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ABSTRACT

In the era of big data, user data are often vertically partitioned and
stored at different local parties. Exploring the data from all the
local parties would enable data analysts to gain a better understand-
ing of the user population from different perspectives. However,
the publication of vertically-partitioned data faces a dilemma: on
the one hand, the original data cannot be directly shared by local
parties due to privacy concerns; on the other hand, independently
privatizing the local datasets before publishing may break the po-
tential correlation between the cross-party attributes and lead to
a significant utility loss. Prior solutions compute the privatized
multivariate distributions of different attribute sets for constructing
a synthetic integrated dataset. However, these algorithms are only
applicable for low-dimensional structured data and may suffer from
large utility loss with the increase in data dimensionality.

Following the idea of synthetic data generation, we propose
VertiGAN, the first framework based on a generative adversarial
network (GAN) for publishing vertically-partitioned data with pri-
vacy protection. The framework adopts a GAN model comprised
of one multi-output global generator and multiple local discrimi-
nators. The generator is collaboratively trained by the server and
local parties to learn the distribution of all parties’ local data and is
used to generate a high-utility synthetic integrated dataset on the
server side. Additionally, we apply differential privacy (DP) during
the training process to ensure strict privacy guarantees for the
local data. We evaluate the framework’s performance on a number
of real-world datasets containing 68–1501 classification attributes
and show that our framework is more capable of capturing joint
distributions and cross-attribute correlations compared to statistics-
based baseline algorithms. Moreover, with a privacy guarantee of
ϵ = 8, our framework achieves around a 2% ∼ 15% improvement in
classification accuracy compared to the baseline algorithms. Exten-
sive experimental results demonstrate the capability and efficiency
of our framework in synthesizing vertically-partitioned data while
striking a satisfactory utility-privacy balance.
This work is licensed under the Creative Commons Attribu-
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1 INTRODUCTION

With the rapid development of network and computer technologies,
large and diverse quantities of user data have been extensively
collected and stored by different companies and institutes (referred
to as local parties). These data usually contain rich information
characterizing user profiles, which is valuable for data mining and
building AI services. Due to the variety in service scenarios, the user
data are often vertically partitioned and distributed among these
local parties. That is, the local dataset held by each party usually
contains different attributes of the same group of users. Considering
that the more attributes the data consist of, the more information
can be used for describing an individual user, it is practical for local
parties to collaborate with each other and publish an integrated
dataset with all the attributes for better decision making or building
high-accuracy services. For instance, in a healthcare scenario, a
group of specialist hospitals could publish a joint dataset to study
potential correlations between different types of illnesses such as
cancer, and heart and lung diseases. Similarly, in a smart finance
scenario, a loan company could use a dataset jointly published
by a bank and an e-commerce company to more deeply explore
the key attributes that may result in higher default risk. More
generally, integrating and analyzing these vertically-partitioned
datasets enables data analysts to explore the hidden correlations
of attributes from different perspectives and thus obtain a better
understanding of the characteristics of user groups. This can be of
significant help in designing optimized data mining algorithms and
machine learning models.

However, publishing vertically-partitioned datasets has to be
recognizant of the restrictions of data protection regulations such
as the GDPR and users’ privacy concerns. On the one hand, since
the local data are generated based on users’ ongoing behaviors
and may contain sensitive information of individual users, directly
sharing the original local datasets with an untrusted third party
may lead to serious privacy leakage (see, for example, [5, 7]). On
the other hand, the local parties can use state-of-the-art privacy-
enhancing techniques, such as differential privacy (DP) [18], to
process the real data and only share the privatized datasets. Never-
theless, each party individually privatizing the local data may break
the correlations and joint distributions among attributes held by
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different parties and lead to distinctive utility loss in the published
dataset. Therefore, solutions for publishing vertically-partitioned
data under a satisfactory privacy-utility balance are greatly needed.

In comparison to the substantial attention given to privacy-
preserving data mining and machine learning under a vertical
setting, algorithms for publishing the vertically-partitioned data
are still barely studied. Prior works [26, 36] proposed two-party
publication protocols under k-anonymity guarantees [52]. Unfortu-
nately, later studies [51, 62] pointed out that k-anonymity models
are vulnerable to various privacy attacks and cannot provide suf-
ficient privacy protection. Follow-up work [44] proposed the first
algorithm for publishing vertically-partitioned data under DP guar-
antees. However, the algorithm is limited to two-party scenarios and
requires pre-defined taxonomy trees for all categorical attributes.
Recent work by Tang et al. [53] proposed to use a latent tree model
[70] to represent the cross-attribute distributions in the original
dataset and privatizes the latent tree parameters via a distributed
Laplace protocol to achieve ϵ-DP for each local dataset. Although
the work by Tang et al. [53] effectively improves data utility and
efficiency compared to [44], the algorithm evenly splits the privacy
budget to all the attribute pairs. Therefore, the noise scale may
increase exponentially with the data dimensionality and cause sig-
nificant utility loss. Moreover, the algorithm is limited to discrete
structured datasets and cannot support other data types.

In recent years, data synthesis has increasingly been considered
a useful approach for addressing data insufficiency problems in
developing AI applications. With the strong capabilities of char-
acterizing the correlations and distributions of high-dimensional
data, deep generative models such as generative adversarial net-
works (GANs) are increasingly used for generating high-utility and
low-sensitivity synthetic data. Although some recent works (e.g.,
[28, 54]) also proposed training the generative models under the
federated learning (FL) framework to avoid the direct collection
of real local data, the solutions all focus on the horizontal setting,
which cannot be directly applied to vertically-partitioned data.

In this paper, we address this research gap and propose Ver-
tiGAN, the first GAN-based framework for privacy-preserving
publication of vertically-partitioned data. The framework adopts
a distributed GAN architecture, comprised of a global generator
and multiple local discriminators. By using a collaborative training
strategy, the global generator is trained without accessing the real
local data. Moreover, we adopt a multi-output structure for the gen-
erator, which enables the model to directly learn the correlations
and distributions of the attributes held by different local parties and
generate synthetic integrated data. Finally, we inject DP perturba-
tion during the training process, which ensures that the generator
and the synthetic data satisfy strict DP guarantees for each local
party. The main contributions of our approach are as follows:
• We propose VertiGAN, an efficient and privacy-preserving
framework for publishing vertically-partitioned data. The
framework trains a multi-output global generator to directly
learn the distribution of all parties’ local data and to generate
high-utility synthetic integrated data on the server side. To
the best of our knowledge, this is the first framework based
on a deep generativemodel for private data publication under
the vertical setting.

• We introduce a distributed training strategy, where the global
generator is updated based on the gradients calculated by
the local discriminators. The strategy eliminates the need
to access real local data when training the global generator.
Moreover, we apply DP perturbation during the training
process to provide a strict privacy guarantee for each local
dataset.
• We implement our framework and evaluate the performance
on a number of real-world datasets containing 68–1501 clas-
sification attributes. Through comparison with the previous
statistics-based algorithms, we show that the synthetic data
generated by our framework always preserve much closer
joint distributions and correlations to real data. Moreover,
with a local privacy guarantee ϵ = 8, we achieve around
2% ∼ 15% improvement in classification accuracy compared
to the baseline algorithms. Extensive evaluation experiments
show that our framework has outperforming capability and
efficiency in collecting high-dimensional data while offering
a favorable utility-privacy balance.

2 RELATEDWORK

2.1 Data Analysis on Vertically-Partitioned

Data

In recent decades, data analysis on vertically-partitioned data has
attracted increasing attention. Different from the horizontal setting,
vertical partitioning refers to the scenario that local parties collect
different attributes of the same set of users. Existing applications
on vertically-partitioned data include, for instance, jointly training
ML models using attributes of all the local parties, or publishing an
integrated dataset for future data mining.

2.1.1 Machine Learning Under Vertical Setting. In the context of
ML, prior studies by Vaidya et al. proposed a series of secure multi-
party computation (SMC) protocols [66] for training different mod-
els on vertically-partitioned data, including Bayes classifier [55],
and decision trees [56], etc. Hardy et al. [22] proposed a vertical fed-
erated learning (VFL) framework, which trained LR models using
homomorphic encryption (HE) [14]. Yang [65] further applied the
quasi-Newton method in VFL to reduce the number of communica-
tion rounds. Some other works [12, 63] also proposed solutions for
tree-based models and neural networks [48]. Besides using crypto-
based technologies such as HE and SMC to ensure security in VFL,
recent works [11, 59] further proposed to incorporate DP into the
training process to provide strict privacy guarantees for local data.

On the other hand, some recent works also investigate potential
privacy attacks against VFL, which include label inference attacks
and feature reconstruction attacks. In the label inference attacks, the
parties without ground-truth labels aim to use the back-propagated
gradients to infer the sample labels. Several existing attacks pro-
posed to explore the difference of the gradient norms [39] or the
sign of the last-layer gradients [40, 73]. Other research [19] also
proposed a semi-supervised learning approach that first estimated
the bottom-layer parameters and then used the “completed” model
to “generate” the label of arbitrary samples. Apart from the label
leakage, some other works [27, 41] also studied the feature leakage
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in VFL, where the party obtaining the model predictions tries to re-
construct the input features of other parties. Nevertheless, existing
attacks against VFL only focused on classification models, where
the attackers either try to infer the ground-truth labels or need to
use the model predictions to reconstruct local features. In contrast,
in this paper, we use the GAN model for data synthesis, which
does not involve such label (or prediction) information. Hence, the
above-mentioned attacks in VFL are no more applicable.

2.1.2 Data Publication Under Vertical Setting. Compared to the ex-
tensive set of studies on machine learning under the vertical setting,
there are still only limited prior works on publishing vertically-
partitioned data. Prior works in [26, 36] proposed SMC-based pro-
tocols for two-party data publication under k-anonymity guar-
antees [52]. Nevertheless, later studies [51, 62] pointed out that
k-anonymity models are vulnerable to various privacy attacks and
cannot provide sufficient privacy protection. In contrast, DP [18]
is considered as a more principled approach for private data publi-
cation. Mohammed et al. proposed DistDiffGen [44], the first algo-
rithm for publishing vertically-partitioned data under DP guaran-
tees. DistDiffGen first generalizes the raw data using a distributed
exponential mechanism and then adds noise to the distributions to
ensure ϵ-DP. However, the algorithm is limited to two-party sce-
narios and requires pre-defined taxonomy trees for all categorical
attributes, which may not always be available in practice. Later
work by Tang et al. [53] proposed an improved differentially private
latent tree (DPLT) algorithm, which first uses a latent tree model
[70] to represent the cross-attribute distributions in the original
dataset and then privatizes the latent tree parameters via a dis-
tributed Laplace protocol to achieve ϵ-DP for each local dataset.
The latent tree model will then be used for generating a synthetic
dataset. Although [53] significantly improves the data utility and
efficiency in comparison to [44], it is still limited to discrete at-
tributes. Moreover, since the privacy budget is evenly split over all
the attribute pairs, the noise scale may increase exponentially with
the increased data dimensionality and cause a large utility loss.

In this paper, we propose a distributed GAN-based protocol for
publishing vertically partitioned data in a private manner. Com-
pared to previous works, our solution can support the publication
of high-dimensional datasets with strict DP guarantees. Moreover,
the framework can be further extended to support other types of
data such as numerical data and images.

2.2 Differentially-Private Data Synthesis

DP data synthesis has been extensively studied over recent years
as one of the solutions for privacy-preserving data publishing. Pre-
vious statistics-based works [38, 68] computed joint distributions
of original structured data under DP guarantees and used them to
generate synthetic datasets. However, these methods can only be
applied to structured data and may suffer from a significant utility
loss with the increase in data dimensionality.

Inspired by the rapid evolution of deep learning, later works
proposed to directly train generative models such as autoencoders
[3, 35] and generative adversarial networks (GANs, [20]) and to
generate high-utility synthetic data. Nevertheless, simply training
these generative models without protection may still lead to privacy
leakage. For instance, prior work [4, 57] showed that GANs may

unintentionally memorize the training data. Moreover, Hayes et
al. [23] proposed different membership inference attacks against
the trained generator and discriminators. Later works also demon-
strated that the membership information can be revealed from the
generated synthetic data [10, 24, 50]. In addition, Zhou et al. [72]
performed a property inference attack, which uses the released
synthetic data to infer the macro-level information of training data
(e.g., the ratio of samples regarding a certain property).

DP has been considered one of the countermeasures against such
privacy attacks. Existing DP data synthesis algorithms are generally
divided into two categories, namely by using differentially-private
stochastic gradient descent (DPSGD, [1]) or private aggregation of
teacher ensembles (PATE, [45]). The DPSGD-based algorithms [64,
71] perturb the model gradients in each iteration by clipping and
adding Gaussian noise to ensure DP guarantees. The PATE-based
algorithms [31, 58] first train a group of teacher models (e.g., the
discriminator in GAN) on non-overlapping subsets of original data
and then use the noisy predictions from the teacher group to train
the student model (e.g., the generator). Nevertheless, previous data
synthesis algorithms mainly focus on the centralized setting, where
the server has already collected the clients’ real data. This may
not always be realistic since the clients may refuse to share their
personal local data with untrusted servers. Therefore, some recent
works also proposed to train the generative autoencoders [28] and
GANs [54, 69] under the FL framework to avoid the collection
of original data. However, existing solutions only focus on the
horizontal setting, where the local data shares the same set of
attributes. In contrast, in this paper, we conduct the first attempt at
the GAN-based DP data synthesis for vertically-partitioned data.

3 BACKGROUND

3.1 Differential Privacy

DP [18] is a state-of-the-art anonymization technique that provides
rigorous privacy guarantees for data analysis. The classic definition
of DP is as follows:

Definition 1 ((ϵ, δ )-DP [18]). A randomized mechanismM sat-
isfies (ϵ, δ )-DP if for any two adjacent datasets X,X′ differing in one
data sample and any measurable subset of outputs Y ⊆ ranдe(M)
we have

Pr [M(X) ∈ Y] ≤ eϵ · Pr
[
M(X′) ∈ Y

]
+ δ , (1)

where ϵ is the privacy loss and δ is the probability of privacy leakage.
When δ = 0, we have ϵ-DP.

The original DP defined an upper bound of the privacy cost.
Recent works further proposed various relaxations of DP to achieve
tighter bounds for the privacy cost, especially for iterative algo-
rithms. One of the widely used definitions is Rényi DP (RDP) [43],
which uses the Rényi divergence to measure the distance between
two probabilities. The definition of RDP is as follows:

Definition 2 ((α, ϵ(α))-RDP [43]). A randomized mechanism
M satisfies (α, ϵ(α))-RDP if for any two adjacent datasets X,X′

differing in one data sample, the Rényi α-divergence betweenM(X)
andM(X′) satisfies

Dα (M(X)||M(X
′))) ≜

1
α − 1 logE

[(
M(X)

M(X′)

)α ]
≤ ϵ . (2)
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Similar to DP, a Gaussian mechanism can also be used to achieve
(α, ϵ(α))-RDP:

Definition 3 (Gaussian mechanism). For a real-valued function
f : X → Rd with l2 sensitivity ∆f defined as

∆f = max
X,X′
| | f (X) − f (X′)| |2 (3)

over all adjacent datasets X and X′. The following Gaussian mecha-
nismMσ satisfies (α, ϵ(α))-RDP:

Mσ (x) = f (x) +N(0,σ 2I ), where ϵ(α) =
∆2
f α

2σ 2 . (4)

Moreover, RDP also preserves the composition property for accu-
mulating the privacy cost over a sequence of mechanisms. Namely:

Theorem 1 (Composition property). Suppose n mechanisms
{M1, · · · ,Mn } respectively satisfy (α, ϵi (α))-RDP, and are sequen-
tially computed on the same set of private data X, then a mechanism
formed by (M1, · · · ,Mn ) satisfies (α,

∑n
i=1 ϵi (α))-RDP.

Theorem 2 (Robustness to post-processing). LetM be an
(α, ϵ(α))-RDP mechanism and д be an arbitrary mapping from the
set of possible outputs to an arbitrary set. Then, д ◦M also satisfies
(α, ϵ(α))-RDP.

Additionally, the accumulated privacy cost under RDP can be
further amplified by the subsampled mechanism:

Lemma 1 (RDP for Subsampled Mechanism [60]). Given a
dataset of n points drawn from a domain X and a randomized mech-
anismM that takes an input from Xm form ≤ n, let the randomized
algorithmM ◦ subsample be defined as: (1) subsample: subsample
without replacementm data points of the dataset (sampling parame-
ter γ =m/n), and (2) applyM: a randomized algorithm taking the
subsampled dataset as the input. For all integers α ≥ 2, ifM obeys
(α, ϵ(α))-RDP, then the new randomized algorithmM ◦ subsample
obeys (α, ϵ ′(α))-RDP where

ϵ ′(α) ≤
1

α − 1 log
(
1 + γ 2

(
α

2

)
min

{
4(eϵ (2) − 1),

eϵ (2)min{2, (eϵ (∞) − 1)2}
}

+

α∑
j=3

γ j
(
α

j

)
e(j−1)ϵ (j)min{2, (eϵ (∞) − 1)j }

)
.

(5)

Finally, the privacy guarantees under RDP can be converted to
the original DP guarantees:

Lemma 2 (RDP to DP [43]). If a mechanismM satisfies (α, ϵ(α))-
RDP, thenM satisfies (ϵ(α) + log 1/δ

α−1 , δ )-DP for any δ ∈ (0, 1).

3.2 Generative Adversarial Network

The GAN [20] is a class of unsupervised learning algorithms that
have been extensively studied in the last decade due to its strong
capability in generating high-fidelity synthetic data. A GAN model
usually consists of a generatorG and a discriminator D. The gen-
erator G takes as input a random noise z from a certain latent
distribution Pz and generates synthetic data x̃ = G(z). The discrim-
inator D learns to distinguish between data drawn from the real

distribution x ∼ Pr and from the synthetic distribution x̃ ∼ Pд ,
where Pд is determined by G and Pz . This can be considered a
binary classification task. Both models are trained simultaneously
through an adversarial process, where the generator keeps improv-
ing the quality of the synthetic data to fool the discriminator while
the discriminator tries to discriminate between real and synthetic
data with high accuracy. The ultimate goal is to approximate the
real distribution Pr with the synthetic distribution Pд such that the
discriminator cannot correctly distinguish between the real and
the synthetic data. The problem can be formulated as a min-max
training process with the following objective [20]:

LGAN = E
x∼pr
[logD(x)] + E

x̃∼pд
[log(1 − D(x̃))], (6)

where Pr is the distribution of real data and Pд is the distribution
of synthetic data x̃ = G(z) with z ∼ Pz .

By utilizing different generator and discriminator structures,
GANs have been adjusted to generate various types of synthetic
data such as tabular data [46], images [33], and time-series data
[67]. Nevertheless, the original GANmodels usually suffer problems
such as training instability and failure to converge. Therefore, some
other works proposed to modify the loss function to improve the
model convergence. The Wasserstein GAN (WGAN) [3, 61] is one
of the well-known improved GANs. In comparison with the original
loss function, WGAN-GP uses the Wasserstein-1 distance with an
additional gradient norm penalty to achieve Lipschitz continuity.
Given the real data x , the input noise z ∼ Pz and the synthetic data
x̃ = G(z), the gradient penalty term can be written as

(∥∇x̂D(x̂)∥ − 1)2, where x̂ = µx + (1 − µ)x̃ . (7)
Here x̂ is a weighted average between the real and synthetic data
and µ ∼ U(0, 1) is a randomly sampled weight. Thus, the loss func-
tion for the generator and discriminator is formulated as follows:

LG = D(x̃) = D(G(z)), (8)
LD = D(x) − D(x̃) + λ(∥∇x̂D(x̂)∥ − 1)2, (9)

where λ is the weight for the gradient penalty.
In this paper, we choose Pz to follow the standard Gaussian

distribution N(0, I ) and λ = 10 for the gradient penalty. Similar to
Equation (6), the loss function of WGAN can be formulated as:
LWGAN = E

x̃∼pд
[D(x̃)] − E

x∼pr
[D(x)] + λ E

x̂∼px̂
[(∥∇x̂D(x̂)∥ − 1)2].

(10)

4 PROBLEM STATEMENT

In this paper, we focus on the scenario where the user data are
vertically partitioned and distributed over multiple local parties.
Each party possesses a different set of attributes of the same group
of samples. A central server aims to integrate these local datasets
in a private manner and publish a joint dataset containing all the
attributes. The joint dataset will be further used by external data
analysts for downstream data mining and model training tasks.

An illustration of the system setting is shown in Figure 1. We
assume there areM local parties P1, · · · ,PM . Each party Pi has a
local dataset containing a different set of attributes Ai = {ai1, · · · ,
ai
|Ai |}. Here, the attribute sets can be either partially overlapping

or non-overlapping. Moreover, each party may hold samples not
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Figure 1: Overview of the system model.

covered by other parties. Therefore, we assume that the local data
have certain alignable sample IDs (e.g., ID number, cellphone num-
ber, etc.). The local parties can use private set intersection (PSI)
protocols (e.g., [13, 15, 25]) to determine the intersecting sample IDs
without exposing the non-intersect samples. Then, each party sorts
the common samples according to their IDs and obtains the final
training dataset X i ∈ RN×|A

i | , where N is the number of samples
and |Ai | is the number of attributes.

The goal of the task is to design a privacy-preserving framework,
where a central server can collaborate with all the local parties and
publish a private joint dataset X̃ ∈ RN×|∪Mi=1A

i | that contains the
full set of attributes. The joint dataset X̃ preserves both single-party
and cross-party attribute correlations. More specifically, consider
local parties Pi and Pj respectively holding local datasets X i ∈

RN×|A
i | and X j ∈ RN×|A

j | , then the distribution of X̃ should
satisfy

PX̃ (A
i ) ≈ PX i (Ai ), PX̃ (A

i ,Aj ) ≈ PX i ,X j (Ai ,Aj ). (11)
Following previous works, we assume that the local parties

and the central server are honest-but curious, who correctly fol-
low the protocols but try to infer sensitive information of other
local datasets. Moreover, we also consider the threat posed by ex-
ternal data analysts, who aim to use the published joint dataset
to re-identify sensitive information of specific users. Based on the
considerations above, it is required that there is no information
exchange among local parties and each party does not know the
attribute set of other parties. Moreover, we assume that the server
cannot directly access the raw local data but is aware of the full
attribute set and the size of the training dataset. Finally, the pub-
lished dataset should satisfy strict DP guarantees and not reveal
the privacy of individual users in the local datasets.

5 PROPOSED FRAMEWORK

Although previous works proposed statistics-based algorithms for
publishing vertically-partitioned data under DP guarantees, the
solutions are only limited to low-dimensional structured data and
may suffer from large utility loss with the increase in domain size.
Following the idea of data synthesis, we propose VertiGAN, the
first GAN-based framework for differentially-private publication of
vertically-partitioned data. The overall workflow of the framework
is presented in Figure 2, which consists of two phases, namely
the collaborative training process and the synthetic data generation

Figure 2: General workflow of the VertiGAN framework.

process. In the first process, a GAN model is collaboratively trained
by the server and all the local parties to learn the correlations
and distributions of all the local datasets in a private manner. In
the second phase, the generator part is used to directly generate
synthetic integrated data that contains attributes held by all the local
parties. The synthetic data preserves similar statistical properties
to real data and can be alternatively used for downstream data
analysis and AI training tasks.

Nevertheless, training the GAN model on distributed vertically-
partitioned data faces several challenges. To start with, in this paper,
we focus on the scenario where the real data are distributed on
the local side and cannot be directly shared with the server. Hence,
the model cannot be simply trained as in the centralized setting
due to data inaccessibility. Moreover, in the vertical setting, the
attribute sets held by the local parties are usually different from
each other, which is referred to as attribute inconsistency in this
paper. This causes existing solutions that train GANs in the horizon-
tal FL framework to be inapplicable. Finally, recent contributions
(e.g., [9, 49]) point out that the ML models may memorize infor-
mation in training data and suffer from different privacy attacks.
Therefore, privacy protection techniques should be applied during
model training to prevent potential privacy leakage. We apply cor-
responding solutions in the VertiGAN framework to address the
above-mentioned challenges. In the following sections, we will
respectively introduce each solution in detail.

5.1 Distributed GAN Against Data

Inaccessibility

Different from other generative models, GANs are usually built with
two independent networks, namely a generator and a discriminator.
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Figure 3: Workflow of the local training process.

The two networks are trained in an adversarial manner to improve
their own performance. By taking advantage of GANs’ separate
generator-discriminator architecture, the VertiGAN framework
applies a distributed training strategy to address data inaccessibility
problems. More specifically, the framework deploys a global genera-
torG on the server side and multiple discriminators {D1, · · · ,DM }

on the local side. The global generator takes in random latent fea-
tures and outputs synthetic data for each local party, while the local
discriminators are trained on the local side to distinguish between
real data and synthetic data. The ultimate goal of the framework is
to obtain a well-trained global generator on the server side that is
capable of producing high-utility synthetic data without violating
the privacy of real local data.

The training process is conducted in cooperation with the server
and all the local parties, as shown in Figure 2. During each global
training round, the server broadcasts the current global generator
to all the local parties for generating synthetic data. Each party first
uses its real local data and the corresponding part of synthetic data
to train its local discriminator and then uses the trained discrimi-
nator to compute the generator’s gradient. Finally, the gradients
from all the local parties will be aggregated on the server side and
used to update the global generator. In Figure 3, we also present
a detailed illustration of the local training process. It can be seen
that the local data are only used for training the local discriminator
Di , and the global generator G is only updated based on the gra-
dient computed by the trained discriminators. Moreover, only the
information (weights and gradients) of the generator is exchanged
between the local and server side, while the discriminators and the
real data are always kept on the local side. In this way, the frame-
work can facilitate the training of the global generator without
direct access to the real local data.

5.2 Multi-Output Generator Against Attribute

Inconsistency

Moreover, in this paper, we consider the scenario where the user
data are vertically-partitioned and distributed amongM local par-
ties. Since the local parties under this setting may hold different
sets of attributes, the conventional single-output generators are
not applicable for the framework. In order to address the attribute
inconsistency problem, we propose a multi-output structure for the
global generator. The generator consists of several common lay-
ers (denoted as G0) and M separate follow-up branches (denoted
as {G1, · · · ,GM }). Each branch Gi produces synthetic data with
attributes of one local party Pi . Given a batch of input feature Z ,
the global generator is capable of concurrently producing synthetic
data {X̃ 1, · · · , X̃M } for all the local parties. Here, X̃ i = Gi (G0(Z ))
corresponds to the data generated from the i-th branch.

We follow the optimization approach of WGAN introduced in
Section 3.2 to iteratively train the global generator and local discrim-
inators in the proposed framework. On the one hand, the training
of the discriminators on the local side is conducted as under the
centralized setting. Here, the loss function for the i-th local discrim-
inator Di is:

LiD = Di (x i ) − Di (x̃ i ) + λ(∥∇x̂ iD(x̂
i )∥ − 1)2, (12)

where x i is the real data of the i-th local party, x̃ i = Gi (G0(z))
is the synthetic data generated by the i-th branch of G, x̂ i is the
gradient penalty as defined in Equation (7), and λ is the weight for
the gradient penalty. Once the discriminators have been trained
for several iterations, they will be used to compute the gradient
of the global generator. The loss function for the global generator
G can be computed as the sum of the loss regarding all the local
discriminators, each of which is derived following Equation (8):

LG =

M∑
i=1
LiG =

M∑
i=1

Di (Gi (G0(z))). (13)

The generator’s gradient ∇LG can be further derived as

∇LG =
∂
∑M
i=1 L

i
G

∂G
=

M∑
i=1

∂LiG
∂[G0,G1, · · · ,GM ]

=

[
∂L1

G
∂G0 ,

∂L1
G

∂G1 , 0, · · · , 0
]
+ · · · +

[
∂LM

G
∂G0 , 0, 0, · · · ,

∂LM
G

∂GM

]
=

[ M∑
i=1

∂LiG
∂G0 ,

∂L1
G

∂G1 , · · · ,
∂LM

G
∂GM

]
(14)

which is the sum of the generator gradients from all the local par-
ties. Hence, by aggregating all the returned generator gradients, the
server achieves to use the sum of the gradients to update the global
generator. It can be seen from Equation (14) that the parameters
of each branch Gi are updated based on the gradients from party
Pi , while the parameters of the common layers G0 are updated by
the gradients from all the local parties. Therefore, the multi-output
structure enables the global generator to automatically capture the
correlations and distributions of attributes across local parties dur-
ing the training process and directly generate synthetic integrated
data with the entire attribute set.

5.3 Collaborative Training with DP

In the previous sections, we illustrate how the VertiGAN frame-
work enables a global generator to learn the hidden correlations of
attributes across all the local parties without actually accessing the
real local data. Nevertheless, recent studies (e.g., [9, 49]) showed
that the trained generator may reveal sensitive information of real
local data under various privacy attacks. In order to mitigate poten-
tial privacy risks, we further apply DP during the training process,
which provides strict privacy guarantees to the local datasets.

Considering the global generator does not directly access real
local data, we follow previous DP-GAN algorithms [64, 71] and
only perturb the gradients of local discriminators to achieve privacy
protection. Specifically, in each update step of the discriminator, we
first sample a batch of real local data and synthetic data, and then

241



Proceedings on Privacy Enhancing Technologies 2023(2) Xue Jiang, Yufei Zhang, Xuebing Zhou, and Jens Grossklags

compute the corresponding gradients {дi ,bD }b ∈B . Each gradientд
i ,b
D

is then clipped by a pre-defined L2-norm bound C , namely

д̄i ,bD = clip(дi ,bD ,C) = д
i ,b
D /max(1, | |дi ,bD | |2/C). (15)

Next, we sum up all the clipped gradients, add random Gaussian
noise N(0,σ 2C2I ), and divide the perturbed gradient by the batch
size B as shown below:

д̃iD =
1
B

( B∑
b=1

д̄i ,bD +N(0,σ
2C2I )

)
. (16)

The gradient д̃iD is used to update the discriminator parameters.
Since the local discriminator is repeatedly updated during the

training process, according to the composition property, the total
privacy cost should be accumulated. Considering that RDP achieves
a much tighter privacy estimation in comparison to the traditional
DP (as mentioned in Section 3.1), we first compute the overall
privacy cost under the RDP definition and then convert it back to
the traditional DP definition. To start with, the privacy cost of each
gradient perturbation under RDP is derived as follows:

Corollary 1. With a noise scale N(0,σ 2C2), the perturbed gra-
dient д̃iD satisfies (α,α/2σ 2)-RDP.

Proof. Let f =
∑B
b=1 д̄

b
D =

∑B
b=1 clip(д

b
D ,C) be the sum of all

the gradients clipped by an L2-norm bound of C . The sensitivity of
f can be derived as:

∆f = max
D,D′

| | f (D) − f (D ′)| |2 ≤ C . (17)

Furthermore, the gradient perturbation process can be denoted as
Mf = f +N(0,σ 2C2I ). Based on Section 3.1, the privacy cost of
Mf under the order α is

ϵ(α) =
(∆f )

2 · α

2 · σ 2C2 =
C2 · α

2 · σ 2C2 =
α

2σ 2 . (18)

As shown in Equation (16), the perturbed gradient will be divided
by a batch size B, and the result д̃iD will be actually used to update
the discriminator. Since B is unrelated to the real data, according to
the post-processing property (Theorem 2), the final discriminator
update д̃iD also satisfies (α, ϵ(α))-RDP. □

According to Lemma 1, the privacy guarantee can be further
amplified by subsampling. Given N as the total number of training
data and B as the batch size, we compute the sampling rate as
γ = N /B and derive the amplified privacy cost ϵ ′(α) following
Equation (5). Next, assume the discriminator has updated for T
steps during the entire training process, then the overall privacy
cost is (α,T · ϵ ′(α))-RDP. We further convert privacy cost back to
the traditional (ϵ, δ )-DP definition according to Lemma 2. Finally,
since the global generator is trained on the local discriminators,
according to the post-processing property (Theorem 2), the global
generator also satisfies (ϵ, δ )-DP for the corresponding local dataset.

5.4 Overall Training Process

With the above design considerations, we now describe the overall
training process presented in Algorithm 1 and Algorithm 2.

Before the training starts, the server initializes the global gen-
erator G. On the local side, each party also initializes its local dis-
criminator Di . Moreover, considering that the local parties may

Algorithm 1: VertiGAN - Workflow of Server
Input: G: global generator;M : number of local parties;

Tдlobal : global training rounds; η: learning rate;
OPT : optimizer for the GAN model.

Output: Trained global generator G
Server executes:

1: Initialize global generator G
2: for each local party i = 1, · · · ,M do

3: LocalInitialization() // Run on the local side
4: end for

5: for each global round t = 1, · · · ,Tдlobal do
6: Sample random seed τ
7: for local party i = 1, · · · ,M do

8: Distribute τ and G to the local party i
9: Get local gradient дiG = LocalUpdate(τ ,G)
10: end for

11: Aggregate local gradients дG =
∑M
i=1 д

i
G

12: Update generator G ← OPT.update(G,дG ,η)
13: end for

14: return G

have personalized privacy requirements, we let each local party
individually compute the noise scale σ i . With the universally con-
figured batch size B, global rounds Tдlobal , and local steps Td , the
discriminator’s total update step is derived as T = Tдlobal · Td .
Following the privacy accounting process described in Section 5.3,
the required σ i under the target privacy budget (ϵi , δ i ) can be de-
termined accordingly. Finally, since each local party holds different
attributes of the same group of samples, the local training data
should be sample-wise aligned during each global round. A naive
solution is to let the server randomly sample multiple batches of
data indices for selecting the real data as well as input features for
generating the synthetic data, and then broadcast all the informa-
tion to the local side. However, this may cause extra communication
costs, especially for large training batches. To address the issue, our
framework applies a pseudorandom number generator (PRNG) Φi
at each local party to realize the data alignment. Following prior
works [6, 42], we use secure PRNGs to achieve comprehensive se-
curity guarantees. Moreover, we require that all the local PRNGs
use the same algorithm and are deployed with the same configura-
tion. Therefore, according to the reproducibility of PRNG, given the
same random seed, each Φi is able to produce the same sequence
of indices of real data or input features sampled from the standard
Gaussian distribution. By using the PRNG, the server only needs
to randomly sample a random seed and broadcast it to all the local
parties in each global round, which significantly improves commu-
nication efficiency. Also, considering that existing secure PRNGs
based on standard cryptographic primitives can have an output rate
of gigabytes per second on modern CPUs [32], their computation
cost is negligible compared to the local training time.

In each global training round, the server broadcasts the current
global generator G as well as the random seed τ to all the local
parties. Each party Pi first sets Φi with the random seed τ and
then updates the local discriminator Di for Td steps using the real
data X i and the synthetic data X̃ i = Gi (G0(Z )) sampled by Φi . We
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Algorithm 2: VertiGAN - Workflow of Local Party i
Input: G: global generator; Di : party i’s local discriminator;

X i : party i’s local data; Φi : party i’s local PRNG;
Tдlobal : global training rounds; Td : discriminator’s
local update steps; B: batch size; η: learning rate; C:
L2 clipping bound; (ϵi , δ i ): party i’s privacy budget;
OPT : optimizer for the GAN model.

LocalInitialization():

1: Initialize local discriminator Di , local PRNG Φi

2: Given the target (ϵi , δ i ) and the pre-defined (B,T ,Td ),
compute the required noise scale σ i

LocalUpdate(τ ,G):

3: Get local data X i , set Φi .set_seed(τ)
// Train local discriminator

4: for t = 1, · · · ,Td do

5: Sample indices J = Φi .random_choice(size=B)
6: Sample input noise Z = Φi .random_normal(size=B)
7: for b = 1, · · · ,B do

8: Let x = X i [J [b]], x̃ = Gi (G0(Z [b]))
9: Compute Li ,bD (x, x̃) and д

i ,b
D = ∇L

i ,b
D (x, x̃)

10: Clip gradient д̄i ,bD = дi ,bD /max(1, | |дi ,bD | |2/C)
11: end for

12: Aggregate gradients and add noise
д̃iD =

1
B (

∑B
b=1 д̄

i ,b
D +N(0,σ

i 2
C2I ))

13: Update discriminator Di ← OPT.update(Di , д̃iD ,η)
14: end for

// Compute generator gradient

15: Sample input noise Z = Φi .random_normal(size=B)
16: Compute дiG =

1
B

∑B
b=1 ∇LG (G

i (G0(Z [b])))
17: return дiG

apply the DP perturbation in each update step, where the batch
of gradients is clipped by L2 bound C and perturbed with random
Gaussian noise N(0,σ i 2

C2I ). The noise scale σ i is determined in
the initialization process. Then, the local discriminator is used to
compute the gradient дiG of the current global generator, which will
be returned to the server for updating the parameters of the global
generator parameters. The global training process is conducted for
Tдlobal rounds. Once the training completes, the server can use the
global generatorG to directly generate the synthetic dataset with
attributes of all the local parties.

6 EXPERIMENTS AND RESULTS

We implemented the proposed framework using the Tensorflow
library and performed comprehensive experiments with a number
of open-source datasets to evaluate its performance. In this section,
we first introduce the experimental settings and then discuss the
evaluation results.

6.1 Experiment Setup

6.1.1 Datasets and Models. We used six multi-dimensional classi-
fication datasets for evaluating the performance of the VertiGAN
framework:

Table 1: Datasets details

Dataset Type

Num. Num. Domain

Records Attributes Size

Census Integer 2,458,285 68 2150

Twitter Integer 140,707 78 2181

Web Binary 36,974 124 2124

Vehicle Binary 98,528 101 2101

HAR Binary 10,299 561 2561

Dilbert Binary 10,000 1501 21501

Table 2: One-hot dimensions and the number of model pa-

rameters under the two-party setting

Party 1 Party 2 Server

Dataset

One-hot #Param. One-hot #Param. #Param.

Dim. D1
Dim. D2 G

Census 137 9,592 145 10,732 53,760
Twitter 195 19,307 174 15,313 94,768
Web 124 7,813 123 7,751 39,416

Vehicle 100 5,101 102 5,305 26,857
HAR 562 158,485 566 160,745 812,949
Dilbert 1,500 788,551 1,505 794,190 2,681,446

Web [47] contains records with 124 binary attributes extracted
from each web page. The goal was to train a classifier to determine
whether the web page belongs to a category.

Vehicle [17] contains data collected in wireless distributed sen-
sor networks. Each record has 100 binary attributes representing
data collected from different acoustic and seismic sensors. The goal
was to train a classifier for vehicle type classification.

Census [16] contains records drawn from the 1990 United States
census data, including 68 personal attributes such as gender, income,
and marital status. We used the dataset to classify the duration of
people’s active duty service.

Twitter [34] contains records with 77 attributes such as the
number of discussions and average discussion length, which are
used to predict the popularity magnitude of each instance. In our
experiment, we quantified the values of each attribute into five bins.
The goal was to classify the level of popularity of each instance.

Activity [2] contains sensor records describing six daily activi-
ties. Each data record has 561 attributes representing different time
and frequency domain variables. We normalize each attribute and
convert the data to binary form.

Dilbert was originally provided in [37] for object recognition.
We use the processed version in [21], where the records are cate-
gorized to five classes. We take the first 1500 attributes from the
processed data to exclude the irrelevant variables mentioned in
[21]. Then, we normalize each attribute and convert the data to
binary form.

Details of each dataset are presented in Table 1, including the data
type, the number of records and attributes, and the domain size. In
the experiments, we assume that each party holds 105 data records.
To this end, we randomly sample 105 records from each original
dataset and partition the datasets by feature. If the original dataset
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contains fewer records, the data are sampled with replacements.
We further use one-hot encoding to convert the original categorical
attributes to the numerical form for model training.

We design the global generator and local discriminators as multi-
layer neural networks (NNs) and determine their layer size ac-
cording to the one-hot dimension of the local datasets. The local
discriminators are two-layer NNs whose output is a scalar between
0 and 1. The global generator is a multi-output model, which has
two common layers followed by a number of separate branches.
Each branch contains two fully-connected layers, which outputs
the synthetic data of one party. In Table 2, we report the one-hot
dimensions and the model size under the two-party setting.

6.1.2 Baseline Methods. Considering the objective and setting of
existing works on the publication of vertically-partitioned data, we
use the DPLT algorithm proposed by Tang et al. [53] as our baseline
in the following experiments. The algorithm uses a latent tree
model to represent the cross-attribute correlations in the original
dataset and perturbs the tree parameters via a distributed Laplace
protocol to achieveDP guarantee for each local dataset. Additionally,
a tree index based method TICQ can also be used to determine the
minimum set of latent attribute pairs for constructing the latent tree,
which helps to reduce the noise scale. The total privacy budget is
consumed by three parts, namely the generation of latent attributes,
quantification of latent attributes’ correlations, and privatization of
the tree parameters. For each dataset, we respectively compare the
synthetic data utility of using the DPLT algorithm (referred to as
DPLT) as well as the improved TICQ-DPLT algorithm (referred to
as DPLT+). Moreover, we also present the utility of synthetic data
generated under the non-private setting as a reference.

6.1.3 Parameter Configurations. In the following experiments, we
conduct the collaborative training process for T = 1500 rounds.
During local training, each local discriminator is updated for Td =
10 steps with a batch size of B = 1000. For both the generator and
discriminator, we use the RMSprop optimizer with a default learning
rate of η = 0.001. Moreover, we apply the gradient perturbation
when training the local discriminators, where the L2-clip boundC is
set to 1 and the noise scale σ varies according to the target privacy
budget. We choose a different privacy budget ϵ ∈ {0.5, 1, 2, 4, 8}
and δ = 10−5 so as to explore the influence of privacy on the
framework performance. The ϵ here follows the traditional DP
definition (Definition 1).

6.1.4 Evaluation Metrics. We evaluate the performance of our Ver-
tiGAN framework from two perspectives, namely the utility eval-
uation and the privacy evaluation. For the utility evaluation, we
first compare the statistical similarity of synthetic data and real
data. Then, we apply commonly-used machine learning models to
investigate the utility of synthetic data in AI training tasks. For the
privacy evaluation, we investigate the capability of our framework
against membership inference attacks, where an attacker aims to
use the synthetic dataset to determine whether a target record is
used for training the GAN model.

6.1.5 Computation Environments. We perform all the experiments
on a NVIDIA Quadro RTX 6000 GPU. In Table 3, we compare the
training time (sec) of our VertiGAN framework and the baseline
DPLT+ algorithm regarding all the datasets.

Table 3: Computation time (sec) of the proposed VertiGAN

framework and baseline DPLT+ algorithm regarding differ-

ent datasets. ForVertiGAN, we perform 1500 global rounds

and report the total training time.

Dataset Web Vehicle Census Twitter HAR Dilbert

DPLT+ 1516.20 1116.81 1341.47 3954.03 19598.39 34413.66
VertiGAN 485.35 396.35 424.42 510.26 3296.08 8387.30

Figure 4: Average total variation distance (AVD) of four-way

joint distributions between the real and synthetic data with

respect to different privacy levels.

6.2 Utility: Statistical Similarity

We start our evaluation under the two-party setting, which is com-
monly used in existing VFL frameworks. Here, each party holds half
of the attributes. We first evaluate the performance of VertiGAN
by investigating whether the generated synthetic data can preserve
similar statistical properties as real data. To this end, we respec-
tively compare the k-way joint distributions and cross-attribute
correlations of the real data and synthetic data and analyze their
statistical similarity.

6.2.1 Comparison of Joint Distributions. For the analysis of joint
distributions, we used the Average Variant Distance (AVD) to quan-
tify the distribution difference between the real data and synthetic
data, as used in [53], which is defined as

AVD =
1
2

∑
ω ∈Ω
|Pr eal (ω) − Psyn (ω)|, (19)

where Ω is the domain of all the k-way attribute combinations, ω
is one of the combinations, Pr eal (ω) and Psyn (ω) are joint distri-
butions of real and synthetic data. More specifically, assume the
attribute combination ω has a domain size of |ω |, Pr eal and Psyn
are |ω |-dimensional vectors, where each entry is the probability
of a specific value combination (namely the ratio of occurrence in
the entire real or synthetic dataset). For each dataset, we randomly
chose 100 k-way attribute combinations and compute the average
distribution difference.

AVD Regarding the Privacy Budget ϵ . In Figure 4, we first com-
pare the four-way AVD of the synthetic data generated by the
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VertiGAN framework as well as the two baseline algorithms under
different privacy levels. We also report the results under the fully-
centralized setting and the results of the proposed framework under
the non-private setting as a reference. The error bars represent the
95% confidence interval (also for the remaining experimental re-
sults). It can be seen that the AVD of all the algorithms reduces
with the increase of ϵ . Nonetheless, for all the datasets, the syn-
thetic data generated by the VertiGAN framework consistently
achieve a smaller AVD in comparison with the baseline methods,
which indicates a better capability of our VertiGAN framework
in capturing the multivariate distributions. Moreover, there is a
more distinctive gap in AVD between the baseline algorithms and
VertiGAN for the datasets with a larger domain size. It can be
observed that when ϵ ≥ 4, the AVD of the baseline algorithms is
almost two to three times in comparison with VertiGAN. This is
because a larger domain size refers to more cross-attribute combina-
tions. Since the baseline algorithms are supposed to evenly split the
privacy budget to all the attribute pairs, the increase in domain size
may cause each attribute pair being allocated with an insufficient
privacy budget, which may result in serious degradation of data
utility. In comparison, VertiGAN applies DP perturbation to the
discriminator’s gradients and is not directly related to the domain
size. Therefore, the increase of domain size does not significantly
affect the utility of the synthetic data generated by VertiGAN.

AVD Regarding the Multivariate Dimension k . We further analyze
the AVD with varied multivariate dimension k to gain a deeper in-
sight intoVertiGAN’s capability in the context of complex datasets.
To this end, we choose k ∈ {2, 3, 4, 5, 6} and compare the k-way
AVD of using VertiGAN as well as the baseline algorithms. We
present the results under ϵ = 2 in Figure 5. Similarly, we also report
the k-way AVD under the centralized setting and under the non-
private VertiGAN setting as a reference. It can be seen that for
all the datasets, VertiGAN steadily shows a smaller k-way AVD
compared to the baseline algorithms. Moreover, although the base-
line algorithms achieve similar AVD when k is small, the difference
gets distinctively larger with an increase of k . Especially, for all the
datasets, the 5-way and 6-way AVD of the baseline algorithms are
almost twice that of VertiGAN. This indicates that our framework
is more adept at capturing the information of high-dimensional
joint distributions of real data.

6.2.2 Comparison of Correlation. We further visualize the corre-
lation coefficient matrix of real data and synthetic data with heat
maps in order to better understand the capability of our method
in capturing and preserving the cross-attribute correlations. Fig-
ure 6 shows the comparison result of the different datasets with
ϵ = 8. For each dataset, we respectively select 10 attributes from
each party and present the correlation matrix of the 20 attributes.
From the visualization results, it can be seen that the correlation
of synthetic data is similar to the correlation of real data, which
further demonstrates that the synthetic data successfully preserves
the attribute correlations of real data.

6.3 Utility: AI Training Performance

Next, we investigate the utility of synthetic data in AI training
tasks. To this end, we train two classification models Mr eal and

Figure 5: Average total variation distance (AVD) of k-way

joint distributions between the real and synthetic data with

respect to different dimensions of the joint distribution.

Figure 6: Correlation comparison between the real and syn-

thetic data with ϵ = 8. For each dataset, we present the cor-

relations of 20 attributes, where each party contributes 10

attributes. It can be seen that the synthetic data preserves

similar correlations as real data.

Msyn , respectively, with real data and synthetic data. Then, we test
both models with an amount of held-out real data and compare the
test accuracy, namely, Accr eal and Accsyn . Intuitively, if Accsyn is
close toAccr eal , we consider the synthetic data to be of high utility
which can replace real data for AI training tasks.

In the experiments, we use the Multi-layer Perceptron (MLP)
classifier as the target AI model. We train bothMr eal andMsyn ten
times and compute the averagedAccr eal andAccsyn . In Table 4, we
present the accuracy of the MLP classifiers evaluated on different
datasets. For each dataset, we compare theAccsyn of synthetic data
generated under the non-private centralized andVertiGAN setting,
as well as that generated by the private DPLT and VertiGAN
frameworks with ϵ ∈ {0.5, 2, 8}. It can be observed that although
all the algorithms show a higher Accsyn with an increase of ϵ , the
accuracy of VertiGAN is generally higher than the baselines for
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Table 4: Classification accuracy of MLPmodels evaluated on

synthetic data generated under different privacy settings.

Dataset

Acc.

Real

Acc. Synthetic

(No DP)

Acc. Synthetic

(With DP)

Center

GAN

Verti

GAN

ϵ DPLT DPLT+

Verti

GAN

Web 0.8453 0.8276 0.8079
0.5 0.7114 0.7124 0.6970
2 0.7251 0.7238 0.7776
8 0.7385 0.7484 0.7900

Vehicle 0.8204 0.8074 0.7984
0.5 0.7385 0.7208 0.7498
2 0.7596 0.7373 0.7627
8 0.7690 0.7729 0.7840

Census 0.9858 0.9820 0.9732
0.5 0.8822 0.8870 0.9088
2 0.9027 0.9092 0.9432
8 0.9465 0.9487 0.9655

Twitter 0.8209 0.8180 0.7871
0.5 0.7277 0.7274 0.7445
2 0.7371 0.7397 0.7701
8 0.7520 0.7580 0.7822

HAR 0.9532 0.8990 0.8414
0.5 0.4228 0.4570 0.5368
2 0.5519 0.5702 0.7022
8 0.6038 0.6284 0.7746

Dilbert 0.9394 0.8651 0.8010
0.5 0.2722 0.2988 0.5525
2 0.4331 0.4353 0.6241
8 0.5434 0.5672 0.7134

all privacy levels, especially for complex datasets. In particular,
with ϵ = 8, the synthetic data generated by VertiGAN achieves
around 2% ∼ 15% improvement of Accsyn compared to the baseline
algorithms. The results indicate that our framework has a better
capacity for preserving the hidden patterns and correlations of real
data compared to the baselines. The generated synthetic data can
be effectively used for data mining and AI training tasks.

6.4 Ablation Study

We further conduct a series of ablation studies to investigate how
the size of local datasets, the imbalanced splitting of attribute sets,
and the increase of local parties impact the performance of the
VertiGAN framework and synthetic data utility.

6.4.1 Impact of the Number of Records. To start with, in the pre-
vious experiments, we assume that the local parties share data of
105 records. We further investigate how varying the number of
local records affects the framework’s performance. To this end, we
respectively vary the size of local datasets with 104, 105, and 106

records and conduct experiments under different privacy levels.
In Figure 7, we present the 4-way AVD of the Vehicle, Census,
and HAR datasets with ϵ = {0.5, 2, 8}. It can be seen that using a
larger number of records can significantly improve the data utility,
especially in high-privacy regimes. For instance, when ϵ = 0.5, for
all the datasets, the AVD with 104 records is 2 ∼ 4 times the results
with 105 records. This is because the privacy loss of each iteration
is related to the sampling rate γ , as shown in Lemma 1. Therefore,
with a fixed batch size of B, increasing the total number of records

Figure 7: 4-way AVD under the two-party settings with 104
,

105
, and 106

records under the privacy level ϵ = {0.5, 2, 8}.

Figure 8: 4-way AVD under the two-party settings with ϵ =
8 and attribute split ratio from {0.1/0.9, 0.3/0.7, 0.5/0.5}. For
each dataset, we compare the results of random splitting and
correlated splitting, where the strongly-correlated attributes

are assigned to one of the parties.

leads to a decrease in privacy loss. In other words, the framework
only needs to add a smaller amount of noise to achieve the same
privacy level, which largely enhances the utility of synthetic data.
On the other hand, for ϵ = 8, the AVD with 106 is similar to the re-
sults with 105 records. This is because larger privacy budgets result
in less noise being injected during training, hence the model can
already converge well with 105 records. In this case, using larger
datasets offers a comparatively smaller contribution to the utility.

6.4.2 Impact of Imbalanced Attribute Sets. Next, in addition to ex-
ploiting the setting where the entire attribute set is evenly split
and held by two local parties, we also investigate whether the util-
ity of the synthetic data will differ if the local parties possess an
imbalanced number of attributes. To this end, we split the entire
attribute set with a ratio of 0.1/0.9, 0.3/0.7, and 0.5/0.5 (i.e., an even
split) and compare the data utility under different privacy levels.
Moreover, we also explore whether the imbalanced split of strongly-
correlated attributes affects the data utility. To this end, we first
compute the pair-wise correlation of all the attributes and apply hi-
erarchical clustering to group the most correlated attributes. Then,
we construct the imbalanced attribute sets in two ways: random
split and correlated split. The former randomly splits the attribute
set according to the split ratio, while the latter manually assigns
the strongly correlated attributes to one of the local parties. We
conduct experiments under different split ratios following both
split fashions and report the results in Figure 8. It can be observed
that an imbalanced attribute set can lead to a degradation of frame-
work performance. In contrast, assigning the strongly-correlated
attributes to one of the parties slightly improves the data utility
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Figure 9: 4-way AVD under the two-party settings with ϵ = 8
and the number of clients from {2, 4, 8, 16}. For each dataset,

we compare the results of random splitting and correlated
splitting, where the strongly-correlated attributes are as-

signed to a subset of the parties.

compared to the random setting. Intuitively, when the attributes
belong to different generator branches, the framework may suffer
from a certain information loss on the pair-wise correlations. In
contrast, the correlation information can be better preserved when
both attributes belong to the same branch, hence leading to higher
data utility.

6.4.3 Impact of the Number of Local Parties. Besides the impact
of imbalanced splitting, we also analyze the effects of varying the
number of local parties on the framework performance. To this
end, we respectively perform the data publication process using
the different methods under the settings consisting of 2, 4, 8, and 16
local parties and compare the utility of synthetic data. In Figure 9,
we present the 4-way AVD with different numbers of local parties
under ϵ = 8. It can be observed that the framework performance
degrades with the increase of local parties. This might be because
the joint distributions and correlations are more difficult to be cap-
tured when the correlated attributes are spread over multiple local
parties. On the other hand, similar to observations in Section 6.4.2,
when assigning all the strongly-correlated attributes to a subset of
local parties (i.e., by using correlated splitting), the cross-attribute
correlations can be better preserved and the data utility can be
further improved.

6.5 Empirical Privacy Analysis

Although choosing a larger privacy budget ϵ can distinctively im-
prove the data utility, this may lead to increased privacy leakage.
In order to obtain a better understanding of the utility-privacy
trade-off, we conduct a membership inference attack to empirically
analyze the privacy protection capabilities of our framework under
different privacy settings. We follow the black-box MIA protocol
proposed in [24], which uses the distance of a target record to
the synthetic dataset to infer the membership information. The
intuition is that the generator tends to generate synthetic data
close to the training data. Therefore, given a target record x , let
Uτ (x) = {x

′ |d(x, x ′) ≤ τ } denote the τ -neighborhood of x with
respect to the distance metric d . Then, we randomly generate a
synthetic dataset Xsyn with n records and compute the ratio that
the synthetic records fall into the neighborhood of x , namely

f̂τ (x) =
1
n

n∑
i=1

1[x isyn ∈ Uτ (x)], (20)

Table 5: MIA accuracy under different privacy settings.

CenterGAN

No DP

VertiGAN

No DP ϵ=8 ϵ=2 ϵ=0.5

Vehicle 0.5841 0.5758 0.5538 0.5448 0.5287
Web 0.6008 0.5844 0.5633 0.5367 0.5223

Census 0.6509 0.6394 0.6171 0.5800 0.5421
Twitter 0.6746 0.6672 0.6320 0.5980 0.5676
HAR 0.5784 0.5637 0.5324 0.5241 0.5160
Dilbert 0.6044 0.5856 0.5623 0.5433 0.5386

where x isyn is the ith synthetic record. Obviously, the higher the
f̂τ (x), the more likely it is that x is included in the training data.

In our experiments, we construct the target dataset by randomly
sampling 100 training records (denoted as Xin ) and 100 testing
records (denoted as Xout ). Then, we generate a synthetic dataset
Xsyn with 104 records and use the normalized Hamming distance
to measure the minimum distance between each target record and
the synthetic data. Following [24], we set τ as the median of the
minimum distance of each record. Given the ground truth label and
the predicted membership probability, we compute the averaged
attack accuracy under different privacy settings. The results are
reported in Table 5. It can be observed that synthetic data generated
by non-private GANs are still likely to reveal the membership
information of the target record. In particular, for Twitter and
Census dataset, the attack accuracy under the non-private setting
is more than 65%. On the other hand, applying DP to ourVertiGAN
framework can effectively reduce attack accuracy. With ϵ = 8, the
attack accuracy is reduced by 2% ∼ 4%, while with ϵ = 0.5, the
attack accuracy is reduced by 5% ∼ 10%. The results demonstrate
that our framework is able to mitigate the risk of membership
inference attacks and can provide strengthened privacy protection
to the local data.

7 DISCUSSIONS AND FUTUREWORK

In this section, we discuss potential extensions of our framework,
current limitations, and directions for future work.

7.1 Extension to Other Data Types

In Section 6, we demonstrated that the VertiGAN framework is ef-
fective in publishing vertically-partitioned categorical datasets and
achieves better data utility compared to previous statistics-based
baselines. Moreover, our framework can be further extended to
more complex settings where each party holds different types of
data. For instance, in a healthcare scenario, a group of hospitals can
use the framework to publish a joint dataset containing patients’
CT images and physical symptoms for future medical research.
This can be realized by modifying the structure of the models and
using the advanced layers. For instance, we can respectively adopt
convolution layers and recurrent layers to enhance the feature ex-
traction on image data and time-series data. Despite the variation
of the layers and model structures, the main workflow of the Ver-
tiGAN framework remains unchanged. In Figure 10, we further
demonstrate the framework’s feasibility in the context of image
data. Here, we assume that there are three local parties respectively
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Figure 10: Results of image data synthesis under a three-

party setting. Each row represents the synthetic images gen-

erated by one local party under different privacy settings.

holding handwritten digits from MNIST, handwritten letters from
Extended MNIST, and article images from Fashion-MNIST. We
construct a global generator with three output branches and the
corresponding local discriminators and analyze the quality of syn-
thetic images generated under different privacy settings. Note that
the synthetic data are randomly generated and hence are not iden-
tical to the real data. Nevertheless, it can still be observed that our
framework is capable of jointly synthesizing all three categories of
images of different local clients, and the generated data enjoys a
satisfactory level of quality under a larger privacy budget.

7.2 Reduction of Communication Cost

As described in Section 5.4, in each global round, the parameters
and gradients of the global generator are repeatedly exchanged
between the server and local parties. This may result in a high
communication cost, especially for high-dimensional models. One
possible approach for mitigating the upload communication cost is
to process the generator’s gradients with top-k sparsification and
send the sparsified gradients to the server. In Figure 11, we inves-
tigate how the sparsification level affects the utility of synthetic
data. Here, we choose the top-k ratio from {0.25, 0.5, 0.75, 1} and
compare the corresponding 4-way AVD of the synthetic data under
the privacy level of ϵ ∈ {2, 8}. It can be observed that even process-
ing the gradients with a top-k ratio of 0.25 can still achieve data
utility comparable to returning the entire gradients. The results
demonstrate the effectiveness of gradient sparsification in reducing
the upload communication cost. On the other hand, a few recent
studies also proposed to use dropout [8] and model pruning [30] to
reduce the size of the broadcast global model. Our framework can be
further improved following this idea: before the training starts, the
server broadcasts the initialized global generator to all the local par-
ties. Then, during training, instead of broadcasting the entire global
generator, the server only sends the parameters of the common
layers G0 and the corresponding branch Gi to the party Pi , which
is enough for Pi to produce the synthetic data X̃ i = Gi (G0)(Z ) on
the local side (see Section 5.2). The improvement not only reduces
the download communication but also prevents the local parties
from inferring the inputs of the other parties.

7.3 Protection for the Uploaded Gradients

In this paper, we apply DP perturbation to the discriminator and
enforce privacy guarantees to the generator according to the post-
processing property. Nevertheless, even though the global generator

Figure 11: Four-way AVD between the real and synthetic

data with respect to different gradient sparsity ratios.

is not directly trained on the local data, the gradients derived by
the local discriminators may still reveal sensitive information about
local data. Considering that recent studies in FL [6, 29] adopt SMC
or local differential privacy (LDP) for encrypting or perturbing local
updates, such protection techniques may also be applicable to our
framework. For instance, we can use SMC protocols to encrypt the
real gradients on the local side before sending them to the server.
In this way, the server cannot obtain the individual real gradients
but only the sum of all the gradients after the decryption. However,
the use of SMC protocols may increase the communication and
computational cost of the framework due to the key generation
and exchange process. On the other hand, LDP-based solutions add
random noise to the local gradients, which will not largely affect
efficiency. Nevertheless, it may cause significant utility loss due to
the limited number of local parties under the vertical setting. Hence,
how to protect the uploaded gradients regarding security, utility,
and efficiency will be an important direction for future work.

8 CONCLUSION

Due to the great variety in service scenarios, user data in real-
life applications are often vertically partitioned and distributed
among different local parties. Although it is of great benefit for data
analysts to explore the hidden correlations of attributes of all the
local parties, publishing the vertically-partitioned data raises both
privacy and utility concerns.

In this paper, we follow the idea of synthetic data generation
and propose VertiGAN, the first GAN-based framework for pri-
vately publishing vertically-partitioned data. Different from the
prior statistics-based solutions, our framework adopts a distributed
GAN architecture, where a global generator is adversarially trained
with a group of local discriminators to learn the distribution of all
parties’ local data and used to directly generate synthetic integrated
data on the server side. Moreover, we apply DP perturbation during
the training process to ensure strict privacy guarantees for the
local data. Experimental evaluation with real-world datasets shows
that our framework significantly outperforms the statistics-based
baseline algorithms for publishing high-dimensional vertically-
partitioned data. The synthetic data generated by our framework
preserves very similar statistical properties as real data and can
replace real data for data mining and model training tasks.
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