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ABSTRACT
Trajectory analysis holds many promises, from improvements in

traffic management to routing advice or infrastructure develop-

ment. However, learning users’ paths is extremely privacy-invasive.

Therefore, there is a necessity to protect trajectories such that we

preserve the global properties, useful for analysis, while specific

and private information of individuals remains inaccessible. Trajec-

tories, however, are difficult to protect, since they are sequential,

highly dimensional, correlated, bound to geophysical restrictions,

and easily mapped to semantic points of interest.

This paper aims to establish a systematic framework on protec-

tive masking measures for trajectory databases with differentially

private (DP) guarantees, including also utility properties, derived

from ideas and limitations of existing proposals. To reach this goal,

we systematize the utility metrics used throughout the literature,

deeply analyze the DP granularity notions, explore and elaborate

on the state of the art on privacy-enhancing mechanisms and their

problems, and expose the main limitations of DP notions in the

context of trajectories.

KEYWORDS
Systematization of knowledge, privacy-preserving data publishing,

trajectory privacy, differential privacy, utility metrics

1 INTRODUCTION
Trajectory data mining and analysis have become a relevant branch

of study due to their numerous applications [70]. Not only can their

processing improve our daily lives, for instance, through naviga-

tion and route recommendation, but it also has various institutional

data-analytics applications in both the public and private sectors.

The ability of personal devices (e.g., wearables, smartphones [7])

and navigation systems to accurately collect, process, and analyze

these data, and their ubiquitous availability, amplify this develop-

ment, which is growing at an unprecedented rate thanks to re-

cent technological advances. Traffic management, urban planning,

transportation-system design, routing advice, or homeland security
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are just a few of the many applications that benefit from trajectory

analyses [47].

Although data analyses bear economic and societal good, ten-

sions regarding privacy risks are growing [88, 105]. Protecting data

subjects and reducing possible harm inflicted upon them hence

gains importance. Consequently, legal frameworks in the European

Union and other regions explicitly limit personal data collection,

processing, and sharing. The European General Data Protection

Regulation (GDPR) indeed requires personal data anonymization

as one way to circumvent processing restrictions [39]. Therefore,

assuring tight privacy preservation when analyzing location trajec-

tories is also a legal requirement.

Generally speaking, trajectories are sequences of timestamped

locations (such as GPS coordinates). These, at first sight, may appear

innocuous to users’ privacy, but trajectories can reveal exact home

locations and even accurate behavioral patterns [98]. They readily

give away when and how long a particular individual does what.

Exploiting this, one can infer circumstances and trends affecting

sensitive aspects of an individual’s life, including health status,

religious beliefs, social relationships, or sexual preferences [22].

We investigate the possibility of publishing entire trajectory

databases with privacy guarantees towards this end. Statistical dis-
closure control (SDC) addresses the attempt to prevent confidential

information from being linked to specific individuals when releas-

ing data [59]. Given a raw database, the goal is to publish a sanitized

version that reduces disclosure risk while retaining utility: the prop-
erty that statistical analyses yield similar results in both databases.

Adapting SDC techniques to protect trajectories of human mobil-

ity is no easy task, as we shall describe in the following sections.

Well-known metrics from the field, such as k-anonymity [95] or

ε-differential privacy (ε-DP) [35], are not immediately applicable

to sequential and high-dimensional data sets.

The uniqueness of human traces implies that, with little back-

ground knowledge about data subjects (such as their place of resi-

dence or work), adversaries can attack seemingly protected data

with ease [27, 122]. In this context, research shows that knowing

only four spatio-temporal points at low resolution is enough to

uniquely identify 95% of the individuals in a given database of large

scale [29]. Furthermore, we can recover an original, seemingly san-

itized trajectory within an obfuscated area using auxiliary public

information, like road maps, speed limits, or simple spatio-temporal

correlation models [9, 117]. All this ultimately leads to poor pri-

vacy. Even though there exist numerous proposals in the literature,
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most come with apparent deficiencies, ranging from vulnerabili-

ties to simple attacks to spoiled utility due to wasting information

contained in trajectory data or publishing impossible trajectories.

Finally, numerous applications of trajectory-data analyses in-

volve repeated computations, since they typically monitor certain

conditions (e.g., traffic). However, regularly publishing updated ver-

sions of a database in a privacy-preserving waymakes the challenge

even harder. The main reason is that each publication leaks some

information about the individuals contained in the database, and it

is not simple to ensure that combinations of published private data

will not compromise privacy at any moment.

All the mentioned problems raise serious concerns about the cur-

rent state of the art for trajectory privacy. They create doubts about

whether existing technology can effectively guarantee individuals’

privacy and if they can strike an acceptable balance between privacy

and the utility of data. This situation demands a comprehensive

systematization of use cases, limitations, and misconceptions in

the field, as well as a standardized classification that facilitates the

way for researchers to choose a good privacy metric, develop a

mechanism, and measure its utility adequately.

Contributions and Related Works. In this paper, we conduct a

comprehensive, systematic state-of-the-art analysis on privacy-
preserving trajectory publication, the goal of which is to publish

a sanitized database of real-world personal trajectories with ac-

tual guarantees in both privacy and utility. This area is formally

known as masking [59] (i.e., creating a modified version D∗
of the

original database D), in opposition to the generation of synthetic

databases, which generates new data that preserves some statistic

properties of the original database [59], or the publication of aggre-

gated statistics. This area has yet to be fully explored and surveyed

in the literature, especially in contrast to the other scenarios. We

specifically focus on DP for the publication of sanitized trajecto-

ries. Our review and analysis of privacy technologies includes an
introduction to trajectories (Section 2), utility metrics (Section 3),

risks and attacks (Section 4), DP notions (Section 5), DP masking
mechanisms (Section 6), and DP challenges and limitations for trajec-
tory data (Section 7). More specifically, our contributions towards

a systematization of knowledge are the following.

• We systematically analyze how the utility of the sanitized

trajectory data can be measured, providing a novel classifi-

cation of utility metrics, and exploring similarity measures

for the scenario at hand.

• We discuss DP adaptations to trajectory data and the impli-

cations these may entail by analyzing the most relevant DP

granularity notions proposed for trajectory data, including

conclusions and use cases for each.

• We propose a novel taxonomy of privacy-protecting tech-

nologies. We systematically survey the state of the art and

recent advances in the literature, and we discuss and prove

mathematically which algorithms are not formally DP.

• We finally discuss and recompile the challenges and limita-

tions of DP (and its different granularity adaptations) as a

privacy notion in the context of trajectories.

We succinctly describe the main differences between our work

and prior surveys in the field. Primault et al. [92] provide a deep

analysis of location-privacy protection mechanisms, including a di-

vision of the protectionmechanisms into online and offlinemethods.

However, the authors do not cover trajectory privacy extensively

since their main focus is on the more general field of location pri-

vacy. Note that trajectory data is inherently more complex than

simple location data: trajectories are not only comprised of visited

locations but also include correlations and connections between

them. In consequence, attacks, privacy-protection mechanisms, and

limitations are notably different, even though these data types share

a close relationship. Fiore et al. [41] offer a thorough overview and

classification of attacks on trajectory databases and discuss privacy-

preserving mechanisms. However, they cover mostly mechanisms

to generate synthetic data and do not study the various privacy and

utility metrics available in the literature for trajectory protection,

nor the limitations of DP for trajectory data. More recently, Jin

et al. [62] conduct a survey with an analysis and empirical evalu-

ation of trajectory-privacy models to quantify their privacy and

utility, but do not consider DP mechanisms in depth.

Our work entirely focuses on DP masking mechanisms for pri-

vate database publication, which the aforementioned surveys do

not fully explore. Other works focus on orthogonal topics, such as

trajectory anonymization under syntactic notions [90] and location

privacy (not comprising trajectories) [61].

2 TRAJECTORIES AND THEIR DATA SETS
Trajectories correspond to a path or trace generated or drawn by

a moving object, usually referred to as an individual or user (we
will refer as such independently on what they are, e.g., a person

walking, or a car carrying various people).

Different types of trajectories exist. Raw trajectories consist of
an ordered sequence of spatio-temporal points T = ⟨p1, . . . ,pm⟩

where |T | B m denotes the length of T and pi = (xi ,yi , ti ) corre-
sponds to the location (xi ,yi ) at timestamp ti . Trajectories respect
the temporal order (i.e., ti+1 must happen strictly after ti ), which
ensures there are no movements back in time, and no one is in two

different locations at once. The term subtrajectory usually refers to

a subset of a trajectory, including those formed by non-necessarily

consecutive locations, while n-grams (also called subsequences) are
subtrajectories formed byn consecutive spatio-temporal points. The

prefixes of a trajectory T = ⟨p1, . . . ,pm⟩ are the n-grams (n ≤ m)

starting at p1, i.e., ⟨p1, . . . ,pn⟩.
Semantic trajectories are alternative representations where ev-

ery spatio-temporal point contains additional semantic meaning,
such as a name and description (e.g., “coffee shop” or “work”),

possibly augmented with additional information such as the num-

ber of visitors or opening hours. In this latter case, locations are

called point of interest (POI). More complex trajectories, called

multiple aspect trajectories [83], additionally consider any possi-

ble type of recordable information, like weather variations, trans-

portation mode, or the current heart rate or emotions of individ-

uals. Simplified trajectories have been suggested, such as T =
⟨(x1,y1), . . . , (xm,ym )⟩, where time is omitted and only the order

of locations is retained [17, 18, 53, 56].

We will refer to the spatial and temporal aspects as dimensions
of a trajectory, which are both commonly represented as numerical

data. Semantic locations additionally have a categorical dimension.
497



Proceedings on Privacy Enhancing Technologies 2023(2) À. Miranda-Pascual, P. Guerra-Balboa, J. Parra-Arnau, J. Forné and T. Strufe

Trajectory databases consist of one or multiple trajectories from

individuals, usually over a shared region. We can represent them

as collections of rows, where each row contains the data of a single

individual:

D =


T1 : p(1)

1
p(1)
2

· · · p(1)m
1

T2 : p(2)
1

p(2)
2

· · · p(2)m
2

.

.

.
.
.
.

.

.

.

Tr : p(r )
1

p(r )
2

· · · p(r )mr

,

where Ti denotes a trajectory belonging to user i . The length of

each trajectory is denoted here bymi and depends on each user. In

some contexts, the same user can contribute multiple trajectories

to the database. In this latter case, i is just a label of the trajectory
and does not necessarily relate to a user.

Differences in structure between such databases exist. Some

consist only of trajectories of equal length, and others assume that

trajectories are periodically recorded (i.e., every trajectory has a

spatio-temporal point for every time interval) [8, 37]. Further types

include those with irregular recordings, with spatio-temporal points

only included when the user is at a relevant location [12].

A particular scenario in trajectory publishing is the data-stream
scenario, where a flow of information is received and published

periodically. Therefore, a streaming database can be viewed as a

sequence D = {S1, . . . , St , . . .}, where each update Si represents
the information corresponding to time i:

D =



S1 S2 · · ·

T1 : p(1)
1

p(1)
2

· · · p(1)m
1

T2 : p(2)
1

p(2)
2

· · · p(2)m
2

.

.

.
.
.
.

.

.

.

Tr : p(r )
1

p(r )
2

· · · p(r )mr

.

The database at time t is denoted Dt = {S1, . . . , St } and called

a stream prefix. Note that since some databases consist of non-

periodically recorded trajectories, “gaps” in this representation are

possible, as shown in Figure 1. Hence, Ti may not have a location

for time t , and remain empty in row i of St .
The structure of trajectory data and databases makes its pro-

tection exceptionally difficult. Long trajectories cause problems

due to the curse of dimensionality [3, 32], and the sparseness and

uniqueness of trajectories can aid in re-identification. Another risk

factor is the semantic meaning of points since this information can

be enough to expose individuals.

A notorious statistical property of trajectory databases is the

presence of correlation. Two conceptually different correlations are

present in trajectory data: Correlations between trajectories refers to
the case when multiple user’s records are correlated. In families’

trajectories, for instance, we are bound to observe high correla-

tions between their corresponding records as they engage in shared

activities. Furthermore, an extreme case is regular repetitions of

trajectories contributed by the same individual. Correlations be-
tween attributes refers to the correlation in the data a single user

contributes to the database. In the case of trajectories, it refers to the

correlations within the spatio-temporal and semantic dimensions.

A high-correlation level exists between close timestamps due to

the laws of physics, route distribution, or social patterns. It is also

termed autocorrelation for time series data. We present in Section 7

the implications of correlation in privacy.

3 UTILITY METRICS
Privacy mechanisms aim to balance two conflicting goals: strong

privacy and high utility. Typically, these mechanisms introduce

obfuscation and remove detail in the data, so improving privacy

usually comes with a reduction in utility. Measuring the utility

and privacy provided by an algorithm is laborious since trajectory

data are very complex, and the presence of semantic values can

complicate its study.

In this section, we explore utility metrics to assess protected

trajectories and provide a new classification. We identify two major

goals a sanitization mechanism can aim to preserve: data and sta-

tistics. Here, we understand data preservation as how much of the

output data correspond to the original one (i.e., remains unaltered

after sanitization); and statistic preservation as the preservation of

specific properties of the database (e.g., numbers of visits to impor-

tant locations), usually extracted from it with query functions. Our

classification thus follows this idea, dividing into data and statis-
tics preservation. Since assuring data realism is a significant utility

condition, we also introduce the orthogonal category of realism
assurance. The right-most columns of Table 2 show the types of

metrics used for mechanisms explored in this work.

Data preservation: These metrics measure utility based on the

number or proportion of data that is left unaltered after sanitization,

or the extent to which it is changed. Technically speaking, not

modifying the database would yield the highest possible utility,

obviously at the cost of total privacy loss. We further distinguish

two subclasses for data preservation: total, which looks at howmuch

data remains exactly the same; and close, which instead measures

some distance since, typically, perturbing trajectories slightly (e.g.,

moving locations by a few meters) does not strongly hinder the

utility of the mechanism in question.

Location preservation [33] is a good example of total data preser-

vation: onemaintains high utility when the protected trajectories in-

clude many locations present in the original data and not fake ones.

Similarly, some proposals evaluate utility as the number or percent-

age of suppressed trajectories, subsequences or locations [20, 33], or

as the size of the restricted area of the map with perturbation [114].

A popular way [11, 21, 26, 55, 58, 72, 76, 97, 129] to quantify close

data preservation is by using similarity measures, which output a

value representing how different two trajectories are. For example,

in mechanisms such that a one-to-one correspondence between

the original and sanitized trajectories exists, we can use similarity

measures to compute the average values between each pair. We

deeply explore existing similarity measures in Appendix A. Traffic

management is one exemplary use case that can benefit from this

group of metrics.

Other close metrics include map inference metric, used in [114],

which infers the geometry of the road maps drawn by trajectories

between the original and sanitized databases. Preservation range
query, presented in [26], represents the percentage of obfuscated

locations in a data set that remain at a distance no greater than δ
from their original counterpart.

Statistics preservation: In contrast with the previous cate-

gories, this one does not look at the preservation of the data com-

prising the database, but at specific extractable information. These

statistics are extracted using query functions, and therefore the
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relative error query function [1, 11, 17, 18, 31, 116, 128] is frequently

employed to study their preservation. Given the query q, it com-

putes the difference between the outputs when using the original

database D and the sanitized D ′
as

error(q) =
|q(D) − q(D ′)|

max{q(D),b}
,

where b is the sanity bound used for extremely selective queries

(usually chosen to be equal to 0.1% or 1% of |D |).

Since these queries can be defined to extract any information

from the database, we find multiple diverse examples in the liter-

ature. Some of the most common ones relate to visitor numbers

and location popularity. For example, frequent sequential pattern
mining looks at the k most common subtrajectories in the original

and sanitized database, either by seeing if they match over the data-

bases [17, 18, 127] or by comparing the counts of such [11, 17, 114].

Similarly, count queries [17, 18, 76, 128] can be utilized to check

whether the number of visitors to locations is retained or not. Ad-

ditionally, some metrics tackle the preservation of number of tra-
jectories [76], most visited locations [78], hotspots [26], location pop-
ularity [114], flow density [11, 114] and the start and end points

distribution (trip error [114]).
Another popular metric type is trajectory length preservation [78,

114, 130]. Three variations have been suggested in the literature,

varying in usefulness: preservation of the total travel distance (i.e.,
the sum of the physical length between locations), the trajectory

diameter (i.e., the maximum physical length between any two of

its points), and the total number of points in the trajectory.

These metrics are of special interest for commercial purposes,

where specific information on trajectories is needed rather than

whole trajectories. For example, vendors may be interested in plac-

ing their advertising banners on the busiest streets, and city hall

may be interested in the distribution of start and end points to

decide where to build parking lots. Note this information can be

preserved and extracted from sanitized trajectories, without being

similar to the original ones in all other respects.

Realism assurance: Finally, we introduce this category that

measures the ability of an algorithm to output realistic values. It

is motivated by the fact that some methods produce geospatial in-
consistencies (i.e., with points in illogical places) or unreachable
points (i.e., a consecutive pair of locations is unattainable in the

given time [33]). Accordingly, reachability is a straightforward

guarantee of realism, which can be checked by measuring the

distance between consecutive points (xi ,yi , ti ), (xi+1,yi+1, ti+1) to
see if they are indeed reachable, i.e., if d((xi ,yi ), (xi+1,yi+1)) ≤

v(ti+1 − ti ) where v is the maximum velocity of the user. Similarly,

the previously-mentioned map inference metric [114] can be used

to check for geospatially incoherent points.

Observe that there currently are only a few metrics in the litera-

ture that fall into this last category, but we believe that checking or

ensuring realism is essential when providing privacy mechanisms.

Hence, we introduce this category to demonstrate this notable gap.

Conclusions on Utility Metrics: To sum up, mechanisms should

naturally achieve good utility, and one needs to be aware that some

metrics are better suited for different use cases. Notably, there is no

universal utility metric for all applications, and therefore a single

proposal can use multiple ones in its evaluation to widen its scope.

Data-preservation metrics are excellent for scenarios where the

whole trajectory is considered, such as traffic management. Total

data preservation is usually a stronger statement than its close

counterpart; however, it can sometimes provide disproportionately

poor values for unsuitable mechanisms. For example, if looking

at location preservation, a total-preservation metric will output

“no utility” given a mechanism that perturbs the coordinates of all

points (such as in some DP mechanisms). In such cases, it may be

more suitable to use a close variant instead. Statistics-preservation

metrics are convenient for publishing information like popular

locations or sequences, but they do not reflect the preservation of

the whole structure of trajectories.

Assuring that the database contains realistic values is essential.

Beyond reflecting good utility, it may furthermore complicate at-

tacks such as those that aim at reconstructing original trajectories.

4 RISKS AND ATTACKS
Having explored how we can measure the utility of trajectory data,

we now discuss possible privacy risks. The main goal of trajectory

privacy is to protect against risks and threats when unintended

actors get access to the data.

We illustrate the tangible risks associated with a lack of privacy

protection in trajectory data in the following examples. The New

York City taxi data set, which included around 173 million taxi

trips and the corresponding tips [108], was published in 2013. Since

then, plenty of attacks on this data, using background knowledge,
quickly appeared: Tockar [106, 108] used paparazzi photos to link

celebrities’ identities to the corresponding trip in the data discov-

ering where they went, which establishments they visited, and

how much they tipped. Deneau [42] figured out that one could link

stops with daily praying time to identify Muslim cab drivers. These

examples are excellent representatives of two important privacy

risk classes [59], identity and attribute disclosure. We review them

in the context of trajectory data in the following subsections.

Furthermore, sensitive location disclosure represents a risk that

does not refer to leaking private information relating to users, but

rather to locations. Disclosure examples are the discovery of secret

Israeli and US army bases through the publication of running trails

recorded by Strava through soldiers’ mobile apps [51, 57].

To show the privacy risks in human traces, we expose the possi-

ble attacks and threats of the literature. The attacks correspond to

the major classification of Fung et al. [45], adapted by [62] (adding

group linkage attacks), with our extension of reconstruction and

prediction attacks. We also provide examples, some of which have

previously been extensively surveyed in [41, 62].

4.1 Identity Disclosure
Identity disclosure is the primary risk: It happens when an adver-

sary is able to assign an individual to their corresponding record or

records in a database. Such assignation may be possible from the

database alone (if it directly contains identifying information) by

combining the database with external knowledge or auxiliary data,

or by probabilistic inference.

Record linkage attacks (or identity linkage attacks) attempt

to infer individuals’ identities. Re-identification attacks are the sim-

plest form of this type [81]. They utilize auxiliary information, i.e.,
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information exposed through other means and thus available to the

adversary. In particular, personal context linking attacks [52, 117]
use known information about a victim (e.g., they have been to a

coffee shop) to discover their trajectory in the database.

Some record linkage attacks aim to discover uniquely identifiable

traits to determine the victim’s path. In the case of trajectories,

little information suffices to do so [29, 94]. Location probability

distributions, mobility preferences and patterns, exposed locations,

and physical encounters can each be used to design attack models,

which detect the unique traits more successfully [30, 38, 44, 48, 94,

125, 126]. For example, experimentation shows that if the adversary

knows the traveled distance, speed, and direction, then up to 95% of

users can be uniquely identified [94]. We refer the interested reader

to [41] for a comprehensive list of similar attacks.

Membership attacks (a generalization of table attacks [45,
62] for non-tabular data) aim to discover whether or not a specific

individual is present in the database, regardless of whether their

records can be directly identified. For example, if the database

shows one trajectory leaving a home location, then an adversary

can deduce an inhabitant participated in the database. Learning

merely the presence or absence of an individual in a trajectory

database can be a direct privacy threat (e.g., consider a database of

trajectories with traffic violations). Well-known examples include

adaptations ofmembership linkage attacks andmembership inference
attacks in trajectory data [93, 101].

4.2 Attribute Disclosure
The second risk is attribute disclosure: An adversary learns addi-

tional information about the previously unknown individual with-

out necessarily identifying their exact record in the database. In

trajectory data, this includes the whereabouts and temporal infor-

mation (e.g., when no one is at home). The disclosure of the user’s
spatial and temporal information [117] is sensitive itself but can also

be indirectly damaging, since it may be associated with semantic

knowledge and values. Presence at a hospital for extended amounts

of time allows adversaries to infer a user’s health status; while being

at a place and time where a specific protest is happening may leak

information about a user’s political opinions.

In attribute linkage attacks, adversaries aim to learn attributes

by relying on their ability to unambiguously assign the victim to

a set of records that share the same revealing attribute [45], or an

exceptional distribution of attributes. In the example of Muslim

taxi drivers mentioned above, the attacker inferred an attribute:

the victims’ religion, even though they did not identify anyone’s

trajectory. Sui et al. [102] observe that 40% of the records that cannot

be immediately identified in their data and seem anonymous were

instead homogeneous and directly disclose the shared attribute.

Users’ most sensitive locations are another attribute that can

be exposed, for example, point-clustering algorithms that can de-

terministically find them already exist [131]. Gambs et al. [46]

demonstrate how this violates the privacy of sensitive attributes.

Group linkage attacks [62] discover connections between in-

dividuals. Relationships are particular attribute cases, and both

social links and kinship can be inferred from correlated move-

ment [22]. Their disclosure may entail different threats. Predispo-

sition to hereditary diseases, communication between dissidents,

homophily in friendships sharing religious and political views, or

homosexual partnerships in certain jurisdictions are just a few

prominent examples.

Another attack type is probabilistic attacks, which aims to

improve the probabilistic belief on the sensitive information of a

victim after accessing the published data [45]. One typical exam-

ple is the Bayesian inference attack, where the attacker adversary
the difference between prior and posterior beliefs about sensitive

information, succeeding in the attack when this difference is high

(or the posterior exceeds a chosen threshold). We describe in more

detail its implications to trajectory data in Section 7.

Reconstruction attacks aim at rebuilding trajectories in the

database. For example, Buchholz et al. [9] introduce a reconstruction

algorithm that can construct trajectories closer to the original data

than the perturbed one. Similarly, filtering attacks [113] also aim at

reducing noise added. On the other hand, Xu et al. [120] develop

an iterative attack that can exploit the uniqueness and regularity

of human mobility to step-by-step recover individual’s trajectories

from mobility data without using any background knowledge.

Finally, we point out that the possibility of predicting a user’s

locations (prediction attacks) is also a threat, since attackers can

discover the user’s destination, probably even before they arrive.

Additionally, adversaries can infer whether users will be home or

not, and plan, e.g., a robbery. As an instance of this, Song et al. [98]

demonstrate successful movement pattern predictions [46] with up

to 93% average chance to correctly predict mobility behavior.

5 PRIVACY NOTIONS
There are two well-known families of privacy notions in SDC [59]:

syntactic and semantic notions [23]. Syntactic notions specify con-

ditions a sanitized database should exhibit; while semantic notions1

describe guarantees that the mechanism chosen for releasing the

data should satisfy [28].

Semantic notions can provide stronger privacy guarantees than

syntactic notions because they do not require assumptions about the

adversary’s knowledge. Further benefits over syntactic notions are,

for instance, that the sequential composition in DP holds: Specific

subsequent publications of the same data yield well-defined leakage

that can be controlled. We hence devote the rest of the paper to

semantic notions under DP, and give an overview of syntactic

notions in Appendix B.

5.1 Differentially Private Notions
Differential privacy (DP) [35] is the best-known semantic notion. It

aims to hide the presence or absence of any user in the database such

that an analyst can extract statistics about the whole population,

while an adversary cannot learn more than a limited amount about

any user. The difference between the output probability of a DP

mechanism, given a database that contains a user’s data and one

that does not, is bounded. Thus, the publication of the anonymized

output reveals only bounded information about individuals, since

the inference capability of any attacker is restricted.

1
Do not confuse “semantic privacy notions” with “semantic meaning” of a location.

The term “semantic privacy” comes from the related cryptographic notion of semantic

security, while the term “semantic meaning” of a location relates to its real-world

definition and aspects (i.e., the location is a restaurant).
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Formally, a randomized algorithmM is said to be ε-differentially
private (ε-DP) [35] if for all neighboring databases D,D ′ ∈ D (i.e.,

differing in exactly one entry) and all measurable S ⊆ Range(M),

P{M(D) ∈ S} ≤ e
ε
P{M(D ′) ∈ S}, (5.1)

where D is the fixed universe of all possible input databases of M.

The privacy budget ε > 0 represents a measure of the privacy

loss after seeing the output. From Eq. 5.1, we obtain ln(P{M(D) ∈
S}) − ln(P{M(D ′) ∈ S}) ≤ ε for all measurable S ⊆ Range(M),

establishing thus a bound ε over the difference in distributions

of outputs between two neighboring databases. Intuitively, the

smaller ε , the stronger the provided privacy, i.e., if ε is small enough,

then the difference between the two mentioned distributions is

negligible. Thus, the attacker has no reasonable criteria to choose

between the two possible input databases, limiting the amount of

information that can be learned about any given individual.

One strong point of this notion is that it does not make any

assumptions about the background knowledge of the attacker. DP

is a worst-case guarantee [14], which means it protects the privacy

of any database (including outliers) against the strongest attackers.

A popular variation, called approximate DP or (ε, δ )-DP [36] re-

quires instead that P{M(D) ∈ S} ≤ e
ε
P{M(D ′) ∈ S} + δ , relaxing

the definition to ensure bounds for rare events. In this case, the

probability of not achieving ε-DP (i.e., that Eq. 5.1 does not hold)

is δ .
Additionally, both original and approximate DP offer two ben-

eficial properties: composability ensures that the combination of

multiple DP algorithms is still DP, and post-processing implies that

subsequent processing does not affect the privacy of data published

with DP guarantees. These are given by the sequential and parallel
composition theorems, and the post-processing property [36].

Central vs. local DP. The original, central DP notion assumes

the presence of a trusted party (data curator) who executes the

mechanisms protecting the sensitive data. If no party with shared

trust exists, it is necessary to distribute the curation to all partici-

pants. The corresponding local ε-differential privacy (ε-LDP) [36, 63],
assumes every individual holds a database containing their records

and shares them only after local obfuscation. They hence contribute

partial answers to queries on the whole data, enforcing DP locally.

Formally, a randomized algorithmM that takes as input a user’s

record is said to be ε-LDP [119] if for all possible pairs of user’s

records x, x ′ and all measurable S ⊆ Range(M), P{M(x) ∈ S} ≤

e
ε
P{M(x ′) ∈ S}.
This notion is stronger than central DP since there is no need

to assume a trusted party. However, it is usually harder to achieve

with the same utility constraints since each user needs to per-

turb their own record, which does not happen in the central case.

Hence, the total amount of noise may be higher in the local scenario.

The differences between these notions demand new hypotheses

and conditions to satisfy them, as well as adapted mechanisms. A

well-known example to achieve local DP in questionnaires is the

randomized response.

Level of granularity. DP is a mathematical guarantee, so it is

crucial to specify exactly what information is protected by it. The

specification hinges on how the concept of neighboring databases

is instantiated. Hence, various adaptations of the concept of neigh-
borhood (i.e., what is considered a single entry in the database)

Type of privacy Difference between neighboring databases

User-level A user’s whole trajectories

Event-level A spatio-temporal point visited by a user (an event)

w -event A window of events overw consecutive timestamps

ℓ-trajectory A sequence of ℓ consecutive spatio-temporal points from

a single user

Element-level A user’s set of points belonging to the same cluster

Table 1: Granularity notions and their concept of neighborhood.

have been suggested in the literature. We refer to the neighborhood

definition as the level of granularity [36] of a DP notion. For exam-

ple, the original DP notion aims to protect the entire existence of

an individual’s records or entries in a database, thus assuming a

one-to-one correspondence between record and user.

In trajectory data, where several points form each user’s record,

the concept of granularity has special relevance. The neighbor-

hood definition directly impacts the privacy guarantee offered. We

explore the most common granularity notions in the following

paragraphs and provide a quick summary of these in Table 1.

User-level privacy corresponds to the original notion of DP.

We consider two databases D and D ′
to be user-level neighboring

if they only differ in the information attributed to a single user.

For instance, if each user contributes a single trajectory, then two

databases D and D ′
are considered user-level neighbors if they

differ in one user’s entire trajectory, either by removing/adding

their trajectory (unbounded DP) or by exchanging it with another

user’s trajectory (bounded DP). In a setting where the same user

contributes more than a single trajectory to the database, the neigh-

borhood definition extends to cover all the trajectories of this user.

Event-level privacy appears as an adaptation of DP to stream-

ing scenarios [36], but it is also applicable in a static context when

the database is sequential, as in the trajectory case. Its goal is to

hide the presence or absence of a single event from a sequence of

observations contributed by an individual.

Definition 5.1 (Event-neighborhood). For trajectory data, two

streaming databases D and D ′
are event-neighboring if we obtain

one from the other by changing a single spatio-temporal point. For

example:

D =



S1 S2 · · · Sm
T1 : p(1)

1
p(1)
2

· · · p(1)m
T2 : p(2)

1
p(2)
2

· · · p(2)m
.
.
.

.

.

.
.
.
.

Tr : p(r )
1

p(r )
2

· · · p(r )m

, D′ =



S1 S2 · · · Sm
T1 : p(1)

1
p(1)
2

· · · p(1)m
T2 : p(2)

1
p̂(2)
2

· · · p(2)m
.
.
.

.

.

.
.
.
.

Tr : p(r )
1

p(r )
2

· · · p(r )m

.

In this context, event-level privacy aims to make it more difficult

to determine whether a particular spatio-temporal point has been

visited by a given user.

The guarantee this notion gives is that each point in the data-

base remains inaccessible to an attacker. Also, due to the restricted

definition of neighborhood, the sensitivity of a query function is

never larger (usually smaller) than the sensitivity at user-level gran-

ularity. Therefore, for the same ε , mechanisms such as the Laplace

or exponential need less obfuscation, so the utility should remain

higher. This notion, however, comes with its own drawbacks.

First, it opens the risk of identity disclosure. Event-level privacy

guarantees that if the attacker knows a single spatio-temporal point
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of a single trajectory, the probability of re-identification is bounded

by ε . However, if the attacker knows, for instance, r > 1 points,

then the protection of said r points is instead bounded by rε [36].
Therefore, the attacker’s chances of re-identifying can increase

significantly, and the victim is no longer protected from identity

disclosure. Real-life trajectories can contain hundreds of spatio-

temporal records per individual, so the chances of re-identification

are then almost certain.

Additionally, it does not fully cover attribute disclosure. If one lo-

cation has been visited more than once by the same user, then these

visits remain unprotected under event-level privacy. For example, if

the user visited a hospital more than once, then the attribute “Has

been at the hospital” can still be exposed.

Another problem inherent to this notion is its vulnerability to

correlation attacks (see Section 7).

w-event privacy. Also considering streaming databases, Kel-

laris et al. [65] suggest w-event privacy. This notion can be seen

as the one that makes points of the database over w consecutive

timestamps undetectable when seeing the output returned by the

protection mechanism. Its definition of neighboring databases is

the following:

Definition 5.2 (w-neighborhood). Letw be a positive integer. Two

stream prefixes Dt = {S1, . . . , St } and D ′
t = {S ′

1
, . . . , S ′t } are w-

neighboring, if, for all i ≤ t , Si and S ′i are either equal or we can
obtain one from the other by changing an entry of Si , and all pair

of indexes i, j corresponding to the latter case verify that |i − j | < w .

This last condition means that all the differing Si and S
′
i must fit in

aw-window (see Figure 1).

This definition captures settings where sensitive information is

disclosed from a sequence of events of lengthw . It does not only

protect the locations visited by a single user over w consecutive

timestamps but also can protect those of different users. In terms of

privacy, for values ofw close to 1,w-event privacy approximates to

event-level privacy, and for large values, it converges to user-level

privacy. In terms of sensitivity, its lower bound is the event-level

sensitivity, and its upper bound is the user-level one. Therefore, this

notion protects more information than event-level privacy while

allowing less noise addition than user-level, even though some of

its deficiencies remain present.

The notion still leaks attributes (e.g., “Being at the hospital”),

when these cannot be protected by the same w-window. For ex-

ample, assume user u1 in Figure 1 (where w = 3) is a compulsive

gambler and visits the casino (red dot) multiple times a day. The

sensitive information that u1 has been at the casino is not protected

as the red dots cannot fit into a uniquew-window. Also, the user’s

identity is still unprotected if the attacker’s knowledge exceeds the

window.

Given that consecutive spatial points are usually more correlated,

this new notion is also superior to event-level privacy against corre-

lation attacks (see Section 7). However, the assumption ofw-event

privacy that trajectories are periodically recorded, may overesti-

mate the number of consecutive protected locations. For instance,

in Figure 1, where we have non-periodically recorded trajectories,

the 3-window 5–7 cannot protect more than two locations of a

single user.

i 1 2 3 4 5 6 7 8 9 ⋯

u1 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⋯

u2 ⬤ ⬤ ⬤ ⬤ ⬤ ⋯

u3 ⬤ ⬤ ⬤ ⬤ ⬤ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

i 1 2 3 4 5 6 7 8 9 ⋯

u1 ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⋯

u2 ⬤ ⬤ ⬤ ⬤ ⬤ ⋯

u3 ⬤ ⬤ ⬤ ⬤ ⬤ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Figure 1: An example of a non-periodically recorded streaming database,
colored dots represent different locations. The rounded boxes represent pro-
tection scopes of event-level (red), w -event (blue), and ℓ-trajectory privacy
(green), forw = ℓ = 3. Observe that the blue box (w -window) always spansw
timestamps independent of howmany points they include, and that the green
box (ℓ-trajectory) always includes ℓ points independently of the number of
timestamps it spans.

ℓ-trajectory privacy. Cao and Yoshikawa [12] aim to overcome

this last deficiency ofw-event privacy, especially when users’ trajec-

tories are not periodically recorded. To tackle this issue, they extend

the previous model to introduce ℓ-trajectory privacy, defined next.

Definition 5.3 (ℓ-trajectory neighborhood). We say two databases

are ℓ-trajectory neighboring if one is obtained from the other by only

modifying all locations in a single ℓ-trajectory. Here, an ℓ-trajectory
is defined as a sequence of ℓ successive spatio-temporal data points

produced by the same user (see Figure 1).

The goal of the ℓ-trajectory privacy notion is to protect each

sequence of ℓ points from the same user independently of the

number of timestamps they span. Clearly, varying ℓ allows us to

move closer to event-level (ℓ = 1) or to user-level privacy (ℓ → ∞).

Although this notion overcomes the problem ofw-event privacy

of assuming periodically recorded trajectories, it does not address

its other deficiencies.

Element-level privacy. The high cost and utility loss of user-

level privacy motivated the definition of element-level privacy [5].

The authors argue that, in most cases, participation in a database

(user-level privacy) is not sensitive. For instance, in a traffic study,

participating in the database only discloses information such as

“Having a car” or “Living in the area”, which users can regard as in-

sensitive. However, one may wish to avoid attribute disclosure. For

example, suppose a person visits a hospital several times through-

out the day and wants to keep it a secret. In this case, event-level

privacy is not sufficient for the previously mentioned reasons, and

neither w-event nor ℓ-trajectory privacy if the visits do not fit

into thew-window or ℓ-trajectory. Therefore, the authors propose

element-level privacy to address this situation.

The original proposal [5] models the data of a useru as a multiset

of values x (u) = {x
(u)
1
, x

(u)
2
, . . . , x

(u)
mu }, where each x

(u)
i belongs to

the universe of possible values X. Then it considers a K-partition
of the universe X into the clusters c1, . . . , cK . These clusters are

viewed as the elements to be protected. By definition, each x
(u)
i

belongs to one cluster c j .

Definition 5.4 (Element-neighborhood). Two databases D,D ′
are

element-neighboring if they are equal except for a pair of users’ data
x (u) = {x1, . . . , xn } ∈ D, x (u

′) = {x ′
1
, . . . , x ′n } ∈ D ′

such that

duser(x
(u), x (u

′)) B
K∑
k=1

1{{xi |xi ∈ck },{x ′
i |x

′
i ∈ck }}

≤ 1,
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where 1{{xi |xi ∈ck },{x ′
i |x

′
i ∈ck }}

denotes the indicator function that

outputs 1 when the inequality holds and 0 in other case, with

{xi | xi ∈ ck } being implicitly multisets.

Observe that by modifying the cluster selection, we can achieve

user-level granularity by taking only one cluster, c1 = X.

The interpretation of ensuring element-level privacy is that we

are hiding that each user has elements belonging to the cluster,

independently of how many elements it includes.

We believe that this notion can be adapted to trajectory data. In

the case of raw trajectories, we can cluster data points according

to geographical zones and times. And in the case of semantic tra-

jectories, we can choose the clusters according to semantic values,

e.g., having a cluster for all health-related locations.

A challenge here is how to establish the clusters to provide real

protection that covers all possible scenarios regarding the user’s

privacy desire. For instance, if we choose spatial areas as clusters, a

question arises about the size we should take and which privacy

guarantees we would have according to our selection. This extends

when considering semantic trajectories: If we reduce a cluster to

a specific hospital, we will protect the visits to this hospital, but

if we instead include all hospitals in the cluster, we will then be

protecting any visit to any hospital.

Since this notion is relatively new, there have not been many

mechanisms achieving it and no adaptations specifically to trajec-

tory data. Moreover, no comparison has been conducted against

the other granularity notions explored in this section regarding

utility and privacy.

Conclusions on Granularity Notions: In terms of privacy protec-

tion, user-level privacy is the strongest, followed by element-level,

ℓ-trajectory, andw-event privacy. Finally, we fear event-level to be

unreliable regarding trajectory privacy.

Although choosing user-level privacy may result in excessive

loss of utility in the complex field of trajectory publication, none of

the other granularity notions adapted to trajectory data analyzed

here can provide convincing privacy guarantees. All of them allow

identity disclosure, and none provide effective protection against

attribute disclosure. Even if participation in a database was not

sensitive information, leaking user attributes seems unacceptable

in terms of privacy. Element-level privacy could be a promising

attempt to protect against attribute disclosure. However, it has not

been adapted to trajectory data yet. Therefore, it is difficult to assess

the impact of this notion on the utility of anonymized trajectories.

6 DP MASKING MECHANISMS
Next, we examine masking algorithms that adapt trajectory data-

bases for publication with DP guarantees. The state of the art we

review in this work covers the static-context publication in which

the sanitized database is released just once in its entirety, without

subsequent updates. We classify them according to their fundamen-

tal concept. We provide an overview of our classification in Table 2,

including information on the privacy notion they satisfy, their prop-

erties, and the utility metrics used for their evaluation. Observe

that most of the reviewed proposals aim to achieve user-level DP.

Note that DP algorithms require a randomized approach since

deterministic algorithms cannot achieve DP guarantees [36]. The

two classical mechanisms to provide DP are the Laplace and expo-
nential mechanisms [36]. Nearly all the algorithms presented in this

section leverage these mechanisms in some way.

6.1 Noisy Counts
We include in this class the anonymization approaches that add

Laplace noise to the count of trajectories or their subsequences.

Exploration tree. Chen et al. [18] first construct an exploration

prefix tree from the trajectory database. Each node is labeled with

a possible location, which can only be an element of a predefined

finite set of locations (the universe of locations). Every possible

prefix trajectory is represented uniquely as a walk from the root

node to another (i.e., we represent prefix ⟨p1, . . . ,pm⟩ by the node

obtained after walking through the tree following the labels: root →
p1 → · · · → pm ). This node stores the number of times (i.e., the

counts) the prefix appeared in the database. The tree includes all the

possible trajectories drawn from the universe of locations, including

those not present in the database (i.e., with a count of 0).

This way the count of each prefix of length n is stored at the

nth level of the tree. To guarantee DP, Laplace noise is added to

the count of each node (including the 0 ones, potentially creating

sequences not contained in the original data). Since each trajectory

has only one prefix of length n, the sensitivity of the mechanism is 1.

A node with a noisy count of 0 becomes a leaf; otherwise expands

until a maximum allowed length.

Then, to release the trajectory database, we only need to explore

the resulting tree. Based on the noisy prefix tree, we can draw the

sanitized database by traversing it once, calculating the number r
of trajectories terminated at each node, and appending r copies

of the prefix saved in that node to the output. Since creating and

exploring the tree are inverse operations, there is a one-to-one

correspondence between the database and the prefix tree. Note we

need a post-processing module to maintain the tree consistency

(i.e., the sum of counts of descendant nodes cannot be higher than

that of their ancestors).

In subsequent work, the same authors improved this approach

by introducing an n-gram exploration tree [17] that looks at n-
grams instead of prefixes, which leads to higher counts in each

node and higher sensitivity. In this case, each trajectory could add

its total length to a node count. Therefore, the sensitivity is the

maximum trajectory length, lmax, allowed in the database (any

trajectory longer than lmax is cut before introducing it in the data).

The authors also add Laplace noise on the n-grams counts. Once

again, by exploring the tree, we recover the perturbed version of

the original trajectories, obtaining a sanitized trajectory database.

The proposed solution [17] additionally offers the possibility of

creating trajectories using a Markov process, where they compute

the probabilities using the noisy counts. However, this option does

not create a modified database from the original (masking) but

instead generates synthetic data.

Other proposals modify these algorithms in various ways. Firstly,

Wang and Kankanhalli [114] define sensitive zones and apply Chen

et al.’s method [17] only to these zones, which provides better

utility. However, their privacy notion is weaker since they do not

provide DP for the whole database but only for sensitive zones.
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Mech. (∆) Properties Utility metrics

User-level

ε -DP*
N
o
i
s
y
c
o
u
n
t
s

Exploration tree

[114] lmax ◦ ✓ • ◦ ◦ ◦ • • • • • •

ε -DP

[18] 1 ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦

[17] lmax ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦

[31] lmax ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦

Sequence tree

[130] ✗ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦

[128] ✗ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦

[124] ✗ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦

Trajectory count [127] ✗ • ◦ ✓ ✓ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Tree + Markov

[11] ✗
• ◦

✓ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦

C
l
u
s
t
e
r
i
n
g

Random centroid ◦ ◦

Exp.: k -means

[21, 58] ✗ • • ✓ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦

[72] ✗ • • ✓ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦

Exp.: Hilbert curves [55] ✗ • • ✓ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦

Universal clustering [129] ✗ • ◦ ✓ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Event-level (0, δ )-DP
Sampling + interpolation

[97] ◦ ◦ ✓ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦

User-level

(ε , δ )-DP [76] ∆X ◦ ✓ ✓ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦

ε -LDP Perturbation [26] ◦ ∆dw ✓ ✓ ✓ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦

Table 2: Summary of explored DP-based mechanisms according to our classification and exact privacy notion they satisfy. “Correct DP notion” labels mecha-
nisms that incorrectly claim DP. We show if the algorithm uses the Laplace or exponential mechanism, and the corresponding sensitivity (∆) of correct proposals
(sensitivity is not well-defined for the incorrect algorithms). Next, we cover basic properties: whether they consider time, allow for an unbounded location uni-
verse, and assure realism.We then specify which classes of utility metrics are used to evaluate the mechanism (cf. Section 3). We highlight the most representative
metrics according to the selected mechanisms. “Close data preservation” includes two specific similarity measure (SM) types: Euclidean and Hausdorff distances.
“Statistics preservation” includes “location visit counts” (including location popularity metrics), “frequent sequences” and “spatial density”. For noisy counts and
clustering, colored cells indicate the original proposals from which the others in each family stem. *It provides ε-DP only when restricted to certain spatial areas.

DPLG [31] constructs the same noisy n-gram tree (therefore, the

sensitivity of each node count is lmax) but provides a non-uniformly

distributed privacy level by regulating the amount of noise added,

so the location will be more or less protected depending on the area

of the map it is.

All the exploration-tree–based methods have some common

problems: For instance, it is necessary to assume a fixed and dis-

crete universe of possible locations and set the maximum length

of trajectories. We need these strong assumptions to bound their

sensitivity. Also, the size of the trees increases exponentially with

the number of locations and allowed length of trajectories. Note

that limiting length would considerably reduce utility. Hence, a

small location universe is required to perform these methods, which

is not usually the case in real-world applications. Additionally, the

mechanisms only retain spatial information and counts, with the

loss of temporal information further reducing utility.

The spatio-temporal correlations of human trajectories, their

regularity, and self-similarity can be easily represented by auto-

correlation models (see Section 7). Some of the new sequences

generated by the processes do not follow realistic patterns and

hence can easily be identified and removed from the data by the

adversary. The accuracy of this attack depends on the quality of the

adversary’s correlation model. The Laplace mechanism, however,

does not consider correlations and is bound to choose impossible or

highly unlikely sequences when adding noise to the original zero

counts of these hypothetical trajectories. A simple stochastic model

aggregating road-map information and physical movement laws

will suffice to eliminate these cases.

Sequence tree.More recent approaches try to build trees stor-

ing the counts of subsequences in each node instead of only one

location (i.e., sequence trees). This is the case of NTPT [130]. This

mechanism first tries to overcome data sparseness by simplifying

the trajectories. By performing an optimal segmentation process,

the trajectories are divided into sequences, and then, it constructs

a prefix tree where each node stores a sequence. Afterward, it adds

Laplace noise to the counts of each node.

Related approaches are presented in [124, 128], with the differ-

ence that they rely on a similarity factor. More specifically, they

save sequences of spatio-temporal points in a tree structure ac-

cording to the number of location points they have in common. As

usual, they add Laplace noise to the count of each sequence node.

Trajectory count. Finally, one work considers the correlation

between individuals in the database [127]. Here, the authors mea-

sure the correlation coefficient between the different trajectories in

the database, which translate into privacy risk: the more correlated

trajectories are, the more risk they pose. Therefore, they allocate

different privacy budgets adding more Laplace noise to the counts

of the risky ones.

We would like to note that all of the above suggestions [124,

127, 128, 130] suffer from a common formality mistake and do not

provide DP. They output perturbed counts of only those segments,

subsequences, or trajectories present in the original database, but

do not change the output of hypothetical sequences with zero

504



SoK: Differentially Private Publication of Trajectory Data Proceedings on Privacy Enhancing Technologies 2023(2)

counts, as in the exploration-tree–based methods we discussed.

These conditions contradict the definition of DP, and thus cannot

provide DP (we provide formal proofs of this in Appendix C). This is

not reflected in the privacy analysis, as the authors provide proof of

the DP tools they incorporated, such as the Laplace mechanism, but

do not of the privacy met by their global algorithm. Consequently,

if the count of the victim’s trajectory is positive after perturbation,

and this trajectory contains a quasi-identifier known by the attacker,

such as their home or work, the victim and the rest of its path can

still be identified.

Conclusions on Noisy Counts: We conclude that the only noisy-

count mechanisms that achieve acceptable privacy guarantees are

the original exploration-tree approaches [17, 18, 31, 114]. However,

due to their high computational cost for large databases, we only

see these methods used for cases with reduced universes, such as

the analysis of public-transport lines of a city.

These algorithms excel at preserving statistics (e.g., location

counts). This result is reflected in Table 2, where we see that many

of the algorithms evaluate their utility using statistic-preservation

metrics. On the other hand, we find fewer evaluations using data-

preservation metrics and, in particular, no similarity measures.

6.2 Clustering
The next category contains mechanisms [11, 21, 55, 58, 72, 129]

that cluster locations and subsequently release trajectories through

these clusters with some perturbation to guarantee privacy.

They follow a common structure that consists of two privacy

mechanisms: A generalization mechanismM1, which generalizes

the set of locations by grouping them into clusters, and a releasing

mechanismM2, which outputs resulting trajectories drawn from

the generalized sets. To achieve DP publication, both M1 and M2

have to be DP.

Exponential clustering. Hua et al. [58] is the first proposal

using clustering. Their idea forM1 is to cluster and merge concur-

rent locations from different trajectories, following a probabilistic

partitioning based on the exponential mechanism. Then, using the

Laplace mechanism,M2 connects the merged locations and forms

the final generalized trajectories.

Specifically, the authors suggest a score function to measure

distances between trajectories crossing the corresponding locations

at each timestamp. Using the exponential mechanism and this score

function, they choose one of the candidate partitions (intom groups)

of Γi , the set of locations of the database at time i . Finally, the
locations of each subset are clustered together and replaced by

their corresponding centroid (see Figure 2).

After selecting a partition and replacing the locations with cen-

troids, the location set Γi is replaced by a smaller one, Γ̃i , which
contains perturbed information. They build the new trajectories

from this reduced set Γ̃i using the mechanism M2, which draws

sequences from Γ̃i at random. The counts are attributed following

the Laplace mechanism until obtaining a sanitized database of the

same size as the original.

To ensure privacy, this model is imported in [21] as the final part

of their recurrent neural network. Later, Li et al. [72] design anM2

algorithm with bounded Laplace noise. In [55], they propose a new

Figure 2: Example of how trajectory data are anonymized through clus-
tering techniques. Different trajectories are represented in different colors,
with points corresponding to the physical location over each timestamp. The
colored areas represent the clusters defined by the selected partition, and the
stars denote the centroids of each subset. In this case, trajectories are of length
|T | = 4, and the selected partition containsm = 2 subsets.

private cluster mechanismM1 based on Hilbert curves, where it is

not necessary to fix the number of clusters in advance.

After studying these approaches, we observe an issue applying

the exponential mechanism. Recall that this mechanism assigns

probabilistically for each input an output from R, the set of abstract

outputs, which is data independent. However, in these proposals,

R is the set of possible partitions of Γi B {li location at time i of
any T ∈ D}. If the database D is changed, then it is clear that the

possible partitions are also changed, which means that R is not

data independent. This fact breaks the formal DP proof for theM1

mechanisms since the exponential mechanism is not well-defined if

R is data dependent, and so Eq. 5.1 cannot be achieved (we provide

a formal mathematical proof of this statement and an example that

breaks the DP guarantees of these methods in Appendix C). The

only way to avoid this issue would be to define a data-independent

universe of locations, for instance, based on the citymap, and output

a partition of this universe. This way, the mechanism could achieve

DP. Being independent of the actual patterns in the data could incur

a significant utility loss in some scenarios.

Universal clustering. Recently, Zhao et al. [129] introduce a

protection proposal independent of the specific clustering algo-

rithm. It allows one to choose any preferred clustering and run it

on the database without modification. They add Laplace noise to

location coordinates (using the polar form) and to the counts of

these data in the cluster. Finally, the authors calculate the noisy

centroid according to the noisy counts and locations and release

these centroids. The noisy count algorithm they use is the same as

in [124, 128, 130], which we have shown to lack DP guarantees. Fur-

thermore, following this scheme, we cannot release more than the

corresponding centroids since there is no private way of establish-

ing connections between centroids and thus forming trajectories

without using the original data. The authors do not propose any

mechanism for trajectory release (M2).

Random centroid. Finally, we highlight DPTD [11], which in-

troduces a generalization module that clusters the locations without

consuming privacy budget (the proposed solution chooses a ran-

dom location instead of the centroid). For the release methodM2,

the authors adapt the noisy prefix tree structure presented in [17] to

reduce the consumption of the privacy budget and provide higher

utility. Instead of adding Laplace noise to the odd layers of the tree,

they predict the new count with a Markov process. This Markov

process uses the frequencies of the original database, apparently

without protection (i.e., no noise or perturbation added to the fre-

quencies). Although the authors attempt to reduce the privacy bud-

get consumed, the generalization step indirectly uses the database
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in its election of the centroid, thus breaking DP. The publications

also contain neither analyses nor proofs of privacy, so the actual

protection achieved remains unclear.

General problems. Apart from the privacy issues we have ex-

plained in each proposal, we find general problems. First, the gener-

ation of impossible trajectories challenges the utility of the resulting

output. Specifically, the presented methods can create trajectories

in which two consecutive locations are unreachable in the given

time and unrealistic centroids placed at impossible locations, such

as in the middle of a river or on top of a building.

Another limitation is that the used score function of the expo-

nential mechanism only depends on physical distance and therefore

does not consider time. These proposals are thus inapplicable for

non-periodically recorded and variable-length trajectories, which

represent a majority of real-world databases.

Similarly, a problem arises related to stationary sequences when

disregarding time. When a driver stops, the spatial location re-

mains constant during each timestamp until the car starts to move

again (e.g., see Figure 2, where the dark blue point is constantly

in the same location at each timestamp because it represents a

stop position in the trajectory). The constant spatial points will

be substituted by the corresponding centroids at each timestamp.

However, since merging locations is only based on distances, the

sanitized data will likely not reflect this stop. In Figure 2, we can see

that the locations of the dark blue stationary trajectory change into

different locations at each timestamp. This produces an apparent

random movement that hides the stop.

Conclusions on Clustering: This category of approaches over-

comes the applicability problem of those using trees (see Section 6.1),

as they do not need to assume a small universe of locations. How-

ever, we can still identify several deficiencies: merging without con-

sidering time and using naïve mechanisms for releasing data (M2)

can yield poor utility and facilitate correlation attacks. Also, as men-

tioned above, all of these proposals contain erroneous DP analyses

or proofs. It hence remains unclear which protection they provide.

Unlike in the noisy-counts algorithms, these clustering mecha-

nisms evaluate utility mainly using similarity measures rather than

statistic-preservation metrics (see Table 2), even though these last

ones could be used in the utility evaluation.

In combination with the development of better release mecha-

nisms and rigorous privacy analyses, these approaches promise to

be a fruitful path for future potential research.

6.3 Sampling and Interpolation
Another type of mechanism is based on point sampling and inter-

polation [76, 97]. The sampling technique consists of selecting a

subset of the database (in this case, trajectory points), while inter-

polation is used to counteract the size reduction due to sampling

by reconstructing intermediate points of the trajectories. The sam-

pling techniques used do not satisfy ε-DP, but rather (ε, δ )-DP, and
interpolation is conducted without affecting the privacy guarantees.

Shao et al. [97] present two mechanisms, SFI and IFS, for ship-

trajectory privacy based on these techniques. SFI first randomly

samples points over each trajectory and then redraws trajectories

using a cubic Bézier interpolation (the “a priori” mechanism). IFS

first interpolates and then samples (the “a posteriori” mechanism).

The mechanisms are proven to achieve event-level (0, δ )-DP. In
their experimentation, the authors conclude that SFI works better

than IFS for small values of δ and not-so-smooth trajectories.

Similar to the mechanisms discussed in the previous subsections,

this algorithm ignores the temporal dimension, and impossible

trajectories can thus occur. Furthermore, even though SFI and IFS

guarantee high utility for smooth ship trajectories, we believe this

result might not extrapolate well for other trajectory types, like

people or road vehicles, which can contain sharper turns and need

to fit into a road network.

Another proposal is VTDP [76], which consists of a three-phased

sampling with a final interpolation step and satisfies (ε, δ )-DP. Each
of the sampling phases constructs from the previous following a

well-known distribution. The first phase considers position and

counts, the second additionally considers moving speed, and the

third adds the temporal component. Interpolation is computed

simply using the basic formulas between speed, acceleration, and

time. The algorithm also uses the Laplace mechanism during the

first phase to find how many elements points are to be sampled.

The sensitivity of this mechanism is ∆X = maxD ,D′ ∥xi − x ′i ∥,
where xi and x

′
i are the optimal counts of points Pi returned by an

optimization process depending onD andD ′
, respectively. However,

there is no bound or further analysis of this sensitivity. Without

a bound, it is not possible to apply this mechanism to satisfy DP

properly.

The mechanism aims at preserving the original distributions and

maintaining high utility throughout. With this privacy guarantee,

the probability of protection against attacks such as record linkage

is only 1 − δ . However, the authors evaluate their proposal over a
database consisting only of a section of an arterial road, which asks

whether the mechanism will maintain the same utility results over

other trajectory databases.

6.4 Local Perturbation
While LDP proposals for location privacy start to appear [111],

we only find one protection mechanism [26] that perturbs seman-

tic trajectories to satisfy ε-LDP. Recall that these trajectories are
a time-ordered sequence of POIs visited by a user. The authors

integrate public knowledge to improve the utility without affect-

ing the privacy budget ε . The proposed mechanism utilizes this

public knowledge to partition the set of all POIs into spatio-tempo-

categorical regions, such that each contains some number of POIs.

The mechanism is divided into four parts: first, it generalizes

every POI into the corresponding region; it partitions these new

trajectories into n-grams, which are then individually perturbed

following the exponential mechanism to ensure ε-LDP, where the
score function is a distance function dw defined over the three

dimensions (see Appendix A.4); then trajectories are reconstructed

by minimizing the distance function; and finally the mechanism

returns to the initial domain by randomly picking a POI for each

section, making sure that consecutive locations in a trajectory are

reachable in the corresponding time.

This mechanism demonstrates several advantages over those

described above. First of all, ε-LDP is a stronger privacy guarantee

than ε-DP since there is no need for a trusted curator. Furthermore,
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it does consider the temporal dimension (and the categorical dimen-

sion of the trajectories). It also takes into consideration publicly

available information to improve the overall utility of the mecha-

nism, without any effects on the privacy budget, and ensures that

the published data is realistic.

However, it also faces some challenges: First, to adapt the mech-

anism to a multiple-release setting (i.e., the same user contributing

more than one trajectory), the user needs to know in advance how

many trajectories they want to share, to divide the overall privacy

budget by this number [26]. Adapting this approach to a streaming

scenario will encounter the same challenge.

Second, the sensitivity of the exponential mechanism, ∆dw , de-

pends on the fixed data universe. This means that it can be rea-

sonable in small spatial areas, short time intervals, and reduced

semantics, but if we consider huge spatio-temporo-categorical do-

mains, the amount of noise needed will spoil the utility results.

The authors also point out in their utility analysis that the error

increases with trajectory length. The mechanism hence lends itself

to small regions, for instance, the mobility within a city, rather than

databases covering large areas.

It is also worth mentioning that this approach has been presented

as a solution for societal-contact-tracing applications. In other use

cases (e.g., traffic management), driving patterns and traffic flow

are more important than semantic values. Adapting the approach

to fields such as these seems interesting, but has not yet been

investigated.

7 CHALLENGES AND LIMITATIONS OF DP IN
TRAJECTORY PRIVACY PROTECTION

DP has become the formal and de facto mathematical standard for

privacy-preserving data release. Yet, recent works [19, 24, 25, 43,

64, 69, 77, 121] have demonstrated various challenges and short-

comings that this notion encounters when applied to trajectories.

First, we discuss some challenges and difficulties of the application

of DP to trajectories that are yet to be overcome in the literature.

Infinite streaming context. Trajectory data analysis usually

requires users to continuously share spatio-temporal updates. One

of the advantages of DP is its composition property. It allows pub-

lishing subsequent database updates with linearly increasing pri-

vacy loss: with r updates, the release consumes rε privacy budget.

The main obstacle to protecting subsequent releases of dynamic

data is that the overall privacy budget is consumed completely at

some time [71]. The situation worsens when aiming to publish sani-

tized databases rather than global statistics since the corresponding

sensitivity is usually much higher. The possibility of protection is

finite in time, and parametrization gets complicated: the larger the

number of releases, the smaller the ε assigned to each of them, and

thus, the more noise added. This problem affects various use cases

of trajectory data release. Traffic-jam prediction and avoidance are

examples where users need to update their locations and trajecto-

ries in real time. Standard DP hence cannot be used sensibly in the

streaming context, while granularity adaptations to this context,

such as event-level andw-event privacy, still show serious privacy

deficiencies (as mentioned in Section 5). Therefore, the DP adapta-

tion to dynamic trajectory sharing is still an open challenge in the

scientific community.

Outlier protection [54] is related to the significant utility loss

incurred by the amount of noise that outlying sequences or trajec-

tories (i.e., that they differ significantly from mostly any others)

require to be protected. As we mentioned in Section 2, trajectories

are high-dimensional and unique [29], increasing the chances of

singling out or identifying records in comparison with simpler data-

bases. In particular, the sensitivity of this type of data remains high.

However, DP is a worst-case metric and it must therefore add larger

amounts of noise to hide these outlying records. This is because, in

most DP mechanisms, the noise added is directly proportional to

the sensitivity and inversely to ε .
Therefore, if we assume the sensitivity is fixed, the only way

of reducing noise is by increasing ε . This problem leads to two

undesirable opposites: choosing a smaller ε to protect the outliers,

which itself leads to lower utility in the whole of the database, or

choosing a larger ε , leaving the outliers especially unprotected.

Observe that this choice feels excessive since, with larger ε , non-
outliers likely remain protected; but it is only the privacy concerns

of possible outliers that impede this scenario because they can be

outliers even after sanitization.

The challenge of finding a good trade-off between obfuscation

and ε remains open in the literature. Some works [54] already pro-

posed additional outlier-control mechanisms to ensure that these

plausibly blend into a crowd of users’ trajectories. Such techniques

could help attain better ε while avoiding the associated immense

protection lost.

On the other hand, we also have intrinsic limitations of the DP

notion, especially notorious in the trajectory context, that require

modifications of the metric itself.

First, we encounter the Bayesian inference threat, which im-

plies prior knowledge of an attacker. Taking the example from [54]:

Suppose that 10% of a population lives in a district. The prior ex-

pected percentage of patients from this neighborhood in the only

hospital is around 10%. Imagine now that the released data shows

that 70% of trajectories stopping in the hospital are from this dis-

trict. Since the difference in values between the prior and posterior

beliefs is notable, we assert that there is a privacy leakage (i.e., a

health-related problem in the district). However, data should not

disclose health-related information when the goal is to predict traf-

fic jams, and there is no need to learn about health situations. DP by

itself does not provide any guarantee against this phenomenon. We

cannot measure how much we modify the distance between prior

and posterior beliefs or if it is enough to hide sensitive information.

Protection against this attack must ensure that the difference be-

tween prior and posterior about a sensitive attribute or information

from data participants is sufficiently small.

This attack should not be confused with the inference privacy
fallacy [68]. Bounding all the posterior vs. prior beliefs would end

in zero utility and no possible inference process. However, we aim

to protect the people participating in the database from sensitive

inferences that are unnecessary for the data-analysis purpose.

Finally, problems regarding correlation in trajectory data in

databases have recently been observed in several works [13, 19, 24,

69, 77, 121]. DP inherently assumes the database is a simple, inde-

pendent random sample. This assumption implies that the database

records are uniformly distributed (i.e., follow the same probability
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Figure 3: The green location is naturally no sensible alternative for the orig-
inal blue point. Jumping from one location to another far away in seconds is
not possible in real life, which is easily modeled with correlations. Changing
that location also would imply changing the nearby points. Map screenshot
from © OpenStreetMap contributors [87].

distribution) and independent (in particular, non-correlated). As

we explained in Section 2, this is not the case for trajectory data.

One problem for DP caused by correlation relates to the differ-

ence between theoretic and real-world sensitivity:

Example 7.1. Suppose that Alice and Bob are married and an

adversary who wants to infer the origin of Alice’s trajectory. The

corresponding inference attack determines how probable the out-

put database is, conditioned to Alice starting at a selected point or

not, and chooses the answer that maximizes the probability. Now,

given their relationship, Alice’s and Bob’s trajectories share points

in their daily life. These could relate to their home or their favorite

supermarket. The origins of Alice’s and Bob’s trajectories hence

are highly correlated. Suppose we select a location and query the

database for the number of trajectories starting at this point. If we

assume independence, the sensitivity of such a query is 1 (user-

level), as two neighboring databases can differ in a single user’s

trajectory, and each trajectory has only one origin. Therefore, ε-DP
is satisfied by adding Laplace noise drawn from Lap( 1ε ). However,

in reality, Alice’s and Bob’s answers are positively correlated. There-

fore, with very high probability, the difference in counts between a

database where Alice started in the selected location and another

where Alice did not is 2, since Bob’s answer also changes. The corre-

lation model, considered background knowledge, helps an attacker

to infer Alice’s record as the probability distributions will be further

apart than the expected ε bound.

Cao et al. [13] demonstrate how this problem greater affects

protection under event-level privacy due to the autocorrelation

between nearby spatial points. As we see in Figure 3, each spatio-

temporal point affects other nearby points, simply due to the laws

of physics and external limitations, such as road networks. As we

mentioned, event-level privacy aims to protect the existence of

each spatio-temporal point in the database. However, if the attacker

uses autocorrelation knowledge, then the difference between the

output distributions of Eq. 5.1, conditioned to whether the target

spatio-temporal point is in the database or not, will not be bounded

by ε anymore. This helps the attacker to guess whether the point

was originally in the database by just looking at the output.

Attribute correlations allow an adversary to invert simple pertur-

bations: Applying time-series filters, such as the Kalman or Wiener

filters, effectively removes the noise added by sanitization mecha-

nisms, as shown byWang et al. [113]. The post-processing property

of DP should intuitively prevent such attacks. However, it relies on

the independence of records and breaks due to correlation.

Some notions of DP attempt to take correlations into account

to overcome this issue, such as Bayesian DP [121] or dependent
DP [77]. Unfortunately, they have not been analyzed in the context

of trajectory privacy yet, and their adaptation is all but straight-

forward.

8 CONCLUSIONS
Privacy in human traces is not a direct task since it is high dimen-

sional, unique, and correlated. With this work, we offer a relevant

systematization for the community on state of the art on private

publication of trajectories. We examine how to represent these data

and which aspects they can capture; and recompile, summarize,

and analyze the most relevant privacy and utility metrics and DP

masking mechanisms in the field. Additionally, we mention new

research paths and point out mistakes in the current proposals to

avoid their future repetition.

More precisely, we have developed a classification of utility met-

rics in the field and explained their applications and use cases.

Then, we have discussed the current DP-based privacy notions in

the context of trajectory data, highlighting their advantages and

drawbacks and concluding their applications. Subsequently, we

have conducted a comprehensive and systematic analysis of the

current state of affairs, classifying the trajectory masking DP mech-

anisms into four main categories, where we discussed their privacy

and utility issues and proved formal errors. And we have presented

the main challenges and limitations that DP encounters due to the

specific properties of trajectory data.

From our comparison and analysis, we can extract some general

conclusions. First, there is a wide range of utility metrics that can

be used in the evaluation of a mechanism. Significantly, there is

no universal metric, and not every single one is suitable for all

scenarios. We also reiterate the importance of publishing realistic

data (or of using realism-assurance metrics) since unrealistic data

hinders utility and are easily identifiable by attackers.

We point out that the literature presents many privacy mech-

anisms with apparent flaws. For example, we emphasize the rele-

vance of considering the time in trajectory data protection, as per

the discussions. Additionally, since many of the reviewed proposals

do not provide DP, we would like to highlight the importance of

carefully checking that a mechanism does so. Many of those pro-

posals rely on a well-known DP mechanism but do not correctly

define or adapt it, leading us to think the hypotheses of the expo-

nential and Laplace mechanisms are not well-grounded. Among

our reviewed proposals, we distinguish Cunningham et al.’s mech-

anism [26] for improving the pre-existent issues and finding a way

of using public knowledge to enhance the utility of the mechanism.

Moreover, we pointed out the necessity of adapting DP to be

robust against attacks, such as those based on correlation, which is

currently notorious in trajectory DP mechanisms. We conclude the

need for more robust metrics adapted to the mentioned trajectory

properties.

Furthermore, independently of the mentioned flaws, much re-

mains to be achieved in real-world scenarios. These current pro-

posals cover just a few applications (i.e., they focus on semantic

queries in a small location universe and societal contact tracing).

Many other areas, such as driving patterns remain unexplored.

In summary, we believe that the research toward the privacy

goal in the publication of human-mobility data remains an open

and quite fruitful field.
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A SIMILARITY MEASURES
Similarity measures, which include distance functions, output a value
quantifying how similar two input trajectories are. Their use in tra-

jectory protection mechanisms is usually one of the following two.

First, they can be used within the privacy mechanism to, for exam-

ple, determine which trajectories should be clustered and merged,

considering it preferable to cluster the most similar ones. Secondly,

they are also closely related to utility metrics. High similarity can

be an indicator of high utility after sanitization.

Here we provide a classification of similarity measures. Compi-

lations of trajectory similarity functions have already been studied

and compared [80, 100, 104, 107, 112], but here we are limiting

ourselves to those that lend themselves to trajectory privacy. We

also provide a few types not considered by the aforementioned

surveys, specifically the similarity measures that split dimension-

and point-wise.

The first separationwe consider is the distinction between spatial

and spatio-temporal similarity measures (Subsections A.1 and A.2,

and columns 2 and 1 in Figure 4, respectively). We then explore the

similarity measures defined over road networks (Subsection A.3).

Finally, we discuss similarity measures that can be split dimension-

and point-wise (Subsection A.4). The latter defines the measures

for each dimension independently (spatial, temporal, categorical,

etc.) and then “adds” the values up. The main possible dimensional

measures are included in columns 2–4 in Figure 4, where only

the spatial and categorical ones have a history of being used as

independent measures. The point-wise division of trajectories is

represented row-wise in Figure 4.

We further recompile the similarity measures in Table 3. The

three principal properties of interest when looking at these mea-

sures is (i) whether they allow comparing trajectories of different

length; (ii) whether they allow for time shifting, that is, expanding
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Figure 4: Overview of similarity measures classified according to whether
they are split dimension- and/or point-wise, with a few examples. Dimension-
wise–split similarity measures consider at least two dimensions in their com-
putation, with only spatial and categorical similarity measures having been
used as independent metrics.

and contracting the trajectories in time to better match one another

(see Figure 5); and (iii) whether they are greatly affected by outly-

ing locations (i.e., robust to noise). The effect of outliers or “noisy”
locations in similarity measures that are not robust to noise can

provide counterintuitive examples, e.g., a pair of trajectories equal

in all-but-one location, which is far away, can be seen as completely

different under these measures.

Furthermore, while the complexity of computing the measures

is a relevant issue for their application, we focus on their properties

concerning privacy and utility. Note that as a consequence of their

complex structure, some measures are not metrics in the mathemat-

ical sense [118], but this is a condition only exploited to speed up

their retrieval process [15, 82].

A.1 Spatial Similarity Measures
The variation of the Euclidean distance for data sequences is the
most well-known metric. It calculates the distance between two

trajectories of the same length by computing the physical distance

between every set of points. Analogous functions with any other

Lp -norm can also be defined, as well as variations that use the root

square mean error. Even though the Euclidean distance has the

lowest computational cost, it is considered a very brittle similar-

ity measure in the literature [66]. It does not allow comparison

of trajectories of different lengths, is greatly affected by outlying

locations and is unable to time shift. The Euclidean distance, or

variations thereof, are used as utility metrics in [11, 97, 129].

Two other measures in this subcategory are the Hausdorff and

Fréchet distances, the former being previously used in trajectory

privacy [21, 58, 72, 78]. Both distances allow different-length com-

parisons, but they are ultimately decided by the physical distance

of a unique pair of points, which not only implies that outliers

have a huge effect on it but that the rest of the information is also

ultimately neglected.

Note that spatial measures should not be used alone, since mea-

sures must not rely only on the spatial coordinate, but must con-

sider the rest of the trajectories’ dimensions to guarantee both

strong privacy and high utility. For example, all these measures

will output that two trajectories running at different time intervals

over the same route are the same. Nevertheless, spatial similarity

measures can be used in dimension-wise splitting measures (see

Subsection A.4).

A.2 Spatio-Temporal Similarity Measures
Another important family of measures is based on time series and

edit distance. These measures consider time and allow for local
time shifting by aligning locations through a minimal number of

delete, insert and match operations. They are also able to compare

trajectories of different lengths.

DTW [6, 66] is a similarity measure that recursively finds similar

patterns between trajectories, and aligns them by locally contract-

ing and expanding their temporal dimension. This allows single

locations in one trajectory to be aligned with multiple of the other

(see Figure 5). More specifically, the DTW distance value is de-

fined as the minimum of the sum (or any Lp -norm) of the distances

between all alignments.

Figure 5: Comparison between Euclidean distance and DTW that shows
the local-time-shifting method [66]. In each figure, the top and bottom tra-
jectories are compared. The vertical and horizontal axis of each trajectory
corresponds to position and time, respectively, and the thin lines show the
alignments made between both trajectories.

Essentially, there are two types of alignments: aligning the first

pair of unaligned locations in both trajectories (called match) or
aligning the first unaligned location of one with the last aligned

location of the other (called insertion and deletion). Locations cannot
be skipped in the alignment process, meaning outliers still affect

the DTW value.

The basic definition of DTW does not have a bound, limit, or

penalty associated with the number of insertions or deletions, al-

though variations that do exist [6, 66]. For example, since time

shifting is not bounded (one can shift locations as easily by five

minutes as by five days), Marteau [82] defines a similar metric called

TWED. They introduce a stiffness parameter (it controls the scope

of time shifting, i.e., we can consider DTW to have no stiffness,

and the Euclidean distance to have “infinite” stiffness), and also

adds penalties for deletion. Consequently, TWED introduces a gap

penalty when it aligns samples for which the index values are too

far off to favor the alignment of those with close indexes.

Multiple variations of DTW exist. Anantasech and Ratanama-

hatana [4] define EWDTW,which follows amore intuitive approach

and solves an overcompression phenomenon sometimes present in

DTW. PDTW [67] provides similar results to DTWwhile also being

effective [112] against outliers by cutting and clustering trajecto-

ries into pieces. Little and Gu propose a separation of spatial and

temporal information by splitting trajectories into path and speed

curves and define a measure that applies a DTW-based approach

to both.

LCSS [110] is a similar measure proposed to overcome the effect

of outlying locations. The LCSS value corresponds to the length of

the largest pair of subtrajectories such that each pair of locations
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Computational

cost

Euclidean distance (and Lp -norms) Points S — ✓ O(n)
Hausdorff distance Shape S ✓ — ✓ O(n log(n))

Fréchet distance Shape S ✓ — ✓ O(nm log(nm))

Dynamic time warping (DTW) [6, 66] Points (time series) S-T ✓ ✓ O(nm)

Time warp edit distance (TWED) [82] Points (time series) S-T ✓ ✓ ✓ O(nm)

Enhanced weighted DTW (EWDTW) [4] Points (time series) S-T ✓ ✓ O(nm)

Piecewise DTW (PDTW) [67] Points (time series) S-T ✓ ✓ ✓
O(NM )

N ,M final lengths

Little and Gu [75] Movement speed and path S-T ✓ ✓ O(nm)

Longest common subsequences (LCSS) [110] Points (time series) S-T ✓ ✓ ✓ O(nm)

Edit distance on real sequences (EDR) [16] Points (time series) S-T ✓ ✓ ✓ O(nm)

Linear spatio-temporal distance (LSTD) [2] Points (time series) S-T ✓ ✓ ✓ O(n +m)

Edit distance with real penalty (ERP) [15] Points (time series) S-T ✓ ✓ ✓ O(nm)

Hwang et al. [60] Time at intersections ✓ S-T ✓
O(nm |P |)

P={intersections}
Longest overlapping road segment (LORS) [115] Road segments ✓ S ✓ — ✓ O(nm)

Longest common road segment (LCRS) [123] Road segments ✓ S ✓ — ✓ O(nm)

Spatio-temporo-categorical distance [26] Points S-T-C ✓ ✓ O(nm)

Table 3: Comparison between similarity measures (based on [80]). For dimensions, “S”, “T”, and “C” stands for spatial, temporal, and categorical, respectively;
and, for computational cost, n andm correspond to the length of the two compared trajectories.

is at a bounded spatio-temporal distance away from each other

(the higher the value, the higher the similarity); and it is then

normalized by dividing it by the length of the shortest trajectory.

In addition to local time shifting, LCSS allows locations to remain

unaligned, ensuring robustness to noise while also providing a

more intuitive notion of similarity by giving more weight to similar

subsequences [110]. However, LCSS allows for gaps of any size,

which can cause inaccuracies [16].

Akin to these measures, we find the subfamily based on edit
distance, which intuitively is the function that counts the minimum

number of edits needed to change one trajectory into the other.

For example, EDR [16] counts the number of insert, delete and

replace operations needed to do so. This measure is more exact

than LCSS while still being robust to noise, as it assigns penalties

to the gaps between trajectories according to their length [16]. The

measure also can compare different length trajectories, but this can

inflate the edit distance as each location needs to be edited in or

out [107]. Abul et al. [2] use EDR in their trajectory-anonymization

mechanism, while also defining a variation, LSTD, which consists

of a similarity function with the same computational cost as the Eu-

clidean distance, but with all the benefits of EDR. Another popular

measure is ERP [15], a non–robust-to-noise metric that uses real

distances between points as the penalty to time shifting [80] but

does require normalization to a reference point, which minimizes

its uses as a utility metric.

A.3 Similarity Measures over Road Networks
Another type of similarity measures includes those that consider

trajectories in road maps instead of over empty Euclidean spaces.

Road networks are viewed as directed graphs with edges and nodes

representing roads and their intersections, respectively. Trajecto-

ries are thus seen as directed walks over this graph [100]. Since

privacy mechanisms over road trajectories can be influenced by the

similarity measure chosen, Hwang et al. [60] argue that using one

not defined over road networks is inappropriate. We explore a few

examples in the literature.

The first instance of similarity measure over road networks is

used for similar-trajectories searching in data sets [60]. Given a

specific road intersection, the authors define similarity as whether

both trajectories cross it or not. A refined distance function is

also given, which outputs the Lp -norm of the time difference at

a preselected set of intersections. However, this preselection of

locations limits the use of the similarity measure, since it needs

to be defined in a case-by-case scenario, and the whole measure

outputs ∞ if a point not belonging to one of the trajectories is

selected.

LORS [115] and LCRS [123] are two variations of LCSS for road

networks. These, instead of measuring the length of the largest

subsequence of close spatio-temporal points, measure the physical

length of matching roads. The difference between LORS and LCRS

is that the latter does include a normalizing step, consisting of

dividing the result by the number of points in the union of both

trajectories (Jaccard similarity coefficient). LORS and LCRS are

proven to be more effective than DTW, LCSS, EDR, and ERP, with

LCRS working a little better than LORS [123]. The majority of the

advantages and deficiencies of LCSS are inherited by these, but

they do not consider the temporal domain in their computation

unlike LCSS (although a variation of LCRS to include it can easily

be implemented [123]).

Finally, in this subcategory, we also find similarity measures

based on deep learning, such as ST2Vec [40].
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A.4 Splitting Similarity Measures Dimension-
and Point-Wise

We now enter to study the similarity measures that split trajectories

dimension- and/or point-wise. None of the similarity measures

we reviewed make any split, with exception of Little and Gu’s

measure [75] and the Euclidean distance, the last of which is a

1-dimensional point-wise–split similarity measure.

Dimension-wise. It is possible to split the measure dimension-

wise, that is, defining independently the spatial distance, the tem-

poral distance, etc., and then “adding” them up. This split allows

the definition of simple spatial or temporal functions while still

taking into account all dimensions of the trajectory. A difficulty of

this method is deciding how to “add” them since there are multiple

non-trivial variations [33], such as weighted or simple Lp sums.

When considering the dimensions independently, there are not

many more options for the temporal one other than a simple time

difference. On the other hand, for the spatial dimension, there

is a larger variety of metrics, such as the Hausdorff distance we

introduced. For the categorical dimension, a measure resembling

the Hamming distance could also be theoretically defined.

Point-wise. We can also define similarity measures over two

trajectories of equal length point-by-point, i.e., we take the first

points of each trajectory and compute the distance between them,

then the second of each, and successively until done. The final

distance is computed as the sum of these values. Note that this

is highly useful when comparing algorithms that only permute

trajectories (without addition or suppression) since the sanitized

trajectory can be compared to the original to study its utility.

Dimension- and point-wise. The combination of both is also

popular: for the spatial dimension, the point-wise Euclidean dis-

tance is the most frequently used metric, while the Haversine for-

mula, which considers latitude and longitude coordinates, is used

in large-scale trajectories where the earth’s curvature should be

taken into account, such as flight routes. Road maps can also be

used to measure the distance between two points, which can be

useful in certain scenarios. Categorical distance functions also exist

for semantic trajectories: in [26], the authors define the difference

in the semantic meaning between two locations using a 3-level

hierarchy with pre-established values, as shown in Figure 6. This is

a simple way of measuring potentially complex information while

also considering semantic proximity.

5
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Figure 6: Categorical distance between the white element with the other
levels [26]. A lower level implies a more specific semantic field. For example,
red could be “Place to eat or drink”, with white being “Bar” and blue “Restau-
rant”. Values are assigned in an intuitive way (e.g., dc (Bar, Restaurant) <
dc (Bar, Church)).

Actually, the authors of this paper ([26]) define a spatio-temporo-

categorical distance as dw B
√
d2s + d

2

t + d
2

c , where ds is the Eu-

clidean distance, dt the time difference, and dc the aforementioned

categorical distance. This distance function is used in their privacy-

protection process and proves its place as one of the most precise

similarity measures for trajectory privacy.

B SYNTACTIC NOTIONS UNDER
k-ANONYMITY AND ITS EXTENSIONS

In this section, we briefly review trajectory anonymization and san-

itization with syntactic privacy notions. More precisely, we discuss

privacy mechanisms under the notion of k-anonymity [95, 96] (i.e.,

is achieved when the information of any individual in the database

is indistinguishable from k − 1 others) and its extensions, such as

l-diversity [79] and t-closeness [73], which are classical representa-

tives in the field. Regarding trajectory data, several attempts have

been made to translate or adapt these notions to better represent

the sequential nature of trajectories. For example, a database is

(k, δ )-anonymous [1] if for any trajectory, there exist k −1 other tra-

jectories such that at every timestamp, the corresponding locations

are in nomore than δ/2 distance away from each other. We can then

place these k trajectories in a “cylinder” of radius δ . Other notions
include c-safety [85], (K,C)L-privacy [20], km -anonymity [91] and

kτ ,ϵ -anonymity [50].

There exist three main general anonymization techniques to

enforce syntactic privacy in trajectory data [90]: suppression, re-
moving location samples or entire trajectories that cause privacy

issues; generalization, making records indistinguishable from oth-

ers by reducing the trajectories’ precision or by grouping samples

into larger ranges; and (perturbative) masking, which comprises

a multitude of techniques including data perturbation, based on

noise addition, location merging or clustering, or the creation of

new entries by probabilistic condensation, just to name a few. Sup-

pression and generalization techniques are also categorized into

non-perturbative masking [59] since they preserve the truthfulness

of data without distorting it, albeit losing information. Here, the use

of the term “generalization” refers to its original definition [95, 103].

Nowadays, this term is also used to define the technique which

additionally returns the generalized data to its original domain [84],

mimicking the clustering techniques. For example, after generaliza-

tion, we can define this step as a simple substitution of the region

into a randomly chosen point from it. However, we classify this as

a perturbative approach, since it creates distortions in the data. We

will make this distinction between “clustering” and “generalization”

to make clear if the approach is perturbative or not.

Some anonymization algorithms combine several of the tech-

niques mentioned above. For example, suppression is often em-

ployed with the others, such as with generalization [49, 85, 91, 109],

clustering [1, 2, 34, 86], and other masking techniques [33, 89].

Nevertheless, we still find some proposals revolving around one

technique, such as local suppression [20], generalization [91], and

clustering [84].

The given techniques have been deeply studied, analyzed, and

frequently criticized, and we condense the corresponding argu-

ments below.
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Suppression is specifically useful in combination with others,

where it helps to remove hard-to-anonymize locations or trajecto-

ries [1], such as those which are isolated or correspond to only one

user. However, if used by itself, it can drastically change the size of

the sanitized database, thus leading to significant privacy losses.

Generalization can also be deficient if applied inadequately. Mod-

els that generalize only the spatial dimension of trajectories, such

as in [34, 85], are susceptible to attacks on the others, as these may

still hold sensitive information. Also, the way that the generaliza-

tion “regions” are defined is crucial, since inappropriate choices

can lead to significant information loss due to unnecessary gener-

alization [10], or result in data that is susceptible to attacks using

background knowledge. To make matters worse, these methods are

ineffective for databases with long trajectories due to the curse of
dimensionality [3, 32]. Generalization also works poorly by itself,

as shown by two experiments conducted in [1, 49].

Regarding masking techniques, Gramaglia et al. [50] state that to

preserve the truthfulness of data, one cannot rely on randomized,

perturbed, permuted, or synthetic data, since the addition of ficti-

tious data introduces unpredictable biases in the final sanitized data

sets. Furthermore, this type of mechanism (e.g., [84, 86]) can also

lead to the creation of impossible trajectories, with unreachable

locations or geospatial inconsistencies.

Although syntactic notions can, in general, provide high-utility

data when compared to DP, they present major problems in terms

of privacy. These notions assume the attacker knows some back-

ground knowledge, i.e., which attributes of the database are known,

and which are not. They are also susceptible to various well-known

attacks (e.g., k-anonymity falls victim to attribute linkage attacks).

These two shortcomings, together with the fact that they do not

enjoy composability [99] nor post-processing properties, limit the

application of syntactic technology to continuously protect trajec-

tory data. Furthermore, data sets with sparse or short trajectories

pose a substantial challenge for these privacy methods. In these

cases, the data must be deleted or modified extensively, leading to

an inevitable large utility loss.

C FORMAL PROOFS
In this section, we provide some propositions as support to our

claims made in Section 6. In these results, we will use Dwork and

Roth’s definition of database [36], defined as a multiset drawn

from X, the universe of database rows (represented too by their

histograms from N |X |
). To simplify notation, we use D to denote a

set of finite databases.

Problems with noisy-counts algorithms.We first show that

a meaningful DP mechanism cannot simply change the counts of

the elements in the database. This is essentially what happens in

the protection mechanisms of [124, 127–130], which prevents them

from satisfying DP formally.

Proposition C.1. LetM be a randomized algorithm whose domain
is D. Suppose M changes the counts of the rows of D ∈ D (where
it is possible to change a positive count into 0, but not the other way
around). IfM is ε-DP, thenM is the void algorithm (i.e., it outputs
the empty set independently of the input).

Proof. LetM be an ε-DP algorithm, as described in the state-

ment. By definition, the output domain ofM is a subset S ⊆ D.

Fix D ∈ D. For every x ∈ D, denote kx < ∞ as the number

of times x appears in D and Dx as the database obtained after

removing all elements x from D. For every x ∈ D, there exists a
sequence of neighboring databases of D:

D = D0 → D1 → · · · → Dkx−1 → Dkx = Dx ,

i.e., Di−1 and Di are neighboring for all i ∈ {1, . . . ,kx }. Then, since
M is ε-DP, we obtain for all measurable S ⊆ S and x ∈ D that

P{M(D) ∈ S} ≤ e
ε
P{M(D1) ∈ S} ≤ e

2ε
P{M(D2) ∈ S} ≤

≤ · · · ≤ e
(kx−1)ε

P{M(Dkx−1) ∈ S} ≤ e
kx ε

P{M(Dx ) ∈ S} = 0.

Let SD ⊆ S be the set of all possible outputs of M(D). It is
clear that P{M(D) ∈ SD } = 1. Furthermore, SD is contained in the

discrete set {S multiset | for all x ∈ S , x ∈ D}, and therefore SD is

discrete, and

P{M(D) ∈ SD } =
∑
s ∈SD

P{M(D) = s}.

For every non-empty s ∈ SD , we select an element x ∈ s . By the

previous inequalities, we obtain that

P{M(D) = s} ≤ e
kx ε

P{M(Dx ) = s} = 0,

since x < Dx and x ∈ s . Therefore,

1 = P{M(D) ∈ SD } =
∑
s ∈SD

P{M(D) = s} = P{M(D) = �}.

SinceM(D) is a discrete random variable, it proves that it can

only output the empty set. Then, we repeat the proof for every

possible databaseD ⊆ D, proving thatM is the void algorithm. □

In general, a DP mechanism needs to be able to output any

possible output independently of the database. We formalize this

statement with the precise hypotheses in Propositions C.2 and C.3,

which cover the bounded and unbounded scenarios of DP. Recall

that in unbounded DP, two databases are neighboring if we obtain

one from the other by adding or removing one element; and that

in bounded DP, these are neighboring if we obtain them instead by

replacing one element with another [74].

Proposition C.2. LetM be a randomized algorithm that satisfies
unbounded ε-DP, D its domain, and Range(M) the set of all possible
outputs ofM. Then, given any measurable S ⊆ Range(M), if there
exist D ∈ D such that P{M(D) ∈ S} > 0, it is also true for all other
D ′ ∈ D.

Proof. Consider a measurable S ⊆ Range(M) such that there

exist D ∈ D in a way that P{M(D) ∈ S} > 0. We then proceed by

reductio ad absurdum: that is, we assume that there exists D ′ ∈ D

such that P{M(D ′) ∈ S} = 0 and we will end in a contradiction.

Since we assume all databases are finite, there exists a finite

sequence of neighboring databases from D to D ′
of length k . As in

the proof of Proposition C.1, we obtain

P{M(D) ∈ S} ≤ e
kε

P{M(D ′) ∈ S} = 0.

This contradicts that P{M(D) ∈ S} > 0. □

515



Proceedings on Privacy Enhancing Technologies 2023(2) À. Miranda-Pascual, P. Guerra-Balboa, J. Parra-Arnau, J. Forné and T. Strufe

Proposition C.3. LetM be a randomized mechanism that satisfies
bounded ε-DP, D its domain, and Range(M) the set of all possible
outputs ofM. Then, given any measurable S ⊆ Range(M), if there
exist D ∈ D such that P{M(D) ∈ S} > 0, it is also true for all other
D ′ ∈ D such that |D ′ | = |D |.

Proof. This proof is the same as that of Proposition C.2, but we

must impose that |D | = |D ′ | to ensure that there is a sequence of

neighboring databases between D and D ′
. □

Problems with clustering algorithms. Another problem of

the proposals [21, 55, 58, 72] presented in Section 6 was related to

the application of an “exponential mechanism” without a formal

proof of DP. We elaborate deeply here on this problem.

The exponential mechanism [36] selects the best element of a

certain given set R, the range of this mechanism. The best assign-

ments for each database are chosen using a score function u, which
associates scores to each element in the database: the higher the

score, the higher its chances to be chosen. More formally, given

D ∈ D, the exponential mechanism outputs r ∈ R with probabil-

ity proportional to exp

(
ε u(D ,r )

2∆u

)
, where u : D × R −→ R is the

aforementioned score function and

∆u B max

r ∈R
max

neighb.

D ,D′

|u(D, r ) − u(D ′, r )|

is its sensitivity.

In the mentioned proposals [21, 55, 58, 72], the score function is

not well-defined, which results in a contradiction in the DP proof of

the claimed exponential mechanism. In the original framework [58]

(from which the others stem out), the exponential mechanism is

used to output the centroids of the partitions of the location set at

every timestamp i . In this work, the score function is defined as

u : D × τ −→ R, with τ being the set of partitions of the locations

set at time i of a specific database D. The previous expression is not

well-defined, since τ depends on the chosen element D ∈ D, and

varies when changing to another D, as mentioned in the paper. As

a direct consequence, ∆u is not theoretically computable (even if

fixingD, since the definition compares two different databases), and

an exponential mechanism cannot be defined. Hence, one cannot

claim the algorithm ensures DP via the exponential mechanism.

This error leads to some anomalies in the suggested proposal.

First, the cluster size does not affect the privacy guaranteed: i.e., we

can choose to partition into sets of size 1, which would simply be a

mechanism outputting the original unmodified database, providing

no privacy. Secondly, u(D, r ) ≤ 1 for all possible combinations,

would imply that the absolute difference between any possible score

function is at most 1. If the exponential mechanism were correctly

applied, it would mean that changing the whole database has the

same effect as changing one record, which is highly improbable.

Having explained why the mechanism is not the exponential

mechanism, we discuss why it is not DP. We know that given two

different sets, S and S ′, their sets of partitions intom groups, Pm
S

and Pm
S ′ , are disjoint. For example, consider S = {1, 2, 3} and S ′ =

{1, 2}. The only partition of S ′ into two clusters is PS ′ = {{1}, {2}},

while for S we have P
(1)

S = {{1, 2}, {3}}, P
(2)

S = {{1, 3}, {2}} or

P
(3)

S = {{2, 3}, {1}}. It is then easy to see that P2

S ∩ P2

S ′ = �.

More formally, consider two neighboring databases D,D ′ ∈ D

and their respective location set at time i , Γi and Γ′i . Let P,P
′ ⊆

Range(M) be the set of all possible partitions of Γi and Γ′i , respec-
tively, intom groups. As mentioned, P ∩ P ′ = �, so

1 = P{M(D) ∈ P} ≤ e
ε
P{M(D ′) ∈ P} = 0,

resulting in a contradiction with the definition of DP. As we already

proved in Proposition C.2, if an output is possible for a database,

it needs to be possible for all the remaining ones, which simply

cannot happen if the range of outputs is data dependent.

Therefore, the privacy mechanisms in [21, 55, 58, 72] do not

provide DP as they do not apply correct exponential mechanisms

because their abstract range of outputs is completely dependent on

the input database. Furthermore, we give a small attack example:

Example C.4. We propose a simple trajectory database consisting

of three users, and we focus on any specific timestamp. We are

working with a set of three locations Γ = {l1 = (2, 2), l2 = (5, 2), l3 =
(5, 5)}. The mechanism M clusters databases into 2 and outputs

its centroid according to the Euclidean distance (essentially, Hua

et al.’s proposal [58] withm = 2).

Assume a strong attacker that knows all the values except their

target l1 (which we can do according to the definition of DP). We

show that, with the released information, the attacker obtains the

target data with total accuracy.

The attacker knows l2 and l3, and that the possible clusters that

M can compute are P = {P1, P2, P3}with P1 = {{l1}, {l2, l3}}, P2 =
{{l1, l2}, {l3}} and P3 = {{l2}, {l1, l3}}. So, the attacker knows also a
priori that the mechanism will output one of the following centroid

sets: C(P1) = {?, (5, 3.5)}, C(P2) = {?, (5, 3)}, or C(P3) = {(5, 2), ?},

with ? denoting the coordinates they cannot predict. Suppose the

mechanism computes {{l2}, {l1, l3}} (unknown to the attacker) and

their centroids, and then releases C = {(5, 2), (3.5, 3.5)}. Now, the

attacker can compare their computation with the released centroid

set, and conclude that the only possible partition is P3. Additionally,
since (3.5, 3.5) is released and corresponds to the middle point

between l1 = (x1,y1) and l3 = (x3,y3), the attacker can easily

recover l1:

(3.5, 3.5) =

(
x1 + x3

2

,
y1 + y3

2

)
=

(
x1 + 5

2

,
y1 + 5

2

)
.

Therefore,

l1 = (x1,y1) = (2 · 3.5 − 5, 2 · 3.5 − 5) = (2, 2),

which allows the attacker to reconstruct the original database in

its entirety.
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