have developed (Section 5).

4.4 Developing Further Analysis Queries
Beyond the threat categories targeted above, our approach allows
to analyze source code in various other ways to detect privacy prob-
lems. In the literature, different anti-patterns for privacy problems
have been proposed, e.g. privacy smells [25] and privacy dark pat-
terns [7]. Some of these can be detected as well using our approach:
For example, The data lakes smell refers to databases that are used
by many services for the storage of different personal data. This
smell can be detected by the query shown in Listing 10.

Listing 10: Cypher query that finds database storages (e.g. ta-
bles) that are written to by more than one service.
MATCH p = (: Da t aba s eOpe ra t i on) −[:DFG]−>(d : Da t aba s eS t o r age) WITH d ,

COUNT (∗) AS num
WHERE num > 1 RETURN d

The graph furthermore allows to validate custom policies. For
example, an organization could define a policy regarding which

services are allowed to handle which kind of sensitivity level as
defined by the respective label, see Section 4.1. One can then check
which services handle data of a certain sensitivity level as shown
in Listing 11.

Listing 11: Cypher query that finds all services that accept
data of a protection level > 1 via an HTTP endpoint.
MATCH p=(a : App l i c a t i o n)−− (: H t t p Endp o i n t) <−[:DFG ∗] − ()−−(l :

P r i v a c y L a b e l)
WHERE l . p r o t e c t i o n l e v e l > 1 RETURN p

5 EVALUATION
In this section we present a privacy threat10 test suite for evaluating
the effectiveness of static analysis tools, e.g. CPG- or PDG-based
tools. It is implemented as an open-source project11. The results
of applying our own tool on this test suite are summarized in
Section 5.2.

5.1 Test Suite Implementation
The test suite includes 21 implemented threats which cover all of
the six LINDDUN GO categories. Additionally, there is one test case
targeting a Disclosure threat. An overview with short descriptions
is included in Appendix B.

At the time of writing the test suite implements each test case for
both Python and Go, and we plan to extend it for more languages,
e.g. Java and TypeScript. Furthermore, almost each test case has a
validation test case which includes code that does not exhibit the
respective threat. These test cases therefore validate the correct
implementation of the tests and queries. In total, the test suite
comprises 86 test cases.

In the implementation of the test cases, we have aimed at writing
short, standard code that is largely similar to examples given, e.g.,
in the libraries’ documentation.

The tests are structured as follows. Since privacy threats result
from the transmission of personal data from client to server, each
test case consists of at least one client and one server file. Further-
more, each test case includes a textual description of the concrete
threat it implements, and the expected outcome that an analysis
tool should provide. Also, every test case includes a configuration
file that contains mock deployment information, such as databases
and server URLs. Finally, every test case has a Neo4j-specific test im-
plementation which executes the PPG on the files described above
and compares the result to the expected outcomes.

For example, one Policy Non-Compliance test case implements a
client-server interactionwhere a tainted and an untainted datum are
sent to the server, but only the untainted one is further processed. A
README file defines the test conditions, e.g. that the tainted datum
is detected and that its data flow to the server is detected, while the
actual testing logic that executes the test is included in the PPG’s
testing directory.

We consider this test suite an initial set that should be extended
in future work. For example, more complicated scenarios includ-
ing authentication and role checks should be created. Note that

10Note that we use the term threat here interchangeably withweakness or vulnerability.
11We will submit the source code for the artifact review and will add the link to the
GitHub repository here.

178

Privacy Property Graph: Towards Automated Privacy Threat Modeling via Static Graph-based Analysis Proceedings on Privacy Enhancing Technologies 2023(2)

we discuss further limitations of the testing library and the PPG
implementation in the next section.

5.2 Results
Table 1 summarizes the results of applying the PPG to the test cases.
The results are the same for both Go and Python tests, which is
why they are generalized in the table. The results show that most
implemented threats are detected, with an overall precision of 0.65,
a recall of 0.91 and an accuracy (F-measure) of 0.76. Yet, there are
also false positives and in some cases false negatives. In the 22 test
cases, two false negatives (U4) resulted from missing differentia-
tion of database operations: the PPG currently only differentiates
between read and write operations, but does not specifically detect
modifications to existing data or deletions as such.

Threats related tomissing possibilities to erase or rectify personal
data can therefore not be detected in the current state. Eleven false
positives (L6/7, I6/7, NR4/5, D4/5, NC1/5) result from missing field
sensitivity in the detection of HTTP request bodies: the PPG detects
data entities that are transmitted in an HTTP request body, but
whenmultiple entities are transmitted, they cannot be distinguished
anymore at the receiver side. Thus, when tainted and untainted
data is transmitted in one request and stored at the server-side,
both are flagged as a potential threat.

The above-mentioned deficits are addressable with additional
engineering effort. Adding the missing database operations, for
example, requires to create classes for the create, read, update,
and delete (CRUD) operations and to write passes for the relevant
database technologies, like MongoDB and PostgreSQL. Then, the
passes can create CRUD-nodes when the respective operations are
detected and add them to the graph.

This example demonstrates an important balance to be made in
the engineering of the proposed tool: On the one hand, it is theo-
retically possible to prevent any false positives and false negatives
if passes for all existing libraries and programming languages are
implemented. On the other, a reasonable balance has to be found
between engineering effort of the tool and the number of false
results that can be tolerated. In the context of threat modeling, the
focus should be on reducing false negatives: It can be considered
more important to detect all threats (i.e. to reduce false negatives)
than to only detect valid ones (i.e. to reduce false positives), because
it is better to sort through false positives than to risk implementing
undetected weaknesses that may cause data breaches in the future.

5.3 Performance and Scalability
Generally, CPGs scale well with application size, since in contrast
to symbolic execution or model checking, a CPG does not simu-
late representations of program state, but performs searches on
structural information. This results in trading accuracy for more
efficiency and avoids state explosion problems that other methods
are susceptible to. Yamaguchi et al., for example, have analyzed the
Linux kernel with their CPG in under 40 seconds [51].

To evaluate the performance of our implementation, we have
conducted three benchmark tests12 as described in the following.

12We conducted the benchmarks on a MacBook Pro with an Apple M1 chip, using the
kotlinx-benchmark toolkit, see https://github.com/Kotlin/kotlinx-benchmark.

Table 1: Results of evaluating our tool on the test suite.
= threat correctly detected, = false positive, = false

negative

Test Case Result
L3 Linkability of inbound data
L5 Linkability of shared data
L6 Linkability of stored data
L7 Linkability of retrieved data
I3 Identifying inbound data
I5 Identifying shared data
I6 Identifying stored data
I7 Identifying retrieved data
NR2 Non-repudiation of digital signature
NR2 Non-repudiation of logging
NR4 Non-reputable storage
NR5 Non-repudiation of retrieved data
D2 Detectable communication
D4 Detectable at storage
D5 Detectable at retrieval
U3 No access or portability
U4 No erasure
U4 No rectification
NC1 Disproport. collection
NC5 Disproport. storage (w/o retrieval)
NC5 Disproport. storage (w/o processing)
Disclosure
Precision p (/ (+)) 0.65
Recall r (/ (+)) 0.91
F-measure (2pr / (p+r)) 0.76

5.3.1 Benchmarks of Test Cases. First, we have conducted bench-
marks for all test cases, with 10 executions per benchmark. The
average execution times ranged from 0.475 to 2.463 seconds per
benchmark, i.e. including the analysis of the source code, building
the graph, storing it into the Neo4j database, and querying the data-
base. The average execution time was 0.632 seconds with a median
of 0.583. The benchmark with the maximum execution time there-
fore is an outlier which can be explained by multiple HTTP clients
and requests as well as multiple database operations included in this
test case. The standard deviation values were consistently below
0.1 seconds, with two exceptions at 0.19 and 0.76.

5.3.2 Benchmarks of Increasing Code Size. Second, we conducted
benchmarks with an increasing number of lines of code (LoC),
between 100 and 1.000.000 LoC, to show how the implementation
scales with real-world code sizes. The code was auto-generated by
duplicating the encryption function of the Ceasar Cipher in Python
with 10 LoC. To void heap overruns, multiple files were created
with 100 LoC each. The code did not include PPG-specific code, like
HTTP connections or database operations, and it did not include

179

https://github.com/Kotlin/kotlinx-benchmark

Proceedings on Privacy Enhancing Technologies 2023(2) Immanuel Kunz, Konrad Weiss, Angelika Schneider, and Christian Banse

Figure 3: Performance benchmark results: The graph plots
the execution times in seconds, and lines of code (lower
x-axis) and number of client-server connections (upper x-
axis). In the former case, depicted by the blue, solid line,
a linear growth in execution times can be observed. This
growth underlines that code property graphs only process
structural information and avoid state explosion problems.
In the latter case, the red, dotted line depicts the growth
in execution times depending on the cumulative number
of client-server connections. This growth can be explained
with the quadratic growth in HTTP connections that are
made in the respective tests, since all clients establishHTTP
connections to all servers.

storing results to a database or querying it. Figure 3 presents the
results of these benchmarks (blue solid line).

5.3.3 Benchmarks of Increasing Client-Server Connections. Finally,
we conducted a benchmark that tests a more resource-intensive
scenario. In this scenario, the analyzed code contains an increasing
number of clients and servers, i.e. between a total of 2 and 3.000
clients and servers, where all clients create HTTP connections to all
servers. These were generated by duplicating the client and server
files from the D2 Detectable Communication test case. Again, this
benchmark did not include storing or querying the results. Figure 3
shows the execution times.

Overall, the benchmarks demonstrate that performance primar-
ily depends on specific passes introduced in the PPG, rather than
storage and retrieval of results or the pure parsing of code. As
Figure 3 shows, even with thousands of clients and servers, the
execution time still ranges within minutes, which we assume to be
a practical execution time in most real-world scenarios.

6 DISCUSSION
We first discuss limitations regarding completeness, manual effort,
bias, and other limitations and then discuss our approach in the
context of agile development.

6.1 Completeness
Overall, our approach as presented in Section 3 addresses 24 out
of 34 LINDDUN GO threats (see Appendix A), of which 18 are
addressed in the current implementation of the PPG. Threats that
cannot meaningfully be covered in a static analysis include, e.g.,
side-channel-based and legal threats. We would argue that these
threats do not have to be assessed regularly: In an agile development
process with short development sprints, for example, the lawful
ground of processing (NC2) for the data collection can be assessed
and documented once before development starts.

Furthermore, not every threat that is addressed is fully covered
by our approach. A disproportionate processing threat (NC3), for
instance, cannot be detected if the respective datum is processed,
but the processing is not necessary for the actual purpose. We hope
to advance the implementation to cover as many threats as possible
in an open-source community effort. Future work needs to show to
what extent the threats can be covered by the PPG in practice.

6.2 Manual Effort
Based on the cpg library, we automate the generation of a data
flow diagram as well as the detection of threats as discussed above.
Still, the PPG may also incur overhead in the following steps: (1)
Developing new queries and passes, for instance for frameworks we
do not cover yet, (2) adding labels to the code to expose transactional
privacy properties, (3) setting up the tool, (4) executing the tool,
and (5) analyzing the results.

We expect the overhead introduced in the development (1) to
decrease as the implementation and catalog of queries improve.
Regarding manual labeling (2), we would argue that a mapping from
data to privacy labels should not be created by developers but should
be created by legal experts. In standards and in the literature, similar
lists already exist, for example in the ISO 29100 [19] standard, the
HIPAA privacy rule [29], and proposed in [36]. While organization-
specific mappings may be more appropriate, developers can use
these existing mappings even if no dedicated mapping is available.

While the set-up (3) is a one-time activity, the execution (4) can
be automated, e.g. integrating it into a continuous build chain.

Finally, when applying the PPG (5) to a large code base that
has many transmissions which include personal data, the results
may become too large for manual analysis. Note that this is a com-
mon problem in threat modeling tools. Considering our test cases
presented in Section 5, a typical test case results in a graph with
100-300 nodes and 400-1200 edges, which would greatly increase
in large applications. Yet, the query results for the test cases typi-
cally result in approximately 10 nodes and 20 edges—and we do not
expect these to increase significantly with the general code size.

In future work, we still plan to add filters for the results, e.g. for
sensitivity classes and threat types, as well as a more sophisticated
automatic prioritization. Overall, we expect the benefits of gener-
ating privacy threats semi-automatically to outweigh the costs of
adding annotations to code, since the former does not lie in the
expertise of developers, while the latter does.

180

Privacy Property Graph: Towards Automated Privacy Threat Modeling via Static Graph-based Analysis Proceedings on Privacy Enhancing Technologies 2023(2)

6.3 Bias and Generality
In general, a bias in our implementations of the PPG and the test
suite cannot be ruled out, which may impact their real-world ap-
plicability. In the following, we therefore discuss the real-world
applicability, i.e. the generality, of our implementations.

6.3.1 Linkability and Identifiability. The detection of linkability
and identifiability threats in our approach is based on a taint-
tracking mechanism. Since this mechanism works by detecting
labels attached as comments or annotations in code, we would
argue that the detection of these threats is independent from the
implementation of test cases. We therefore assume a high generality
of our implementation and test cases in this category of threats.

6.3.2 Non-Repudiation. Non-repudiation threats largely depend
on the usage of certain libraries and their specific methods. Here,
our implementation relies on the detection of these method calls—
the PPG and the testing library are therefore currently limited to a
small set of these libraries. The generality of our approach, however,
is not impacted by this limitation.

6.3.3 Detectability. Detecting threats of this category partly de-
pends on the correct identification of data transmissions. This in-
cludes, for instance, linking the tainted datum correctly to an HTTP
request body, linking that body correctly to the receiving function
on the server side, etc. Therefore, our implementations are biased to
some extent towards HTTP requests and the way they are written
in the languages we cover. Note that this detection also depends on
the correct functionality of the underlying cpg. Also, the detection
of API responses is important for the detection of some detectability
threats. Their potential for bias is similar as described above, since
we focus on the detection of HTTP status codes in API responses.

6.3.4 Unawareness. Threats in this category concern missing ac-
cess, i.e. read or write access, by users to their data. While we do
not see reasons for considerable bias in this category, we do make
certain assumptions in our implementation, for instance that such
an access is implemented via a direct HTTP request that triggers a
database access. Yet, access requests could also be implemented via
other channels, like email. Also, it may be reasonable that certain
data is not modifiable, e.g. financial data may need to be retained
for tax reasons.

6.3.5 Policy Non-Compliance. Threats around disproportionate
collection, processing, and storage can take many forms: a datum
may be collected as part of a larger object, but may not be pro-
cessed; a datum may be collected, stored, and retrieved, but not
meaningfully be processed; or a datum may be collected and for-
warded to a third party where it is stored without a purpose. Our
test suite currently only includes a small set of tests in this context,
which cannot comprehensively cover policy non-compliance as
a category. Therefore, we acknowledge the our implementations
are somewhat biased in this category, and the test cases should be
extended especially in this category in future work.

6.4 Other Limitations
One general limitation of our approach is that the correct functional-
ity of queries relies on the correct implementation of the underlying
passes. Bugs in the implementation or the underlying CPG library

could therefore lead to false negative results and mislead users into
thinking that no threats exist.

A further limitation is that human errors can happen in the
assignment of labels, especially when they are forgotten, which can
lead to wrongfully trusted data flows. However, such errors can still
be caught when inspecting the graph manually. Label assignments
should therefore be checked by quality assurance measures, for
instance code reviews.

A general limitation of the proposed test suite is that it is not clear
to what degree it captures real-world threat implementations. The
proposed test cases may be rather simple threat implementations,
while real-world threats may be more hidden and more difficult to
detect, for instance when data is pre-processed or aggregated.

6.5 Agile Applicability
In Section 1 we have highlighted the problem of applying threat
modeling in agile development processes. To apply our approach,
some initialization tasks are required first to set up the tooling and
to adapt queries to the system. This approach, however, is easier
to apply than manual threat modeling, since the set-up phase can
be integrated into one of the early development sprints, while the
analysis of the results can be integrated as single tasks.

One disadvantage of using static code analysis for privacy threat
detection is that threats are detected only after they have already
been implemented. This limitation implies a trade-off between the
lower time consumption of our approach on the one hand, and the
earliest possible identification of threats using a manual analysis
on the other. In an agile environment, we expect an automated ex-
post analysis still to be more efficient and effective than infrequent
manual threat modeling sessions, since agile development aims at
delivering working software early and frequently [12]—allowing
our approach to be applied early and frequently as well.

Alternatively, an agile development team may start with a man-
ually created data flow diagram and LINDDUN analysis, and move
to our approach later as the code base grows. Note, however, that
agile projects do not always develop a detailed architecture before
starting with the implementation. The two approaches could also
be combined, using our semi-automated approach frequently as a
form of regression test, while conducting a manual analysis only
for certain milestones of a project, e.g. before certain quality gates.

Overall, static graph-based analysis can detect many privacy
threats, assuming that labels have been introduced correctly. Espe-
cially threats that result from code operations can be detected well
in such an approach because code property graphs represent an
abstraction of code that allows detailed analysis, but abstracts away
unnecessary details. Thus, a graph-based analysis is well usable for
automatic analysis as well as for manual inspection, while threats
related to external data, side-channel information, as well as legal
threats, should be covered differently.

7 RELATEDWORK
7.1 Privacy Threat Modeling
The state-of-the-art in privacy threat modeling is largely focused on
the LINDDUNmethodology [9]. LINDDUNGO presents an updated
version of this methodology with consolidated threat descriptions

181

Proceedings on Privacy Enhancing Technologies 2023(2) Immanuel Kunz, Konrad Weiss, Angelika Schneider, and Christian Banse

and improved usability, making it more easily applicable for non-
experts [49]. Alternative proposals include, for instance, different
protection goals to be used and other approaches to eliciting privacy
requirements [17, 20, 28, 39].

In the LINDDUN extension by Sion et al., threats are elicited
based on interactions between elements rather than data flow dia-
gram elements themselves. They show that an interaction-based
threatmodeling results in less false-positives and less false-negatives.
We follow a similar approach, since we do not identify threats based
on isolated elements, like databases, but we identify threats based
on data flows, and their data properties and code operations, which
effectively represent interactions between entities.

The overall purpose of threat modeling and risk assessment
can also be understood as the elicitation of requirements for the
system under consideration. In this context, our approach can be
seen as a risk-based engineering approach. Goal-based engineering
approaches are proposed as an alternative to risk-based ones, see
e.g. PRIPARE [28]. Various other works have addressed privacy
engineering from a goal perspective [15, 16, 44].

Shapiro [39] classifies privacy engineering methods into the two
dimensions analytical and instrumental, as well as programmatic
and technical. He points out that methods at the analytical-technical
intersection are missing. We see our approach as such a technical-
analytical method, since it applies expert knowledge (technical) in
the examination of source code (analytical).

7.2 Automated Threat Modeling
The automation of threat modeling in general has been investigated
for a long time, e.g. for network security threats [30]. For cloud
systems, many approaches use publicly available information about
vulnerabilities to automatically detect security threats [1, 8].

Markovic et al. [27] propose an architecture for an automated
privacy assessment service for IoT systems. They also employ graph-
based analysis, but they analyze IoT systems using execution traces,
rather than using source code analysis.

Berghe et al. [47] propose modified data flow diagrams that
include detailed security properties to enable their automatic veri-
fication. Their approach is also more formalized, which may be an
approach that is not applicable as easily to express privacy prop-
erties, but can be a topic of future work, for instance to indicate
linkable attributes. A similar approach is followed by Berger et
al. [6]. In contrast, we generate data flow diagrams automatically,
enhanced with code-level privacy properties, to allow for an au-
tomatic detection of privacy threats. Consider that the creation
of such a diagram can be very complex and time-intensive if the
application is large and/or the architecture changes frequently.

In general, code property graphs have been used mainly for
security analysis, for example by Yamaguchi et al. [51]. Simeonovski
et al. [41] also use tainted property graphs to model attacks on the
global internet infrastructure. Graph-based security analysis has
also been combined with artificial intelligence [50]. To the best of
our knowledge, the application to privacy threat modeling, however,
has not been proposed before.

7.3 Other Automated Modeling Approaches
In the area of security and safety engineering, similar approaches
have been proposed, e.g. by Thiagarajan et al. [45]. They use the
Architecture Analysis and Design Language to create an architec-
ture model which is then translated into a graph structure that
resembles a program dependence graph (see also Section 2.1). The
model can then also be queried via a query language.

Other approaches include, for example, security and safety anal-
ysis models like STAMP, STPA [26], and STPA-Sec [53], which also
have been applied to privacy [39, 40].

7.4 Data Flow Analysis
In a static analysis, various types of sensitivities can improve the
quality of analysis methods on that graph (see [38]). FlowDroid [2]
is a static analysis method for Android applications that claims to
be object-, field-, context-, and flow-sensitive.

The cpg (see Section 2), which serves as basis for our implemen-
tation, is inter-procedural and can track data-flows from object in-
stantiations. The graph is by design not object- or context-sensitive,
which would be desirable to reduce false-positives generated by the
PPG. It is, however, field-sensitive and flow-sensitive. The former
allows us to differentiate between different fields of an object and
determine whether a field holds privacy-related data or not. The
latter considers the sequence of statements and possible control-
flow structures, and thus allows us to consider only privacy labels
that can be valid in a possible control-flow path.

The annotation approach we propose to track personal data
through the graph is a taint-tracking mechanism as it has been
used in other tools as well. With flow-sensitivity, it is possible to
then track the labels throughout the graph. For labeling data flows,
some propose domain-specific labels [33], while others use generic
taint labels (see [3]). Taint-tracking is, e.g., often used in the analysis
of mobile applications, especially for security [11, 37, 46].

Slavin et al. [43] also propose a semi-automated tool that is able
to check mobile apps for consistency with a privacy policy. It is
based on matching names in the policy and in API methods. In
our approach, we use labels to be introduced in code, rather than a
naming schema which, however, could also be used.

Apart from static analysis, various works have proposed real-
time data flow tracking approaches for cloud systems, e.g. on the
cloud management plane [24] or using VM introspection [4], which
could be complementary to our approach.

7.5 Labels for Tracking Personal Data
Similar to our approach, Hjerppe et al. [18] propose code anno-
tations to document code entities relevant to the protection of
personal data, and to detect violations using static analysis tools.
They propose three annotations,@PersonalData,@PersonalData-
Handler, and @PersonalDataEndpoint, to mark personal data or
their context in the code, and they implement their approach for
Java. In contrast, we use annotations that indicate the quality of the
personal identifier. We also do not annotate handlers or endpoints
as such, but analyze the flow of annotated entities. In future work,
however, we will consider further annotations, e.g. to allow for the
compliance verification of specific policies.

182

Privacy Property Graph: Towards Automated Privacy Threat Modeling via Static Graph-based Analysis Proceedings on Privacy Enhancing Technologies 2023(2)

8 CONCLUSIONS
Privacy threat modeling requires the creation of a data flow diagram,
frequent updates, and the evaluation of many potential threats in
time-consuming brainstorming sessions.

To automate this process partly, we have first presented an anal-
ysis of privacy threats, operationalizing them for their detection
in static analysis tools. We have also proposed labels for privacy
properties and sensitivity classes, and have presented an imple-
mentation of a code annotation approach to introduce these labels
into a code property graph. We have then presented a benchmark
privacy threat test suite for the evaluation of static code analysis
tools, and applied the PPG to this test suite.

8.1 Benefits and Potentials
One central benefit of our approach is the simplification of pri-
vacy threat modeling for non-experts: It turns the threat modeling
process from a manual brainstorming that requires considerable
experience into a semi-automatic detection that only requires users
to elicit threats from a given selection. This way, the expertise be-
hind the semi-automatic detection is decoupled from its application.
A further central benefit is the reduced time-consumption of the
threat modeling process once the set-up is completed.

Our approach is furthermore language-independentwhich solves
another hurdle for threat modelers whomay struggle with detecting
threats in code of different programming languages.

Our approach and implementation offer various potentials for
further development and exploitation. For example, our taint-tracking
mechanism can be extended with different labels to track other
kinds of data properties, e.g. security and compliance properties.
It also allows for a combined security and privacy threat model-
ing. Such a combined analysis can result in reduced overall effort,
since the two areas overlap regarding data protection measures,
like access control and encryption, and repudiation properties.

It has furthermore the potential to improve the understanding of
third-party dependencies of an application, assuming their source
code is available. Their assessment is a common, time-consuming
activity foreseen in several secure development lifecycles [31, 32].

Our approach and implementation also has advantages over ex-
isting tools for the creation and analysis of data flow diagrams. The
Microsoft ThreatModeling Tool, e.g., allows tomanually create such
a diagram and automatically generate a list of standard threats, e.g.
based on the specified protocol. In comparison, our tool automates
the creation of the data flow diagram, and detects threats based
on the actually used technologies rather than manually specified
information—which could quickly be outdated.

Finally, consider that large organizations often employ a central
department or external consultants who are responsible for sup-
plying security and privacy expertise to development teams. For
them, our approach is beneficial since they can develop reusable
queries to be tested across applications, effectively standardizing
the privacy level of applications.

8.2 Future Work
All in all, our approach has the potential to detect most LINDDUN
privacy threats, as well as other potential problems like privacy
smells and anti-patterns, and to apply it frequently throughout the

development and maintenance process. Since it allows to standard-
ize and share knowledge about privacy threats on a technical level,
we envision our approach being used and extended collaboratively
within the public community, creating reusable detection queries
and implementations that reduce threat modeling effort in software
development.

In future work, we plan to extend our implementation with
passes for more frameworks and technologies, and develop more
queries and test cases. In particular, we want to add detection of
role-based access mechanisms across several layers, including soft-
ware and cloud infrastructure layer. As seen in the evaluation, the
PPG should also be improved with regards to field sensitivity in
HTTP requests and more granular detection of database operations.
Some practical advancements of our implementation will include
the possibility to manually exclude certain threats from future ex-
ecutions, e.g. when a risk has been accepted, and the ability to
integrate it into a CI/CD pipeline. To improve the degree of automa-
tion, also the creation of labels could be automated, e.g. via natural
language processing. Our approach also opens up the possibility
to define restrictive policies for the flow of personal data which
could be complementary to identifying risky data flows. To enable
the verification of such policies, we consider adding a constraint
solver that can evaluate such policies. Currently, we are using the
existing cpg edges, especially its data flow graph, to detect privacy
threats—it could, however, be beneficial to create a dedicated pri-
vacy graph that includes and connects privacy-related operations.
This would further simplify the queries required to detect privacy
threats. As mentioned in Section 2, we will also explore the addition
of a Program Dependence Graph (PDG). PDGs contain data flow
edges as well as control dependence edges which can improve the
sensitivity to indirect data flows, i.e. when personal data is not
transmitted directly, but when personal data leaks as the result of
another, conditional data flow. Further exploitation strategies of
our operationalization and implementation include, for example,
the automatic generation of privacy notices for users.

ACKNOWLEDGMENTS
This work was partly funded by the European Union Horizon 2020
project MEDINA, Grant No. 952633. We also thank Andreas Binder
for his valuable support in developing the test cases.

REFERENCES
[1] Seongmo An, Taehoon Eom, Jong Sou Park, Jin Bum Hong, Armstrong Nhla-

batsi, Noora Fetais, Khaled M Khan, and Dong Seong Kim. 2019. Cloudsafe:
A tool for an automated security analysis for cloud computing. In 2019 18th
IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/13th IEEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE). IEEE, 602–609.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. ACM SIGPLAN Notices 49, 6 (2014), 259–269.

[3] Jean Bacon, David Eyers, Thomas FJ-M Pasquier, Jatinder Singh, Ioannis Papa-
giannis, and Peter Pietzuch. 2014. Information flow control for secure cloud
computing. IEEE Transactions on Network and Service Management 11, 1 (2014),
76–89.

[4] Mirza Basim Baig, Connor Fitzsimons, Suryanarayanan Balasubramanian, Radu
Sion, and Donald E Porter. 2014. CloudFlow: Cloud-wide policy enforcement
using fast VM introspection. In 2014 IEEE International Conference on Cloud
Engineering. IEEE, 159–164.

[5] Christian Banse, Immanuel Kunz, Angelika Schneider, and Konrad Weiss. 2021.
Cloud Property Graph: Connecting Cloud Security Assessments with Static Code

183

Proceedings on Privacy Enhancing Technologies 2023(2) Immanuel Kunz, Konrad Weiss, Angelika Schneider, and Christian Banse

Analysis. In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD).
13–19. https://doi.org/10.1109/CLOUD53861.2021.00014

[6] Bernhard J Berger, Karsten Sohr, and Rainer Koschke. 2016. Automatically
extracting threats from extended data flow diagrams. In International Symposium
on Engineering Secure Software and Systems. Springer, 56–71.

[7] Christoph Bösch, Benjamin Erb, Frank Kargl, Henning Kopp, and Stefan Pfatthe-
icher. 2016. Tales from the Dark Side: Privacy Dark Strategies and Privacy Dark
Patterns. Proc. Priv. Enhancing Technol. 2016, 4 (2016), 237–254.

[8] Chi-An Chih and Yu-Lun Huang. 2015. An adjustable risk assessment method for
a cloud system. In IEEE International Conference on Software Quality, Reliability
and Security-Companion. IEEE, 115–120.

[9] Mina Deng, Kim Wuyts, Riccardo Scandariato, Bart Preneel, and Wouter Joosen.
2011. A privacy threat analysis framework: supporting the elicitation and fulfill-
ment of privacy requirements. Requirements Engineering 16, 1 (2011), 3–32.

[10] David Baker Effendi, Fabian Yamaguchi, and Jaden Jung. 2021. Plume. Retrieved
May 18, 2022 from https://github.com/plume-oss/plume

[11] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1–29.

[12] Martin Fowler, Jim Highsmith, et al. 2001. The agile manifesto. Software Devel-
opment 9, 8 (2001), 28–35.

[13] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In Proceedings of the 2018 International Conference on Management of Data. 1433–
1445.

[14] Rafa Galvez and Seda Gurses. 2018. The odyssey: Modeling privacy threats in
a brave new world. In 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 87–94.

[15] Seda Gürses, Carmela Troncoso, and Claudia Diaz. 2011. Engineering privacy by
design. Computers, Privacy & Data Protection 14, 3 (2011), 25.

[16] Seda Gürses, Carmela Troncoso, and Claudia Diaz. 2015. Engineering privacy by
design reloaded. In Amsterdam Privacy Conference. 1–21.

[17] Marit Hansen, Meiko Jensen, and Martin Rost. 2015. Protection goals for privacy
engineering. In 2015 IEEE Security and Privacy Workshops. IEEE, 159–166.

[18] Kalle Hjerppe, Jukka Ruohonen, and Ville Leppänen. 2019. Annotation-based
static analysis for personal data protection. In IFIP International Summer School
on Privacy and Identity Management. Springer, 343–358.

[19] ISO/IEC 29100:2011 2011. Information technology - Security techniques - Privacy
framework. Standard. International Organization for Standardization, Geneva,
CH.

[20] Christos Kalloniatis, Evangelia Kavakli, and Stefanos Gritzalis. 2008. Addressing
privacy requirements in system design: the PriS method. Requirements Engineer-
ing 13, 3 (2008), 241–255.

[21] Wim Keirsgieter. 2019. Graft. Retrieved May 18, 2022 from https://github.com/
wimkeir/graft

[22] Hossein Keramati and Seyed-Hassan Mirian-Hosseinabadi. 2008. Integrating soft-
ware development security activities with agile methodologies. In 2008 IEEE/ACS
International Conference on Computer Systems and Applications. IEEE, 749–754.

[23] Blagovesta Kostova, Seda Gürses, and Carmela Troncoso. 2020. Privacy Engi-
neering Meets Software Engineering. On the Challenges of Engineering Privacy
By Design. arXiv preprint arXiv:2007.08613 (2020).

[24] Immanuel Kunz, Valentina Casola, Angelika Schneider, Christian Banse, and
Julian Schütte. 2020. Towards Tracking Data Flows in Cloud Architectures. In
2020 IEEE 13th International Conference on Cloud Computing (CLOUD). IEEE,
445–452.

[25] Immanuel Kunz, Angelika Schneider, and Christian Banse. 2020. Privacy Smells:
Detecting Privacy Problems in Cloud Architectures. In 2020 IEEE 19th Interna-
tional Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE, 1324–1331.

[26] NG Leveson and Engineeringa SaferWorld. 2011. Systems Thinking Applied to
Safety.

[27] Milan Markovic, Waqar Asif, David Corsar, Naomi Jacobs, Peter Edwards, Mut-
tukrishnan Rajarajan, and Caitlin Cottrill. 2018. Towards automated privacy risk
assessments in IoT systems. In Proceedings of the 5th Workshop on Middleware
and Applications for the Internet of Things. 15–18.

[28] Nicolás Notario, Alberto Crespo, Yod-Samuel Martín, Jose M Del Alamo, Daniel
Le Métayer, Thibaud Antignac, Antonio Kung, Inga Kroener, and David Wright.
2015. PRIPARE: integrating privacy best practices into a privacy engineering
methodology. In 2015 IEEE Security and Privacy Workshops. IEEE, 151–158.

[29] HHSOffice for Civil Rights. 2002. Standards for privacy of individually identifiable
health information. Final rule. Federal register 67, 157 (2002), 53181–53273.

[30] Xinming Ou, Sudhakar Govindavajhala, Andrew W Appel, et al. 2005. MulVAL:
A Logic-based Network Security Analyzer.. In USENIX security symposium, Vol. 8.
Baltimore, MD, 113–128.

[31] OWASP. 2006. OWASP CLASP v1.2. https://owasp.org/www-pdf-archive/Us_
owasp-clasp-v12-for-print-lulu.pdf (2006). https://owasp.org/www-pdf-archive/
Us_owasp-clasp-v12-for-print-lulu.pdf

[32] OWASP. 2020. OWASP SAMM v2.0. https://github.com/OWASP/samm/
blob/master/Supporting%20Resources/v2.0/OWASP-SAMM-v2.0.pdf (2020).
https://github.com/OWASP/samm/blob/master/Supporting%20Resources/v2.0/
OWASP-SAMM-v2.0.pdf

[33] T Pasquier, B Shand, and J Bacon. 2013. Information flow control for a medical
web portal. e-Society, IADIS (2013).

[34] Andreas Pfitzmann and Marit Hansen. 2010. A terminology for talking about
privacy by data minimization: Anonymity, Unlinkability, Undetectability, Un-
observability, Pseudonymity, and Identity Management. http://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.34.pdf. http://dud.inf.tu-dresden.de/
literatur/Anon_Terminology_v0.34.pdf v0.34.

[35] Bruce Potter. 2009. Microsoft SDL threat modelling tool. Network Security 2009,
1 (2009), 15–18.

[36] A. Roßnagel, A. Sunyaev, S. Lins, N. Maier, and H. Teigeler. 2019. AUDITOR
Concept of Protection Categories – Draft version 0.9. Technical Report. Karlsruher
Institut für Technologie (KIT). https://doi.org/10.5445/IR/1000092273

[37] Julian Schütte, Alexander Küchler, and Dennis Titze. 2017. Practical Application-
Level Dynamic Taint Analysis of Android Apps. In 2017 IEEE Trustcom/Big-
DataSE/ICESS. 17–24. https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.
215

[38] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 2010 IEEE symposium on Security and
privacy. IEEE, 317–331.

[39] Stuart S Shapiro. 2016. Privacy risk analysis based on system control structures:
Adapting system-theoretic process analysis for privacy engineering. In 2016 IEEE
Security and Privacy Workshops (SPW). IEEE, 17–24.

[40] Stuart S Shapiro. 2017. Addressing Early Life Cycle Privacy Risk. In 2017 Interna-
tional Workshop on Privacy Engineering-IWPE, Vol. 17.

[41] Milivoj Simeonovski, Giancarlo Pellegrino, Christian Rossow, andMichael Backes.
2017. Who controls the internet? analyzing global threats using property graph
traversals. In Proceedings of the 26th International Conference on World Wide Web.
647–656.

[42] Laurens Sion, Dimitri Van Landuyt, and Wouter Joosen. 2020. The Never-Ending
Story: On the Need for Continuous Privacy Impact Assessment. In 2020 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 314–
317.

[43] Rocky Slavin, XiaoyinWang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan,
Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu. 2016. Toward a framework for
detecting privacy policy violations in android application code. In Proceedings of
the 38th International Conference on Software Engineering. 25–36.

[44] Sarah Spiekermann and Lorrie Faith Cranor. 2008. Engineering privacy. IEEE
Transactions on software engineering 35, 1 (2008), 67–82.

[45] Hariharan Thiagarajan, John Hatcliff, et al. 2021. Awas: AADL information flow
and error propagation analysis framework. Innovations in Systems and Software
Engineering (2021), 1–20.

[46] Dennis Titze and Julian Schütte. 2015. Apparecium: Revealing data flows in
android applications. In 2015 IEEE 29th International Conference on Advanced
Information Networking and Applications. IEEE, 579–586.

[47] Alexander van Den Berghe, Koen Yskout, Riccardo Scandariato, and Wouter
Joosen. 2017. A model for provably secure software design. In 2017 IEEE/ACM
5th International FME Workshop on Formal Methods in Software Engineering (For-
maliSE). IEEE, 3–9.

[48] KonradWeiss, Christian Banse, and Maximilian Kaul. 2019. Code Property Graph.
Retrieved May 18, 2022 from https://github.com/Fraunhofer-AISEC/cpg

[49] Kim Wuyts, Laurens Sion, and Wouter Joosen. 2020. LINDDUN GO: A Light-
weight Approach to Privacy Threat Modeling. In 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 302–309.

[50] Wang Xiaomeng, Zhang Tao, Wu Runpu, Xin Wei, and Hou Changyu. 2018.
CPGVA: Code property graph based vulnerability analysis by deep learning. In
2018 10th International Conference on Advanced Infocomm Technology (ICAIT).
IEEE, 184–188.

[51] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium
on Security and Privacy. IEEE, 590–604.

[52] Fabian Yamaguchi, Markus Lottmann, Niko Schmidt, Michael Pollmeier, Suchakra
Sharma, and Claudiu-Vlad Ursache. 2019. Joern Code Property Graph. Retrieved
May 18, 2022 from https://cpg.joern.io

[53] William Young and Nancy G Leveson. 2014. An integrated approach to safety
and security based on systems theory. Commun. ACM 57, 2 (2014), 31–35.

184

https://doi.org/10.1109/CLOUD53861.2021.00014
https://github.com/plume-oss/plume
https://github.com/wimkeir/graft
https://github.com/wimkeir/graft
https://owasp.org/www-pdf-archive/Us_owasp-clasp-v12-for-print-lulu.pdf
https://owasp.org/www-pdf-archive/Us_owasp-clasp-v12-for-print-lulu.pdf
https://owasp.org/www-pdf-archive/Us_owasp-clasp-v12-for-print-lulu.pdf
https://owasp.org/www-pdf-archive/Us_owasp-clasp-v12-for-print-lulu.pdf
https://github.com/OWASP/samm/blob/master/Supporting%20Resources/v2.0/OWASP-SAMM-v2.0.pdf
https://github.com/OWASP/samm/blob/master/Supporting%20Resources/v2.0/OWASP-SAMM-v2.0.pdf
https://github.com/OWASP/samm/blob/master/Supporting%20Resources/v2.0/OWASP-SAMM-v2.0.pdf
https://github.com/OWASP/samm/blob/master/Supporting%20Resources/v2.0/OWASP-SAMM-v2.0.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://doi.org/10.5445/IR/1000092273
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.215
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.215
https://github.com/Fraunhofer-AISEC/cpg
https://cpg.joern.io

Privacy Property Graph: Towards Automated Privacy Threat Modeling via Static Graph-based Analysis Proceedings on Privacy Enhancing Technologies 2023(2)

A OPERATIONALIZATION OF LINDDUN GO

Table 2: An overview of LINDDUN GO threats and our operationalization described in Section 3.

ID Name Technical Description Required Properties
L1 Linkability of creden-

tials
Data including a reused credential is sent from user
to server

(Pseudo-)Identifiers (in credentials)

L2 Linkability of user ac-
tions

Behavioral information makes data flows linkable out of scope

L3 Linkability of inbound
data

Data is sent from user to server where it can be linked
with other existing data

(Pseudo-)Identifiers, DB read operations

L4 Linkability of context Behavioral information makes data flows linkable Identifiers (in contextual data, e.g. commu-
nication protocol)

L5 Linkability of shared
data

Data including (pseudo-)identifiers is sent from server
to third party

(Pseudo-)identifiers

L6 Linkability of stored
data

Data including (pseudo-)identifiers is sent from user
to server and stored in a DB

(Pseudo-)identifiers (in DB write op)

L7 Linkability of retrieved
data

Data including (pseudo-)identifiers is sent from server
to third party

(Pseudo-)identifiers (in DB read op)

ID1 Identifying credentials The use of (non-anonymous) credentials allows iden-
tification of the user

Identifiers (in credentials)

ID2 Actions identify user The user is identified via his requests to the system out of scope
ID3 Identifying inbound

data
The data sent to the system can be used to identify
the user

Identifiers (in transactional data)

ID4 Identifying context The contextual information of the communication
can be identified

(in contextual data, e.g. communication pro-
tocol)

ID5 Identifying shared data Communicated content can be used by receiving
party to identify individuals

Identifiers (linked with stored data)

ID6 Identifying stored data Personal data being stored can be identified Identifiers (in DB write operations)
ID7 Identifying retrieved

data
Personal data being retrieved from persistent storage
can be used to identify the data subject

Identifiers (in DB read operations)

NR1 Credentials non-
repudiation

Person cannot deny having authenticated to a service Identifiers (in credentials), logs, digital sig-
natures

NR2 Non-repudiation of
sending

The user cannot deny having sent a message Logs, digital signatures

NR3 Non-repudiation of re-
ceipt

The user cannot deny having received a message out of scope

NR4 Non-reputable storage The data in storage cannot be denied Logs, digital signatures (in DB write opera-
tions)

NR5 Non-repudiation
retrieved data

The retrieved data contains undeniable information Logs, digital signatures (in DB read opera-
tions)

D1 Detectable credentials Response of a request allows detection of existence
of a user

API responses (e.g. HTTP 404)

D2 Detectable communica-
tion

Communication between the user and the server can
be observed

Data flows between user and server

D3 Detectable outliers Behavioral information makes data flows linkable out of scope
D4 Detectable at storage DB write operation returns “user exists” API responses, DB operations
D5 Detectable at retrieval DB read operation returns empty set or identifier API responses, DB operations
U1 No transparency The data subject is insufficiently informed about the

collection and processing of personal data
out of scope

U2 No user-friendly pri-
vacy control

The system does not provide user-friendly privacy
control

out of scope

U3 No access or portability The data subject does not have access to or is not able
to port their personal data

DB read operations, user role

U4 No erasure or rectifica-
tion

The data subject cannot request erasure or rectifica-
tion of personal data

DB write operations, user role

185

Proceedings on Privacy Enhancing Technologies 2023(2) Immanuel Kunz, Konrad Weiss, Angelika Schneider, and Christian Banse

An overview of LINDDUN GO threats and our operationalization described in Section 3 (cont.).

ID Name Description Required Properties
U5 Insufficient consent

support
Data subject consents are not properly taken into
account by the relevant processes

out of scope

NC1 Disproportionate
collection

More personal data are being collected than required
for the purpose

(Pseudo-)identifiers

NC2 Unlawful processing There is no lawful ground for the collection, process-
ing, and storage of PD

out of scope

NC3 Disproportionate pro-
cessing

More personal data are being processed than required
for the purpose

out of scope

NC4 Automated decision
making

A decision is made solely on automated processing
of PD which significantly affects the data subject

out of scope

NC5 Disproportionate stor-
age

More personal data are being stored than required
for the purpose

(Pseudo-)identifiers, DB read operations,
DB write operations

B TEST CASES

Table 3: Threat descriptions of the test cases implemented in the test suite.

LINDDUN GO Threat Description
L3 Linkability of inbound data A pseudo-identifier is sent to a server where it can be linked to other pseudo-identifiable data (which

may be submitted via the same request).
L5 Linkability of shared data A pseudo-identifier is sent to a server where it can be linked to other pseudo-identifiable data (which

may be submitted via the same request). The server furthermore shares the data with a third party
(where it also may be linked to other pseudo-identifiable data).

L6 Linkability of stored data A pseudo-identifier is sent to a server where it is stored and can be linked to other pseudo-identifiable
data (which may be submitted via the same request).

L7 Linkability of retrieved data A pseudo-identifier is sent to a server which stores it in a database. Another client can access the
datum via a GET request.

I3 Identifying inbound data An identifier is sent to a server where it can be linked to other pseudo-identifiable data (which may
be submitted via the same request).

I5 Identifying shared data An identifier is sent to a server where it can be linked to other pseudo-identifiable data (which may
be submitted via the same request). The server furthermore shares the data with a third party (where
it also may be linked to other pseudo-identifiable data).

I6 Identifying stored data An identifier is sent to a server where it is stored and can be linked to other pseudo-identifiable data
(which may be submitted via the same request).

I7 Identifying retrieved data An identifier is sent to a server which stores it in a database. Another client can access the datum via
a GET request.

NR2 Non-repudiation of digital
signature

A cryptographically signed, i.e. non-reputable, message including personal data is sent from client to
server.

NR2 Non-repudiation of log-
ging

A message including personal data is sent from client to server where it is logged.

NR4 Non-reputable storage A cryptographically signed, i.e. non-reputable, message including personal data is sent from client to
server where it is stored in a database.

NR5 Non-repudiation of re-
trieved data

A cryptographically signed, i.e. non-reputable, message including personal data is sent from client to
server where it is stored in a database and is retrieved by another client.

D2 Detectable communication A (pseudo-)identifier is sent from client to server. This may be observed by other network participants,
which then know that the person is using the service provided by the server.

D4 Detectable at storage The server offers an API to a database which leaks information about personal data it holds: When
the client tries to store data, the server may respond by indicating a conflict.

D5 Detectable at retrieval The server offers an API to a database which leaks information about personal data it holds: When
the client tries to access data, the server may respond by a not found message.

U3 No access or portability A (pseudo-)identifier is sent from client to server where it is stored in a database and cannot be
accessed by the client again.

186

Privacy Property Graph: Towards Automated Privacy Threat Modeling via Static Graph-based Analysis Proceedings on Privacy Enhancing Technologies 2023(2)

Threat descriptions of the test cases implemented in the test suite. (cont.).

LINDDUN GO Threat Description
U4 No erasure A (pseudo-)identifier is sent from client to server where it is stored in a database and cannot be

deleted again by the client.
U4 No rectification A (pseudo-)identifier is sent from client to server where it is stored in a database and cannot be

modified again by the client.
NC1 Disproport. collection A message including personal data is sent from client to server where it is not further processed in a

meaningful way.
NC5 Disproport. storage (w/o
retrieval)

A (pseudo-)identifier is sent from client to server where it is stored but not retrieved afterwards.

NC5 Disproport. storage (w/o
processing)

A (pseudo-)identifier is sent from client to server where it is stored and retrieved, but not processed
afterwards.

Disclosure A (pseudo-)identifier is sent from client to server without transport encryption.

187

	Abstract
	1 Introduction
	2 Background
	2.1 Code Property Graphs
	2.2 The Cloud Property Graph
	2.3 Privacy Threat Modeling

	3 Approach: Graph-Based Privacy Threat Modeling
	3.1 Creating a Data Flow Diagram
	3.2 Operationalizing Privacy Threats
	3.3 Prioritizing Threats

	4 Implementation
	4.1 Exposing Privacy Properties in Transactional Data
	4.2 Exposing Privacy Properties in Contextual Data and Code Operations
	4.3 Developing Queries
	4.4 Developing Further Analysis Queries

	5 Evaluation
	5.1 Test Suite Implementation
	5.2 Results
	5.3 Performance and Scalability

	6 Discussion
	6.1 Completeness
	6.2 Manual Effort
	6.3 Bias and Generality
	6.4 Other Limitations
	6.5 Agile Applicability

	7 Related Work
	7.1 Privacy Threat Modeling
	7.2 Automated Threat Modeling
	7.3 Other Automated Modeling Approaches
	7.4 Data Flow Analysis
	7.5 Labels for Tracking Personal Data

	8 Conclusions
	8.1 Benefits and Potentials
	8.2 Future Work

	Acknowledgments
	References
	A Operationalization of LINDDUN GO
	B Test Cases

