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ABSTRACT
In recent years, pre-trained language models (e.g., BERT and GPT)
have shown the superior capability of textual representation learn-
ing, benefiting from their large architectures and massive training
corpora. The industry has also quickly embraced language mod-
els to develop various downstream NLP applications. For example,
Google has already used BERT to improve its search system. The
utility of the language embeddings also brings about potential pri-
vacy risks. Prior works have revealed that an adversary can either
identify whether a keyword exists or gather a set of possible can-
didates for each word in a sentence embedding. However, these
attacks cannot recover coherent sentences which leak high-level
semantic information from the original text. To demonstrate that
the adversary can go beyond the word-level attack, we present
a novel decoder-based attack, which can reconstruct meaningful
text from private embeddings after being pre-trained on a public
dataset of the same domain. This attack is more challenging than
a word-level attack due to the complexity of sentence structures.
We comprehensively evaluate our attack in two domains and with
different settings to show its superiority over the baseline attacks.
Quantitative experimental results show that our attack can identify
up to 3.5X of the number of keywords identified by the baseline
attacks. Although our method reconstructs high-quality sentences
in many cases, it often produces lower-quality sentences as well.
We discuss these cases and the limitations of our method in detail.

KEYWORDS
Pre-trained Language Models, Inference Attack, Text Reconstruc-
tion

1 INTRODUCTION
Recent years have witnessed many breakthroughs in Natural Lan-
guage Processing (NLP) domain. After the release of Transformer
[58], which is the backbone of pre-trained language models, thou-
sands of language models have been released. So far, the Hugging
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Face API1 supports more than 40000 language models, the most
significant models of which are BERT [12], GPT [5, 42, 43], XLNet
[61], T5 [44], etc. More recently, transformers have also achieved
success in computer vision tasks [8, 31]. The modern language
models usually rely on very large architectures with millions of
parameters and pre-training on massive datasets. Unlike traditional
shallow/small neural networks, pre-trained language models are
highly generalized and can be employed as a feature extractor for
various downstream tasks. For example, BERT obtained state-of-
the-art results on eleven NLP tasks at the time of its release [12].

Pre-trained language models have attracted wide attention in
many industries [38, 54, 59]. For example, since neural machine
translation models are extremely data-hungry, an e-commerce com-
pany can rely on the pre-trained mBART [54] to build the multi-
lingual translation system for its customers. Furthermore, medi-
cal records are usually stored in relational databases and require
specific queries to retrieve information of interest. However, com-
pleting such queries quickly can be challenging even for medical
experts due to the barriers among subdomains of medicine. BERT
can efficiently extract a syntax tree from an electric medical record,
which can then be converted to SQL query directly [38]. Although
the pre-trained language models have the potentials to be adapted
to various downstream NLP applications, their privacy leakage
risks are concerning, e.g., Carlini et al. [6] showed that generative
language models (e.g., GPT-2) can memorize samples in the private
training set.

Furthermore, the sentence embeddings of pre-trained language
models can capture personal information, which may be inferred
by an adversary. Pan et al. [37] first proposed a keyword inference
attack against private embeddings. Specifically, they trained a bi-
nary classifier for each keyword to detect the keyword’s existence
in the embeddings. However, for this attack to be successful, the
adversary must know the distribution of keywords in the dataset
so that they can train the classifiers. In addition, the cost of training
binary classifiers increases linearly with the number of keywords.
More recently, Song et. al [52] proposed gradient-based embedding
inversion attack, which requires no knowledge of the target dataset.
Their attack consists of two steps: 1) first, the observed deep em-
beddings (e.g., BERT) are mapped to a lower space (input space)
by a learned mapping function, and 2) the adversary solves the
word distribution at each position of the sentence using gradient
1https://huggingface.co/models
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descent. However, this method can only recover a set of words
without word order, which plays a crucial role in the formation of
the sentence [20]. This attack remains at the word level and the
problem of reconstructing at the sentence level is still left open.
Our work. To further investigate if the adversary can go beyond
the previous attacks, we design a novel attack method with an ad-
versarial decoder, which takes in embeddings as input and attempts
to generate the original sentences. In practice, an organization, e.g.,
a hospital or an e-commerce company, first needs to convert its
private text datasets into embeddings via a pre-trained language
model to perform various downstream NLP tasks. A third-party ser-
vice provider with expertise in the downstream NLP tasks will then
have access to these embeddings. We aim to investigate whether
this third-party access to these embeddings can pose privacy threats
to the original private text dataset.

In our attack setting, the adversary (the third-party service
provider itself or another entity working with this third-party ser-
vice provider) leverages an adversarial decoder to reconstruct the
texts of the private embeddings and infer the sensitive information.
This adversarial decoder is trained by the adversary on a publicly
available dataset from the same domain as the private dataset and
the embeddings are produced by the same language model. Note
that, in our setting, the adversary does not need to know anything
about the target private dataset. The decoder learns the rules of
generating text on public datasets and transfers the rules to the
private dataset. Although previous work [37] reported that a reg-
ular RNN-based decoder cannot recover useful information from
text embeddings, we demonstrate through our experiments that
a transformer decoder can reconstruct high-quality sentences in
some cases.
Contributions. We first perform a keyword inference attack to
compare our decoder-based attack with previous attacks [37, 52].
In the original classifier-based attack [37], the adversary aims to
exploit sensitive keywords (e.g., disease) in the target dataset. How-
ever, unlike this work that constrains the number of keywords to
1010, we take into consideration hundreds of keywords existing in
the dataset of interest to simulate real-world scenarios. Next, we
propose a novel attack, namely, sentence inference attack. In this
attack, instead of focusing only on keywords, the adversary aims
to reconstruct the entire sentence. In the cases where the adversary
does not know the exact keywords in the dataset (this happens
when they do not have domain expertise), they can still infer the
meaning of the original text by the semantics of the reconstructed
text. The contributions of this paper are briefly summarized as
follows.

(1) We design a novel inference attack against sentence embed-
dings that reconstructs the original input text with minimal
adversarial knowledge.

(2) We show that a transformer decoder can accurately recon-
struct the text from its sentence embeddings in some cases.

(3) We extensively evaluate our decoder-based attack and also
compare it with existing inference attacks [37, 52]. The code-
base and datasets of this work will be released to enable
reproducibility2.

2https://github.com/KangGu96/Adv_decoder

(4) We also discuss the limitations of our method, including the
lower quality of reconstructions in many cases. Please refer
to Section 11.2 for details.

2 RELATEDWORK
2.1 Privacy Attacks against ML
Various privacy attacks are conducted against machine learning
applications [30, 46]. Among various forms of attacks, member-
ship inference attack [50, 56, 57] discloses the least information.
Shokri et al. [50] introduced the first membership inference attack
against machine learning models: given a trained model and a data
record, the adversary can determine if the data record was in the
model’s training set. More recently, Shejwalkar et al. [49] studied
the susceptibility of text classifiers to membership inference, which
introduced user-level membership inference that outperformed the
existing attacks on both transformer-based and RNN-based mod-
els. Besides, attacks on generative models [21, 32] have also been
explored.

The model inversion attack was first proposed by Fredrikson et
al. in statistical models [16] and then generalized to deep neural
networks [15]. Unlike membership inference, model inversion at-
tacks aim to reconstruct partially or fully the private training data
that the target model is trained on. Fredrikson et al. [15] proposed
two formulations of model inversion attacks. In the first one, the
adversary aims to learn a sensitive attribute of an individual whose
data are used to train the target model, and whose other attributes
are known to the adversary [33].

In the second formulation, the adversary is given access to a clas-
sification model and a particular class, and aims to come up with
a typical instance for that class [63]. For example, the adversary,
when given access to a model that recognizes different individuals’
faces, tries to reconstruct an image that is similar to a target indi-
vidual’s actual facial image. Besides, the additional knowledge has
been proven to increase the risk of inversion attacks. Zhao et al.
developed inversion models that can take in model explanations,
outperforming the attack methods that use model prediction only
[64]. Chen et al. presented a novel GAN model that can better
distill knowledge, which is useful for performing attacks on private
models, from public data [7].

Furthermore, recent studies demonstrated that model inversion
attacks could recover texts from the training dataset [6, 37]. In our
adversarial setting, the reconstruction of texts relies only on the
sentence embeddings generated by the pre-trained languagemodels.
We also explore the impact of additional information (pre-training)
on inversion attacks.

2.2 Privacy Attacks against Pre-trained
Language Models

Pre-trained language models have become a popular component
of the current NLP pipeline [41]. However, there are several con-
cerns about their privacy issues. For example, Bguelin et al. studied
a practical scenario in which users need to continuously update
the weights of the language model with modified data [4]. Their
results implicated that an adversary can infer specific sentences or
fragments of discourse from the difference between the data used
to train the model. Furthermore, Nakamura et al. showed that an
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adversary with some prior knowledge of the patient could employ
a pre-trained masked BERT model to predict the masked personal
information in the input clinical data [36].

Carlini et al. extended model inversion attacks to training data
extraction attacks which aim to reconstruct not just trivial unin-
formative examples but the verbatim training examples [6]. They
demonstrated that GPT-2 (trained on Internet text) could memorize
and generate hundreds of verbatim text sequences in training data
given several starting words. The most obviously-sensitive sample
contained the full name, physical address, email address, phone
number, and fax number of an individual. However, this attack
only targeted generative language models but excluded masked
language models such as BERT.

Meanwhile, Pan et al. first showed keyword inference attack
on the embeddings of pre-trained language models [37]. Specifi-
cally, an adversary with prior knowledge of the confidential dataset
(e.g., clinical note) could infer the sensitive keywords within the
sentence embeddings. However, the attack relied on training a bi-
nary classifier for each keyword and was tested only in the setting
of 10 keywords. Song et al. designed a gradient-based inversion
attack to predict a set of candidates for each token from the sen-
tence embeddings, without recovering word order [52]. Therefore,
the method cannot recover the sentence structure or reveal the
semantic information about the sentence.

Although our work also focuses on inference attacks against
sentence embeddings, it is different from [52] in two major aspects:

(1) Our method can generate a coherent text sequence that is
close to the original sentence, thus revealing more semantic
information than a set of unordered words.

(2) Our method is naturally more efficient when there exist a
large number of private embeddings. Specifically, the decoder
generates text by querying without any gradients involved.
In contrast, [52] relies on gradient descent to compute the
word distribution for each token in the embeddings.

3 BACKGROUND
3.1 Transformer
Transformer [58] was originally proposed for machine translation
task, which later became the backbone of recent language mod-
els. Unlike traditional sequential models, transformer adopted self-
attention and multi-head attention mechanisms to capture complex
sequential dependencies.

Encoder and decoder are the two components of transformer,
where encoder consists of six encoding layers and decoder consists
of the same number of decoding layers. In the original machine
translation task, encoder maps the input in language ‘A’ to a hid-
den feature space. Then the decoder projects the hidden states to
language ‘B’. Our reconstruction attack is similar to the decoding
process. In this paper, we employ the capacity of the transformer
decoder to reconstruct the original sentence from the sentence
embedding, including sensitive keywords.

3.2 Pre-trained Language Models
Language models, which are usually built on transformer architec-
ture, are pre-trained on massive corpus to model the complex text
structure. For example, BERT, one of the most popular language

models, was trained using BooksCorpus [3] and English Wikipedia
[51] with the objective of predicting the masked words and/or the
next sentence in a text. Additionally, another significant language
model, GPT-2, was trained on 40GB Internet text with the objective
of predicting the next word in the text.

Our paper focuses on reconstructing text from sentence em-
beddings generated by language models. Therefore, our method is
agnostic to the model architecture and training objectives.

3.3 Sentence Embedding
Given a vocabularyV which consists of |V| tokens, a sentence 𝑠 is
defined as 𝑠 = [𝑤1,𝑤2, ...,𝑤𝑛], where each word (or token) belongs
to the vocabularyV . We define a mapping F from the sentence to
the vector space R𝑛×𝑑𝑤 as a sentence embedding function, where
𝑛 is the number of tokens in the sentence and 𝑑𝑤 is the dimension
of each token vector.

Although there exist various methods (word2vec [34], doc2vec
[26], etc.) to embed the sentences in NLP domain, F refers to lan-
guage models in this paper. Finally, the sentence embedding 𝑧 of
sentence 𝑠 is obtained by 𝑧 = F (𝑠), 𝑧 ∈ R𝑛×𝑑𝑤 .

In some applications, pooling operation is applied to the sen-
tence embedding to produce a 1-dimensional embedding 𝑧 ∈ 𝑅𝑑𝑤 .
However, the pooled embeddings are only capable of basic NLP ap-
plications (e.g., classification), while inadequate for more advanced
applications such as text understanding, entity extraction, and ques-
tion answering. We consider unpooled embeddings as the main
target in our experiments, which are also studied in [52].

3.4 Adversarial Decoder
3.4.1 Architecture. As mentioned earlier, our adversarial decoder
inherits the architecture of the transformer decoder. Given a set
of sentence embeddings 𝑧 = [𝑧1, 𝑧2, ...𝑧𝑛], the decoderM, and a
projection function 𝑔, our objective is to reconstruct each token of
the original sentence 𝑠 = [𝑤1,𝑤2, ...,𝑤𝑛] in an autoregressive way:

ℎ1 =M(𝑧1) (1)
𝑤1 = 𝑔(ℎ1) (2)

𝑤𝑘 = 𝑔(M(𝑧𝑘 |𝑤𝑘−1,𝑤𝑘−2, ...𝑤1)) (3)
where ℎ1 ∈ R𝑑ℎ is the first hidden state output of the decoder 𝑀 ,
𝑤𝑘 represents the token at 𝑘𝑡ℎ position, 𝑑ℎ is the dimension of the
hidden state, and 𝑔 is a project function to map the hidden states to
the vocabulary. The first token𝑤1 is only conditioned on 𝑧1, while
the following tokens are conditioned on both sentence embeddings
and the previously predicted tokens.

3.4.2 Projection. After the output hidden states are obtained from
the adversarial decoder, projection will be performed to map the
hidden states to a probability distribution of tokens.

Given a dataset D, its vocabulary is defined as VD . Thus the
sentence generation will be constrained byVD . Since a pre-trained
languagemodel usually has a large vocabulary (e.g.,∼30k for BERT),
the unconstrained vocabulary may cause noisy and inaccurate pre-
diction. The hidden state ℎ𝑘 ∈ R𝑑ℎ is projected to probability
distribution by:

𝑃𝑘 =𝑊𝐷 ∗ ℎ𝑘 (4)
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where𝑊𝐷 ∈ 𝑅 |VD |×𝑑ℎ stands for the projection matrix. |VD | is the
cardinality of the vocabularyVD and 𝑑ℎ is the size of the hidden
state. Therefore, the resulting probability distribution 𝑃𝑘 is over
VD .

3.4.3 Training Objective. The objective of training is simply to
optimize the cross-entropy loss between the predicted tokens and
ground-truth tokens as below:

𝐿(𝜃 ) = −
∑︁
𝑘

𝑃𝑘 ∗ 𝑌𝑘 (5)

where 𝑃𝑘 is the probability distribution in the 𝑘𝑡ℎ word and 𝑌𝑘 is
the hot encoding of the ground truth word 𝑘𝑡ℎ .

3.5 Sentence Reconstruction
Finally, sampling strategy will be adopted in order to generate
actual words.

3.5.1 Sampling. Since the projection only yields a spectrum of
possible tokens, we still need a way to sample the distribution.
There exist different sampling methods, the most prominent of
which are greedy search [48], beam search [17] and top-k sampling
[53]. Although the tokens of interest can be scattered throughout
the search space, they have a high likelihood to fall into the list of
most possible tokens. In fact, by removing the tail of the distribution,
the generation is less likely to go off the topic. Therefore, we employ
top-k sampling to avoid repetitive generation and to increase the
diversity of generation:

C = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (P)[: 𝑘] (6)

𝑞𝑖 =
𝑒𝑃𝑐𝑖 /𝑡∑
𝑗 𝑒

𝑃𝑐 𝑗 /𝑡
,∀𝑐𝑖 ∈ C (7)

P ′ = [𝑞1, 𝑞2, ...𝑞𝑛] (8)

The top k indices C in distribution P are first retrieved and then
regularized by the softmax function with temperature 𝑡 . When 𝑡

equals to 1, it is the same as the normal softmax. When 𝑡 is larger
than 1, it tends to smooth the distribution. We use high temperature
to make the model less confident about the prediction. Therefore,
the generated sentence will be more diverse and potentially extract
sensitive tokens.

3.5.2 Decaying temperature. As discussed above, we prefer to raise
the temperature to smooth the distribution. Since the tokens with
the highest probabilities may be non-informative due to their high
frequencies, such as “[PAD]”, smoothing process will make other in-
formative tokens more likely to be sampled. However, maintaining
a high temperature throughout the whole generation process would
deviate the generation even when the first few tokens are correct.
Thus, we apply a decaying temperature as in [6], which starts at
𝑡 = 3, gradually decaying to 𝑡 = 1 over the first 10 tokens. This
makes the model explore more possible "paths" at the beginning
while still enabling it to follow a high-confidence path once found.

3.5.3 Maximum Length. We limit the length of all generated text
to 15 tokens. As the decoding goes further, the decoder’s capacity to
accurately predict the words gradually reduces. We have compared
10, 15, and 20, and observed that the first 10 or 15 words were
usually relevant and coherent. When extended to 20, the last few
words might deviate from the topic and be noisy. The length of 15
is the balance point for preserving coherence and reconstructing
more information.

4 GENERAL ATTACKWORKFLOW
The sentence embeddings are used for a wide range of downstream
tasks [41]. However, as mentioned earlier, their utility is accompa-
nied by privacy risks.

From classifier-based attack [37] to gradient-based attack [52],
it has been shown that the adversary can recover a set of possible
words for each token from sentence embeddings. However, each
set of words is solved independently, which ignores the strong
dependencies between words that belong to the same sentence.
There is still a gap between a large group of unordered words and
a coherent and well-structured sentence.

To overcome the limitations mentioned above, we propose a
generative decoder model to attack the embeddings produced by
language models. Due to the nature of the auto-regressive models,
each token is conditioned on previous tokens, which makes sure the
reconstructed sentences are coherent and meaningful. Furthermore,
the training cost of the decoder does not multiply by the number
of keywords.

4.1 Attack Definition
We first compare our decoder-based attack with the methods pro-
posed by [37] and [52] on keyword inference attack. Thenwe propose
a novel attack class, namely sentence inference attack. Compared
with keyword inference attack, which only focuses on pre-defined
keywords, the new attack can still work when the adversary does
not know the secrets inside the dataset.

For both attacks, the adversary relies on sentence embeddings to
infer sensitive information. Formally, we define a target sentence as
𝑠 and a publicly available language model as F . Then the sentence
embeddings of 𝑠 are denoted as 𝑧 = F (𝑠), 𝑧 ∈ R𝑛×𝑑𝑤 , where 𝑛
is the number of tokens in 𝑠 and 𝑑𝑤 is the dimension of vector.
Then sentence embeddings 𝑧 is mapped back to tokens by attack
model: 𝑠 ′ = A(𝑧). For example, here is a real pair of original and
reconstructed clinical notes “abdominal ultrasound of a single preg-
nant uterus or first fetus” and “abdominal ultrasound of pregnant
pregnancy first”. Although the generated text is not a verbatim
copy of the original text, it still maintains the semantics and reveals
sensitive information such as “abdominal” and “pregnant”.

4.2 Threat Model
Our threat model is the same as the previous work [37]. The threat
model is defined as below:

(1) The adversary has access to the language model as a black-
box, which takes a sentence as input and outputs a sequence
of embeddings.
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Figure 1: The general workflow of our attack. EHR stands
for Electronic Health Record. The adversary first queries the
pre-trained language model to obtain the public sentence
embeddings. Then the adversarial decoder is trained using
public text/embedding pairs. Finally, the trained decoder is
employed to infer the sensitive information from private
embeddings.

(2) The adversary has access to a set of embeddings of a private
dataset, but they do not know the exact sensitive information
to infer.

(3) The adversary has access to a public dataset that belongs
to the same domain as the targeted private dataset, but the
public dataset is not guaranteed to share the same distribu-
tion with the private dataset. This is a valid setting since the
private dataset is unknown.

We make different assumptions about the distribution of the
private/public datasets. The detailed description can be found in
Section 8.

4.3 Attack Pipeline
Our general attack workflow is shown in Fig. 1. In our setting, there
exists a publicly accessible electronic health record (EHR) dataset,
as well as a privately owned EHR dataset. The pre-trained language
model is accessible as an oracle.

The adversary can infer the sensitive information in a private
dataset by following the four steps given below:

(1) The adversary queries the pre-trained language model to
obtain the sentence embeddings of the public dataset.

(2) The adversary then trains the adversarial decoder using
the pairs of public dataset text and sentence embeddings
obtained in the previous step.

(3) The adversary has access to the embeddings of private dataset
provided by a third-party organization.

(4) Finally, the adversary employs the trained decoder to recon-
struct the private dataset text from the sentence embeddings.

5 KEYWORD INFERENCE ATTACK
In this section, we assume that the sentence can be in an arbitrary
format and the adversary knows the keywords or the rule of defin-
ing keywords in the target dataset. Then we compare our methods
with baselines on the capacity of identifying keywords.

5.1 Attack Definition
The adversary in the keyword inference attack attempts to infer
all keywords in an unknown text. Keywords are defined by a well-
known rule or expertise in the domain. Therefore, keywords can be
highly sensitive and an attack can be a serious threat to real-world
systems (e.g., medical & airline domains).

Formally speaking, we define the rule of keywords asK . Given a
sentence 𝑠 , its sentence embedding is represented by 𝑧.A represents
our general attack model, which includes the pre-defined decoder
M. The adversary wants to find out the relationship of A(𝑠) ←
K(𝑠). Our attack modelA does not require knowingK for training,
thus we only utilize the rule K at the test stage.

The workflow of keyword inference attack is displayed in Fig. 2.
Note that the process of our decoder generating the text is stochastic.
We repeat the generation 10 times3 to extract diverse outputs. Then
we convert the output text into a list of words L after filtering
stopwords and sorting by frequency. We only keep top 𝑘 words in
the list to reduce the number of irrelevant words. The impact of 𝑘 ,
which is the number of words kept, is further studied in Section
A.4. We slightly constrain the attack definition here to measure the
relationship of L ← K(𝑠).

5.2 Attack Settings
White-boxAttack. In this attack context, we focus on the situation
where the public dataset and the private dataset share the same
distribution. Therefore, the adversary can safely guess the keywords
in the private dataset by just examining the public dataset. We show
that in the white-box setting, both our decoder-based attack and
the baseline attacks can threat the privacy of pre-trained language
models.
Black-box Attack. In contrast to the white-box setting, the adver-
sary in the black-box setting has minimal knowledge of the private
dataset, which means that the public dataset and private dataset
may have different distributions. We use two different datasets in
the same domain to mimic this setting. Note that the black-box
setting challenges the transferability of the attacks. It is more re-
alistic that the adversary does not know much information about
the private dataset due to privacy protocols. An alternative for the
adversary is thus to study a public dataset within the same domain
and transfer the knowledge to the private dataset.

6 SENTENCE INFERENCE ATTACK
In keyword inference attack, we have assumed that the adversary
has access to a public dataset, and can learn and target a set of
keywords. In the scenario where they do not have targets but still
try to infer from the embeddings, we propose a novel attack, namely,
sentence inference attack, which aims to reconstruct the original
text verbatim.
310 is selected to balance between the performance and efficiency, other choices are
also acceptable.

66



Towards Sentence Level Inference Attack Against Pre-trained Language Models Proceedings on Privacy Enhancing Technologies 2023(3)

Figure 2: The workflow of keyword inference attack. The adversary first repeats the decoding of the same sentence embedding
10 times to gather all potential outputs. Then the outputs are passed through a stopwords filter to eliminate stopwords. The
adversary further converts the sentences into a list of words sorted by frequency. Finally, only top-𝑘 words are kept and
examined. Note that 𝑘 is a hyperparameter in our experiments.

6.1 Attack Definition
The adversary does not know the sensitive information in the pri-
vate dataset. Therefore, they can only employ our decoder-based
attack to infer from the private sentence embeddings in a generative
way.

Similarly, to recover a sentence 𝑠 from private dataset using
its sentence embeddings 𝑧 generated by a language model and
an attack model A, the adversary can solve the below equation
to maximize the similarity between 𝑠 and reconstructed sentence
𝑠 ′ = A(𝑧):

𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 (
⋃

1≤𝑖≤𝑟
Φ(𝑠, 𝑠 ′𝑖 )) (9)

where [𝑠 ′1, 𝑠
′
2, ..𝑠

′
𝑟 ] are a set of reconstructed sentences, Φ() is

a similarity function, and 𝑠∗ is the most similar candidate. Note
that the decoder generation process is stochastic, therefore, the
generation is repeated 𝑟 times to capture different cases.

6.2 Attack Settings
We generally follow the settings in keyword inference attack to
conduct experiments. Both the white-box attack and black-box
attack reuse the previous settings. Nevertheless, instead of counting
the words in reconstructed sentences, we directly measure the
similarity between the original text and the reconstructed text.
Note that we repeat generation 10 times for each sample, therefore,
we select the one that maximizes the similarity function Φ() as the
best candidate.

7 DATASETS
In this section, we introduce real-world datasets from two domains:
airline and medical. We show that the NLP systems of these two
domains are threatened by privacy attacks.

7.1 Airline
With the growing competition in the airline industry, airline compa-
nies need to constantly improve their service quality to survive the
competition [18]. Online reviews are a popular way for customers
to share their experiences with flights. With the aid of pre-trained
language models, airline companies can build automatic tools to
analyze customers’ opinions (e.g., topic modeling and sentiment

analysis [25]). However, as discussed in [37], an adversary can infer
various sensitive information from text embeddings, including, but
not limited to location, flight code, and departure/arrival time.
Skytrax: This dataset4 contains airline reviews from 2006 to 2019
for popular airlines around the world. We extract a subset of about
30k reviews from this dataset for evaluation by filtering out empty
or non-English reviews. Without performing downsampling, we
simply extract the first sentence of each review and form a new
dataset. This is because we observe that the first sentences are more
relevant to our target of interest (location, time, etc.).
Twitter US Airline: This dataset5 is originally collected for sen-
timent analysis, which contains 14614 tweets to the accounts of
US airline companies. We clean and extract a subset of around 5k
tweets from the original dataset. The preserved subset contains
20 US city names. Note that the tweets may include a mixture
of full names of these cities and their acronyms (e.g., Athens vs
ATH), which makes it a challenging dataset for performing privacy
attacks.

7.2 Medical
In recent years, AI-powered applications have been increasingly
applied to clinical tasks [22]. Specifically, various NLP methods
have been proposed for the extraction of clinical pathways [60],
recognition of biomedical entities [27], patient questions answered
[11], etc. Although the power of language models can benefit pa-
tients, an adversary can also capitalize on the text embeddings of
medical transcriptions to infer personal health information (e.g.,
precise disease sites).
CMS: This dataset6 is from the Center for Medicare and Medicaid
Services website, which records information on services and proce-
dures documented by physicians and other healthcare professionals.
In total, there are 5569 unique samples. We use all of these samples
for our experiments.
MT: This dataset7 contains sample medical transcriptions for vari-
ous medical specialties, including surgery, consult, and more. There

4https://github.com/quankiquanki/skytrax-reviews-dataset
5https://github.com/benhamner/crowdflower-airline-twitter-sentiment
6https://data.cms.gov/provider-summary-by-type-of-service/medicare-physician-
other-practitioners/medicare-physician-other-practitioners-by-provider-and-service
7https://www.kaggle.com/datasets/tboyle10/medicaltranscriptions
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are 5k medical transcriptions in total. We first split each transcrip-
tion into sentences and then count the medical keywords provided
by the dataset. We then only keep 12018 sentences with the 100
most frequent keywords as a subset so that the size of MT dataset
is close to that of CMS dataset.

7.3 Data Pre-processing
To perform keyword inference attack, we need to identify all the key-
words within each dataset. We introduce our method for labelling
in this section.
Airline: For Skytrax dataset, we refer to the World Cities dataset8,
which only lists cities above 15,000 inhabitants. For each airline
review, we check which cities exist in the text and keep a list of
existing cities. As for Twitter US Airline dataset, we simply label
the tweets with the 20 US cities in the same way. After manual
examination, there are 962 cities on Skytrax and 20 US cities on
Twitter.
Medical: For both medical datasets, we rely on named entity recog-
nition (NER) model pre-trained on Spacy ‘en_ner_bionlp13cg_md’
corpus9. We simply apply the NER system to identify biological
terms within each sample as our medical keywords. After manual
review, there exist 1195 keywords and 2377 keywords in CMS and
MT datasets, respectively.

8 EVALUATION METRICS
8.1 Keyword Inference Attack Metrics
To compare our decoder-based attack with the baseline attacks
[37, 52], we first introduce the notion of Reconstruction and slightly
extend it for our method.
Definition 1. If a string 𝑡 exists both in the original sentence 𝑠 and
in the sentence 𝑠 ′ generated by the adversarial decoderM, then
the string 𝑡 is successfully reconstructed by the decoderM.

Intuitively, only string 𝑡 existing in both 𝑠 ′ and 𝑠 is considered
valid. Even if 𝑡 is sensitive, it is still false positive if 𝑡 ∉ 𝑠 . Recon-
struction of the decoder is conditioned on the sentence embedding
𝑧, denoted asM(𝑧 |𝑠 ′). Since there are hundreds of target keywords
in our datasets, simply measuring the attack results with overall
accuracy or the F-1 score does not accurately reflect the perfor-
mance of an individual keyword. In addition, showing the detailed
attack results on each individual text sample is informative, but not
efficient.

As a result, the strength of the attack is measured by how many
keywords the adversary can extract in total and how many unique
keywords it can extract. Combining these two metrics, we can
better measure the effectiveness and generalizability of the attack.
Definition 2.Given a datasetD made up of sentences [𝑠1, 𝑠2, ..., 𝑠𝑛],
let the adversarial decoderM reconstruct a set of strings. 𝑡𝑖 = ∪𝑡𝑖 𝑗
from each sentence 𝑠𝑖 . Thus, at the level of the datasetD, all strings
reconstructed by the decoderM can be denoted as:

T =
⋃

1≤𝑖≤𝑛
𝑡𝑖 , 𝑡𝑖 ∈ 𝑠𝑖 (10)

8https://github.com/datasets/world-cities
9https://allenai.github.io/scispacy/

Our two metrics are defined on the basis of T . If we slightly
constrain the type of strings in Definition 1 to be pre-defined key-
words, T will become the union of all the reconstructed keywords.
The first metric, the count of reconstructed keywords, can be
denoted as |T |, where | · | represents cardinality. Also, the second
metric, the number of unique keywords, is then formulated as
|{T }|, where {} is the set notation.

Moreover, the proposed metrics also generalize well to classifier-
based attack [37]. The union of reconstructed keywords, T , can
be calculated by examining the true positive predictions made by
the classifier. As for the gradient-based attack [52], we apply the
sampling strategy elaborated in Section 3.5.1 to the final word
distributions to obtain actual sentences, followed by sorting and
snapping by 𝑘 . Therefore, the proposed metrics can be used to
evaluate it as we evaluate our decoder-based attack.

8.2 Sentence Inference Attack Metrics
The sentence inference attack is evaluated by the similarity function
Φ(). There are various similarity functions, e.g., Manhattan distance,
Euclidean distance, cosine similarity, etc. We select cosine similarity
as our metric because of its ability to measure the degree to which
two sentences overlap.
Definition 3. Given two vectorized sentences 𝑎 and 𝑏, the cosine
similarity 𝑐𝑜𝑠 (𝑎, 𝑏) is defined as:

𝑐𝑜𝑠 (𝑎, 𝑏) =
#»𝑎 · #»

𝑏

∥𝑎∥ · ∥𝑏∥ (11)

Formally, given two sentences 𝑠 and 𝑧, their joint set of tokens are
{𝑠} ∪ {𝑧}. Then the vectorized version of 𝑠 can be obtained by one
hot encoding: 1) initialize an all zero vector𝑎with length of {𝑠}∪{𝑧}.
2) check if 𝑖𝑡ℎ element in the joint set exists in 𝑠 . 3) assign 1 to the
𝑖𝑡ℎ element in 𝑎 if the condition of last step is met. For example,
given two toy sentences “I love rose” and “I love lily”, the joint set
of tokens will be {“I”, “love”, “rose”, “lily”}. The vectorized sentences
should be represented as [1, 1, 1, 0] and [1, 1, 0, 1], respectively.

Besides measuring the overlap between two sets of words, we
also consider BLEU and ROUGE [39] as additional metrics since they
further measure the overlap between n-grams. Although BLEU uses
high order n-gram (n>1) matches, it does not consider sentence level
structure [29]. E.g., given a pair of original/reconstructed sentences:
“Paris (cdg) to Detroit (dtw)” vs “Paris [PAD] to [PAD] dtw”, the
BLEU score is close to 0. However, the adversary can figure out
from the sentence structure that the subject flew from Paris to dtw.
Hence, we also use word order similarity (WOS) metric [28] as it
better captures the evaluation of sentence structure. TheWOS value
for the above example is 0.52, suggesting that the reconstructed
sentence preserves the original sentence’s structure.
Definition 4. Let𝑇 = [𝑤1,𝑤2,𝑤3, ...] be the ground truth sentence
and 𝑆 be the reconstructed sentence with the same length. 𝑇 is
vectorized by mapping function 𝑓 : 𝑤𝑖 ⇒ 𝑖 , where𝑤𝑖 is the word
at index 𝑖 in 𝑇 . As a result, the vector 𝑇 ′ is simply [1, 2, 3, ...]. 𝑆 is
vectorized by searching for 𝑤𝑖 in 𝑆 . Suppose 𝑤𝑖 appears at index
𝑗 in 𝑆 , 𝑖 will be assigned to index 𝑗 in 𝑆 ′. If 𝑤𝑖 is not found in 𝑠 ,
the most similar word will be matched with𝑤𝑖 . The word order
similarity is computed by:
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𝑊𝑂𝑆 (𝑇, 𝑆) = 1 − ||𝑇
′ − 𝑆 ′ | |

| |𝑇 ′ + 𝑆 ′ | | (12)

A simple example is 𝑇 = ‘A dog jumps over the fox‘” and 𝑆 =

“A fox jumps over the dog". The vectorized version will be 𝑇 ′ =
[1, 2, 3, 4, 5, 6] and 𝑆 ′ = [1, 6, 3, 4, 5, 2]. Finally, the order similarity
is computed as 0.9.

9 EXPERIMENTAL EVALUATION
9.1 White-box Setup
Since the training set and the test set from the same dataset share
the same distribution, We split the datasets into training/test sets
to mimic the white box setting. The two benchmark systems that
we aim to attack are described below:
• Airline-Skytrax: Suppose an airline company employs the
pre-trained languagemodels to analyze their reviews in order
to improve the service quality. We use Skytrax dataset to
mimic the dataset employed by the company. Our goal is to
infer the keywords from the sentence embeddings. We split
the dataset into 80%-20% to obtain training (public) and test
(private) datasets, respectively. All attack models are trained
on the same training set and tested on the same test set.
• Medical-CMS: Likewise, a hospital builds a prediagnosis sys-
tem to guide the patients to the right departments according
to the textual descriptions of their medical conditions. Sup-
pose the CMS dataset is used in their system. We again split
the dataset into 80%-20% to get training and test datasets,
respectively. All the attack models are developed on the same
train/test sets for fair comparison.

9.2 Black-box Setup
Following the setup in Section 4, we already have pre-trained attack
models in airline and medical domain. Our goal in this black-box
setting is to evaluate their performance on unknown datasets. Dif-
ferent from white-box setting, training set and test set now are
from two different datasets in the same domain.

Therefore, the weights of all the pre-trained models are frozen
at this point. As for the gradient-based attack, the mapping module
(from deep embedding to lower space) is frozen.

(1) Airline-Twitter: In the airline domain, we let Skytrax be the
public dataset and Twitter be the private dataset. The adver-
sary attempts to attack this new unknown private airline
systemwith the pre-trainedmodel that is trained on a known
airline system.

(2) Medical-MT: In the medical domain, the CMS dataset is
treated as a public dataset and theMT dataset as a private one.
The goal of the adversary is to infer the unknown private
dataset with a pre-trained attack model.

9.3 Implementation
Baselines: Note that we discussed that training a binary classifier
for each keyword is not practical in our setting, where there exist
hundreds of keywords. According to [37], the adversary needs to
build a balanced dataset for each classifier, which brings tremendous
cost due to the keywords we have. As a result, we extend the original

binary classifier to a multi-class classifier without modifying their
methodology.
• Decision Tree (DT): the feature selection criterion is set as
gini. The two most widely used criterions are gini and infor-
mation gain and [45] shows that their performance is quite
similar and the criterions differ in only 2% of the cases. We
pick gini as it is computationally less intensive. The rest of
the parameters follow the default setting in scikit-learn10.
• K-Nearest Neighbor (KNN): the “n_neighbors” is set to 5,
weight function is set at default uniform and the optimizing
algorithm is set as auto. Both DT and KNN are implemented
using scikit-learn.
• Deep Neural Network (DNN): The DNN has two fully con-
nected layers with 250 and 100 hidden units, respectively.
The objective is to minimize the cross-entropy loss. Besides,
Adam optimizer with batch size of 100 and learning rate of
1𝑒 − 4 is employed. Finally, the maximum train epochs are
set as 250. DNN is implemented using pytorch 11.
• Gradient-based Embedding Inversion (GEI): At first, a two-
layer MLP is trained to map the deep embeddings to lower
space. Then we use gradient descent to solve the problem
min(𝑊𝑇 ·𝑝−𝑀 (𝑧)). Where𝑊 is the word embedding matrix,
𝑀 is the mapping model, 𝑧 is the embedding and 𝑝 is the
solution. More details are provided in [52].

Adversarial Decoder: Our adversarial decoder is trained to re-
construct the text from sentence embeddings. The training process
consists of two steps:

(1) Let the public dataset be D𝑝𝑢𝑏𝑙𝑖𝑐 , and the split train/test
set be D𝑡𝑟𝑎𝑖𝑛 and D𝑡𝑒𝑠𝑡 , respectively. We first pre-train the
decoder on D𝑡𝑟𝑎𝑖𝑛 to obtain a generalized model. However,
the modelM at this stage is not accurate enough to predict
the text. The goal is to let the decoder learn the distribution
of D𝑡𝑟𝑎𝑖𝑛 .

(2) After the pre-training, we further fine-tune the decoderM
on a subset D𝑠𝑢𝑏 of D𝑡𝑟𝑎𝑖𝑛 . Specifically, D𝑠𝑢𝑏 is extracted
only by keeping the samples with keywords in D𝑡𝑟𝑎𝑖𝑛 . This
fine-tuning step is essential for the decoder to focus on key-
words.

Moreover, the adversarial decoder inherits from the transformer
decoder architecture, which consists of 6 decoding layers and 8
heads. The training objective is minimizing cross-entropy loss and
the optimizer is AdamW. The decoderM is first pre-trained on
public dataset for 100 epochs with a learning rate of 1𝑒 − 4 and then
fine-tuned on the subset of the public dataset with a learning rate
of 1𝑒 − 5.

We propose two types of decoder: 1) vanilla decoder and 2)
pre-trained decoder. The former is the model without pre-training
process (only trained on D𝑠𝑢𝑏 ). The latter is the model pre-trained
in D𝑡𝑟𝑎𝑖𝑛 and fine-tuned in D𝑠𝑢𝑏 .
Embedding Dimension The input dimension of DT, KNN and
DNN is 768, which is resulted by pooling operation on the original
sentence embedding 𝑧 ∈ 𝑅128×768.While the input dimension of GEI
and decoder is 𝑅15×768, since only the first 15 tokens are targeted.

10https://scikit-learn.org/stable/
11https://pytorch.org/
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9.4 Keyword Inference Results & Discussion
The results of white-box and black-box attacks are listed in Table
1. Vanilla Decoder and Pre-trained Decoder refer to our proposed
attack and the rest models are baseline attacks. Note that ‘Count’
stands for the count of all reconstructed keywords and ‘Unique’
stands for the number of unique keywords. Furthermore, 𝑘 , the
number of kept words in our attack, is set 𝑘 = 20. The ablation study
of 𝑘 is shown in Section A.4. 𝑘 = 20 is a relatively low threshold (a
lower 𝑘 makes the attack more efficient) since the vocabulary of
every dataset in our experiments contains thousands of tokens.

Note that 20 is still smaller than 1% of the size of the vocabulary.
Effectiveness of Attacks: Even when 𝑘 is set as 20, the exper-
iment results still highlight the effectiveness of our attack over
the classifier-based attacks and GEI in both white-box and black-
box settings. For example, in Table 1, our Pre-trained Decoder in
white-box setting outperforms all the baselines on two metrics.
The classifier-based baseline attacks achieve comparable results
to our attacks on Skytrax dataset, which suggests that classifier-
based attacks are effective in white-box setting where the private
dataset and public dataset share the same distribution. Besides,
DNN outperforms DT and KNN consistently.

Our Pre-trained Decoder exceeds baselines distinctively on CMS
dataset. Specifically, our decoder can identify 1093 keywords in
total and 203 unique keywords given the BERT’s embeddings of
the private medical transcriptions while DNN can only correctly
predict 531 keywords in total and only 94 of them are unique. The
performance of DNN is merely about 50% of our decoder’s. The
experimental results imply that our decoder demonstrates better
generalizability over different domains and embeddings.

The visualization of attack results in Table 1 are displayed in
Figure 3. For each dataset, we select the top 10 most frequent key-
words. Specifically, the 10 cities in Skytrax dataset are London,
Paris, Bangkok, Toronto, Sydney, Hong Kong, Manchester, Dubai,
Melbourne, and Singapore. As for the CMS dataset, the 10 medical
terms are tissue, spinal, muscle, skin, bladder, heart, bone, blood,
brain, and eye. Our Pre-trained Decoder outperforms the baselines
with a distinctive margin on many keywords, which also supports
that our decoder generalizes better.
Comparison between Attack Settings: It is noticeable that the
numbers of keywords inferred in the black-box setting are much
lower than the counterpart of white-box setting across all the at-
tacks. As we have discussed, the black-box setting is more realistic
where the adversary does not have information about the private
dataset. Even if the adversary knows the domain of the dataset, it
can still be challenging to define the keywords within the dataset.
For instance, given a medical dataset, there may exist thousands
of keywords (e.g., 1195 in CMS and 2377 in MT), which makes it
extremely difficult to include all of them.

Therefore, the black-box setting is a more challenging setting,
which understandably leads to poorer experimental results for all
the attacks under experiment. Nevertheless, our Pre-trained De-
coder remains the most robust attack method, especially on the
Twitter dataset and GPT-2 embedding. The results suggest that our
attack handles this setting better due to its flexibility and generaliz-
ability.

Transferability of Attacks: According to Table 1, the Pre-trained
Decoder displays much better transferability in all the cases. To be
specific, the gap between Pre-trained Decoder and DNN is further
enlarged in both domains compared with results of Table 1.

For example, all baseline attacks completely fail on the Twit-
ter dataset with GPT-2 embeddings. However, our decoder still
memorizes 30 city names in total, and there exist 5 unique city
names. When it comes to the MT dataset, our decoder memorizes
more than double the total medical terms/unique medical terms
that captured by DNN. Based on the above observations, we can
safely conclude that our decoder continues to behave more robustly
in the black-box setting. Its better transferability makes it a more
powerful threat to the real-world systems.
The Impact of Pre-training Pre-training has boosted the per-
formance of the decoder in all cases significantly. Specifically, pre-
trained decoder has identified at least at least 30%more keywords in
total than the vanilla decoder. The gap of the number of unique key-
words is distinctive too. The results imply that the pre-training is a
robust way to strengthen both the generalizabilty and transferbility
of the decoder.

9.5 Sentence Inference Results & Discussion
Note that Table 2 displays the results for sentence inference attack.
“cosine" stands for cosine similarity and “order" stands for word
order similarity. Due to the limitation of the classifier-based attacks,
they are removed from this attack setting.
Quantitative Results

As shown in Table 2, Our Pre-trained Decoder achieves signif-
icant improvements of not only cosine similarity but also word
order similarity over GEI on both white-box and black-box settings.

One of the key observations is that GEI is biased on the empty
tokens such as “[PAD]", which yields final sentences with large
proportion of noises. This phenomenon is caused by the contex-
tual learning in lanugage models. The embeddings of pre-trained
language models are highly convoluted due to self attention mech-
anisms [58]. The same words in different contexts will be trans-
formed into different deep embeddings. Therefore, the shallow
mapping function, which maps deep embeddings to lower space,
might be biased with embedding variance of each word, which
leads to biased recovered sentences.

Compared with the mapping function, our decoder utilizes de-
pendencies in sentences to invert deep embeddings rather than
solve each word independently. As a result, our method is capable
of recovering much more coherent and informative sentences from
the embeddings, therefore capture semantic information.
Comparison between Attack Settings We can observe that the
cosine similarity scores drop from white-box setting to black-box
setting. For example, the mean cosine similarity drops from 0.30 to
0.17 on CMS and GPT-2 embeddings.

Similar to the observation in keyword inference attack, there
may exist unseen sentence structures and patterns in the black-box
setting , which challenges the flexibility of the attacks. Our Pre-
trained Decoder still remains relatively robust in black-box setting,
indicating it is a more practical privacy threat.
Comparison between Metrics In addition, the mean and std of
cosine similarity in various configurations do not necessarily agree
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Table 1: Keyword Inference Results (𝑘 = 20)

Target Dataset Attack White-box Black-Box
BERT GPT-2 BERT GPT-2

Count Unique Count Unique Count Unique Count Unique

Skytrax

DT 112 52 218 75 68 11 101 14
KNN 266 92 219 35 80 11 73 6
DNN 627 124 1120 173 174 12 430 16
GEI 128 49 159 51 74 11 132 12

Vanilla Decoder 421 63 679 84 192 32 391 28
Pre-trained Decoder* 835 158 1190 179 322 45 513 48

Twitter

DT 51 13 76 15 13 4 0 0
KNN 92 15 67 12 27 6 0 0
DNN 187 16 331 17 58 5 0 0
GEI 87 13 91 14 12 4 0 0

Vanilla Decoder 203 15 215 15 23 3 9 2
Pre-trained Decoder 326 20 387 19 87 9 30 5

CMS

DT 206 49 208 51 127 20 73 13
KNN 446 104 195 54 361 23 117 12
DNN 531 94 488 93 380 31 511 32
GEI 221 50 201 47 117 32 109 30

Vanilla Decoder 602 98 374 59 431 67 389 60
Pre-trained Decoder 1093 203 814 163 647 135 592 114

MT

DT 465 107 325 92 38 13 44 10
KNN 519 113 546 127 148 23 19 12
DNN 967 109 1280 119 293 36 136 27
GEI 527 95 603 99 51 16 59 15

Vanilla Decoder 842 136 791 128 351 70 213 34
Pre-trained Decoder 1250 157 1463 201 694 104 484 88

Table 2: Sentence Inference Results. Results on GPT are shown in ().

Target Dataset Attack White-box Black-Box
BERT(GPT) BERT(GPT)

Cosine Order BLEU ROUGE Cosine Order BLEU ROUGE

Skytrax
GEI .07(.06) .10(.10) .01(.01) .01(.01) .01(.02) .02(.04) .00(.00) .00(.00)

Vanilla Decoder .10(.12) .33(.35) .05(.05) .06(.07) .07(.05) .15(.13) .02(.02) .03(.02)
Pre-trained Decoder* .25(.21) .52(.51) .13(.11) .12(.12) .18(.17) .40(.37) .10(.10) .11(.10)

Twitter
GEI .05(.06) .11(.10) .01(.01) .01(.01) .03(.02) .05(.04) .00(.00) .00(.00)

Vanilla Decoder .09(.08) .21(.18) .04(.03) .05(.05) .05(.03) .09(.06) .02(.01) .02(.01)
Pre-trained Decoder .22(.20) .50(.45) .11(.10) .13(.12) .15(.14) .39(.35) .08(.07) .10(.10)

CMS
GEI .12(.10) .20(.18) .02(.01) .03(.03) .05(.03) .06(.05) .00(.00) .01(.00)

Vanilla Decoder .20(.17) .35(.31) .10(.09) .12(.11) .11(.10) .30(.26) .04(.03) .05(.05)
Pre-trained Decoder .36(30) .59(.53) .16(.14) .19(.15) .22(.19) .41(.38) .11(.09) .11(.09)

MT
GEI .12(.11) .23(.20) .01(.01) .01(.01) .05(.05) .08(.10) .01(.00) .01(.00)

Vanilla Decoder .23(.25) .46(.49) .14(.16) .15(.16) .10(.11) .19(.24) .06(.07) .05(.05)
Pre-trained Decoder .38(.42) .59(.61) .20(.22) .21(.22) .19(.17) .45(.44) .12(13) .11(.12)

with themetrics of keyword inference attack according to Table 1. For
example, the mean cosine similarity and the count of memorized
keywords are 0.25 and 835, respectively, on Skytrax and BERT
embeddings. Although the mean cosine similarity is 0.21 in Skytrax
and GPT embeddings, the actual count of keywords is 1190, which is
higher than 835. The reason behind this situation is that the cosine
similarity measures the degree to which two sentences overlap,

therefore, it does not focus on any keywords. Higher similarity
means a higher number of words in the reconstructed sentence also
exist in the original sentence.
Qualitative Results

To demonstrate the capacity of sentence inference attack, 10 re-
constructed sentences are displayed in Table 3. For instance, the
reconstructed sentence "Vaccine pneumonia influenza virus nasal"
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(a) Results of top 10 most frequent cities in Skytrax dataset with
BERT embeddings

(b) Results of top 10 most frequent cities in Skytrax dataset with
GPT-2 embeddings

(c) Results of top 10 most frequent terms in CMS dataset with
BERT embeddings

(d) Results of top 10 most frequent terms in CMS dataset with
GPT-2 embeddings

Figure 3: The barplots of the results in Table 1. For each dataset, we show the top 10 most frequent keywords.

Table 3: 10 Examples of Sentence Inference Attack

Domain Original Reconstructed (cosine>0.5)

Airline

Bucharest to amsterdam via Prague Bucharest express via Prague
Satisfactory Flight from Singapore to Hong Kong Satisfactory Flight to Hong Kong

30 January Dusseldorf to Leeds Bradford 30 JanuaryManchester to Leeds Bradford
Luxembourg to London city return Luxembourg to Brussels city return

Rome to Toronto July 2013 Rome to Toronto 2013

Medical

Closed treatment of broken heel bone Closed treatment bone ankle
Injection of bladder and urinary duct (ureter) for X-ray imaging Injection of bladder kidney renal urinary duct

Closed treatment of fracture and/or dislocation of pelvis and/or sacrum Closed treatment of suspension fracture and dislocation
Transplantation of donor kidney Transplant donor’ kidney

Vaccine for influenza for nasal administration Vaccine pneumonia influenza virus nasal

can allow the adversary to accurately infer that this sample is "vac-
cine for pneumonia/influenza for nasal". Another pair of examples
is "Rome to Toronto July 2013" vs. "Rome to Toronto 2013". The
decoder has captured most of the information accurately except

the month. Noticeably, the pair of "Transplantation of donor kid-
ney" versus "Transplant donor’ kidney" shows that the decoder
has learned to use contraction during training, which implies it
captures the underlying language patterns within the pretraining
dataset. Therefore, sentence inference attack can threaten the NLP
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systems without any knowledge about the private dataset. The
adversary can infer the semantics of the original sentence given
a similar reconstructed sentence. In addition to the reconstructed
sentences in Table 3, we report a few randomly picked examples as
shown in Table 4. We observe lower coherence and fluency in these
examples. This is a limitation of our attack method and we further
discuss this in Section 11. However, note that, such reconstructions
may still leak information through their structures that are similar
to the original sentences. E.g., the reconstructed “manual test of
hand arm behind leg” of the original “manual muscle test of arm,
leg or trunk” achieves a BLEU score (2-gram) of 0.30 and a WOS of
0.55. Although the BLEU score is relatively low, the adversary can
still infer the tested body regions of the subject.
The Impacts of Pre-training In sentence inference attack, pre-
training still makes the decoder generate more similar text than the
vanilla decoder. We can conclude that pre-training does not only
make the decoder more sensitive to keywords but also increase the
accuracy of reconstruction.

10 POTENTIAL DEFENSES
10.1 Differential Privacy
Differential Privacy (DP) is a popular technique for protecting in-
formation about individuals in the dataset [14]. In the domain of
machine learning, a differentially private stochastic gradient de-
scent algorithm [1] has been proposed to reduce the risk of privacy.
Google has already applied DP to large-scale image classification
systems while maintaining high accuracy and minimizing compu-
tational cost [24]. The trade-off between utility and information
leakage has been further investigated [2]. The main disadvantage
of ensuring differential privacy is that it typically requires more
noise infusion than traditional techniques.

As for the language modeling, it is demonstrated that DP can be
used to train privacy-preservingmodels in various NLP applications
[13, 19]. To satisfy the DP algorithm, each training sample in the
dataset requires a user label. This requirement can be challenging
for pre-trained language models since their training data is usually
scraped from the public Web.

10.2 Privacy Preserving Mapping
The inference attacks against sentence embeddings are based on
the key idea that public embeddings and private embeddings be-
long to the same embedding space. Privacy Preserving Mapping
(PPM) provides a way to distort the embeddings before they are
accessible to the third party [47]. On the one hand, PPM is trained
to minimize the effectiveness of an inference attack by quantifying
privacy leakage. On the other hand, to preserve the utility of the
embeddings, the distortion of the PPM is constrained by a bound.

As a result, PPM can be applied to private embeddings so that at-
tack models trained on public embeddings will suffer from distorted
embedding space.

10.3 Avoid Providing Complete Sentence
Embeddings

If an organization needs to share the embeddings of its confidential
data with a third-party service provider, it can only provide the

Figure 4: The evaluation of two defenses: privacy-preserving map-
ping and incomplete sentence embeddings.

pooled version of the sequential embeddings or a masked version of
the sequential embeddings. The incomplete sentence embeddings
can reduce effectiveness of our decoder-based inference attack in
accurately reconstructing the text. However, the performance of
some downstream tasks such as machine translation and named
entity recognition will also degrade.

10.4 Evaluation of Potential Defenses
We evaluate privacy preserving mapping (PPM) and incomplete
embedding defenses against the keyword inference attack on the
Skytrax dataset. Besides, we consider entity recognition as the
downstream task to demonstrate the effects of defenses. Formally,
given a sequence of embeddings 𝑧 = [𝑧1, 𝑧2, ..., 𝑧𝑛] and a sequence
of labels 𝑦 = [𝑦1, 𝑦2, ..., 𝑦𝑛], 𝑦 ∈ (0, 1), where 1 stands for targeted
keywords and 0 stands for other words, the goal is to identify all
the entities labeled with 1. We train a single-layer RNN model
with a hidden state size of 300 to perform entity recognition. The
performance is measured by the F-1 score, which represents the
utility of the task. We report the count of reconstructed keywords
(normalized) as information leakage.

For PPM, we follow the setup in [37]. Given a mapping 𝐷𝜃 :
R𝑑 ⇒ R𝑑 which is trained to minimize the effectiveness of an
imaginary adversaryA𝜙 , formally, the learning objective is a mini-
max game by solving𝑚𝑖𝑛𝜃𝑚𝑎𝑥𝜙

∑A𝜙 (𝐷𝜃 (𝑧))+𝜆 | |𝐷𝜃 (𝑧)−𝑧 | | [47].
The PPM is implemented as a regularization term in the minimax
game so that the distortion of the embeddings is only allowed in a
limited radius. Note that a high value of 𝜆 leads to a lower privacy
budget. For incomplete embeddings, we apply a randomly gener-
ated mask to the embeddings [62], with the masking rate ranging
from 0.1 to 0.9. Higher masking rate leads to sentence embeddings
with more unknown tokens.

As shown in Figure 4, although both defenses can mitigate our
decoder-based attack, they inevitably compromise the utility of
the downstream task. We can observe the trade-off between utility
and privacy for both of the defenses, which suggests that more
sophisticated defense mechanisms that do not compromise utility
to this extent need to be explored.

11 DISCUSSION
11.1 Practicality of Decoder-based Attack
We show that a transformer decoder can reconstruct coherent and
informative texts, therefore revealing sensitive information. Com-
pared to a prior classifier-based attack, it is a more practical threat,
since the adversary does not need to know the secrets within the
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dataset of interest. However, the classifier-based attack requires
the adversary to know the keywords in the dataset or have the
experience to create a set of keywords. Note that it is not practi-
cal to make the above assumption in many domains (e.g., medical,
financial, industrial, and more).

As for the gradient-based attack, it cannot decode the contextual
language embeddings and therefore produce noise outputs. Our
method inverts the deep embeddings more accurately to generate
well-structured sentences.

Finally, our method can still achieve robust performances in a
black-box setting, while the baselines’ performances degrade sig-
nificantly. Since the black-box setting is closer to the real world,
the decoder-based attack represents a practical threat to NLP appli-
cations.

11.2 Limitations
11.2.1 Reconstruction from Embeddings is Hard . We have demon-
strated that the reconstructed texts can reveal high-level semantic
information. Although our method can reconstruct high-quality
sentences in many cases, it often produces lower-quality sentences
as well. Both the proposed decoder-based attack and the previous
gradient-based attack [52] rely on the accurate prediction of the
probability distribution of each word. Hence, there are two chal-
lenges associated with reconstruction: (1) the word probability is
usually distributed over a large vocabulary (thousands of tokens),
which makes it hard to guarantee the right word is going to be
selected, (2) it is difficult to reconstruct long texts. The second chal-
lenge is due to the fact that as the reconstruction goes further, the
dependencies between current words and previous words decrease,
which leads to less accurate results.

11.2.2 Implementation limitations. Although we have shown a
successful decoder-based attack, there are several limitations of this
work that could be explored in the future: (1) We have only tested
the transformer decoder in our experiments. The performance of
other architectures such as RNN [9] may provide more insights. (2)
The hyperparameters (e.g., depth, learning rate, number of heads)
of the decoder follow the default setting, which could have been
improved by grid search.

11.3 Future Work
To improve the overall fluency and coherence of the reconstructions
produced by our attack, we discuss the following future directions.

11.3.1 Pre-training the Decoder on Large Corpus. We have demon-
strated the impacts of pre-training in previous results. The pre-
trained decoder outperforms vanilla decoder on both keyword in-
ference attack and sentence inference attack. However, the size of
the dataset D𝑡𝑟𝑎𝑖𝑛 is relatively small compared to the size of the
training data from pre-trained language models. The generalizabil-
ity of the decoder can be further improved by pre-training on a
large corpus. This has the potential to boost the quality of recon-
structions as well. For example, there exists a gold standard dataset
in the medical domain, namely, MIMIC-III [23]. MIMIC-III includes
more than 1 million caregiver notes of thousands of patients, which
can be utilized by the adversary to pre-train the decoder. Such a

pre-trained decoder can threaten many applications in the medical
domain.

11.3.2 Upgrading Decoder Architecture. Currently, our decoder is
inherited from the transformer’s decoder, which exhibits the ca-
pacity of generating high-quality text. However, with the develop-
ment of language models, more advanced decoder architectures
are emerging. For example, Transformer-XL [10] was proposed to
learn longer-term dependencies, while the vanilla transformer is
limited by the fixed-length context required by the input. Therefore,
Transformer XL can generate more coherent text. If the adversary
adopts such an advanced decoder, the quality of the reconstructions
will likely be enhanced without any other modifications.

11.3.3 ImprovingQuality of Decoding. To further improve the qual-
ity of the reconstructed text, we have employed various approaches,
including top-k sampling, decaying temperature, and repetitive
generation. However, there are more factors to consider, such as
fluency and coherence of the language. Pascual et al. [40] presented
a plug-and-play encoding method: Given a keyword or a topic, it
added a shift to the probability distribution over the vocabulary
towards semantically similar words. Despite the simplicity of this
approach, it still enabled GPT-2 to generate more diverse and fluent
sentences while guaranteeing the appearance of given guide words.
The adversary can employ the plug-and-play method to improve
the coherence of the decoding.

11.3.4 Handling Acronyms and Numbers. Acronyms and numbers
may carry sensitive information (e.g., airline code and medical
terms). However, it is challenging to reconstruct those accurately.
Besides the aid of pre-training, a more sophisticated way to rep-
resent numbers [55] or acronyms [35] may benefit the decoding
quality.

12 CONCLUSION
In this paper, we demonstrate that a decoder-based inference attack
can recover coherent and informative text from sentence embed-
dings in some cases. It is a more practical attack since it can not
only extract the sensitive keywords but also recover higher-level
semantic information.

Our experiments reveal the superiority of our method against
the baselines, especially in the black-box setting, which is closer to
the real-world scenario. Even when the adversary does not know
the targets in the dataset, they can still infer the semantics of the
original text from the reconstructed text.

There are several ways to make the attack stronger, e.g., using a
more advanced decoder architecture and pre-training on a larger
corpus. In addition to that, we have also discussed some potential
techniques to defend against such attacks. For instance, we believe
differentially private training can prevent information leakage from
embeddings to some extend.

ACKNOWLEDGMENTS
We thank the anonymous shepherd and the reviewers for their
valuable suggestions. The work reported in this paper has been
supported by the startup fund provided by The Pennsylvania State
University.

74



Towards Sentence Level Inference Attack Against Pre-trained Language Models Proceedings on Privacy Enhancing Technologies 2023(3)

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 308–318. https://doi.org/10.1145/2976749.2978318

[2] Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis, Pierpaolo
Degano, and Catuscia Palamidessi. 2012. Differential Privacy: On the Trade-Off
between Utility and Information Leakage. In Formal Aspects of Security and Trust,
Gilles Barthe, AnupamDatta, and Sandro Etalle (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 39–54.

[3] Jack Bandy and Nicholas Vincent. 2021. Addressing "Documentation Debt" in
Machine Learning Research: A Retrospective Datasheet for BookCorpus. ArXiv
abs/2105.05241 (2021).

[4] Santiago Zanella Béguelin, LukasWutschitz, Shruti Tople, Victor Rühle, Andrew J.
Paverd, Olga Ohrimenko, Boris Köpf, and Marc Brockschmidt. 2020. Analyzing
Information Leakage of Updates to Natural Language Models. Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security (2020).

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, ArvindNeelakantan, Pranav Shyam, Girish Sastry, AmandaAskell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. ArXiv
abs/2005.14165 (2020).

[6] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom B. Brown, Dawn Xiaodong Song, Úlfar
Erlingsson, Alina Oprea, and Colin Raffel. 2021. Extracting Training Data from
Large Language Models. In USENIX Security Symposium.

[7] Si Chen, Mostafa Kahla, Ruoxi Jia, and Guo-Jun Qi. 2021. Knowledge-enriched dis-
tributional model inversion attacks. In Proceedings of the IEEE/CVF international
conference on computer vision. 16178–16187.

[8] Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian.
2021. Visformer: The Vision-Friendly Transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). 589–598.

[9] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[10] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models beyond a
Fixed-Length Context. ArXiv abs/1901.02860 (2019).

[11] Dina Demner-Fushman and Jimmy J. Lin. 2005. Knowledge Extraction for Clinical
Question Answering: Preliminary Results.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
ArXiv abs/1810.04805 (2019).

[13] Christophe Dupuy, Radhika Arava, Rahul Gupta, and Anna Rumshisky. 2022. An
Efficient DP-SGD Mechanism for Large Scale NLU Models. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 4118–4122.

[14] Cynthia Dwork. 2006. Differential Privacy. In Automata, Languages and Pro-
gramming, Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.

[15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion
Attacks that Exploit Confidence Information and Basic Countermeasures. In CCS.
1322–1333. https://doi.org/10.1145/2810103.2813677

[16] Matt Fredrikson, Eric Lantz, Somesh Jha, Simon M Lin, David Page, and Thomas
Ristenpart. 2014. Privacy in Pharmacogenetics: An End-to-End Case Study of
Personalized Warfarin Dosing. Proceedings of the USENIX Security Symposium.
UNIX Security Symposium 2014 (2014), 17–32.

[17] Markus Freitag and Yaser Al-Onaizan. 2017. Beam Search Strategies for Neural
Machine Translation. In NMT@ACL.

[18] Daniel Greenfield. 2014. Competition and service quality: New evidence from
the airline industry. Economics of Transportation 3, 1 (2014), 80–89. https:
//doi.org/10.1016/j.ecotra.2013.12.005 Special Issue on Airlines and Airports.

[19] Ivan Habernal. 2021. When differential privacy meets NLP: The devil is in the
detail. In EMNLP.

[20] John A Hawkins. 2014. Word order universals. Vol. 3. Elsevier.
[21] Sorami Hisamoto, Matt Post, and Kevin Duh. 2019. Membership Inference Attacks

on Sequence-to-Sequence Models. CoRR abs/1904.05506 (2019). arXiv:1904.05506
http://arxiv.org/abs/1904.05506

[22] Fei Jiang, Yong Jiang, Hui Zhi, Yi Dong, Hao Li, Sufeng Ma, Yilong Wang, Qiang
Dong, Haipeng Shen, and Yongjun Wang. 2017. Artificial intelligence in health-
care: past, present and future. Stroke and Vascular Neurology 2 (2017), 230 –
243.

[23] Alistair Johnson, Tom Pollard, Lu Shen, Li-wei Lehman, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Celi, and Roger Mark. 2016.
MIMIC-III, a freely accessible critical care database. Scientific Data 3 (05 2016),
160035. https://doi.org/10.1038/sdata.2016.35

[24] Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis,
and Abhradeep Thakurta. 2022. Toward training at imagenet scale with differen-
tial privacy. arXiv preprint arXiv:2201.12328 (2022).

[25] Hye-Jin Kwon, Hyun-Jeong Ban, Jae-Kyoon Jun, and Hak-Seon Kim. 2021. Topic
Modeling and Sentiment Analysis of Online Review for Airlines. Information 12,
2 (2021). https://doi.org/10.3390/info12020078

[26] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In ICML.

[27] Lishuang Li, Liuke Jin, Zhenchao Jiang, Dingxin Song, and Degen Huang. 2015.
Biomedical named entity recognition based on extended Recurrent Neural Net-
works. In 2015 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). 649–652. https://doi.org/10.1109/BIBM.2015.7359761

[28] Yuhua Li, Zuhair Bandar, David McLean, and James O’Shea. 2004. A Method for
Measuring Sentence Similarity and its Application to Conversational Agents.

[29] Chin-Yew Lin and Franz Josef Och. 2004. Automatic Evaluation of Machine Trans-
lation Quality Using Longest Common Subsequence and Skip-Bigram Statistics.
In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL-04). Barcelona, Spain, 605–612. https://doi.org/10.3115/1218955.
1219032

[30] B. Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai Lin.
2020. When Machine Learning Meets Privacy: A Survey and Outlook. ArXiv
abs/2011.11819 (2020).

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin Transformer: Hierarchical Vision Transformer
Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV). 10012–10022.

[32] Saeed Mahloujifar, Huseyin A. Inan, Melissa Chase, Esha Ghosh, and Marcello
Hasegawa. 2021. Membership Inference on Word Embedding and Beyond. CoRR
abs/2106.11384 (2021). arXiv:2106.11384 https://arxiv.org/abs/2106.11384

[33] ShaguftaMehnaz, Sayanton V. Dibbo, Ehsanul Kabir, Ninghui Li, and Elisa Bertino.
2022. Are Your Sensitive Attributes Private? Novel Model Inversion Attribute
Inference Attacks on Classification Models. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, Boston, MA, 4579–4596. https:
//www.usenix.org/conference/usenixsecurity22/presentation/mehnaz

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[35] Dana Movshovitz-Attias and William W. Cohen. 2012. Alignment-HMM-Based
Extraction of Abbreviations from Biomedical Text. In Proceedings of the 2012
Workshop on Biomedical Natural Language Processing (Montreal, Canada) (BioNLP
’12). Association for Computational Linguistics, USA, 47–55.

[36] Yuta Nakamura, Shouhei Hanaoka, Yukihiro Nomura, Naoto Hayashi, Osamu
Abe, Shuntaro Yada, Shoko Wakamiya, Eiji Aramaki The University of Tokyo,
Nara Institute of Science, Technology, The Department of Radiology, The Univer-
sity of Tokyo Hospital, The Department of Radiology, and Preventive Medicine.
2021. KART: Privacy Leakage Framework of Language Models Pre-trained with
Clinical Records. ArXiv abs/2101.00036 (2021).

[37] Xudong Pan, Mi Zhang, Shouling Ji, andMin Yang. 2020. Privacy Risks of General-
Purpose Language Models. In 2020 IEEE Symposium on Security and Privacy (SP).
1314–1331. https://doi.org/10.1109/SP40000.2020.00095

[38] Youcheng Pan, Chenghao Wang, Baotian Hu, Yang Xiang, Xiaolong Wang, Qing-
cai Chen, Junjie Chen, and Jingcheng Du. 2021. A BERT-Based Generation Model
to Transform Medical Texts to SQL Queries for Electronic Medical Records:
Model Development and Validation. JMIR Med Inform 9, 12 (8 Dec 2021), e32698.
https://doi.org/10.2196/32698

[39] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics (Philadel-
phia, Pennsylvania) (ACL ’02). Association for Computational Linguistics, USA,
311–318.

[40] Damian Pascual, Beni Egressy, Clara Meister, Ryan Cotterell, and Roger Wat-
tenhofer. 2021. Keyword2Text: A Plug-and-Play Method for Controlled Text
Generation. In Findings of the Association for Computational Linguistics: EMNLP
2021. Association for Computational Linguistics.

[41] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing
Huang. 2020. Pre-trained Models for Natural Language Processing: A Survey.
ArXiv abs/2003.08271 (2020).

[42] Alec Radford and Karthik Narasimhan. 2018. Improving Language Understanding
by Generative Pre-Training. OpenAI.

[43] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. OpenAI.

[44] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. CoRR

75

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1016/j.ecotra.2013.12.005
https://doi.org/10.1016/j.ecotra.2013.12.005
https://arxiv.org/abs/1904.05506
http://arxiv.org/abs/1904.05506
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.3390/info12020078
https://doi.org/10.1109/BIBM.2015.7359761
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
https://arxiv.org/abs/2106.11384
https://arxiv.org/abs/2106.11384
https://www.usenix.org/conference/usenixsecurity22/presentation/mehnaz
https://www.usenix.org/conference/usenixsecurity22/presentation/mehnaz
https://doi.org/10.1109/SP40000.2020.00095
https://doi.org/10.2196/32698


Proceedings on Privacy Enhancing Technologies 2023(3) Trovato et al.

abs/1910.10683 (2019). arXiv:1910.10683 http://arxiv.org/abs/1910.10683
[45] Laura Elena Raileanu and Kilian Stoffel. 2004. Theoretical comparison between

the gini index and information gain criteria. Annals of Mathematics and Artificial
Intelligence 41, 1 (2004), 77–93.

[46] Maria Rigaki and Sebastián García. 2020. A Survey of Privacy Attacks in Machine
Learning. ArXiv abs/2007.07646 (2020).

[47] Salman Salamatian, Amy Zhang, Flávio du Pin Calmon, Sandilya Bhamidipati,
Nadia Fawaz, Branislav Kveton, Pedro Oliveira, and Nina Taft. 2015. Managing
Your Private and Public Data: Bringing Down Inference Attacks Against Your
Privacy. IEEE Journal of Selected Topics in Signal Processing 9 (2015), 1240–1255.

[48] Chenze Shao, Yang Feng, and Xilin Chen. 2018. Greedy Search with Probabilistic
N-gram Matching for Neural Machine Translation. In EMNLP.

[49] Virat Shejwalkar, Huseyin A. Inan, Amir Houmansadr, and Robert Sim. 2021.
Membership Inference Attacks Against NLP Classification Models. In NIPS.

[50] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership Inference Attacks Against Machine Learning Models. In 2017 IEEE Sym-
posium on Security and Privacy (SP). 3–18. https://doi.org/10.1109/SP.2017.41

[51] Harshdeep Singh, RobertWest, andGiovanni Colavizza. 2020. Wikipedia citations:
A comprehensive data set of citations with identifiers extracted from English
Wikipedia. Quantitative Science Studies (2020), 1–19.

[52] Congzheng Song and Ananth Raghunathan. 2020. Information leakage in em-
bedding models. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 377–390.

[53] Max Spero. 2019. Improved Beam Search Diversity for Neural Machine Transla-
tion with k-DPP Sampling.

[54] RaymondHendy Susanto, DongzheWang, Sunil Yadav,Mausam Jain, andOhnmar
Htun. 2021. Rakuten’s Participation in WAT 2021: Examining the Effectiveness
of Pre-trained Models for Multilingual and Multimodal Machine Translation. In
Proceedings of the 8th Workshop on Asian Translation (WAT2021). Association for
Computational Linguistics, Online, 96–105. https://doi.org/10.18653/v1/2021.wat-
1.9

[55] Avijit Thawani, Jay Pujara, Pedro A Szekely, and Filip Ilievski. 2021. Representing
numbers in NLP: a survey and a vision. arXiv preprint arXiv:2103.13136 (2021).

[56] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. 2018.
Towards Demystifying Membership Inference Attacks. ArXiv abs/1807.09173
(2018).

[57] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. 2021.
Demystifying Membership Inference Attacks in Machine Learning as a Service.
IEEE Transactions on Services Computing 14, 6 (2021), 2073–2089. https://doi.org/
10.1109/TSC.2019.2897554

[58] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. ArXiv abs/1706.03762 (2017).

[59] Yungao Xie, Hongying Wen, and Q. Yang. 2021. Ternary Sentiment Classification
of Airline Passengers’ Twitter Text Based on BERT. Journal of Physics: Conference
Series 1813 (2021).

[60] Wei Yang and Qiang Su. 2014. Process mining for clinical pathway: Literature
review and future directions. In 2014 11th International Conference on Service
Systems and Service Management (ICSSSM). 1–5. https://doi.org/10.1109/ICSSSM.
2014.6943412

[61] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. Curran Associates Inc., Red Hook, NY, USA.

[62] Jiehang Zeng, Xiaoqing Zheng, Jianhan Xu, Linyang Li, Liping Yuan, and Xuan-
jing Huang. 2021. Certified robustness to text adversarial attacks by randomized
[mask]. arXiv preprint arXiv:2105.03743 (2021).

[63] Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song.
2020. The Secret Revealer: Generative Model-Inversion Attacks Against Deep
Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

[64] Xuejun Zhao, Wencan Zhang, Xiaokui Xiao, and Brian Lim. 2021. Exploiting
explanations for model inversion attacks. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 682–692.

A APPENDIX
A.1 The Effect of the Size of Private Dataset
To verify the generalizabilty of our method, we conduct control
study on the size of MT dataset and show the results in Figure
5. It is noticeable that the attack performance is roughly linearly
correlated to the size of the dataset, which suggests that our attack
generalizes well and the extent of information leakage scales up
with the size of the dataset.

Figure 5: The attack performance on MT dataset of varying
size

A.2 Comparison with Binary Classifiers
We have shown that our decoder-based attack is superior to multi-
class-classifier-based attack in various settings. However, extending
binary classifier to multi-class classifier may jeopardize its perfor-
mance for scalability. To compare our attack directly with binary
classifier attack, we randomly sample 10 keywords from the each
training dataset then train 10 binary classifiers to perform infer-
ence attack. Specifically, we show the results of both white-box
and black-box settings on Twitter dataset (airline) and MT dataset
(medical).

As displayed in Figure 6, the binary classifiers perform better
than the decoder on most keywords (e.g. Los Angeles and Orlando)
in thewhite-box setting. It is reasonable since binary classification is
a relatively simple task given public/private datasets share the same
distribution. However, in the black-box setting, the performances
of binary classifiers degrade significantly due to the different distri-
bution of the private dataset, while our decoder remains relatively
more stable. Similar to our observations in previous experiments,
our decoder tends to be more robust in black-box setting.

A.3 Randomly Selected Examples
Although we show that our decoder can reconstruct high quality
sentences in some cases, there still exist challenges in the reconstruc-
tion process. According to Table 4, the decoder handles acronyms
and numbers less accurately. We leave this topic open for future
research.

A.4 Ablation Study on k
We show the impact of 𝑘 (top-k words are finally kept and examined
in keyword inference attack) in Figure 7. A larger 𝑘 certainly makes
our attack more accurate. However, it may also lower the efficiency
as the adversary needs to check more words. We picked 20 to reach
a balance between effectiveness and efficiency. As demonstrated
in Figure 7, the curves of all keywords and the curves of unique
keywords often tend to converge in the early stage (𝑘 = 25), which
suggests that we do not need a very large 𝑘 to achieve the best
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(a) Results of white-box attack on Twitter dataset (b) Results of black-box attack on Twitter dataset

(c) Results of white-box attack on MT dataset (d) Results of black-box attack on MT dataset

Figure 6: The results of binary classifiers.

Table 4: 10 Random Examples of Sentence Inference Attack

Domain Original Reconstructed

Airline

Paris (cdg) to Detroit (dtw) Paris [PAD] to [PAD] dtw
Lion air 8pm flight Bengkulu to Jakarta March 2 Lion air flight [PAD]ngbulu

cx841 from New York jfk to hkg c0 New York john
Venice to Toronto on August 23 2013 Venice 23 made 19 143 2013

Zurich to Ljubljana return Zurich to Ljubljana 3 short

Medical

manual muscle test of arm, leg or trunk manual test of hand arm behind leg
injection of agent to destroy rib nerve agent de from to approach rib

mra scan of neck blood vessels throat chest mra to than neck
X-ray of abdomen, minimum of 3 views X before and each 4 typically views

X-ray of upper spine, 4 or 5 views X ray 5 from at 4 6 views

results. Hence, our attack is not very sensitive to the choice of 𝑘
when 𝑘 ≥ 20.
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(a) (b) (c) (d)

Figure 7: The ablation study of 𝑘 . (a) The count of reconstructed keywords on Skytrax dataset (b) The count of reconstructed keywords on
CMS dataset; (c) The number of unique keywords on Skytrax dataset; (d) The number of unique keywords on CMS dataset.
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