
Ruffle: Rapid 3-party shuffle protocols
Pranav Shriram A

∗

JP Morgan Chase

Bangalore, India

pranavshriram99@gmail.com

Nishat Koti

Indian Institute of Science

Bangalore, India

kotis@iisc.ac.in

Varsha Bhat Kukkala

Indian Institute of Science

Bangalore, India

varshak@iisc.ac.in

Arpita Patra

Indian Institute of Science

Bangalore, India

arpita@iisc.ac.in

Bhavish Raj Gopal

Indian Institute of Science

Bangalore, India

bhavishraj@iisc.ac.in

Somya Sangal

Indian Institute of Science

Bangalore, India

somyasangal@iisc.ac.in

ABSTRACT
Secure shuffle is an important primitive that finds use in several ap-

plications such as secure electronic voting, oblivious RAMs, secure

sorting, to name a few. For time-sensitive shuffle-based applications

that demand a fast response time, it is essential to design a fast and

efficient shuffle protocol. In this work, we design secure and fast

shuffle protocols relying on the techniques of secure multiparty

computation. We make several design choices that aid in achiev-

ing highly efficient protocols. Specifically, we consider malicious

3-party computation setting with an honest majority and design

robust ring-based protocols. Our shuffle protocols provide a fast on-

line (i.e., input-dependent) phase compared to the state-of-the-art

for the considered setting.

To showcase the efficiency improvements brought in by our shuf-

fle protocols, we consider two distinct applications of anonymous

broadcast and secure graph computation via the GraphSC paradigm.

In both cases, multiple shuffle invocations are required. Hence, go-

ing beyond standalone shuffle invocation, we identify two distinct

scenarios of multiple invocations and provide customised protocols

for the same. Further, we showcase that our customized protocols

not only provide a fast response time, but also provide improved

overall run time for multiple shuffle invocations. With respect to the

applications, we not only improve in terms of efficiency, but also

work towards providing improved security guarantees, thereby out-

performing the respective state-of-the-art works. We benchmark

our shuffle protocols and the considered applications to analyze

the efficiency improvements with respect to various parameters.

KEYWORDS
secure shuffle, anonymous broadcast, secure graph computation,

secure multiparty computation

1 INTRODUCTION
Shuffle is a technique of rearranging the elements of an ordered

set. Performing a shuffle in a privacy-preserving manner entails

randomly permuting the elements of the ordered set while ensuring

∗
This work was done during the author’s affiliation at Indian Institute of Science.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(3), 24–42
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0068

that the permutation, as well as the elements in the ordered set,

are not known on clear. Secure shuffle finds wide-spread use as a

primitive in various applications such as electronic voting [24, 44],

secure sorting [25, 26], oblivious RAM [7, 12], GraphSC paradigm

[6, 43], anonymous broadcast [20], to name a few. Several works in

the literature [6, 13, 20, 34, 35] provide a secure shuffle protocol us-

ing the cryptographic technique of secure multiparty computation

(MPC). This technique enables a set of 𝑛 parties to jointly compute

a function on their private inputs while guaranteeing that no subset

of at most 𝑡 < 𝑛 parties, controlled by an adversary, learns anything

other than the function output.

An essential factor to be considered when designing a secure

shuffle protocol is its response time (which accounts for the time

taken from submission of the input, it’s processing, to delivery of

the output). To minimize the response time, we focus on design-

ing secure shuffle protocols in the preprocessing paradigm, which

allow offloading heavy input-independent computations to a pre-

processing phase, thereby obtaining a very fast input-dependent

online phase. Although secure shuffle is used in various applica-

tions, we use the representative example of anonymous broadcast

to motivate the need for a fast online phase (quick response time).

An anonymous broadcast system allows a set of 𝑁 clients to broad-

cast their messages such that none learns about the association

between a message and the identity of its sender. Such a system

finds application in use cases like live anonymous polling/feedback.

Further, note that the output is required in real-time due to the

live nature of the event. For such time-sensitive applications, it is

important to have a system which provides a fast response time.

Since secure shuffle forms an integral part of anonymous broadcast,

a fast protocol for shuffle is essential to facilitate a fast anonymous

broadcast system. A similar argument applies to other real-time ap-

plications as well where secure shuffle is used, such as the GraphSC

paradigm [6, 43] to securely evaluate breadth first search (BFS) for

contact tracing, PageRank for fraud detection, etc. To further en-

hance the overall efficiency, we consider working in the small-party

setting that is known to provide efficient, customized solutions

[15, 19, 29, 30, 39, 46, 47], following the footsteps of prior works

on shuffle such as [6, 20]. We make several other design choices to

enhance the efficiency of the designed secure shuffle protocols. Our

contributions are detailed next which elaborate on these choices.

24

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0068

Ruffle Proceedings on Privacy Enhancing Technologies 2023(3)

1.1 Our contributions
Keeping efficiency in mind, we design ring-based maliciously se-

cure shuffle protocols in the threshold-optimal setting of 3-party

computation (3PC), assuming an honest majority (i.e., 𝑡 < 𝑛/2).
We design our protocols in the preprocessing model and focus on

attaining a fast online phase. Our protocols are robust and provide

the security of guaranteed output delivery (GOD, also known as

robustness) where honest parties are guaranteed to receive the cor-

rect output regardless of any adversarial behaviour. We note that

this security guarantee is achieved at no additional (amortized) cost

in comparison to weaker security notions such as security with

fairness
1
or abort security

2
.

We showcase the efficiency improvements brought in by our

shuffle protocols for the specific applications of anonymous broad-

cast and GraphSC paradigm. In the process, we identify the need to

handle multiple invocations of shuffle and hence design optimiza-

tions that are tailor-made to cater to this. We also work towards

improving the security guarantees offered in the considered appli-

cations.

Secure shuffle.The shuffle protocol takes as input the secret shares

of the elements of the ordered set that require to be shuffled. The

output comprises secret shares of the shuffled elements. The ran-

dom secret permutation used for shuffling is defined during the

run of the protocol. The works of [6, 20] provide a secure shuffle

protocol that offers the weaker notion of abort security
3
. We design

a new shuffle protocol, Ruffle, whose highlight is the improved

online efficiency in comparison both [20] and [6]. At a high level,

Ruffle leverages the secret sharing semantics to offload the input-

independent computations to a preprocessing phase. This allows

achieving a super fast online phase by restricting computations to

be performed only on the input-dependent shares. In fact, Ruffle
also has a better overall run time than the shuffle protocol of [20]

owing to our better round as well as communication complexity. Fi-

nally, we note that Ruffle is designed to offer the improved security

guarantee of robustness in comparison to prior works.

Anonymous broadcast.Recall that the application allows𝑁 clients

to securely shuffle their input messages. When realizing this via

MPC, the clients rely on a set of servers to perform the secure

shuffle on their behalf. Note that an anonymous broadcast system

can run perpetually, i.e., client messages are received continuously,

and the system is responsible for shuffling every consecutive set of

𝑁 well-formed messages. Thus, an anonymous broadcast system in

fact requires multiple sequential invocations of shuffle which can

be captured by the following generic scenario.

Let T1, T2, . . . , T𝑚 be𝑚 ordered sets that are required to be shuf-

fled under random secret permutations, say 𝜋1, 𝜋2, . . . , 𝜋𝑚 , respec-

tively. Consider the scenario where these shuffles are performed

sequentially such that 𝜋𝑖+1 (T𝑖+1) is invoked after 𝜋𝑖 (T𝑖), and T𝑖+1
is independent of 𝜋𝑖 (T𝑖)4. We refer to this as Independent-Shuffles

1
This ensures that either all parties receive the output or none do.

2
This allows the corrupt parties alone to get the output.

3
Honest parties in [6] either receive the correct shuffled result, or they are informed

of misbehaviour, if any. See §B for a discussion on security guarantees of [6].

4
Note that 𝜋 𝑗

(
T𝑗

)
denotes the operation of permuting the elements in T𝑗 according

to the permutation 𝜋 𝑗 .

scenario where multiple independent shuffles are required with the

constraint that they are invoked sequentially.

While Ruffle is designed to handle the case of a single shuffle

invocation, we extend it and design Ruffle-1 to handle the sce-

nario of Independent-Shuffles. Ruffle-1 is designed to leverage the

independence of the𝑚 shuffles in Independent-Shuffles, to facili-
tate performing the necessary preprocessing steps in parallel. Our

use of Ruffle-1, allows us to design a more efficient shuffle-based

anonymous broadcast system in comparison to the state-of-the-art

system of Clarion [20]. Further, the drawback of Clarion is that

it does not offer the property of censorship resistance. This prop-

erty guarantees that a malicious server should not be allowed to

discard an honest client’s message by claiming it to be malformed.

Hence, apart from improving efficiency, our system also guarantees

censorship resistance. Our system also aims to minimize communi-

cation/computation overhead at client.

GraphSC paradigm. This paradigm [6, 43] provides a highly effi-

cient and scalable solution for securely evaluating graph algorithms.

Unlike the case of Independent-Shuffles, this paradigm requires

performing a composition of shuffles which can be captured by the

following generic scenario.

Unlike the previous scenario of𝑚 independent shuffles, in this

case we are interested in determining the composition of𝑚 shuffles

such that T𝑚 = 𝜋𝑚 (𝜋𝑚−1 (. . . 𝜋1 (T))), where T is the input to be

shuffled. Such a composition of𝑚 shuffles generates a sequence of

intermediate shuffled sets, where the 𝑖th ordered set is denoted as

T𝑖 = 𝜋𝑖 (. . . 𝜋1 (T)). In this way, the composition of permutations

induces a sequential nature to the shuffle invocations with 𝜋𝑖+1 (T𝑖)
being invoked after 𝜋𝑖 (T𝑖−1) since T𝑖 = 𝜋𝑖 (T𝑖−1). We refer to

this as the Composed-Shuffles scenario where the permutations

are required to be composed such that the output of one shuffle

invocation is fed as the input to the next
5
.

Recall that Ruffle-1 is designed to leverage the independence of

the𝑚 shuffles to facilitate parallel preprocessing. This is in contrast

to Composed-Shuffles where the shuffles are no longer indepen-

dent. Thus, Ruffle-1 is not apt for Composed-Shuffles, and hence

we design Ruffle-2 to specifically cater to this scenario. Ruffle-2
strategically breaks the sequential dependence on shuffles in the

preprocessing. This enables performing the preprocessing phase in

parallel for the𝑚 shuffles. Although Ruffle-2 can be used in the sce-

nario of Independent-Shuffles, we note that the design of Ruffle-2
for breaking the dependency in the preprocessing comes at the

cost of slightly increased preprocessing communication compared

to the preprocessing of Ruffle-1. Hence, the use of Ruffle-1 is apt
for Independent-Shuffles and Ruffle-2 for Composed-Shuffles. We

showcase the improvements that can be attained in the GraphSC

paradigm of [6] via the Ruffle-2. Note that our shuffle protocols en-

able reusing and inverting the underlying secret permutation, which

is an essential property needed in applications such as GraphSC

paradigm.

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛. In summary, the current work provides efficient solu-

tions for secure shuffle while accounting for different scenarios. A

comparison of our shuffle protocols with that of [6, 20] is given in

Table 1. Since all protocols have a common structure for the online

5
The scenario can indeed be generalized such that 𝜋𝑖+1 can be invoked on some

function 𝑓 of 𝜋𝑖 (T𝑖) , rather than on 𝜋𝑖 (T𝑖) itself.
25

Proceedings on Privacy Enhancing Technologies 2023(3) Shriram et al.

Scenario Protocol

Online

Preprocessing

Security
Semi-honest shuffle Verification

Rounds Comm. (bits) Rounds Comm. (bits) Rounds Comm. (bits)

Independent-Shuffles/
[20]
‡

2𝑚 2𝑁 (2ℓ + 3𝑝)𝑚 4𝑚 2𝑁 (ℓ + 2𝑝)𝑚 + 4𝑝𝑚 2 𝑁 (2ℓ + 9𝑝)𝑚 + 4𝑝𝑚 Abort

Composed-Shuffles

Independent-Shuffles/
[6] 3𝑚 6𝑁 (ℓ + ^)𝑚 3(2 + log

2
^)𝑚 (6𝑁^ + 3^)𝑚 * Abort

‡‡
Composed-Shuffles

Independent-Shuffles Ruffle-1
2𝑚 3𝑁ℓ𝑚 2 3080

† 5 + log
2
^ (6𝑁ℓ + 12𝑁^ + 3^)𝑚∗∗

GOD

Composed-Shuffles Ruffle-2 6 + log
2
^∗∗∗ (9𝑁ℓ + 12𝑁^ + 3^)𝑚

𝑁 : number of elements to be shuffled, where each element is an ℓ-bit string; ^ (= 48) : statistical security parameter; 𝑝 : order of field. [20] uses a 128-bit field

‡: Although [20] does not have an explicit preprocessing phase, we observe that the shuffle correlation and other randomness can be preprocessed. Hence, we explicitly

distinguish between preprocessing and online to provide a fair comparison.

*: The preprocessing for [6] only involves the generation of randomness, non-interactively. ‡‡: See §B for a discussion on security guarantees of [6].

†: The communication for verification comprises broadcasting 2 hashes and 2 bits, the cost of which gets amortized over multiple shuffle instances.

∗∗
: Ruffle-2 for Independent-Shuffles additionally requires communicating 3𝑁ℓ𝑚 bits.

∗∗∗
: Ruffle-1 for Composed-Shuffles instead requires (5 + log

2
^)𝑚 rounds.

Table 1: Round complexity and communication (amortized) of various shuffle protocols for𝑚 invocations.

phase that comprises steps for semi-honest shuffle followed by its

verification, the cost of these is reported in Table 1. The improved

online phase of both, Ruffle-1 and Ruffle-2, supplemented by their

parallel preprocessing in their respective scenarios, results in both

of them improving in terms of overall run time in comparison to

shuffle protocols in [6, 20] for multiple shuffles (i.e.,𝑚 ≥ 2). Further,

as shown in the table, Ruffle-1 becomes prohibitively expensive

for the Composed-Shuffles case, because it incurs an𝑚 factor in-

flation in the preprocessing round complexity (see the highlighted

entry). Similarly, Ruffle-2 is inapt for Independent-Shuffles, due
to the inflation of 3𝑁ℓ𝑚 bits in its preprocessing communication

complexity (see the highlighted entry). The complexity of Ruffle is
captured by the complexity of Ruffle-1 when𝑚 = 1.

Benchmarks. We benchmark the performance of our shuffle pro-

tocols, Ruffle, Ruffle-1 and Ruffle-2. We establish how the pro-

tocols, Ruffle-1, Ruffle-2 are apt for their respective scenarios of
Independent-Shuffles, Composed-Shuffles. Further, we showcase
the improvements brought in by our shuffle protocols in the appli-

cations of anonymous broadcast and securely evaluating BFS in the

GraphSC paradigm. The summary of the improvements is:

• Solitary shuffle. When considering a single invocation, Ruffle
improves over [20] and [6] in the online run time. Further, with re-

spect to [20], Ruffle is also better in terms of overall communication

as well as overall run time.

• Multiple-sequential shuffles. By considering multiple sequential

shuffles, we establish the improvements of our shuffle protocols

with respect to overall run time in comparison to [6]
6
. Beginning

with as low as two sequential shuffle invocations, both Ruffle-1
(for Independent-Shuffles) and Ruffle-2 (for Composed-Shuffles)
outperform [6].

• Anonymous broadcast. The server-side complexity of our anony-

mous broadcast system outperforms [20] in every aspect. The client-

side computation also sees improvements. The improvements we

observe is not only attributed to our shuffle protocol but also to the

improvements we bring in to the other components of the system.

• BFS via GraphSC. Our implementation of secure BFS evaluation

in the GraphSC paradigm outperforms that of [6]. Further, we also

6
We stick to comparing with [6] since the shuffle in [6] outperforms that in [20].

showcase how the performance of our BFS varies with the number

of processors in themultiprocessor setting, described in [43]. Unlike

in anonymous broadcast, here the reported gain is only due to the

improved shuffle protocol.

Organization. The rest of the paper is organized as follows. §2

describes the related work and §3 provides the preliminaries. §4

describes our shuffle protocol, Ruffle. This is followed by the ap-

plications of anonymous broadcast and GraphSC paradigm in §5,

which also describe the protocols Ruffle-1 and Ruffle-2. The bench-
mark results appear in §6, followed by conclusion in §7. Addi-

tional preliminaries appear in §A. Details of the shuffle protocol

of [6] are recollected in §B. This is followed by additional details

of anonymous broadcast and BFS in GraphSC paradigm in §C, §D,

respectively. Additional benchmark details and security proofs are

provided in §E and §F, respectively.

2 RELATEDWORK
One of the first techniques proposed for shuffling is that of mix

networks (or mix-nets) [17, 22, 49, 52]. It comprises a sequence of

mixes, where each mix receives a set of messages, shuffles them,

and forwards them to the next mix. Unlinkability of a message to

its sender is guaranteed if at least one mix is honest. To guaran-

tee security when a mix is malicious, it must be ensured that a

verifiable shuffle is performed by each mix [1, 3, 8, 27, 44]. This

further adds to the expense of a mix-net. Not only are mix-net-

based solutions computationally expensive, but they are also vul-

nerable to traffic analysis attacks [48, 50]. Hence, several works in

the literature explore MPC-based techniques for secure shuffling

[23, 28, 35, 38, 41, 42]. Some of these solutions rely on securely

performing sort [35, 42], while some others consider securely eval-

uating a permutation network [23, 28, 38, 41]. These techniques

require at least 𝑂 (log𝑛) rounds for shuffling 𝑛 elements, which

proves to be expensive for time-sensitive applications. The works

of [6, 20] which appeared concurrent to each other consider per-

forming a 3PC shuffle protocol in the honest majority setting. In

the semi-honest 3PC honest-majority setting, [6] presents a shuffle

protocol which is an adaption of the shuffle protocol of [35] to the

3-party setting. This semi-honest protocol requires three rounds of

interaction. Note that, [6] contributes to making this semi-honest

26

Ruffle Proceedings on Privacy Enhancing Technologies 2023(3)

protocol secure in the presence of a malicious adversary by aug-

menting with a verification phase to ensure the correctness of the

semi-honest shuffle, which additionally requires 2 + log
2
^ rounds.

Further, [6] also provides a 2 round semi-honest protocol but leaves

open the question of attaining malicious security for the same. Clar-

ion [20] also gives a 2-round 3PC honest-majority shuffle protocol

which builds on the semi-honest 2-party protocol of [13]. To guar-

antee malicious security, they add integrity checks by having MACs

appended to the elements to be shuffled. The resulting maliciously

secure protocol requires 6 rounds overall. Clarion also extends its

shuffle protocol to the 𝑛-party dishonest majority setting that guar-

antees malicious security, which additionally requires maliciously

secure OTs (oblivious transfer) in the preprocessing phase. It im-

proves over the protocol in [37] in terms of efficiency, however,

it lacks in terms of security guarantees where the latter provides

fairness in the preprocessing phase and GOD only in the online

phase, for the setting of 𝑡 < 𝑛/3.

3 PRELIMINARIES
We work in the 3-party setting. Let P = {𝑃0, 𝑃1, 𝑃2} denote the

set of three parties that are connected via a pairwise private and

authentic channel. Let A be a static, probabilistic, polynomial-

time adversary which corrupts at most one party maliciously. Our

protocols are proven secure against a computationally bounded A
in the standalone simulation-based security model of MPC, using

the real-world/ideal-world simulation paradigm [36]. Parties use a

one-time key setup [9, 14, 29, 39, 47] to establish common random

keys for a pseudo-random function (PRF) between them. This is

modelled as a functionality Fsetup (Fig. 7). This enables each subset

of parties to non-interactively sample a common random ℓ-bit

string v ∈ Z
2
ℓ . Parties also have access to a collision-resistant hash

function, H(·), and a non-interactive commitment scheme, Com(·).
Formal details appear in §A.

Secret sharing semantics. Inspired from [29, 51], we use the

following secret sharing semantics.

◦ [·]-sharing: A value v ∈ Z2 is said to be (3, 1) replicated secret

shared (RSS) or [·]-shared, if there exists [v]
01
, [v]

02
, [v]

12
∈ Z2

such that v = [v]
01
⊕ [v]

02
⊕ [v]

12
, and each [v]𝑖 𝑗 ∈ {[v]01 , [v]02 ,

[v]
12
} is held by 𝑃𝑖 , 𝑃 𝑗 ∈ P.

◦ J·K-sharing: A value v ∈ Z2 is J·K-shared among P, if there exists
𝛼v ∈ Z2 that is [·]-shared, and there exists 𝛽v ∈ Z2 such that

𝛽v = v ⊕ 𝛼v which is held by all parties in P.
An ℓ-bit value v ∈ Z

2
ℓ (or equivalentlyZℓ

2
) is said to be J·K-shared

([·]-shared) if each bit in v is J·K-shared ([·]-shared). Henceforth,
we use shares and secret-shares interchangeably.

Non-interactively generating [·]-shares of a common v ∈ Z
2
ℓ

held by 𝑃𝑙 , 𝑃𝑚 . To generate [v], parties need to define three shares
[v]

01
, [v]

02
, [v]

12
∈ Z

2
ℓ such that v = [v]

01
⊕ [v]

02
⊕ [v]

12
, where

each [v]𝑖 𝑗 is held by parties 𝑃𝑖 , 𝑃 𝑗 ∈ P. Observe that this can be

done non-interactively by setting the share [v]𝑙𝑚 = v and the other
two [·]-shares of v as 0.

Randompermutation. LetN denote the set of integers {1, 2, . . . , 𝑁 }.
A permutation as any bijective function 𝜋 : N→ N. That is, a per-
mutation 𝜋 denotes a mapping of a rearrangement of the elements

in N. The set denoted as 𝑆𝑁 consists of all possible (bijective func-

tions) rearrangements of elements in N and hence comprises 𝑁 !

permutations. Note that permutations can be composed similar to

composition of functions, and thus 𝑆𝑁 forms a group with respect

to composition (◦) operation. 𝑆𝑁 satisfies group properties of clo-

sure, associativity, and presence of identity. However, permutations

are not commutative under composition but are invertible.

Sampling a random permutation denotes choosing a random

𝜋 ∈ 𝑆𝑁 . We next describe how parties 𝑃𝑖 , 𝑃 𝑗 can do this non-

interactively using the shared key established via Fsetup. 𝑃𝑖 , 𝑃 𝑗 non-
interactively generate 𝑁 common random values say v1, v2, . . . ,
v𝑁 ∈ Z2ℓ where ℓ >> log

2
𝑁 . The parties tag each of the values v𝑖

with its index to obtain a list 𝑆 = {(v𝑖 , x𝑖)}𝑁𝑖=1, where x𝑖 = 𝑖 . Each

party then locally sorts this list of tuples based on the first entry v𝑖
of each tuple to obtain a sorted list 𝑆 ′ = {(v′

𝑗
, x′

𝑗
)}𝑁

𝑗=1
. The second

element in each tuple of 𝑆 ′ defines a random permutation where

𝜋 (x𝑖) = 𝜋 (𝑖) = x′
𝑖
for 𝑖 ∈ {1, 2, . . . , 𝑁 }.

Joint message passing (jmp) primitive [29]. This primitive al-

lows two parties to deliver a common message to a third party

where one sender sends the message while the other sends its

hash to the receiver. In the process, either the recipient receives

the correct message or, if there is an inconsistency in the received

messages, parties instead proceed to identify a trusted third party

(TTP)7. The TTP is then responsible for performing the required

computation on clear and guarantee delivery of output. Several

works [19, 29, 30] rely on this primitive or its variation to ensure

GOD. We let “𝑃𝑖 , 𝑃 𝑗 jmp v to 𝑃𝑘 ” denote invocation of jmp with

𝑃𝑖 , 𝑃 𝑗 as senders, 𝑃𝑘 as receiver, and v being the message to be sent.

Formal protocol for jmp appears in Fig. 8.

Output reconstruction [29]. To enable reconstruction of a J·K-
shared value v ∈ Z

2
ℓ , parties proceed as follows. During the prepro-

cessing phase, in addition to generating [𝛼v], parties also generate

commitments on each of the [·]-shares of 𝛼v. Looking ahead, these

commitments aid in guaranteeing the correct reconstruction of

v in the online phase. To generate the commitments, each pair

𝑃𝑖 , 𝑃 𝑗 ∈ P computes Com([𝛼v]𝑖 𝑗) on the value [𝛼v]𝑖 𝑗 using the

common randomness. 𝑃𝑖 , 𝑃 𝑗 jmp Com([𝛼v]𝑖 𝑗) to 𝑃𝑘 . After the jmp
invocations, it is guaranteed that each party in P either possess the

correct commitment on each [·]-share of 𝛼v, or a TTP is identified

and subsequent computation proceeds via the TTP8. Next, in the

online phase to reconstruct v, observe that each party 𝑃𝑘 misses the

share [𝛼v]𝑖 𝑗 which is held by the other two parties 𝑃𝑖 , 𝑃 𝑗 ∈ P \ 𝑃𝑘 .
Hence, 𝑃𝑖 , 𝑃 𝑗 send the opening of Com([𝛼v]𝑖 𝑗) to 𝑃𝑘 . Since at most

one party among 𝑃𝑖 , 𝑃 𝑗 can be malicious, even if the malicious

party sends an incorrect opening, 𝑃𝑘 is guaranteed to receive the

correct opening from the honest party (the correct opening can

be identified owing to the property of the commitment scheme

which outputs a ⊥ for incorrect ones). Party 𝑃𝑘 uses the correct

opening to obtain the missing share [𝛼v]𝑖 𝑗 and reconstructs v as
v = 𝛽v ⊕ [𝛼v]𝑖 𝑗 ⊕ [𝛼v]𝑖𝑘 ⊕ [𝛼v] 𝑗𝑘 . Thus, reconstruction will not

fail if a malicious party tries to disrupt it by sending an incorrect

message, resulting in robust reconstruction.

7
In the case of fair protocol, parties abort.

8
In case of a fair protocol, the fair variant of jmp is used, which aborts in case of an

inconsistency.

27

Proceedings on Privacy Enhancing Technologies 2023(3) Shriram et al.

On the security of our protocols. While our protocol provides the

strongest security of robustness, we note that depending on the

application scenario, one may choose the desired level of security.

Specifically, robustness is attained by relying on a TTP to carry out

the computation on the honest party’s inputs (in the clear) if misbe-

haviour is detected. Hence, if the application under consideration

cannot tolerate revealing the inputs to a TTP even though the TTP
is known to be honest, the application can settle for the weaker

security notion of fairness (which is stronger than abort security

achieved in prior systems). The fair version of our protocols can be

derived from the robust version by making the following changes–

(i) use of the fair version of jmp instead of the robust version, (ii)

terminating the protocol when a party aborts instead of proceed-

ing with TTP identification and, (iii) relying on a fair reconstruction

protocol. We remark that even for this weaker security notion of

fairness, our protocols are on par with the robust protocols in terms

of efficiency, and hence, are more efficient than prior works. Finally,

we would like to note that an alternative to the TTP-based approach

of achieving robustness, is the recent notion of security with friends

and foes proposed in [5]. This notion allows attaining robustness

without relying on the TTP. We refer an interested reader to [5] for

further details pertaining to the same.

4 3PC SHUFFLE
We begin with defining the ideal functionality for shuffle in Fig. 1.

Let a table T denote a set of ordered rows where each row consists

of an ℓ-bit string. Let 𝑁 denote the size of T or the number of rows

in T. Secure shuffle operation takes as input J·K-shares of table T,
i.e., J·K-shares of each of the ℓ-bit string that constitutes a row in

T. The output is random J·K-shares of a table T𝑜 , which consists of

rows of T in a randomly permuted order.

Without loss of generality, let 𝑃𝑐 ∈ P denote the party corrupted by

adversary S. FShuffle interacts with parties in P and S. It receives as
input J·K-shares of the input table T from all parties. Let T𝑜 denote the

randomly shuffled input table. FShuffle also receives from S its

J·K-shares of T𝑜 , i.e. it receives 𝛽To ,
[
𝛼To

]
𝑖𝑐
,
[
𝛼To

]
𝑗𝑐

where 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑐

denote parties in P.
FShuffle proceeds as follows.
• Reconstruct input T using J·K-shares of the honest parties.
• Sample a random permutation 𝜋 from the space of all permutations,

𝑆𝑁 and generate T𝑜 = 𝜋 (T) .
• Set

[
𝛼To

]
𝑖 𝑗

= T𝑜 ⊕ 𝛽To ⊕
[
𝛼To

]
𝑖𝑐
⊕
[
𝛼To

]
𝑗𝑐
. Let JT𝑜K𝑥 denote the

J·K-share of T𝑜 for 𝑃𝑥 ∈ P.
• Send (Output, JT𝑜K𝑥) to 𝑃𝑥 .

Functionality FShuffle

Figure 1: Ideal functionality for shuffle

4.1 Ruffle
Given that the input table T is J·K-shared, there exists a 𝛽T, 𝛼T ∈ Z𝑁

2
ℓ

such that 𝛽T = T⊕𝛼T is held by all parties in P, and 𝛼T is [·]-shared,
i.e. 𝛼T = [𝛼T]01 ⊕ [𝛼T]02 ⊕ [𝛼T]12 where 𝑃𝑖 , 𝑃 𝑗 ∈ P hold [𝛼T]𝑖 𝑗 ∈
Z𝑁
2
ℓ . Let 𝜋 be the random permutation used to shuffle the rows of

T. Observe that, T𝑜 = 𝜋 (T) = 𝜋 (𝛽T ⊕ 𝛼T) = 𝜋 (𝛽T) ⊕ 𝜋 (𝛼T). To
respect the J·K-sharing semantics for T𝑜 , we require T𝑜 = 𝛽To ⊕ 𝛼To .

A naive approach is to thus set 𝛽To = 𝜋 (𝛽T) and 𝛼To = 𝜋 (𝛼T) since
this would satisfy T𝑜 = 𝛽To ⊕ 𝛼To = 𝜋 (T). Observe, however, that
this approach leaks the secret permutation 𝜋 to all the parties, since

they all hold 𝛽T and will now also hold 𝜋 (𝛽T) on clear, from which

one can recover 𝜋 . To keep 𝜋 private, we observe that it suffices to

mask 𝜋 (𝛽T) with some randomness R ∈ Z𝑁
2
ℓ , and hence, define this

masked value as 𝛽To , i.e., 𝛽To = 𝜋 (𝛽T)⊕R. Further, to ensure that the
relation T𝑜 = 𝛽To ⊕ 𝛼To holds, we redefine 𝛼To = 𝜋 (𝛼T) ⊕ R. Thus,
given JTK, our goal is to generate [·]-shares of 𝛼To , and ensure that

all parties hold 𝛽To . Observe that
[
𝛼To

]
= [𝜋 (𝛼T)] ⊕ [R]. Looking

ahead R gets defined during the generation of 𝛽To . Thus, in what

follows, we first describe steps to generate [𝜋 (𝛼T)], followed by

steps to generate 𝛽To and then [R].

Generation of [𝜋 (𝛼T)]. Since 𝛼T is independent of the input T,
it is generated during a preprocessing phase. Hence, [·]-shares of
𝛼 ′ = 𝜋 (𝛼T) where 𝜋 is a random secret permutation (independent

of T), can be generated during preprocessing. For this, we employ

the protocol of [6]. The protocol takes as input [·]-shares of a table,
and outputs [·]-shares of the table shuffled using a random secret

permutation 𝜋 . It also outputs a flag that indicates correctness of

[·]-shares of shuffled table
9
.

At a high level, the protocol of [6] relies on the semi-honest 3PC

shuffle protocol from [35] which guarantees privacy against a mali-

cious adversary. [6] then augments this with a robust Set-Equality
protocol to verify the correctness of the semi-honest shuffle. The

semi-honest shuffle comprises three invocations of Shuffle-Pair
protocol. In each instance of Shuffle-Pair, a random permutation

is applied to the input (of the Shuffle-Pair), where the permuta-

tion is known to a distinct pair of parties and is hidden from the

third. The output of the current Shuffle-Pair is fed as input to the

next Shuffle-Pair. The composition of all three permutations, thus,

makes up the random secret permutation used to shuffle the in-

put table. Since each party is aware of only two permutations, the

final permutation remains private. Formal details of Shuffle-Pair
protocol are recollected in §B. Each invocation of Shuffle-Pair is
followed by a Set-Equality protocol which outputs a flag ∈ {0, 1}
indicating whether the table output by the Shuffle-Pair is indeed a

random permutation of the input to this Shuffle-Pair. In this way,

the output of the shuffle protocol is guaranteed to be correct if all

instances of Shuffle-Pair are verified to be correct.

Let 𝜋12, 𝜋01, 𝜋02 denote the three permutations used in the three

Shuffle-Pair instances, where 𝜋𝑖 𝑗 is held by 𝑃𝑖 , 𝑃 𝑗 ∈ P. Applying
the protocol of [6] on [𝛼T] outputs [𝜋 (𝛼T)] and a flag. Here, we
let 𝜋 = 𝜋12 ◦ 𝜋01 ◦ 𝜋02 where ◦ denotes composition operation, and

flag indicates correctness of [𝜋 (𝛼T)].

Generation of 𝛽To = 𝜋 (𝛽T) ⊕ R. As part of the Shuffle-Pair
instances performed during the preprocessing, parties generate

𝜋12, 𝜋01, 𝜋02. The goal now is to generate 𝛽To = 𝜋 (𝛽T) ⊕ R where

𝜋 = 𝜋12 ◦ 𝜋01 ◦ 𝜋02. Observe that, unlike during preprocessing,

the table to be shuffled is now held by all three parties on clear,

while the permutation 𝜋 is still private. Further, each party misses

exactly one permutation that is held by the other two parties. We

9
We choose [6] over [20] since the protocol in [6] follows the same [·]-sharing seman-

tics as required for 𝛼 , which is not the case in the protocol of [20]. Hence, the use of

[6] yields an efficient preprocessing phase. Towards the end of §4.1, we also showcase

how to get GOD for the protocol of [6].

28

Ruffle Proceedings on Privacy Enhancing Technologies 2023(3)

leverage these observations in designing our shuffle protocol to

attain a highly efficient online phase. We explain case-by-case how

each 𝑃𝑖 ∈ P obtains 𝛽To .

Generating 𝛽To towards 𝑃1. Recall that 𝑃1 misses 𝜋02. If 𝑃1 is given

𝜋02 (𝛽T), it can locally compute 𝜋 (𝛽T) = 𝜋12 ◦ 𝜋01 (𝜋02 (𝛽T)) using
its knowledge of 𝜋12 ◦ 𝜋01. However, as mentioned earlier, since

𝑃1 holds 𝛽T on clear, knowledge of 𝜋02 (𝛽T) leaks the permutation

𝜋02 to it. Hence, we instead provide it with 𝜋02 (𝛽T) ⊕ R′, where
the randomness R′ masks 𝜋02 (𝛽T) and prevents leakage of 𝜋02. For
this, observe that 𝜋02 is held by both 𝑃0, 𝑃2. We let 𝑃0, 𝑃2 sample

a random R02 ∈ Z𝑁
2
ℓ , and compute and send 𝜋02 (𝛽T ⊕ R02) to 𝑃1.

Here, 𝜋02 (R02) serves as the random mask R′. Further, note that
since at most one among 𝑃0, 𝑃2 can be malicious, making both

send the value to 𝑃1 enables the latter to check the consistency

of the received messages and detect misbehaviour, if any. Since

the message from the second sender only aids in verifying the

consistency of the received messages, to save on communicating an

entire table, it suffices for one sender to send the value and the other

to send the hash of it
10

. On receiving a consistent 𝜋02 (𝛽T ⊕ R02)
(which also guarantees its correctness, as otherwise the received

messages would have been inconsistent), 𝑃1 can compute 𝛽To using

the received value and the knowledge of permutations 𝜋12, 𝜋01.

Note that 𝜋02 (R02) serves as a mask to hide 𝜋 from 𝑃1. Looking

ahead, similar masks are required in 𝛽To to keep 𝜋 hidden from

𝑃2 and 𝑃0. This results in additionally introducing the random

masks 𝜋12 (𝜋01 (R01)) and 𝜋12 (R12), respectively. To ensure that

all parties have the same 𝛽To and use the same randomness for

masking 𝜋 (𝛽T), 𝛽To is defined as

𝛽To = 𝜋12 (𝜋01 (𝜋02 (𝛽T ⊕ R02) ⊕ R01) ⊕ R12) (1)

= 𝜋 (𝛽T) ⊕ 𝜋 (R02) ⊕ 𝜋12 (𝜋01 (R01)) ⊕ 𝜋12 (R12)

where R12,R01 ∈ Z𝑁
2
ℓ , and R𝑖 𝑗 is jointly sampled by 𝑃𝑖 , 𝑃 𝑗 ∈ P.

At the end of first round, since 𝑃1 holds R12,R01, 𝜋12, 𝜋01, and
𝜋02 (𝛽T ⊕ R02), it can compute 𝛽To using Eq. (1).

Generating 𝛽To towards 𝑃2. Observe that 𝑃2 lacks 𝜋01 that prevents
it from computing 𝜋12 (𝜋01 (𝜋02 (𝛽T ⊕ R02))). On the other hand,

if provided with the value 𝜋01 (𝜋02 (𝛽T ⊕ R02)), then 𝑃2 can obtain

𝜋12 (𝜋01 (𝜋02 (𝛽T ⊕ R02))) by applying 𝜋12 on it. However, similar

to the case described earlier, this leaks the permutation 𝜋01 to 𝑃2. To

fix this leakage, we first mask 𝜋02 (𝛽T ⊕ R02) with the random value

R01 and then apply 𝜋01 on this masked value and communicate it to

𝑃2. This justifies the need for the term 𝜋12 (𝜋01 (R01)) in Eq. (1). The
value to be communicated, 𝛿12 = 𝜋01 (𝜋02 (𝛽T ⊕ R02) ⊕ R01) can
be computed by 𝑃0 and sent to 𝑃2, since 𝑃0 possesses the required

values. Since we want to maintain the invariant that each message

is communicated by two senders to aid in verification of correctness

at the receiver, we require 𝑃1 to also send hash of this message to

𝑃2. Although 𝑃1 does not possess R02 and 𝜋02 required to compute

𝛿12, observe that it receives 𝛿02 = 𝜋02 (𝛽T ⊕ R02) in the first round,

and can compute and send the hash of 𝛿12 = 𝜋01 (𝛿02 ⊕ R01) in the

next round to 𝑃2. On receiving these values, 𝑃2 can thus verify its

correctness and then use Eq. (1) to compute 𝛽To .

Generating 𝛽To towards 𝑃0. Given that 𝛽To is made available to both

𝑃1, 𝑃2, they can send it to 𝑃0 (one sends the value, the other sends

10
When performing multiple shuffle instances, the cost of sending a hash can be

amortized by sending a single hash for messages corresponding to multiple shuffles.

the hash). This completes the generation of 𝛽To towards all the

parties. Observe the need for using R12 as a mask while computing

𝛽To . Analogous to the cases for 𝑃1, 𝑃2, absence of R12 leaks the

permutation 𝜋12 to 𝑃0. Further, note that although 𝑃2 can compute

the correct 𝛽To only after the second round, it receives 𝛿12 required

for computing 𝛽To in the first round itself. Hence, communication

of 𝛽To from 𝑃1, 𝑃2 towards 𝑃0 can happen in the second round.

A pictorial view of the messages exchanged is given in Fig. 2.

P0

P1 P2

H

H

H = H

H(

)

Round 1

Round 2

Figure 2: Online phase of Ruffle

Generation of
[
𝛼To

]
= [𝜋 (𝛼T)] ⊕ [R]. Subsequent to the above

discussion and as evident from Eq. (1), R is defined as R = 𝜋 (R02) ⊕
𝜋12 (𝜋01 (R01)) ⊕ 𝜋12 (R12), whose [·]-shares are required to be

generated in the preprocessing phase. Observe that[
𝛼To

]
= [𝜋 (𝛼T)] ⊕ [R]
= [𝜋12 (𝜋01 (𝜋02 (𝛼T)))] ⊕ [𝜋12 (𝜋01 (𝜋02 (R02)))]

⊕ [𝜋12 (𝜋01 (R01))] ⊕ [𝜋12 (R12)] (2)

𝑃1, 𝑃2 hold 𝜋12 (R12) on clear. Hence, as described in §3, [𝜋12 (R12)]
can be generated non-interactively. A naive approach of generat-

ing [·]-shares of remainder terms requires three invocations of

Shuffle-Pair for generating [𝜋12 (𝜋01 (𝜋02 (𝛼T)))], three for gener-
ating [𝜋12 (𝜋01 (𝜋02 (R02)))], and two for [𝜋12 (𝜋01 (R01))]. How-
ever, all these remainder terms in Eq. (2), need an application

of 𝜋01 followed by an application of 𝜋12. Hence, instead of sep-

arately computing these terms via multiple Shuffle-Pair instances,
we club these terms together in such a way that we require only

three Shuffle-Pair instances to compute

[
𝛼To

]
. Elaborately, given

that R02 is held by 𝑃0, 𝑃2 on clear, parties can non-interactively

generate its [·]-shares. Further, given [𝛼T ⊕ R02] = [𝛼T] ⊕ [R02],
parties invoke Shuffle-Pair with 𝜋02 as the secret permutation to

generate [𝜋02 (𝛼T ⊕ R02)]. Since [R01] can also be generated non-

interactively, the remainder terms in (2) can be alternatively ex-

pressed as,

𝜋12 (𝜋01 (𝜋02 (𝛼T))) ⊕ 𝜋12 (𝜋01 (𝜋02 (R02))) ⊕ 𝜋12 (𝜋01 (R01))
= 𝜋12 (𝜋01 (𝜋02 (𝛼T ⊕ R02) ⊕ R01)) = 𝛾

Hence, given [𝜋02 (𝛼T ⊕ R02) ⊕ R01] = [𝜋02 (𝛼T ⊕ R02)] ⊕ [R01],
one can apply two invocations of Shuffle-Pair with 𝜋01, 𝜋12 to gen-

erate [𝛾], as required for generating

[
𝛼To

]
.

29

Proceedings on Privacy Enhancing Technologies 2023(3) Shriram et al.

Let [𝜌] = Shuffle-Pair([T] , 𝜋𝑖 𝑗) denote the application of 𝜋𝑖 𝑗 on

[T] to obtain [𝜌] where 𝜌 = 𝜋𝑖 𝑗 (T) and the parties 𝑃𝑖 , 𝑃 𝑗 are the pair
who knows 𝜋𝑖 𝑗 on clear. If [T1] , [T2] denote the input and output of
a Shuffle-Pair instance, let Set-Equality([T1] , [T2]) output flag = 0

if Shuffle-Pairwas performed correctly, and flag = 1 otherwise. The

steps for generating 𝛼To is summarised in Fig. 3.

1. [𝜌2] = Shuffle-Pair([𝜌1] , 𝜋02) where 𝜌1 = 𝛼T ⊕ R02 and flag
02

=

Set-Equality([𝜌1] , [𝜌2])

2. [𝜌4] = Shuffle-Pair([𝜌3] , 𝜋01) where 𝜌3 = 𝜌2 ⊕ R01 and flag
01

=

Set-Equality([𝜌3] , [𝜌4])

3. [𝜌5] = Shuffle-Pair([𝜌4] , 𝜋12) , flag12 = Set-Equality([𝜌4] , [𝜌5])

4. Set

[
𝛼To

]
= [𝜌5] ⊕ [𝜋12 (R12)]

Figure 3: Generation of

[
𝛼To

]
by parties in P

Guaranteeing output delivery. Note that in the solution de-

scribed above, an adversary can misbehave, resulting in an abort
(i.e., failure of shuffle). However, to attain GOD and obtain as output

the randomly shuffled input table irrespective of the adversarial

behaviour, one can proceed as follows. Inspired by the techniques of

[9, 11, 29, 30], we rely on a trusted third party (TTP) based approach.
Elaborately, if shuffle fails, we work towards identifying an honest

party in P that is designated as a TTP. Parties robustly reconstruct

the input table to TTP, who performs the shuffle operation on the

clear table, and sends the output (shares of the randomly shuffled

input table) to all. We next describe how a TTP can be identified in

preprocessing and online phase whenever shuffle fails.

Identifying a TTP if shuffle fails during preprocessing phase. The

preprocessing phase involves three sequential invocations of the

semi-honest Shuffle-Pair protocol where in each invocation, only

two parties communicate amessage (see §B for details). Each invoca-

tion of Shuffle-Pair is followed by a robust Set-Equality protocol to
verify the correctness of the Shuffle-Pair, which outputs a flag indi-
cating that shuffle failed if some misbehaviour was detected in this

Shuffle-Pair instance. We make the following observation that aids

in identifying a TTP: If any invocation of Set-Equality outputs a flag
indicating that Shuffle-Pair fails, it must be due to a misbehaviour

by one of the two (communicating) parties in the corresponding

Shuffle-Pair instance. This is because Set-Equality protocol is ro-

bust against any misbehaviour (owing to the use of a robust 3PC for

the same), and hence, shuffle can fail only due to a misbehaviour in

Shuffle-Pair. Further, since at most one among the three parties is

malicious, this guarantees that the (non-communicating) residual

party is honest and can be designated as the TTP.
Identifying a TTP if shuffle fails during online phase. Each of the

three messages that are exchanged in the online phase have the

following communication pattern. There exist two senders who pos-

sess the message to be sent to the receiver, where one sender sends

the message while the other sends the hash of it. Since this resem-

bles the communication pattern of [19, 29], we use the techniques

therein to identify a TTP, if any party receives an inconsistent (mes-

sage, hash) pair. At a high level, if the received message and hash

do not match at the receiver, it broadcasts a complaint accusing the

senders. It also broadcasts the received messages. This is followed

by the senders broadcasting a complaint against the receiver if the

latter’s broadcast message was inconsistent with the senders sent

message. Depending on the publicly available complaints, parties

can unanimously determine a pair of parties that are in conflict

with each other, one of which is guaranteed to be corrupt. Due to

at most one malicious corruption among the three parties, the third

party that is not a part of this conflict is guaranteed to be honest

and can be designated as the TTP. The formal steps are provided in

Fig. 4, and correctness follows from [19]
11
.

Preprocessing:

– Each pair of parties 𝑃𝑖 , 𝑃 𝑗 ∈ P non-interactively sample R𝑖 𝑗 ∈ Z𝑁
2
ℓ

and random permutations 𝜋𝑖 𝑗 .

– 𝑃1, 𝑃2 compute 𝜋12 (R12) , and parties generate its [·]-shares, non-
interactively.

– Parties in P generate [·]-shares of R01,R02, non-interactively.
– Parties in P follow the steps in Fig. 3 to generate

[
𝛼To

]
.

– Identifying TTP when shuffle fails: If flag𝑖 𝑗 indicates a failure, all

parties set TTP to be the non-communicating party in the corresponding

Shuffle-Pair protocol. When multiple flag𝑖 𝑗 indicates failure, break tie

deterministically and use one flag𝑖 𝑗 .

Online:

• Shuffle (Round 1):

- 𝑃0, 𝑃2 compute 𝛿02 = 𝜋02 (𝛽T ⊕ R02) . 𝑃2 sends 𝛿02 to 𝑃1. 𝑃0 sends

H(𝛿02) to 𝑃1, where H is a collision-resistant hash function.

- 𝑃0 computes and sends 𝛿01 = 𝜋01 (𝜋02 (𝛽T ⊕ R02) ⊕ R01) to 𝑃2.

• Shuffle (Round 2):

- 𝑃1 computes and sends H(𝛿01) = H(𝜋01 (𝛿02 ⊕ R01)) to 𝑃2.
- 𝑃1, 𝑃2 compute 𝛿12 = 𝜋12 (𝛿01 ⊕ R12) .
- 𝑃1 sends 𝛿12 and 𝑃2 sends H(𝛿12) to 𝑃0.

• Verification (Round 3)
a
: For each receiver 𝑃𝑖 ∈ P, let 𝑃 𝑗 , 𝑃𝑘 denote

the senders. Let𝑃 𝑗 send themessage and𝑃𝑘 send its hash.𝑃𝑖 checks if the

received values are consistent. If not, it broadcasts (“accuse”, 𝑃 𝑗 , 𝑃𝑘 , 𝑐 𝑗 , 𝑐𝑘) ,
where 𝑐 𝑗 = H(𝑥) , such that 𝑥 and 𝑐𝑘 are the values sent by 𝑃 𝑗 and 𝑃𝑘 ,

respectively.

• Verification and TTP Identification (Round 4): Consider the first in-

stance when a party 𝑃𝑖 broadcasts (“accuse”, 𝑃 𝑗 , 𝑃𝑘 , 𝑐 𝑗 , 𝑐𝑘) .
- If 𝑐 𝑗 = 𝑐𝑘 , set TTP = 𝑃 𝑗 .

- Else if 𝑐 𝑗 is different from the hash of the value sent by 𝑃 𝑗 to 𝑃𝑖 , then

𝑃 𝑗 broadcasts (“accuse”, 𝑃𝑖) . Set TTP = 𝑃𝑘 . The above steps follow

analogously for 𝑃𝑘 .

- Else if 𝑐 𝑗 ≠ 𝑐𝑘 and neither 𝑃 𝑗 nor 𝑃𝑘 accuses 𝑃𝑖 , set TTP = 𝑃𝑖 .

• One-time computation through TTP: If TTP is set, all parties robustly

reconstruct the input table towards the TTP, who randomly shuffles the

input and sends the shuffled table to all parties.

a
Note that these can be performed as soon as the messages required for detecting

inconsistency are available.

Protocol ΠRuffle
(
JTK

)

Figure 4: Secure shuffle protocol

Proof of security. The security of our shuffle protocol follows the

fact that the secret permutation remains hidden since each party

11
These steps can be optimized by using the technique described in [29].

30

Ruffle Proceedings on Privacy Enhancing Technologies 2023(3)

knows only two of the three permutations. Moreover, throughout

the protocol, parties only receive random messages. Hence, the

security follows easily. A detailed proof of security appears in §F.

5 APPLICATIONS
Here, we focus on two applications of shuffle– (i) anonymous broad-

cast and (ii) GraphSC paradigm. Recall that anonymous broadcast

being a perpetually running system, requires a shuffle protocol that

is designed to handle Independent-Shuffles. On the other hand, the

GraphSC paradigm requires a shuffle protocol that can cater to

Composed-Shuffles. While Ruffle was described with respect to a

solitary shuffle invocation in §4.1, it can easily be extended to handle

the case of Independent-Shuffles. The resulting protocol is termed

as Ruffle-1. However, due to the sequential dependence present in

the preprocessing phase of Ruffle-1, it does not render itself effi-

cient for the case of Composed-Shuffles. Hence, we enhance Ruffle
and design an alternative protocol Ruffle-2 that is tailor-made to

handle Composed-Shuffles. We describe the applications and the

respective shuffle protocols they use, next.

5.1 Anonymous broadcast
Anonymous broadcast, as the name suggests, enables a set of 𝑁

clients to anonymously broadcast their messages while guaran-

teeing that none learns about the association between a message

and the identity of its sender. Instead of requiring the clients to

send their messages to a centralized server, which can output the

randomly shuffled messages back to the clients, we rely on a dis-

tributed solution to guarantee client privacy. At a high level, to

achieve anonymous broadcast, the clients secret-share their mes-

sages to a set of three servers (the three parties in P, henceforth
interchangeably called as servers), who invoke a secure shuffle pro-

tocol on the same and reconstruct the shuffled output. The solution

must guarantee the following desirable properties when at most

one server and any number of clients are corrupt.

1. Confidentiality: A coalition of malicious clients and server should

not learn the permutation used to shuffle the messages.

2. Integrity: Client’s message should remain intact.

3. Security against malicious client: System should discard mal-

formed messages sent by malicious clients.

4. Robustness against malicious server:Malicious server should not

abort the computation, and halt the system.

5. Censorship resistance: A malicious server should not be enabled

to discard an honest client’s message from the system.

Many works in the literature consider mix-net [17] based ap-

proach to achieve anonymous broadcast [4, 20, 31–33, 37], while

others [2, 18, 21, 45] are based on DC-networks proposed in [16].

The recent work of Clarion [20] improves in terms of efficiency

over these and provides an alternative shuffle-based anonymous

broadcast system. Hence, [20] provides the most efficient shuffle-

based anonymous broadcast system in the 3-server setting. Our

protocol offers the following improvements over Clarion: (i) cen-

sorship resistance which was missing in [20], (ii) usage of a more

efficient shuffle, (iii) more efficient steps for verifying consistency

of client’s input message, and (iv) improved security guarantee of

robustness, whereas that of [20] only provides security with abort.

We now describe our anonymous broadcast in the 3-server setting.

5.1.1 Our anonymous broadcast system. The protocol can be de-

scribed in the following steps.

1. Input sharing and consistency check: Each client wanting to broad-

cast a message receives randomness, using which it generates J·K-
shares of its message. On receiving shares of a client’s message,

servers verify if these are malformed. If so, they discard the message.

2. Shuffle: Assuming 𝑁 messages pass the verification, servers se-

curely shuffle the 𝑁 -sized table using Ruffle-1 described in §5.1.3.

3. Output reconstruction: On receiving the output shares after ex-

ecuting Ruffle-1, servers reconstruct the shuffled table using the

steps described in §3. The shuffled table is then broadcast to clients.

Since steps for output reconstruction (step 3) were already de-

scribed, we next elaborate on input sharing and consistency check

(step 1), and the shuffle protocol (step 2).

5.1.2 Input sharing and consistency check. This comprises a pre-

processing phase and an online phase, as elaborated below.

Preprocessing phase: Let the ℓ-bit client message be denoted asm.

Consider the sharing semantics of our shuffle protocol. A message

m which is J·K-shared comprises 𝛽m = m ⊕ 𝛼m held by all servers

in P, and 𝛼m = [𝛼m]01 ⊕ [𝛼m]02 ⊕ [𝛼m]12, where [𝛼m]𝑖 𝑗 is held by
𝑃𝑖 , 𝑃 𝑗 ∈ P. To enable the client to generate JmK towards the servers
while minimizing the computation as well as communication at

the client, we proceed on similar lines as in [29]. We let the servers

generate [·]-shares for a random 𝛼m, non-interactively. Observe

that each of [𝛼m]01 , [𝛼m]02 , [𝛼m]12 is held by exactly two servers,

at most one of which can be maliciously corrupt. Making 𝑃𝑖 , 𝑃 𝑗
send [𝛼m]𝑖 𝑗 to the client, may lead to uncertainity at the client

if 𝑃𝑖 , 𝑃 𝑗 send different versions of [𝛼m]𝑖 𝑗 to it. Hence, to ensure

correct delivery of each [𝛼m]𝑖 𝑗 towards the client, servers rely

on a commitment scheme. Elaborately, each pair of servers 𝑃𝑖 , 𝑃 𝑗
generates a commitment Com([𝛼m]𝑖 𝑗) of [𝛼m]𝑖 𝑗 and jmps it to
𝑃𝑘 (see §3 for details of jmp). This ensures that all servers are in
agreement with commitments generated for each [·]-share of 𝛼m.

Online phase: For a client who wishes to send a message, each

server sendsCom([𝛼m]01),Com([𝛼m]02) andCom([𝛼m]12) to the
client. The client retains the values inmajority for eachCom([𝛼m]𝑖 𝑗).
At the same time, each 𝑃𝑖 , 𝑃 𝑗 send the opening to Com([𝛼m]𝑖 𝑗) to-
wards the client. The client accepts the opening which is consistent

with the commitment that was in majority. In this way, the client re-

ceives correct [𝛼m]01 , [𝛼m]02 , [𝛼m]12. Upon receiving these values,
the client generates and sends 𝛽m = m⊕ [𝛼m]01 ⊕ [𝛼m]02 ⊕ [𝛼m]12
to the servers. To ensure that each server receives the same 𝛽m
and guarantee that a client has not misbehaved, each server broad-

casts the 𝛽m received from the client. If there is a majority among

the broadcast values, the client’s message is accepted, and each

server sets its 𝛽m to be the majority value. Else, the client’s mes-

sage is deemed as malformed and discarded from the instance of

anonymous broadcast protocol.

5.1.3 Ruffle-1. Ruffle protocol described in §4.1, was for a sin-

gle invocation of shuffle. For the scenario of Independent-Shuffles,
where𝑚 independent shuffles are required to be performed sequen-

tially, we design Ruffle-1 as follows. In its preprocessing phase,

Ruffle-1 performs 𝑚 instances of the preprocessing of Ruffle in

parallel, whereas for its online phase, it sequentially executes the

31

Proceedings on Privacy Enhancing Technologies 2023(3) Shriram et al.

online phase of Ruffle𝑚 times. As seen in Table 1, Ruffle-1 has a
better complexity than that of [6, 20].

A comparison of the concrete cost of our anonymous broadcast

with Clarion, together with a justification of how our system attains

the desirable properties, appears in §C.

5.2 Secure graph computation
The GraphSC paradigm [43] expresses any graph algorithm as a

message-passing algorithm. The graph is stored as list of nodes and

edges, where each entry in the list is associated with data or state.

One round of the message passing algorithm involves updating

the state of the nodes in the graph via the primary operations of

Scatter and Gather, which realise sending and receiving messages

across the edges, respectively. To ensure data obliviousness, before

each Scatter/Gather operation can be invoked, the list representing

the graph must be securely sorted. [6] takes a step towards im-

proving the performance by replacing every secure sort operation

with a secure shuffle. Thus, the entire graph algorithm reduces

to performing shuffles and invocations of the Scatter and Gather
operations across multiple rounds (O(|V| + |E|)). Note that shuffling

in each round takes as input the result obtained in the previous

iteration to update the state of the nodes. Hence, these sequen-

tial shuffles performed in different rounds indicate the scenario of

Composed-Shuffles. As will be explained next, since Ruffle-1 re-

sults in having a prohibitively high complexity when employed for

the case of Composed-Shuffles, we design Ruffle-2 that is tailor-
made for this scenario. A detailed explanation of the GraphSC

paradigm along with the representative use case of BFS algorithm

is given in §D. We next describle Ruffle-2.

5.2.1 Ruffle-2. For scenarios that demand the composition of, say

𝑚, shuffles (i.e., Composed-Shuffles), observe that the preprocess-
ing phase of Ruffle-1, which comprises𝑚 instances of the prepro-

cessing of Ruffle, can no longer execute in parallel, but will have to

be performed sequentially. This is because in Composed-Shuffles,
the output of one shuffle operation, say T1, constitutes the input
to a subsequent shuffle operation, which say outputs T2 = 𝜋 (T1).
Hence, once 𝛼T1 is generated as output from the first (preprocessing

phase) instance of Ruffle, only then can 𝛼T2 = 𝜋
(
𝛼T1

)
⊕ R be gen-

erated (see §4.1 for definition of 𝛼T). This sequential dependency

present in the preprocessing phase of Ruffle-1 when deployed in

the case of Composed-Shuffles, makes its run time proportional

to the number of sequential shuffles. However, it is desirable to

facilitate generation of necessary preprocessing data in parallel

and hence, decouple the dependency between generation of pre-

processing data and pattern of shuffle invocations. This can aid

in significantly reducing preprocessing phase’s cost. Hence, in the

following, we design an alternative protocol Ruffle-2, that breaks
this dependence and is tailor-made to handle Composed-Shuffles.

Let T be the input table which has to be shuffled to obtain T𝑜 =

𝜋 (T). InRuffle (Fig. 4), T𝑜 = 𝛽To⊕𝛼To where 𝛽To = 𝜋 (𝛽T)⊕R,𝛼To =
𝜋 (𝛼T) ⊕ R, and 𝜋 = 𝜋12 ◦𝜋01 ◦𝜋02, R = 𝜋 (R02) ⊕ 𝜋12 (𝜋01 (R01)) ⊕
𝜋12 (R12). To break the dependency and ensure that 𝛼To can be gen-

erated independently of 𝛼T we proceed as follows. Let 𝛼 ′To , 𝛽
′
To

be

the newly defined values such that T𝑜 = 𝛼 ′To ⊕ 𝛽
′
To
, where 𝛼 ′To is the

decoupled equivalent of 𝛼To . We let parties non-interactively sam-

ple [·]-shares of a random 𝛼 ′To ∈ Z
𝑁
2
ℓ during preprocessing. Having

generated 𝛼 ′To this way, we need to define 𝛽 ′To to ensure that T𝑜 =

𝛽 ′To ⊕𝛼
′
To

holds. Hence, we define 𝛽 ′To = 𝜋 (𝛽T)⊕R⊕𝜋 (𝛼T)⊕R⊕𝛼 ′To .
This is because recall that T𝑜 = 𝜋 (𝛽T) ⊕ R ⊕ 𝜋 (𝛼T) ⊕ R (where

R serves as a random mask for 𝜋 (𝛽T)). We next describe how to

generate this 𝛽 ′To .
Let 𝛽 ′To = B1 ⊕ B2, where B1 = 𝜋 (𝛽T) ⊕ R and B2 = 𝜋 (𝛼T) ⊕

R ⊕ 𝛼 ′To . In the preprocessing phase, observe that [·]-shares of
𝜋 (𝛼T) ⊕ R can be generated as described in §4.1. Thus, parties can

compute [B2] = [𝜋 (𝛼T) ⊕ R] ⊕
[
𝛼 ′To

]
and reconstruct B2 towards

all parties. In the online phase, to generate 𝛽 ′To , observe that parties
can generate B1, as described in §4.1. Given B2 generated during

preprocessing, parties set 𝛽 ′To = B1 ⊕ B2. This completes the gen-

eration of JT𝑜K. In comparison to Ruffle-1 this protocol, Ruffle-2,
only requires an additional reconstruction of B2 (for each shuffle

instance) towards all the parties during the preprocessing phase.

In summary, when dealing with Composed-Shuffles, the 𝛼 and

𝛽 values need to be redefined, and the computation proceeds as fol-

lows. Assuming that we are interested in computing the output shuf-

fled table T𝑛 defined as T𝑛 = 𝜋𝑛 (𝜋𝑛−1 (. . . 𝜋1 (T0))) and T0 is J·K-
shared, let each intermediate shuffled table T𝑖 = 𝜋𝑖 (. . . 𝜋1 (T0)). As
per the newly defined values, T𝑖 = 𝛼 ′Ti ⊕ 𝛽

′
Ti
, for each 𝑖 ∈ {1, . . . , 𝑛}.

Each of the 𝛼 ′Ti are randomly sampled and hence [·]-shares of each

𝜋𝑖

(
𝛼 ′Ti−1

)
⊕R𝑖 can be generated in parallel. Thus, the B2 component

of each 𝛽 ′Ti can be computed as [B2] =
[
𝜋𝑖

(
𝛼 ′Ti−1

)
⊕ R

]
⊕
[
𝛼 ′Ti

]
in

parallel during the preprocessing phase and reconstructed towards

all the parties. Each 𝛽 ′Ti is generated sequentially in the online phase

by computing B1 = 𝜋𝑖

(
𝛽 ′Ti−1

)
⊕ R𝑖 and 𝛽 ′Ti = B1 ⊕ B2.

6 BENCHMARKS
We empirically evaluate performance of our shuffle protocols under

various parameters and application scenarios, and compare them

against their state-of-the-art counterparts.

Benchmark environment. Benchmarking is performed over LAN

using n1-standard instances of Google Cloud with 2.3 GHz Intel

Xeon E5 v3 (Haswell) processors, and 240 GB of RAM. Themachines

have a bandwidth of 16Gbps. For a fair comparison, we implement

all the protocols in python, including that of [20] and [6]. Thus, costs

reported for prior works are higher than that reported in the original

works (see §E). Hence, the concrete improvements over [20] and

[6] reported next capture the relative improvements with respect to

the underlying protocols. That is, we do not account for the system

level optimizations that may have been included as a part of the

implementations in the original works of [20] and [6]. However,

we note that the reported communication costs are invariant of

the implementation. Our code accounts for multi-threading with

64 threads. We instantiate the communication layer between the

parties using PyTorch library. We use Crypto library for AES and

hashlib for generating SHA256 hash. We note that our code
12

is

developed for benchmarking, is not optimized for industry-grade

use, and a C++ based implementation can give better performance.

12
https://github.com/Bhavishrg/Ruffle

32

https://github.com/Bhavishrg/Ruffle

Ruffle Proceedings on Privacy Enhancing Technologies 2023(3)

Benchmark parameters. We follow the standard practice and

benchmark honest executions (with verification) as done in [10, 29,

39, 47]. We consider run time and communication of protocols as

the parameters for comparison. We account for online as well as

total (preprocessing + online) cost when doing so. To capture the

combined effect of both these parameters, we additionally report

online throughput (TP).

6.1 Shuffle
We begin by comparing Ruffle to the shuffle protocol of [20] and

[6] for the case of a single invocation of shuffle. Table 2 reports the

online phase comparisons to capture the fast response time and the

communication involved. Observe that Ruffle clearly outperforms

both [6, 20]. Concretely, we observe improvements up to 15× in

run time and 2.5× in communication over [20]. When compared

to [6], Ruffle has an improvement of up to 11.2× in run time and

2.5× in communication. The improvements in the run time and

communication are reflected in a high throughput, which captures

the number of such single invocations that can be performed in

parallel. The improvements in throughput range up to 5.5× and 2.2×
with respect to [20] and [6], respectively. When considering the

overall cost, we note that Ruffle fares better than [20] but is slightly

higher, yet comparable, to that of [6]. We report this in Table 3

for completeness. We remark that Ruffle-1 has same complexity as

Ruffle for the case of a single shuffle, while Ruffle-2 is not apt for
single shuffle invocation due to its higher preprocessing cost.

|T| Protocol Time (s) Comm. (MB) TP (per min)

10
3

Ruffle 0.005 0.092 12000.000

[6] 0.056 0.231 5415.162

[20] 0.075 0.228 2181.421

10
4

Ruffle 0.046 0.915 1200.000

[6] 0.434 2.318 593.589

[20] 0.718 2.289 218.177

10
5

Ruffle 0.457 9.155 120.000

[6] 3.959 22.918 59.935

[20] 7.692 22.888 21.818

10
6

Ruffle 7.033 91.553 12.000

[6] 49.577 228.912 5.999

[20] 95.089 228.881 2.181

Table 2: Online complexity of shuffle for varying table sizes for a
single shuffle invocation.

To capture the improvements of Ruffle-1 and Ruffle-2, we bench-
mark their performance for multiple sequential shuffle invocations,

i.e., scenarios of Independent-Shuffles andComposed-Shuffles. Re-
call that Ruffle-1 is apt for Independent-Shuffleswhile Ruffle-2 for
Composed-Shuffles. Since [6] outperforms [20] (as evident from

Table 2 and Table 3), we restrict to comparing Ruffle-1 and Ruffle-2
in their respective settings against [6]. Further, to capture improve-

ments Ruffle-2 protocol brings over Ruffle-1, we also report the cost
for performing Ruffle-1 in the scenario of Composed-Shuffles. The

|T| Protocol Time (s) Comm. (MB)

10
3

Ruffle 0.062 0.323

[6] 0.056 0.258

[20] 0.079 0.427

10
4

Ruffle 0.504 3.232

[6] 0.434 2.318

[20] 0.794 4.272

10
5

Ruffle 4.211 32.074

[6] 3.959 22.919

[20] 8.012 42.724

10
6

Ruffle 55.559 320.465

[6] 49.577 228.912

[20] 98.576 427.246

Table 3: Total complexity of shuffle for varying table sizes for single
shuffle invocation.

comparison for varying number of shuffle invocations is reported

in Fig. 5 (and Table 4). We make the following observations:

• The cost of [6] remains the same for Independent-Shuffles and
Composed-Shuffles since it is indifferent to both.

• We infer the following with respect to the online complexity.

Irrespective of the scenario and the number of shuffle invoca-

tions, recall from Table 1 that Ruffle-1 and Ruffle-2 are comparable

since their online phase is same, except for the extra computa-

tion required in Ruffle-2. Hence, as expected, Ruffle-1 (and thereby
Ruffle-2) outperforms [6] by up to 10×.
• We infer the following with respect to the overall run time. For

a single shuffle invocation, both Ruffle-1 (i.e. Ruffle for𝑚 = 1) and

Ruffle-2 have a slightly higher run time than [6]. However, start-

ing from as low as two invocations, Ruffle-1 begins to outperform

[6] for Independent-Shuffles. This is justified as follows– since

Ruffle-1’s online phase is faster than that of [6], performing the

preprocessing for𝑚 shuffles in parallel results in improving the

overall complexity. This improvement is not seen in [6] since the𝑚

shuffles that can be performed in parallel during our preprocessing

are required to be performed sequentially in case of [6] which adds

to the overhead. We see improvements of up to 6.4× in this case. On
the other hand, for Composed-Shuffles, [6] continues to outper-

form Ruffle-1 for the following reason. The composition of shuffles

induces a sequential nature in the preprocessing phase of Ruffle-1
(which indeed is the complete protocol of [6]). The computations

performed additionally in the online phase of Ruffle-1 renders its
overall complexity slightly higher than that of [6]. To break this

chain of sequential shuffles in the preprocessing phase, Ruffle-2
was designed to outperform Ruffle-1 (and thereby [6]), where we

see improvements of up to 4.7× with respect to [6].

• To capture the effect of both total run time and total communica-

tion, we additionally report the monetary cost in Table 4, which is

the price paid for performing the secure shuffle computation. This

33

Proceedings on Privacy Enhancing Technologies 2023(3) Shriram et al.

1 20 50 80 100

0

100

200

300

400

Number of shuffles

T
i
m
e
(
s
)

Ruffle-1
[6]

(a) Total time for Independent-Shuffles

1 20 50 80 100

0

100

200

300

400

Number of shuffles

T
i
m
e
(
s
)

Ruffle-1
[6]

(b) Online time for Independent-Shuffles

1 20 50 80 100

0

100

200

300

400

Number of shuffles

T
i
m
e
(
s
)

Ruffle-1
[6]

Ruffle-2

(c) Total time for Composed-Shuffles

1 20 50 80 100

0

100

200

300

400

Number of shuffles

T
i
m
e
(
s
)

Ruffle-1
[6]

Ruffle-2

(d) Online time for Composed-Shuffles

Figure 5: Comparison of Ruffle-1,Ruffle-2, [6] in terms of online and total time for scenario of Independent-Shuffles and Composed-Shuffles for
varying number of shuffle invocations and table size of 105.

Number of

shuffles

Protocol

Online Total

Time(s) Comm.(MB) TP (per min) Time(s) Comm.(MB) Monetary cost (USD)

1

Ruffle-1(Independent-Shuffles) 0.38 9.16 120.00 4.21 32.06 0.020

Ruffle-1(Composed-Shuffles) 0.38 9.16 120.00 4.21 32.06 0.020

Ruffle-2(Composed-Shuffles) 0.46 9.16 120.00 4.35 41.21 0.022

[6] 3.81 22.91 59.93 3.81 22.91 0.016

2

Ruffle-1(Independent-Shuffles) 0.92 18.31 60.00 5.16 64.13 0.030

Ruffle-1(Composed-Shuffles) 0.92 18.31 60.00 10.21 64.13 0.044

Ruffle-2(Composed-Shuffles) 0.98 18.31 60.00 5.46 82.44 0.035

[6] 7.58 45.81 29.95 7.62 45.81 0.032

25

Ruffle-1(Independent-Shuffles) 10.30 228.88 4.80 53.72 801.56 0.349

Ruffle-1(Composed-Shuffles) 10.30 228.88 4.80 105.25 801.56 0.491

Ruffle-2(Composed-Shuffles) 11.18 228.88 4.80 61.68 1030.44 0.429

[6] 95.24 572.68 2.39 95.74 572.68 0.408

50

Ruffle-1(Independent-Shuffles) 20.50 457.76 2.40 55.31 1603.33 0.556

Ruffle-1(Composed-Shuffles) 20.50 457.76 2.40 211.82 1603.33 0.986

Ruffle-2(Composed-Shuffles) 20.53 457.76 2.40 77.76 2060.74 0.733

[6] 192.06 1145.55 1.20 194.29 1145.55 0.817

100

Ruffle-1(Independent-Shuffles) 40.18 960.01 1.20 62.09 3206.66 0.978

Ruffle-1(Composed-Shuffles) 40.18 960.01 1.20 421.76 3206.66 1.968

Ruffle-2(Composed-Shuffles) 42.29 960.01 1.20 83.60 3206.66 1.037

[6] 393.82 2402.40 0.59 395.91 2291.11 1.660

Table 4: Comparison of Ruffle-1,Ruffle-2, [6] with respect to the scenario of Independent-Shuffles and Composed-Shuffles for varying number of
shuffle invocations and table size of 105. Note that the cost of [6] remains the same for both the scenarios.

is calculated using the pricing of Google Cloud Platform
13
, where

for 1GB and 1 hour of usage, the costs are USD 0.12 and USD 3.3025

respectively. With respect to the monetary cost, we note that for

a small number of shuffle invocation(≤ 25), our protocols have a

slightly higher monetary cost in comparison to [6]. However, as

the number of shuffle invocation increases(> 25), the savings in

run time see in our shuffle protocols compensates for the increased

communication. Thus, both Ruffle-1, Ruffle-2 outperform [6] in

terms of monetary cost.

13
We refer https://cloud.google.com/vpc/network-pricing for network cost and

https://cloud.google.com/compute/vm-instance-pricing for computation cost.

6.2 Anonymous broadcast
We empirically compare our anonymous broadcast system pre-

sented in §5.1 (instantiated with Ruffle-1) with the most efficient

shuffle-based 3-server system in [20]. Since complexity of anony-

mous broadcast varies based on number of clients (𝑁) as well as

their message size, we compare with respect to these parameters.

When varying the number of clients, we analyze the server-side

complexity and report the performance in Table 5 which accounts

for–checking the consistency of clients’ message (32 bytes in size)

where the check is performed in parallel for 𝑁 clients, shuffling the

34

Ruffle Proceedings on Privacy Enhancing Technologies 2023(3)

𝑁 -sized table, and reconstruction of the shuffled result. Observe

from Table 5 that our anonymous broadcast system outperforms

[20] in every aspect. This can be attributed not only to the use of

our efficient shuffle protocol but also due to the simplicity of the

input sharing and consistency check, and output reconstruction.

On the other hand, [20] relies on several MAC verifications and

encryption operations which render the system of [20] less efficient.

The improvements we observe with respect to online and total time

is up to 29× and 13× respectively, whereas that of online and total

communication is up to 2×.
The effect of varying the client message size on run time and

communication with respect to the server is reported in Table 6.

Our system outperforms [20] in terms of both. Concretely, with

respect to online and total time, we see improvements up to 39× and
9×, respectively. With respect to online and total communication,

we see improvements up to 1.2× and 1.3×.
Table 5 and Table 6 do not account for the time/communication

required to share a client’s input. Hence, to showcase the overhead

of input sharing, on both the client and the server, we report the

costs in Table 7. Since this overhead is dependent on the client mes-

sage size, Table 7 also account for the same. Recall that our system

additionally requires the client to wait to receive the preprocess-

ing data from the server. Despite this, the time for which a client

has to remain online in our system is 18× lesser in comparison

to [20]. The higher cost of [20] can be attributed to the need for

PRG (pseudorandom generator) invocations, encryption of message

followed by MAC tag computation at the client. This is unlike our

system, which relies on simple operations such as XOR. On the

other hand, since [20] requires the clients to communicate to only

two servers instead of the three servers as required in our case,

they have lesser communication. The reduced time a client has to

remain online comes at the cost of server-to-client communication,

which is absent in [20]. This we note is a small price paid. Thus,

we note that our realization of the anonymous broadcast system

not only provides improved efficiency but also offers censorship

resistance and allows attaining the improved security of GOD.

𝑁
Anonymous

broadcast

Online Total

Time (s) Comm. (MB) Time (s) Comm. (MB)

10
3

Ours 0.01 0.36 0.09 0.62

[20] 0.20 0.76 1.11 1.23

10
4

Ours 0.06 3.66 0.69 5.97

[20] 1.88 7.63 10.19 12.34

10
5

Ours 0.61 36.62 6.73 59.53

[20] 20.59 76.29 105.88 123.59

10
6

Ours 8.64 366.21 107.52 595.12

[20] 248.99 762.94 1082.53 1235.96

Table 5: Comparison of online run time and communication of
servers for varying number of clients and message size of 32 bytes.

6.3 Secure graph computation
We benchmark the application of BFS as described in §D via the

GraphSC paradigm of [6]. We rely on the robust MPC framework

Message

Size

Anonymous

broadcast

Online Total

Time (s) Comm. (MB) Time (s) Comm. (MB)

32B

Ours 0.64 36.62 6.75 59.53

[20] 20.59 76.29 104.55 123.59

160B

Ours 1.40 183.12 11.47 279.25

[20] 49.97 247.96 135.96 395.51

1KB

Ours 6.97 1145.14 66.10 1721.21

[20] 269.26 1373.29 553.28 2224.16

Table 6: Comparison of online run time and communication of
servers for varying message size and clients of 𝑁 = 10

5.

Message

Size

Anonymous

broadcast

Client

time (ms)

Client-server

Communication

(KB)

Server-client

Communication

(KB)

32B

Ours 0.13 0.09 0.47

[20] 2.34 0.16 -

160B

Ours 0.12 0.47 1.22

[20] 6.05 0.41 -

1KB

Ours 1.74 3.00 6.97

[20] 30.55 2.06 -

Table 7: Comparison of client-side and server-side complexity for
input sharing by one client. %vspace-10mm

of SWIFT [29] wherever needed. To overcome the linear depen-

dence on the size of the input graph, we cast our secure evalu-

ation of BFS in the multiprocessor setting as described in [43].

This allows us to obtain a solution which has a round complex-

ity of O
(
|V |+ |E |

𝑃
+ log(|V| + |E|)

)
, where 𝑃 is the number of pro-

cessors, using the parallel variants of Scatter and Gather primi-

tives as described in [43]. The formal details of the Scatter and
Gather primitives required for the specific case of BFS is described

in §D. Since GraphSC paradigm requires the composition of shuffles

(Composed-Shuffles), we implement BFS using Ruffle-2. The im-

provements that Ruffle-2 brings over the shuffle of [6] has already

been established in Table 4. We now compare our implementation

of BFS that uses Ruffle-2with the BFS implementation of [6] and we

report it in Table 8. We see improvements up to 11.5× in the online

run time in comparison to [6], while also outperforming in terms of

the total run time. Note that these improvements were observed in

the 32-processor setting. Since the number of processors affects the

run time, we estimate the cost for varying number of processors,

and the same appears in Fig. 6.

7 CONCLUSION
We design secure shuffle protocols which not only provide a fast

online phase but also improve on the overall run time when consid-

ering two or more sequential shuffle invocations. We showcase the

significant improvements that arise when using our secure shuffle

protocols in the application of anonymous broadcast and secure

BFS computation via GraphSC paradigm, and thereby provide a

solution that improves over the respective state-of-the-art works.

35

Proceedings on Privacy Enhancing Technologies 2023(3) Shriram et al.

message passing

rounds

Protocol

Online Total

Time (min) Comm. (MB) Time (min) Comm. (MB)

1
Ours 8.50 24.32 73.66 1394.17

[6] 26.81 79.25 98.88 1394.17

2
Ours 8.70 31.65 93.33 2627.86

[6] 50.60 141.50 126.81 2627.86

3
Ours 8.78 38.97 105.37 3861.56

[6] 73.37 203.77 172.01 3861.56

4
Ours 8.91 46.30 115.94 5095.25

[6] 93.51 266.03 194.38 5095.25

5
Ours 8.98 53.62 135.36 6328.95

[6] 103.64 328.28 230.39 6328.95

Table 8: Comparison of BFS using our shuffle and the shuffle of [6]
for a graph of size 104 (= |L |) in 32 processors setting.

1 4 8 16 32

500

600

700

800

900

1,000

Number of processors

T
i
m
e
(
s
)

Online

1 4 8 16 32

100

200

300

400

500

Number of processors

T
i
m
e
(
m
i
n
)

Preprocessing

Figure 6: Online(left) and preprocessing(right) time of BFS on a
graph of size 104, when varying the number of processors for 1 mes-
sage passing round.

With secure shuffle being an integral part of various other applica-

tions, it would be interesting to see how our shuffle protocols can

be used to bring about improvements therein. Since applications

may demand a varying number of parties, going ahead, we believe

it is an important question to design secure shuffle protocols for

the arbitrary 𝑛-party setting. A naive extension of our shuffle pro-

tocols to the 𝑛-party setting would result exponential blow-up in

the number of permutations held at every party. This would in turn

affect the communication and round complexity adversely. Hence,

the challenge would be to circumvent the above issues and design

efficient solutions for 𝑛-party setting.

ACKNOWLEDGMENTS
Arpita Patra, Varsha Bhat Kukkala, Nishat Koti and Bhavish Raj

Gopal would like to acknowledge financial support from National

Security Council, India. The authors also acknowledge the support

from Google Cloud for benchmarking.

REFERENCES
[1] Masayuki Abe. 1998. Universally Verifiable Mix-net with Verification Work

Independent of the Number of Mix-servers. In EUROCRYPT.
[2] Ittai Abraham, Benny Pinkas, and Avishay Yanai. 2020. Blinder–Scalable, Robust

Anonymous Committed Broadcast. In ACM CCS.
[3] Ben Adida and Douglas Wikström. 2007. How to shuffle in public. In TCC.
[4] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias.

2017. MCMix: Anonymous Messaging via Secure Multiparty Computation. In

USENIX Security.
[5] Bar Alon, Eran Omri, and Anat Paskin-Cherniavsky. 2020. MPC with Friends

and Foes. In CRYPTO.

[6] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin,

and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. In ACM CCS.
[7] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico,

and Elaine Shi. 2020. Optorama: Optimal oblivious ram. In ASIACRYPT.
[8] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-Knowledge Argument for

Correctness of a Shuffle. In EUROCRYPT.
[9] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. 2019. Practical Fully Secure

Three-Party Computation via Sublinear Distributed Zero-Knowledge Proofs. In

ACM CCS.
[10] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. 2020. FLASH:

Fast and Robust Framework for Privacy-preserving Machine Learning. PETS
(2020).

[11] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. 2018. Fast Secure

Computation for Small Population over the Internet. In ACM CCS.
[12] T-H Hubert Chan, Jonathan Katz, Kartik Nayak, Antigoni Polychroniadou, and

Elaine Shi. 2018. More is less: Perfectly secure oblivious algorithms in the multi-

server setting. In ASIACRYPT.
[13] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. 2020. Secret-shared shuffle.

In ASIACRYPT.
[14] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. AS-

TRA: High Throughput 3PC over Rings with Application to Secure Prediction.

In ACM CCSW@CCS.
[15] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2020. Trident: Efficient 4PC

Framework for Privacy Preserving Machine Learning. In NDSS.
[16] David Chaum. 1988. The dining cryptographers problem: Unconditional sender

and recipient untraceability. Journal of Cryptology (1988).

[17] David L. Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Communications of ACM (1981).

[18] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte: An

anonymous messaging system handling millions of users. In IEEE SP.
[19] Anders Dalskov, Daniel Escudero, andMarcel Keller. 2020. Fantastic Four: Honest-

Majority Four-Party Secure Computation With Malicious Security. In USENIX
Security.

[20] Saba Eskandarian and Dan Boneh. 2022. Clarion: Anonymous Communication

from Multiparty Shuffling Protocols. In NDSS.
[21] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. 2021.

Express: Lowering the cost of metadata-hiding communication with crypto-

graphic privacy. In USENIX Security.
[22] Philippe Golle and Ari Juels. 2004. Parallel Mixing. In ACM CCS.
[23] Michael T. Goodrich andMichael Mitzenmacher. 2011. Privacy-Preserving Access

of Outsourced Data via Oblivious RAM Simulation. In ICALP.
[24] Thomas Haines, Rajeev Goré, and Bhavesh Sharma. 2021. Did you mix me?

formally verifying verifiable mix nets in electronic voting. In IEEE SP.
[25] Koki Hamada, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. 2014. Oblivi-

ous radix sort: An efficient sorting algorithm for practical secure multi-party

computation. Cryptology ePrint Archive (2014).
[26] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.

2012. Practically Efficient Multi-party Sorting Protocols from Comparison Sort

Algorithms. In ICISC.
[27] Markus Jakobsson, Ari Juels, and Ronald L Rivest. 2002. Making mix nets robust

for electronic voting by randomized partial checking. In USENIX Security.
[28] Marcel Keller and Peter Scholl. 2014. Efficient, Oblivious Data Structures for

MPC. In ASIACRYPT.
[29] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-

fast and Robust Privacy-Preserving Machine Learning. In USENIX Security.
[30] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2022. Tetrad: Actively

Secure 4PC for Secure Training and Inference. In NDSS.
[31] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. 2016.

Atom: Scalable Anonymity Resistant to Traffic Analysis. In SOSP.
[32] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016. Riffle: An

Efficient Communication System With Strong Anonymity. PoPETs (2016).
[33] Albert Kwon, David Lu, and Srinivas Devadas. 2020. XRD: Scalable Messaging

System with Cryptographic Privacy. In USENIX NSDI.
[34] Peeter Laud. 2021. Linear-Time Oblivious Permutations for SPDZ. In CANS.
[35] Sven Laur, Jan Willemson, and Bingsheng Zhang. 2011. Round-efficient oblivious

database manipulation. In ISC.
[36] Yehuda Lindell. 2017. How to Simulate It - A Tutorial on the Simulation Proof

Technique. In Tutorials on the Foundations of Cryptography.
[37] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket

Kate, and Andrew Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical

Asynchronous MPC and Its Application to Anonymous Communication. In ACM
CCS.

[38] Dhaneshwar Mardi, Surbhi Tanwar, and Jaydeep Howlader. 2021. Multiparty

protocol that usually shuffles. Security and Privacy (2021).

[39] Payman Mohassel and Peter Rindal. 2018. ABY
3
: A Mixed Protocol Framework

for Machine Learning. In ACM CCS.

36

Ruffle Proceedings on Privacy Enhancing Technologies 2023(3)

[40] Payman Mohassel, Mike Rosulek, and Ye Zhang. 2015. Fast and Secure Three-

party Computation: The Garbled Circuit Approach. In ACM CCS.
[41] Ben Morris. 2008. The mixing time of the Thorp shuffle. SIAM J. Comput. (2008).
[42] Mahnush Movahedi, Jared Saia, and Mahdi Zamani. 2015. Secure Multi-Party

Shuffling. In SIROCCO.
[43] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and

Elaine Shi. 2015. GraphSC: Parallel secure computation made easy. In IEEE S&P.
[44] C Andrew Neff. 2001. A verifiable secret shuffle and its application to e-voting.

In ACM CCS.
[45] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. 2022. Spectrum:

High-bandwidth Anonymous Broadcast. In USENIX NSDI.
[46] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0:

Improved Mixed-Protocol Secure Two-Party Computation. In USENIX Security.
[47] Arpita Patra and Ajith Suresh. 2020. BLAZE: Blazing Fast Privacy-Preserving

Machine Learning. In NDSS.
[48] Jean-François Raymond. 2001. Traffic analysis: Protocols, attacks, design issues,

and open problems. In Designing privacy enhancing technologies.
[49] Fatemeh Shirazi, Elena Andreeva, Markulf Kohlweiss, and Claudia Díaz. 2017.

Multiparty Routing: Secure Routing for Mixnets. ArXiv abs/1708.03387 (2017).

[50] Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar, Michael

Backes, and Claudia Diaz. 2018. A survey on routing in anonymous communica-

tion protocols. Comput. Surveys (2018).
[51] Ajith Suresh. 2021. MPCLeague: Robust MPC Platform for Privacy-Preserving

Machine Learning. arXiv preprint arXiv:2112.13338 (2021).
[52] Douglas Wikström. 2004. A Universally Composable Mix-Net. In TCC.

A PRELIMINARIES
Shared key setup. Let 𝐹 : {0, 1}^ × {0, 1}^ → 𝑋 be a pseudo-

random function (PRF), with 𝑋 = Z
2
ℓ . To enable parties to sample

common random values non-interactively, the following keys (for

the PRF 𝐹) are established between the parties: each pair of parties

𝑃𝑖 , 𝑃 𝑗 ∈ P know a common 𝑘𝑖 𝑗 , and all parties in P know 𝑘P .
𝑃𝑖 , 𝑃 𝑗 can now sample a common value 𝑟 ∈ Z

2
ℓ , non-interactively,

by computing 𝐹𝑘𝑖 𝑗 (𝑖𝑑𝑖 𝑗). Here, 𝑖𝑑𝑖 𝑗 denotes a counter maintained

by 𝑃𝑖 , 𝑃 𝑗 , which is updated after every PRF invocation. The ideal

functionality for robustly establishing these common keys among

parties, as described in [29], appears in Fig. 7.

Fsetup interacts with the parties in P and the adversary S. Fsetup picks
random keys 𝑘𝑖 𝑗 for 𝑖, 𝑗 ∈ {0, 1, 2}, 𝑖 < 𝑗 , and 𝑘P . Let y𝑥 denote the

keys corresponding to party 𝑃𝑥 . Then

– y𝑥 = (𝑘01, 𝑘02 and 𝑘P) when 𝑃𝑥 = 𝑃0.

– y𝑥 = (𝑘01, 𝑘12 and 𝑘P) when 𝑃𝑥 = 𝑃1.

– y𝑥 = (𝑘02, 𝑘12 and 𝑘P) when 𝑃𝑥 = 𝑃2.

Output: Send (Output, y𝑥) to every 𝑃𝑥 ∈ P.

Functionality Fsetup

Figure 7: Ideal functionality for shared-key setup

Collision resistant hash function. Let H : K × L → Y be a

hash function family. The hash function H is said to be collision

resistant if, for all probabilistic polynomial-time adversaries A,

given the description of H𝑘 for a random 𝑘 ∈ K , there exists a

negligible function negl(·) such that Pr[(𝑥1, 𝑥2) ← A(𝑘) : (𝑥1 ≠

𝑥2) ∧ H𝑘 (𝑥1) = H𝑘 (𝑥2)] ≤ negl(^), where 𝑥1, 𝑥2 ∈ L.

Commitment scheme. Let Com(𝑥) denote the commitment of a

value 𝑥 . The commitment schemeCom(𝑥) possesses two properties;
hiding and binding. The former ensures privacy of the value 𝑥 given

its commitment Com(𝑥), while the latter prevents a corrupt party
from opening the commitment to a different value 𝑥 ′ ≠ 𝑥 . Note

that providing an incorrect opening for a commitment results in

outputting a ⊥. We instantiate a commitment scheme (as described

in [40]) is via a hash function H(·) given below, whose security can

be proved in the random-oracle model– the commitment is defined

as Com(𝑥 ; 𝑟) = H(𝑥 | |𝑟), and its opening is defined as (𝑥 | |𝑟).

Joint message passing. The robust protocol for Πjmp appears in

Fig. 8. We refer the reader to [19] for further details.

We note that at any point during the run of the protocol if invoca-

tion of Πjmp results in identifying a TTP, parties do not execute the
rest of the protocol steps, and the remainder computation is carried

out by the TTP who guarantees the delivery of the correct function

output to all parties. Elaborately, on identifying a TTP, all parties
send their inputs on clear to the TTP, who evaluates the necessary

function on these clear inputs. It then sends the computed output

to all the parties. In this way, reliance on Πjmp to send protocol

messages ensures that if any malicious party misbehaves to prevent

the parties from obtaining the output, a TTP is identified and the

output is now obtained via the TTP. We remark that most protocols

in the 3-party setting that guarantee output delivery follow the

TTP-based approach [9, 11, 29].

Send Phase: 𝑃𝑖 sends msg𝑖 = v to 𝑃𝑘 .
Verify Phase: 𝑃 𝑗 sends msg𝑗 = H(v) to 𝑃𝑘 who checks if the hash is

consistent with the value sent by 𝑃𝑖 . If the values are not consistent,

parties proceed as follows to identify a TTP.

– 𝑃𝑘 broadcasts (𝐴𝑐𝑐𝑢𝑠𝑒, 𝑃𝑖 , 𝑃 𝑗 ,msg𝑖 ,msg𝑗)
• If H(msg𝑖) = msg𝑗 parties set TTP = 𝑃𝑖

• If msg𝑖 is different from the value sent by 𝑃𝑖 then 𝑃𝑖 broadcasts

(𝐴𝑐𝑐𝑢𝑠𝑒, 𝑃𝑘) and parties set TTP = 𝑃 𝑗 .

• Similarly if msg𝑗 is different from the value sent by 𝑃 𝑗 then 𝑃 𝑗

broadcasts (𝐴𝑐𝑐𝑢𝑠𝑒, 𝑃𝑘) and parties set TTP = 𝑃𝑖 .

• If both parties 𝑃𝑖 and 𝑃 𝑗 broadcasts (𝐴𝑐𝑐𝑢𝑠𝑒, 𝑃𝑘) and parties set

TTP = 𝑃𝑖 .

• If none of the parties 𝑃𝑖 or 𝑃 𝑗 accuse then parties set TTP = 𝑃𝑘 .

Protocol Πjmp
(
v, 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘

)

Figure 8: Joint Message Passing

B SHUFFLE PROTOCOL OF [6]
The shuffle protocol of [6] requires three invocations of Shuffle-Pair,
each of which is followed by a Set-Equality protocol to verify the

correctness of Shuffle-Pair. In the following, we first provide the

Shuffle-Pair protocol followed by the Set-Equality protocol.

Shuffle-Pair. Let table T be [·]-shared. Shuffle-Pair enables par-
ties to generate [T′] where T′ = 𝜋𝑖 𝑗 (T) and 𝜋𝑖 𝑗 is a random per-

mutation held by 𝑃𝑖 , 𝑃 𝑗 ∈ P. We describe the protocol with respect

to 𝑃0, 𝑃1 who hold the permutation 𝜋01 in Fig. 9. The protocol for

the other pair of parties can be worked out analogously.

Set-Equality. The input for the Set-Equality protocol is a pair

of tables (T, T′), each comprising of 𝑛 rows and an𝑚-bit string in

each row. Thus, the table comprises 𝑛 rows and𝑚 columns. Here,

T′ is obtained by randomly shuffling T. The protocol returns as

output a 1, if the two tables are different and a 0 otherwise. The

protocol chooses random subsets of rows and columns, and verifies

that the bits in the intersection of the chosen rows and columns

are the same for both the underlying tables. This verification is

performed ^ times to ensure a low probability of cheating. In order

37

Proceedings on Privacy Enhancing Technologies 2023(3) Shriram et al.

to choose the subset of rows randomly, each row of T is extended

by ^ random and secret bits before shuffle. Consequently, after the

shuffle, every row in T′ has the same ^−sized suffix which it had

in T. The rows for the ℓth test is picked based on the bit in the

ℓth column of the ^-sized extension, with the row being chosen if

the corresponding bit is a 1. Let 𝑅ℓ be the 𝑛 bit vector that denotes

this selection of rows (i.e.,𝑚 + ℓth column of the table). Similarly,

let 𝐶ℓ be the𝑚
′ =𝑚 + ^ bit public vector that denotes the choice

of columns picked for the ℓth test. The verification test compares

the XOR of the values in the intersection of the chosen rows and

columns in T and T′ to check for the correctness of the shuffle. This

is captured by the operations performed as described in Eq. (3),

where𝐶 𝑗,ℓ denotes the 𝑗 th component of the vector𝐶ℓ . The output

of the check is a bit 𝑉ℓ such that if the tables are different, some

𝑉ℓ , for ℓ ∈ {1, . . . , ^}, is non-zero with high probability. To detect if

any 𝑉ℓ is non-zero, a flag is computed which is the OR of all these

𝑉ℓ ’s, followed by reconstructing flag. A non-zero flag indicates a
misbehaviour in the Shuffle-Pair instance for which Set-Equality
is performed.

[𝑉ℓ] =
𝑛∑︁
𝑖=1

[
T′𝑖,𝑚+ℓ

]
·
𝑚′∑︁
𝑗=1

𝐶 𝑗,ℓ ·
[
T′𝑖,𝑗

]
−

𝑛∑︁
𝑖=1

[
T𝑖,𝑚+ℓ

]
·
𝑚′∑︁
𝑗=1

𝐶 𝑗,ℓ ·
[
T𝑖,𝑗

]
(3)

We note that performing the steps of Set-Equality by relying on

a robust MPC yields a robust Set-Equality protocol, as done in the

work of [6].

Preprocessing:

1. 𝑃0, 𝑃2 randomly sample [T′]
02
∈ Z𝑁

2
ℓ , and 𝑃1, 𝑃2 randomly sample

[T′]
12
∈ Z𝑁

2
ℓ , non-interactively using the common keys established via

Fsetup.
Online:

1. 𝑃0 computes 𝜌0 = 𝜋01 ([T]02) ⊕ [T′]02 and sends it to 𝑃1. Similarly,

𝑃1 computes 𝜌1 = 𝜋01 ([T]12) ⊕ [T′]12 and sends it to 𝑃0.

2. 𝑃0 and 𝑃1 compute [T′]
01

= 𝜋01 ([T]01) ⊕ 𝜌0 ⊕ 𝜌1.

Protocol Shuffle-Pair ([T] , 𝑃0, 𝑃1, 𝜋01)

Figure 9: Shuffle-Pair [6, 35]

Regarding the security of the shuffle protocol of [6]. As per the
discussion above, observe that their protocol correctly determines

the output shares of the shuffled table for each party, in case no

misbehaviour occurs during any of the three Shuffle-Pairs. How-
ever, since Set-Equality is performed via robust MPC, it guarantees

that any malicious act in the corresponding Shuffle-Pair is detected
since some 𝑉ℓ , for ℓ ∈ {1, . . . , ^}, will be non-zero with high prob-

ability. Such a misbehaviour in the Shuffle-Pair is indicated by a

flag bit being set to a 1. In such an event, observe that parties will

not possess the correct output shares and the protocol cannot pro-

ceed further. Thus, the protocol only provides security with abort

(considering the robust ideal functionality of shuffle, defined in Fig.

1). Moreover, observe that a malicious party can also misbehave

such that it learns the output shares but deprives the honest parties

of the correct shares. This is possible if a malicious party aborts

in the last Shuffle-Pair invocation. Elaborately, consider the last
Shuffle-Pair among the three invocations used for getting a random

shuffle. Without loss of generality, the protocol proceeds exactly

as given in Fig. 9 with 𝑃0 and 𝑃1 being the communicating parties.

In case, 𝑃1 is corrupt, it may receive 𝜌0 from 𝑃0, obtain the output

shares of the shuffled table, and then abort. Since the honest party

𝑃0 does not receive 𝜌1 from 𝑃1, it does not learn its output shares.

Hence, we believe [6]’s protocol gives only security with abort.

Complexity of shuffle protocol of [6]. Observe that the protocol
of [6] requires three invocations of Shuffle-Pair, each of which is

followed by a Set-Equality protocol that verifies the correctness

of the semi-honest Shuffle-Pair. While Shuffle-Pair requires only
one round of communication, the Set-Equality protocol requires

2 + log
2
^ rounds

14
, where ^ is the security parameter. Thus, the

overall round complexity is 3 + 2 + log
2
^. With respect to the

communication complexity, it requires communicating 6𝑁ℓ bits

for the three Shuffle-Pair instances, and additional communication

for evaluating the Set-Equality protocol that involves computing

2𝑁^ Boolean multiplications, computing OR of ^ bits and a robust

reconstruction.

C ANONYMOUS BROADCAST
Regarding the threat model. An anonymous broadcast system

with a powerful adversary corrupting arbitrary number of clients,

faces inherent issues. In any set of messages submitted to the clients,

a significant subset will belong to the adversary. As a result, the hon-

est clients’ messages can always be linked to their sender with some

probability. This probability depends on the size of the anonymity

set for a message, which is the number of honest users who sub-

mit their messages in the same round. In the worst case instance,

if an adversary is powerful enough to corrupt (𝑁 − 1) clients in
a system, then we can no longer protect the honest client from

deanonymization. For our system, we assume that the anonymity

set is large enough in each instance of the protocol and that com-

plete deanonymization attacks cannot happen.

Attaining the desirable properties. Confidentiality: Observe that
this property is attained since the messages to be shuffled as well as

the permutation remain hidden from the servers and clients owing

to the secure shuffle protocol.

Censorship resistance: The only way a malicious server can cheat to

discard an honest client’s messagem is by broadcasting an incorrect

𝛽m during the input consistency check. Since at most one server

among the three is malicious, there will always be agreement among

the honest servers with respect to the correct 𝛽m. Thus, our protocol

does not allow discarding an honest client’s messages, thereby

attaining censorship resistance.

Integrity and robustness against malicious adversary: Observe that
due to the robust input sharing, shuffle, and output reconstruction

protocols, our system is robust against any malicious behaviour,

and guarantees the integrity of honest clients’ messages.

Comparison of our anonymous broadcast system with Clarion [20].
We look at each of the steps in an anonymous broadcast system

and draw out a comparison in terms of the communication cost,

round complexity and the level of security provided.

14
One round is required for performing multiplications as per (3), followed by log

2
^

rounds for computing OR of ^ bits, followed by one round of reconstruction.

38

Ruffle Proceedings on Privacy Enhancing Technologies 2023(3)

System guarantees:As described earlier, Clarion provides security
with abort while our protocol allows attaining the strongest security

notion of GOD. Clarion provides no way of distinguishing between

a malicious act by a server and client, and the system rejects the

request from a client whenever the verification for input consistency

fails. Specifically, since Clarion only provides security with abort, it

allows a malicious server to make the input consistency check (with

respect to an honest client’s input) fail by aborting the computation.

Thus, an honest client may be dropped due to misbehaviour by a

malicious server, and hence Clarion does not guarantee censorship

resistance. On the other hand, as described earlier, our scheme

guarantees the same.

Input sharing: Our scheme requires 3 commitments be communi-

cated among the servers in the preprocessing. In the online phase,

our scheme requires 9 commitments be communicated from servers

to the client. Additionally, each server sends the opening for two

commitments to the client. Our next step requires the client to com-

municate an ℓ-bit string 𝛽m to each server. Finally, to verify that

client has sent consistent 𝛽m, each server engages in a broadcast of

a message of length ℓ bits15. Clarion’s preprocessing involves PRG

(pseudo-random generator) invocations, encryption of message,

and tag computation at the client side. At the servers, one of the

servers is responsible for transferring 𝑁 (ℓ + 1) Beaver’s triples to
the other two shuffling parties. Each message of length ℓ is divided

into 𝐵 blocks where 𝐵 = ℓ
|𝐵 | . For Clarion, |𝐵 | = 128 bits. To send

a message in the online, a client communicates (𝐵 + 3) blocks to
each of the shuffling servers. Moreover, since a client can launch

an in-protocol denial-of-service attack by sending incorrect MACs

(message authentication code), the servers proceed to verify cor-

rectness of client’s message by performing (ℓ + 1) multiplications

using Beaver’s.

Shuffle: The preprocessing phase of our shuffle protocol requires

one invocation of the 3PC shuffle protocol of [6] and requires 6𝑁ℓ

bits of communication for the Shuffle-Pairs. Additionally, it requires
computation of 2𝑁^ Booleanmultiplications, OR of^ bits (̂ denotes

the security parameter), and one robust reconstruction. The online

phase of our shuffle requires communication 3𝑁ℓ bits and at the end

of 2 rounds guarantees that misbehaviour, if any, will be detected by

a party. If a misbehaviour is detected, it requires 2 additional rounds

to broadcast complaints that enable determining a TTP, via which
GOD is attained. The 3-server honest-majority shuffle protocol of

Clarion is also cast in the preprocessing paradigm. Preprocessing

requires communication of 𝑁 (2𝐵 +3) blocks along with 𝑁 Beaver’s

triples to each of the 2 shuffling servers. The online phase occurs

in 2 rounds, and 2𝑁 (2𝐵 + 3) blocks of communication. Clarion

additionally needs a verification phase to ensure that the servers

haven’t misbehaved during shuffling. This includes verifying the

MACs associated with the client messages. Hence, 4 additional

rounds are performed as no proof of correctness of the shuffle is

generated. These 4 rounds involve revealing the ciphertext shares

𝑁 multiplications, revealing hashes for the shares of difference

15
These two phases of preprocessing and online translate to a real-world scenario as

follows. Consider an anonymous blogging site. The user of the system, on creating a

pseudonym, receives a set of pre-computed randomness, which makes up the prepro-

cessing phase, and facilitate generation of a certain number of articles in the online

phase which will be posted anonymously.

between computed and actual tag and then giving the actual shares

to check that the difference turns out to be 0.

Output reconstruction: In our protocol, output reconstruction

requires a single round where openings with respect to the commit-

ments generated on the missing [·]-share of 𝛼 are communicated.

On the other hand, Clarion takes 2 rounds of communication and

guarantees only security with abort.

D GRAPHSC PARADIGM AND BREADTH
FIRST SEARCH

We describe the GraphSC paradigm proposed in [43] and improved

in [6], which provides a highly efficient and scalable solution for

securely evaluating graph algorithms. The paradigm relies on ex-

pressing graph algorithms as message-passing algorithms where

each node updates its state by repeatedly sending/receiving mes-

sages on its edges over multiple rounds. The sending and receiving

of messages are realized via the primitive operations of Scatter
and Gather. The paradigm provides secure realizations of these

primitives such that a message-passing algorithm expressed as a

composition of these primitives can be evaluated securely.

The GraphSC paradigm takes as input a directed graph G(V, E)
such that each node u ∈ V is represented as a tuple (u, u, d) and an

edge (u, v) ∈ E as (u, v, d). Note that for a tuple corresponding to an
edge, the first entry denotes the source node, and the second entry

denotes the destination node. Both these entries are the same for a

tuple representing a node. Further, d is a binary string that encodes

the data/state associated with a tuple (node/edge). Thus, we let

L denote the input G comprising the tuples described above. The

Gather primitive requires L to be sorted based on the destination

node v such that all tuples corresponding to incoming edges at v
appear before the tuple representing node v. Thus a linear scan of

L allows a node to gather information from its incoming edges.

Analogously, Scatter requires L to be sorted based on source node

u, such that tuples corresponding to outgoing edges from u appear

after the tuple for node u. This facilitates each node to scatter

information on outgoing edges via a linear scan. Thus, the paradigm

requires securely sorting L appropriately before each invocation

of a Scatter and Gather primitive. In this way, two invocations of a

secure sort are required for each round of message passing.

[6] improves the performance of [43] by relying on a secure

shuffle primitive instead of repeatedly performing a secure sort.

Specifically, [6] introduces the following sequence of operations to

securely evaluate amessage-passing graph algorithm. As a one-time

initialization, the inputL is securely shuffled using a random secret

permutation 𝜋𝐴 to obtain L𝐴 = 𝜋𝐴 (L). Another invocation of se-

cure shuffle with permutation 𝜋𝐵 translates L𝐴 to L𝐵 = 𝜋𝐵 (L𝐴).
Note that the translation must be such that the parties are able

to generate new random shares of L𝐵 from L𝐴 , and vice versa,

while ensuring both 𝜋𝐴, 𝜋𝐵 remain hidden. Having fixed on the

random permutations 𝜋𝐴 and 𝜋𝐵 , each time a Scatter is required,
the parties consider the shares of L𝐴 and sort its entries based on

the source node, as mentioned earlier. Rather than relying on a

secure sort for the same, the parties perform a partially-insecure

sort wherein the entries in L𝐴 remain secret shared, but the output

of the comparisons made during the sort are revealed to the parties.

In this way, the mapping of the entries in L𝐴 to the source-sorted
39

Proceedings on Privacy Enhancing Technologies 2023(3) Shriram et al.

list is made public to the parties. In an alternative view, performing

a sort to obtain a source-sorted list is equivalent to picking a specific
permutation 𝜋𝑠𝑠 that defines the sorted order. Hence, performing

a partially insecure sort translates to performing a secure sort fol-

lowed by revealing 𝜋𝑠𝑠 in public. Note that this does not leak any

information since the randomly shuffled input does not permit one

to determine any associations between entries in the original graph

G and the sorted output. Additionally, the above sort needs to be

performed only once to determine the mapping (𝜋𝑠𝑠). Subsequent

generation of source-sorted list fromL𝐴 can be performed locally by

relying on the publicly known 𝜋𝑠𝑠 . Similarly, forGather, the parties
use the shares of L𝐵 to obtain the mapping 𝜋𝑑𝑠 of its entries to the

destination-sorted list using a partially-insecure sort, once. Recall
that the translation from source-sorted list to destination-sorted list,
and vice-versa, requires that the permutations 𝜋𝐴, 𝜋𝐵 used for gen-

erating L𝐴,L𝐵 , respectively, remain the same. Hence, the secure

shuffle protocol should facilitate the reusing of the permutations as

well as their inverse. We remark that this property is guaranteed

by our shuffle protocol and hence is an apt fit for GraphSC based

applications. A pictorial representation of the various translations

described above with an example graph is provided later in §D.1 for

clarity. To give a complete picture of securely evaluating message

passing graph algorithms, we describe the representative case of

breadth first search (BFS) algorithm. We showcase how this cap-

tures the need for Composed-Shuffles, and thereby use of Ruffle-2.

Breadth-first search. We consider a secure evaluation of the BFS

algorithm to determine all nodes that are within a given distance

𝑡 from a source node while ensuring the private graph remains

hidden. Additionally, we wish to determine the distance of such

nodes from the source node u. The input L is assumed to be such

that the data item du corresponding to the source node u is set as

0, while those of every other entry in L is set to a very high value

denoted∞. The data item dv corresponding to node v thus encodes
the distance of this node from the source node u. The parties use
L as defined above and proceed as follows.

One-time set up phase: Given that parties have J·K-shares of L,
they invoke Ruffle-2 to generate JL𝐴K where L𝐴 = 𝜋𝐴 (L). They
also generate JL𝐵K from JL𝐴K via Ruffle-2 where L𝐵 = 𝜋𝐵 (L𝐴).
Further, the parties generate the mapping from JL𝐴K to J·K-shares
in source-sorted list and JL𝐵K to J·K-shares in destination-sorted

list, as described earlier. This completes the necessary set-up.

Message-passing phase: To determine the nodes at a distance 𝑡

from a given source node, the parties evaluate the BFS protocol in 𝑡

rounds, with each round comprising the following operations.

1. Scatter: AssumingL𝐴 as the input, obtain the required source-

sorted list using the publicly known mapping. Perform a linear

scan of the source-sorted list wherein each node v sends out the
data dv + 1 on all of its outgoing edges. Using the publicly known

mapping from the source-sorted list to 𝜋𝐴 (L), obtain L𝐴 (which

now has updated data entries owing to Scatter).

2. Obtaining L𝐵 : Transform shares of updated L𝐴 into shares

of L𝐵 using the Ruffle-2 protocol with permutation 𝜋𝐵 .

3. Gather: Assuming L𝐵 as the input, obtain the destination-

sorted list using the publicly known mapping. Perform a linear

scan of the destination-sorted list wherein each node v gathers
the data entries among all of its incoming edges and updates its

data dv to the value minimum among them. Using the publicly

known mapping from the destination-sorted list to 𝜋𝐵 (L), obtain
L𝐵 (which now has updated data entries owing to Gather).

4. Obtaining L𝐴: Transform shares of updated L𝐵 into shares

of L𝐴 using the Ruffle-2 protocol with permutation 𝜋−1
𝐵

.

In this way, each round of message passing propagates distance

information through edges and allows nodes to update their dis-

tance from the source node as the minimum among the propagated

values. Thus, determining the target nodes and their corresponding

distances occurs in 𝑡 rounds. Since each round requires two invo-

cations of secure shuffle, the overall BFS computation requires 2𝑡

sequential invocations of Ruffle-2. The formal protocol for Scatter
and Gather are included for completeness in §D.2.

D.1 Pictorial example
The transformations involved in a GraphSC application are depicted

with the help of an example graph in Fig. 10. For this, we consider

a graph with 3 nodes (v1, v2, v3) and 2 edges (e12, e32). For the ease
of understanding, the entries in the input L are also named accord-

ingly. However, note that the parties in P are only aware of the size

of L and not its entries on clear. Same is the case with other lists

L𝐴 , L𝐵 where each of its entries is only known in secret shares

among parties in P. The arrows in red denote the invocation of

our secure shuffle protocol. On the other hand, the arrows in blue

depict the position of each element in the L𝐴 to its position in the

source-sorted list. In this way, the blue arrows collectively represent

the publicly known permutation that can be obtained by revealing

the result corresponding to each comparison made in the secure

sort protocol applied on the secret shared entries of L𝐴 . The same

applies to the blue arrows between L𝐵 and destination-sorted list.

D.2 Scatter-Gather primitives
We now describe the Scatter and Gather primitives for breadth

first search in the GraphSC paradigm. As described earlier, the

input to the algorithm is a directed graph where every node and

edge in the graph is encoded as a tuple. Let this graph be denoted

by G and the 𝑖𝑡ℎ tuple in the graph be denoted as G[𝑖]. Every
vertex tuple is encoded as (u, u, isVertex, buff, dist) and every edge

tuple is encoded as (u, v, isVertex, buff, dist) with u, v being the

source and destination vertices of an edge. Thus, the entries of

isVertex, buff, dist are the components of the data part of each tuple.

The isVertex value in a tuple indicates whether the tuple belongs

to a vertex and hence is set as 1 for a vertex tuple and 0 for an

edge tuple. The dist value holds the minimum distance of a vertex

tuple from a given source node. The buff value is used as a buffer

for communicating between vertices and edges. During Scatter,
the value (dist + 1) corresponding to each vertex is transferred

to the buff value of all it’s outgoing edges by performing a linear

scan of all the entries in G. During Gather, the minimum of all

the buff values among all the incoming edges to a vertex is used

to assign the minimum distance of that vertex. The steps required

to perform such a Scatter and Gather are provided formally in

Fig. 11. This provides the clear text algorithm for the primitives

and the secure variants can be easily obtained by using secure

operations for additions, comparison as well as secure realizations

of if − else conditions as done in [6, 43]. Further, we note that

40

Ruffle Proceedings on Privacy Enhancing Technologies 2023(3)

v1

v2 v3

e12

e32
Graph G

v1 v2 v3 e12 e32 v1: (v1, v1, d)
v2: (v2, v2, d)
v3: (v3, v3, d)
e12: (v1, v2, d)
e32: (v3, v2, d)

v2 v1 e32 e12 v3

SECURE
SHUFFLE ΠA

e12 v1 v3 e32 v2
SECURE

SHUFFLE ΠB

v1 e12 v2 v3 e32

SOURCE SORTED LIST

PUBLICLY KNOWN
MAPPING FROM LA TO
SOURCE SORTED LIST

v1 e12 e32 v2 v3

DESTINATION SORTED LIST

PUBLICLY KNOWN
MAPPING FROM LB TO
DESTINATION SORTED

LIST
INSECURE SORTINSECURE SORT

SECURE
SHUFFLE ΠB-1

Figure 10: Example for translations in GraphSC.

for simplicity, the input to both the primitives is denoted as G.
However, the assumption is that the graph G is source-sorted for

Scatter and is destination-sorted forGather. Further, the steps in Fig.

11 are provided for a single processor setting. They can be easily

translated to the multi-processor setting using the work of [43]

thereby providing a solution with number of rounds in the order of

|V |+ |E |
𝑃
+ log(|V| + |E|), where P is the number of processors used for

running the parallel algorithm. This is unlike the linear algorithm

which has a round complexity in the order of |V| + |E| as described
in Fig. 11.

Scatter(G)
val = 0

for 𝑖 = 1 to |V | + |E | do
if G[𝑖] .isVertex then

val = G[𝑖] .dist + 1

else

G[𝑖] .buff = val

Gather(G)
val =∞
for 𝑖 = 1 to |V | + |E | do
if G[i].isVertex then

if val < G[i].dist
G[i].dist = val

val =∞
else

val = min(val, G[i].buff)

Figure 11: Scatter and Gather for BFS

E BENCHMARK DETAILS
With respect to the application of anonymous broadcast, we observe

that our Python based implementation of [20] has an overhead

compared to the public implementation of [20] (GO-based). We

believe this is due to the use of Python based implementation.

For example, time taken to generate a random 16000 byte value

is 9.881 × 10
−5

seconds in Clarion’s GO-based implementation

whereas the same task takes 6.915 × 10−3 seconds in our Python-

based implementation, under the same system configuration.

We believe that similar trends apply to the GraphSC framework

of [6] as well. We could not get the exact values since [6] does

not provide public implementation of their work. Further, we note

that the higher cost reported here is also due to the fact that the

variant of BFS we consider here is different from the one consid-

ered in [6]. The latter considered the simplistic case of determining

all nodes reachable within 𝑡-rounds which only requires Boolean

operations. Making their protocol complaint with arithmetic opera-

tions, as required for our BFS implementation, introduces additional

overheads.

F SECURITY OF OUR PROTOCOLS
Lemma F.1. Whenever a TTP is identified, it is always honest.

Proof. Consider the instances in our shuffle protocol (Fig. 4)

where we proceed to identify a TTP. We will show that in each such

case, a malicious party is never identified as the TTP.

Preprocessing phase. During this phase, a TTP is identified when-

ever a Shuffle-Pair fails. Without loss of generality, let the first

failed Shuffle-Pair instance be with respect to 𝜋𝑖 𝑗 , where TTP = 𝑃𝑘 .

Since 𝑃𝑖 and 𝑃 𝑗 are involved in communication, failure occurs when

either of them sends an incorrect message. Hence, the malicious

party lies in {𝑃𝑖 , 𝑃 𝑗 } set. Thus, 𝑃𝑘 , which is identified as the TTP,
is honest as only one out of the three parties could be malicious.

Online phase. During the online phase, consider the first instance
where a receiver 𝑃𝑘 broadcasts (“accuse”, 𝑃𝑖 , 𝑃 𝑗 , 𝑐𝑖 , 𝑐 𝑗), where 𝑃𝑖 , 𝑃 𝑗
are the senders who send 𝑥, 𝑐 𝑗 , respectively, to 𝑃𝑘 , and 𝑐𝑖 = H(𝑥).
We consider all corruption scenarios and prove that the TTP identi-

fied in each such case is an honest party.

– 𝑃𝑖 is corrupt: In this case, when 𝑃𝑘 broadcasts (“accuse”, 𝑃𝑖 , 𝑃 𝑗 , 𝑐𝑖 , 𝑐 𝑗),
it is due to an incorrect message sent by 𝑃𝑖 to 𝑃𝑘 . Party 𝑃 𝑗 will

not broadcast (“accuse”, 𝑃𝑘), since 𝑃 𝑗 , 𝑃𝑘 are both honest and there

will not be a mismatch in their messages. Thus, the malicious 𝑃𝑖
will never be identified as a TTP. If 𝑃𝑖 broadcasts (“accuse”, 𝑃𝑘),
then TTP is set as 𝑃 𝑗 which is an honest party. Else, if 𝑃𝑖 does not

broadcast (“accuse”, 𝑃𝑘), then TTP is set as 𝑃𝑘 which is also an

honest party.

– 𝑃 𝑗 is corrupt: A similar argument follows for this case.

– 𝑃𝑘 is corrupt: In this case, since 𝑃𝑖 , 𝑃 𝑗 are honest, if 𝑃𝑘 broadcasts

(“accuse”, 𝑃𝑖 , 𝑃 𝑗 , 𝑐𝑖 , 𝑐 𝑗), then 𝑃𝑘 has wrongfully accused 𝑃𝑖 and 𝑃 𝑗 .

In the broadcast message, 𝑐𝑖 = 𝑐 𝑗 , then other parties know that 𝑃𝑘
is the malicious party and set TTP = 𝑃𝑖 . Else, if 𝑐𝑖 ≠ 𝑐 𝑗 , at least one

of 𝑃𝑖 or 𝑃 𝑗 will broadcast (“accuse”, 𝑃𝑘) if the value broadcast by
𝑃𝑘 is different from what they sent. Hence, TTP ∈ {𝑃𝑖 , 𝑃 𝑗 } will be
set as an honest party.

41

Proceedings on Privacy Enhancing Technologies 2023(3) Shriram et al.

□

Lemma F.2. The shuffle protocol, ΠRuffle (Fig. 4) securely realizes
the functionality FShuffle (Fig. 1) against a malicious adversary that
corrupts at most one party in P, in the Fsetup-hybrid model.

S𝑃0ΠRuffle
proceeds as follows.

Preprocessing:

(1) Using the keys commonly held with A (generated as part of Fsetup),
sample the common randomness.

(2) Simulate the steps of Shuffle-Pair pair using 𝜋02. Receive the cor-

responding message from A. If the received message is incorrect

(S𝑃0ΠRuffle
can verify the correctness of the received message since

it possesses all the randomness used by A to send this message as

S𝑃0ΠRuffle
emulates Fsetup), set flag02 = 1. Honestly simulate the steps

of Set-Equality protocol.

(3) Honestly simulate the steps of Shuffle-Pair using 𝜋12 followed by

simulating the steps of Set-Equality.
(4) Analogous to the case of Shuffle-Pair with 𝜋02, simulate the steps of

Shuffle-Pair pair using 𝜋01. If an incorrect message is received from

A, set flag
01

= 1.

(5) If flag
02

= 1, set TTP = 𝑃1. Else, if flag01 = 1, TTP = 𝑃2.

Online:

(1) Let

[
𝛼To

]
01
,
[
𝛼To

]
02

denote the partial shares of T𝑜 generated to-

wards A during preprocessing. Let 𝛽To ∈ Z𝑁
2
ℓ be sampled randomly.

Invoke the ideal functionality FShuffle with A’s J·K-shares of the
table–

[
𝛼To

]
01
,
[
𝛼To

]
02
, 𝛽To .

(2) Receive H(𝛿02) from A on behalf of 𝑃1. Set flag1 = 1 if the received

message is incorrect (S𝑃0ΠRuffle
can verify the correctness of the re-

ceived message since it possess all the randomness used by A to

send this message as S𝑃0ΠRuffle
emulates Fsetup).

(3) Receive 𝛿01 from A on behalf of 𝑃2.

(4) If flag
1
= 1, broadcast (“accuse”, 𝑃2, 𝑃0, 𝑐2, 𝑐0) , where 𝑐0 = H(𝛿02) as

received from A, and 𝑐2 = H(𝜋02 (𝛽T ⊕ R02)) is honestly computed

by S𝑃0ΠRuffle
.

– If A broadcasts (“accuse”, 𝑃1) , set TTP = 𝑃2.

– Else set TTP = 𝑃1.

(5) Else, if flag
1
= 0, proceed as follows. Set 𝛿12 = 𝛽To (as defined in step

1) and compute H(𝛿12) . Send 𝛿12,H(𝛿12) to A on behalf of honest

𝑃1, 𝑃2, respectively. Compute 𝑐1 = H(𝜋01 (𝜋02 (𝛽T ⊕ R02) ⊕ R01))
and compare it with 𝑐0 = H(𝛿01) where 𝛿01 was received from A. If

𝑐0 ≠ 𝑐1, set flag2 = 1.

(6) If flag
2
= 1, broadcast (“accuse”, 𝑃0, 𝑃1, 𝑐0, 𝑐1) .

– If A broadcasts (“accuse”, 𝑃2) , set TTP = 𝑃1.

– Else set TTP = 𝑃2.

(7) If flag
2
= 0, and if A broadcasts (“accuse”, 𝑃1, 𝑃2, 𝑐1, 𝑐2) , then

– If 𝑐1 = 𝑐2, set TTP = 𝑃1.

– Else, if only 𝑐1 is not the same as H(𝛿12) , where 𝛿12 was sent by
S𝑃0ΠRuffle

, broadcast (“accuse”, 𝑃0) on behalf of 𝑃1, and set TTP = 𝑃2.

Analogously for 𝑐2.

(8) If at any point during the simulation a TTP is identified, then send

the output shares JT𝑜K0 =

(
𝛽To ,

[
𝛼To

]
01
,
[
𝛼To

]
02

)
to A on behalf

of TTP.

Simulator S𝑃0ΠRuffle

Figure 12: Simulator S𝑃0ΠRuffle
for corrupt 𝑃0

Proof. Let A denote the real-world adversary and SΠRuffle de-

note the corresponding ideal-world adversary. At a high level,

SΠRuffle begins by first emulating Fsetup during which common keys

are established with A that are used to sample the common ran-

domness required throughout the protocol. Thus, SΠRuffle is aware

of all the randomness used by A using which it can extract the

input ofA (specifically, SΠRuffle knows [𝛼T] , 𝛽T held byA) as well

as verify the correctness of messages sent by A. Following this, it

simulates the steps of the shuffle protocol. The simulation steps for

a corrupt 𝑃0 are provided in Fig. 12, where the corresponding sim-

ulator is denoted as S𝑃0ΠRuffle
. Analogously the corruption of 𝑃1, 𝑃2

can also be simulated.

Observe that in the real-world, during the preprocessing phase,

A receives messages that are computed as part of Shuffle-Pair
and Set-Equality, where the messages are masked using some ran-

domness to hide the missing permutation as well as information

regarding the missing share at A. During the online phase, A
receives 𝛿12,H(𝛿12) where 𝛿12 is a randomized using the random

mask R12. In this way, observe that the messages received by A
in the real-world are random and uniform. In the ideal world too,

observe that A receives messages that are sampled randomly from

the uniform distribution. Moreover, S𝑃0ΠRuffle
can verify the correct-

ness of the messages sent by A, as described earlier. This allows

S𝑃0ΠRuffle
to also simulate all the accuse messages as done in the

real world. In this way, real-world and ideal-world executions are

indistinguishable. □

42

	Abstract
	1 Introduction
	1.1 Our contributions

	2 Related work
	3 Preliminaries
	4 3PC shuffle
	4.1 Ruffle

	5 Applications
	5.1 Anonymous broadcast
	5.2 Secure graph computation

	6 Benchmarks
	6.1 Shuffle
	6.2 Anonymous broadcast
	6.3 Secure graph computation

	7 Conclusion
	Acknowledgments
	References
	A Preliminaries
	B Shuffle protocol of graphscbenny
	C Anonymous broadcast
	D GraphSC paradigm and Breadth First Search
	D.1 Pictorial example
	D.2 Scatter-Gather primitives

	E Benchmark Details
	F Security of our protocols

