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ABSTRACT
Tor is a popular privacy-enhancing technology that allows anony-

mous communication using onion routing. However, such technolo-

gies are only helpful if used; therefore, performance is an important

aspect. One of the main performance bottlenecks of Tor is the

cross-circuit interference (CCI) problem. Tor multiplexes multiple

circuits over a single Transport Layer Security (TLS) 1.2 connection

if they share a path segment (link). Therefore, they have the same

congestion window, which can yield unfair bandwidth allocation.

However, there has been little work in understanding this problem

in more depth.

This paper investigates the number of simultaneously shared

links in the current Tor network, which are the root cause of CCI.

We developed a novel shared links simulator called SALSA to in-

vestigate this problem. Our results show that 3.7 % of active links

are shared, and the involving Onion Routers (ORs) have the most

common bandwidth capabilities. Additionally, we show that the

internal circuits and exit policy influence the CCI problem. Fur-

thermore, we model the number of shared links when the demand

grows further and show that the number of shared links can go up

to 16 %. Finally, we run Shadow simulations with a 25 % downscaled

Tor network and show that a network without shared links is faster.
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1 INTRODUCTION
Anonymisation is fundamental for the right to privacy. Anonymi-

sation networks allow anonymous communication via the Internet.

These networks encrypt network traffic multiple times and send

it through a network via intermediate relays. Due to this mech-

anism, these networks are slower than a direct connection. Tor

is the most prominent anonymisation network, and according to

the NSA/GCHQ leaks from Edward Snowden, “still the king of
high secure, low latency Internet Anonymity” [1]. It allows users to
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communicate anonymously by hiding their identities using onion

routing. A client chooses a path consisting of three Tor relays, called

a circuit, and encrypts the traffic for each relay, beginning with the

last one. This guarantees that every relay only knows the predeces-

sor and the successor, not the whole circuit. Since its first release

in 2002 [2], Tor’s size has grown drastically.

The Tor Metrics project [3] estimates around 2 000 000 daily

active clients [3], whereas a measurement study from 2018 [4]

estimates around 8 000 000 daily active clients. Jansen, Traudt, and

Hopper [5] measures the number of simultaneously active users

up to 792 000 within 10min. The popularity of Tor is growing,

particularly with increasing Internet surveillance and censorship.

The survey from Alsabah and Goldberg [6] summarised Tor’s

main performance problems and identified cross-circuit interfer-

ence (CCI) as the main problem. Tor multiplexes several circuits,

which correspond to separate communication channels, over a sin-

gle Transport Layer Security (TLS)-secured TCP connection. These

multiplexed circuits share the same congestion window leading

to unfair bandwidth allocation. Without Tor, each connection has

a separate congestion window and consequently reacts indepen-

dently loosening the interference between circuits. This is mainly a

problemwhen bulk traffic circuits (e. g. a download) are multiplexed

with an interactive session where responsiveness is essential. If

bulk traffic causes loss events and congestion control is triggered,

packets from the interactive session must also wait. This is a well-

known problem called TCP head-of-line blocking (HolB) and can

happen when there are simultaneously shared links.

Much research has been conducted to reduce the effect of CCI.

One proposal for this problem is to replace the transport protocol

[7–10] with a UDP-based protocol or use a separate TCP connection

for each circuit. This is a promising direction, but there are still

open problems that need to be solved, i. e. lack of hop-by-hop relia-

bility. Jansen, Geddes, Wacek, Sherr, and Syverson [11] and Jansen,

Traudt, Geddes, Wacek, Sherr, and Syverson [12] took a different

approach and investigated congestion in the kernel socket buffers.

They proposed Kernel Informed Socket Transport (KIST), which

optimises the amount of data that is written to each socket. KIST

has been merged into Tor version 0.3.2.1-alpha [13] and can be seen

as an application layer TCP HolB mitigation. Another proposal is

to directly integrate congestion control and avoidance mechanism

into Tor [14, 15]. Recently, Tor has integrated end-to-end congestion
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control [16] in version 0.4.7.7. It is unclear what the implications

are for the CCI problem.

There is a gap in the scientific literature regarding the num-

ber of simultaneously shared links in Tor. Merely, Jansen, Geddes,

Wacek, Sherr, and Syverson [11] investigated this issue and esti-

mated 99.775 % of unshared paths in the Tor network. However,

this study is from 2014 and in the meantime, the Tor protocol and

infrastructure have changed. However, no study focuses entirely

on measuring and estimating simultaneously shared links in Tor

to the best of our knowledge. Additionally, there has been little

work in understanding the performance when Tor’s demand grows

further. For those reasons, we investigate the probability of shared

links in the Tor network and their influence on its performance.

Research Questions (RQs).We conducted our study with the

following RQs in mind:

RQ1 How many simultaneously active shared links
1
exist cur-

rently in the network, and what influences this number?

RQ2 Howmany simultaneously active shared links
1
exist when

the demand grows further?

RQ3 How does the CCI influence the current network perfor-

mance in the face of simultaneously shared links?

Contributions. In addition to addressing our RQs, our work

makes the following contributions. We

(1) developed a novel simulator called ShAred Links SimulA-

tor (SALSA) to investigate CCI and compare it with other

simulators;

(2) conduct different simulations to find out how many simulta-

neously shared links per second currently exist in the Tor

network and compare them;

(3) run experiments with Shadow in which we simulate a net-

work of 25 % and compare it with the simulations;

(4) use our simulations and experiments to predict the number

of simultaneously shared links when the demand is further

growing;

(5) run experiments with Shadow in a 25 % network and com-

pare Vanilla Tor with Per-Circuit TCP-over-TLS (PCTLS),

including a model with packet loss, showing that this is

indeed a promising direction;

(6) run experiments in a local private Tor network with different

traffic types and measure their impact on Tor’s performance.

Organisation. The rest of the paper is organised as follows.

In Section 2, we described Tor, the CCI problem and defined the

terminology we use throughout the paper. Next, we describe our

experimental setup and our simulations in Section 3. Section 4

evaluates our RQs; verifies and compares SALSA; and presents our

results. In Section 5, we discuss the limitations of our study, and in

Section 6, we discuss related work. Finally, in Section 7, we conclude

and discuss future work.

2 BACKGROUND
This section provides an overview of Tor and its CCI problem.

Entry Relay
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Middle Relay

𝑂𝑅2
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Figure 1: Example of how Tor works. Alice’s Tor client first
contacts the Directory Authority (DA) to get a list of Onion
Routers (ORs). Then it encrypts hermessage𝑀 three times in
reverse order and sends it to the first Tor relay, also referred
to as the Tor entry relay. The straight green line contains
traffic that Tor encrypts, and the dotted red line is traffic that
might or might not be encrypted.

2.1 Tor
In the example in Figure 1, Alice uses the Tor client, also referred

to as Onion Proxy (OP), and sends a message𝑀 anonymously to a

website. First, Alice downloads a list of OR descriptors from the DA,

which contains each OR’s IP address, port number, public key, and

bandwidth capability. Second, Alice selects𝑛 ORs according to Tor’s

path selection algorithm. This algorithm chooses each OR with a

probability proportional to its bandwidth capabilities. Meaning

ORs with higher bandwidth capabilities are chosen more often.

The path through the selected ORs is called a circuit. In a typical

Tor configuration, 𝑛 = 3. Alice builds the circuit telescopically

by initiating a link to the first OR and then through the first one,

a link to the second OR and so on. This is done by sending an

EXTEND message to the first OR to build a link to the second OR

and then an EXTEND message to the second OR to establish a link

with the last OR. If there is no link between ORs, then a new link

is initiated; otherwise, a previous link is used. For performance

reasons, Alice establishes multiple circuits in advance. TLS 1.2 is

used as the communication protocol between ORs. This ensures

reliability and in-order delivery and mitigates OS fingerprinting

attacks since the TCP stack from the OP is not used. Third, after a

circuit is created, Alice encrypts the message 𝑀 in reverse order.

This means Alice encrypts the message 𝑀 for 𝑂𝑅3 and adds the

address of website 1. This message 𝑀 is then encrypted for onion

router 𝑂𝑅2, followed by adding the address of onion router 𝑂𝑅3.

Alice repeats this process until adding the layer for onion router𝑂𝑅1
and then sends this layered encrypted message to 𝑂𝑅1.

2.2 Cross-circuit Interference (CCI) Problem
The underlying problem of CCI is the HolB problem. This is a

general problem and can happen whenever there is a single queue

of data and multiple receiver queues. If one packet (the head of the

line) is lost, all following packets must wait. Figure 2 shows this

problem for Tor.

1
Measure resolution is one second
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Figure 2: OR can multiplex multiple circuits over a com-
mon TLS connection. Green arrows represent an interactive
protocol (e. g., SSH, Chat) and red arrows represent a bulk
download. The tube represents the TLS 1.2 connection with
a single congestion window.

Tor’s cryptographic protocols require reliability and in-order

delivery; otherwise, cells cannot be decrypted correctly. For this

reason, multiple circuits are multiplexed over a single TLS connec-

tion. However, in-order delivery of cells is only necessary within

a single circuit and not for all circuits over a single connection.

When traffic from different circuits are multiplexed over one TLS

connection, the problem might occur.

Most modern server and desktop Operating Systems (OSs) use

congestion control algorithms that use packet loss to detect con-

gestion and optimise network flow, e. g., TCP CUBIC [17] and TCP

NEW RENO [18]. TCP considers a packet lost when there is no ac-

knowledgement after the retransmission timeout or after receiving

three duplicated acknowledgements. Depending on the connection

phase, packet loss has different implications for the connection. In

the slow start phase, a loss event halves the window size and starts

the congestion avoidance phase. In the congestion avoidance phase,

a loss event reduces the window size by a factor that is defined by

the congestion control algorithm. TCP CUBIC
2
reduces its window

size by a factor of 𝛽 , set to 0.2 in the original research paper [17].

TCP NEW RENO also halves the window size and enters the fast

recovery phase. That means if a loss event occurs on one of the

multiplexed connections, TCP’s congestion control is triggered, and

the other connection with no packet loss slows down or needs to

wait. This problem happens only if a circuit shares a link.

2.3 Terminology
This section defines the terminology we use throughout this paper

since there is no consistent nomenclature.

Guard relay: An OR that has a set guard flag.

Middle relay: An OR with neither a set guard nor an exit flag.
Circuit Part: A circuit with the following ORs, 𝐴 ⇄ 𝐵 ⇄ 𝐶 ,

consisting of two parts, either 𝐴 ⇄ 𝐵 or 𝐵 ⇄ 𝐶 .

Link: A TLS 1.2 connection between two ORs in which one or

multiple circuits can be multiplexed.

Shared Link: A link in which two or more circuits are multiplexed.

Active Circuit (Part): A circuit (part) where one or more Tor cells

are transferred in a specific time frame.

Active Link: A link with one or more active circuit parts.

Directed/Undirected: For directed links, the order of the relays

matter; for undirected links, it does not.

2
CUBIC is the default congestion control in MacOS, Linux since Kernel 2.6.19, in later

Microsoft Windows 10 builds, and Windows Server 2019.

External/Internal: External circuits target the Internet, and in-

ternal circuits target mainly Onion services.

3 EXPERIMENTAL SETUPS
This section describes the experimental setups that we have used

in our study.

3.1 Simulators
In this section, we describe the known simulators and our novel

simulator SALSA.

3.1.1 Shadow. It is a discrete-event simulator [19] that runs a

private Tor network on a single machine. We use Shadow in ver-

sion 1.13.2 (Nov 2019), the same version used in [20]. To estimate

how many active simultaneously shared links per second exits, we

will conduct a Shadow simulation with a modified Tor client based

on tag tor-0.3.5.18 (Jan 2022). This modified version logs every

second all active circuit parts. Relay cells include but are not limited

to circuit EXTEND and SENDME messages. Unfortunately, Shadow

simulations with a higher network scale take multiple days.

3.1.2 Tor Path Simulator (TorPS). It is a path simulator for Tor [19].

It reimplements the path selection algorithm in Python. An initiali-

sation step is necessary to run simulations. For this step, we need

consensus and server descriptor documents from CollecTor [21].

Afterwards, simulations can be run repeatedly. Simulations with

TorPS run faster than Shadow simulations. We used its simple user

model to generate circuits. The simple user model only makes cir-

cuits to google.com on port 80, representing web traffic. TorPS only

outputs IP addresses for the relays in a circuit, but one IP address

can have multiple Tor clients. In our other setups, we used only

relay fingerprints. A relay fingerprint always implies a unique com-

bination of IP address and port. Therefore, we modify TorPS to

output fingerprints.

3.1.3 Modified Tor Client. We modified the Tor client to generate

circuits offline from any consensus document to verify our simula-

tion. We used the consensus document archive from CollecTor [21]

to extract the matching documents for a timestamp. The following

three documents are necessary: cached-certs, cached-microdesc-
consensus, and cached-microdescs. These documents can be ex-

tracted from the CollecTor archives. The Tor process needs to

change the clock to load these consensus documents. In Linux,

we use faketime [22], a command-line program that fakes dates

and times without modifying the system-wide time.

Any side effects on the live network are undesirable, so we

disable Internet access and circuit establishment and only log the

generated circuits. Generating many circuits is very slow, even

though Tor is written in C.

However, there is a problem while generating circuits from one

Tor client. Tor clients sample up to 60 guard relays and stick with

them. They use these guards for two months, or until they become

unavailable, so generated circuits will only use a small subset of all

guard relays. To solve this issue, we disable this specific code path,

so guards are always chosen randomly by weight. One caveat, we

can only simulate one circuit per client, but this is enough for our

purposes.
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3.1.4 Shared Link Simulator (SALSA). We developed SALSA, a sim-

plified model of the Tor Path Selection Algorithm. It is not designed

to answer questions of a particular relay but to model the overall

shared link distribution of the Tor Network. It takes a consensus

document and the number of active circuits as input; and; outputs

the number of shared links in percentage.

We only implement the necessary parts of the Tor Path Selection

Algorithm. This algorithm relies primarily on two principles:

(1) Relays are chosen at random weighted by their bandwidth

and;

(2) the bandwidth is weighted by the position in the circuit

depending on relay flags.

The consensus chooses the position-dependent weights. Besides

these weights, the Tor Path Selection Algorithm does different

filtering steps. The two most important steps are:

(1) The consensus allowsmiddle relays to be chosen in the guard

position, but only relays with guard flag are chosen for this

position.

(2) The consensus allows all relays to be chosen for the exit po-

sition, but only relays with a suitable exit policy are chosen.

Our simulator implements these steps. We verify our simulator

in Section 4.4. Now, we can take a consensus document and some

active circuits and calculate the probability for each relay in each

position. If we choose one relay for every position, we have a

circuit. We have included an annotated pseudocode of SALSA in

Algorithm 1 in the Appendix, and we published our source code on

Gitlab
3
.

3.2 Environments
In this section, we describe the hardware and software environ-

ments in which our experiments and simulations run.

3.2.1 High-Performance Environment. As described in the previous

section, Shadow has high hardware requirements for memory and

processing power. For this reason, we used a 4 x 16-Core AMD

Opteron 6380 with 900GB of RAM. On this system, we run Debian

11 using Linux Kernel 5.10.106-1. This hardware restricted us from

simulating a 25 % Tor network.

3.2.2 Private Tor Setup. Shadow simulations are essential to see

network-wide effects of Tor features. However, we built two private

Tor setups with network namespaces to isolate parameters and see

effects in specific scenarios. For this reason, we used a desktop

computer with a 8-core AMD Ryzen 7 3700X with 64GB of RAM.

We run Manjaro with the Linux Kernel 6.0.11-1-MANJARO. Both

testbeds systems are build with mininet [23, 24] 2.3.0-1.
The first testbed is depicted in Figure 3. For this testbed system,

we oriented ourselves on Reardon and Goldberg [9] for a better

comparison. It contains eight clients that download bulk data from

the server. Two clients are connected to each entry relay. These

entry relays are then connected to one middle relay, which connects

to the exit relay. The connection between the middle and exit relay

is a shared link.

3
https://gitlab.com/spahl/hydra-popets2023

However, eight clients behind a shared link is an extreme exam-

ple, as seen in our measurements in Figure 7. For this reason, we

build a testbed that only contains two clients, similar to Figure 2.

4 EVALUATION
This section evaluates our RQs with the experimental setups de-

scribed in the previous section. For RQ1 and RQ2, we will use

SALSA, a modified Tor client, and TorPS. However, SALSA needs

the number of active circuits per second, and we get this num-

ber from experiments with Shadow. Regarding RQ3, we will use

Shadow experiments to investigate the performance influence.

4.1 Current Number of Simultaneously Shared
Links (RQ1)

This section investigates RQ1, asking how many simultaneously

active shared links exist currently in the Tor network and what

influences this number beside the number of relays and users. Recall

that a link is a TLS connection between two ORs. Only one link

exists between a pair of ORs in the current Tor implementation.

Over this link, multiple circuits can be multiplexed and then become

a shared link. We call it an active circuit when at least one relay cell is
sent during a pre-defined time frame. Here we deviate from Jansen,

Traudt, and Hopper [5] because they define an active circuit if more

than seven cells are sent during 10min. That is because it takes

seven cells to establish a circuit. We count these cells, too, because

they contribute to the problem like any other cell. However, we

choose a time frame of 1 s instead of 10min to have anmore accurate

snapshot. In theory, simultaneously active shared links mean that

we have that many active shared links at any time. This requires

a snapshot of the whole network. However, a perfect snapshot is

impossible because we always have a discrete-time unit.

The necessary steps to calculate the percentage of shared links

are as follows: Foremost, we count the number of circuits and put

the first and second links in a list. Every unique member of that list

counts as a link. Every unique member of that list that appears two

or more times counts as a shared link. Then, we divide the number

of shared links by the number of links and get the shared link

percentage. For directed links, the order of the relays matter; for

undirected links, it does not. We consider both and have a detailed

explanation in Section 4.1.4.

4.1.1 Measure Active Circuits per Second. To address RQ1, we need
to know how many active circuits exist per second in the network.

This value is also needed to calculate the number of shared links

for every consensus document. We use our Shadow setup described

in Section 3.1.1 with a 25 % Tor network to measure the number of

active circuits per second. Our Shadow setup uses tornettools [25]
from [20] which scales the total number of relays and the number

of active/inactive circuits linearly with the network scale. Active

circuits per second depend on these parameters and will also scale

linearly. This allows us to extrapolate to a 100 % Tor network with

SALSA. Our Shadow simulation is based on consensus data from

November 2021, and it runs for 60 simulationmin. Within 10min,

Shadowwill simulate≈ 198 k active users and≈ 374 k active circuits.
We log all active circuit parts and their fingerprints every second.

Based on this log data, we can calculate the number of active

links, active circuits, and the percentage of shared active links. If we
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Figure 3: This experimental setup is similar to [9]. It contains eight clients that download bulk data. Always two clients are
connected on one entry relay. Each entry relay is connected to a single middle relay, which is again connected to a single exit
relay. The link between the middle relay and the exit relay is a share link.
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Figure 4: Shows the active shared link in percentage depend-
ing on the Tor network scale. All lines are results from SALSA
based on consensus documents, one for every day, in Novem-
ber 2021. The orange and blue lines show general purpose
exit circuits. The red and green lines show internal circuits.
For each network scale, twenty consensus documents are
sampled via tornettools. Shadow measurements for 1%, 10%
and 25% are shown as points.

group by relay and timestamp, the number of unique fingerprints

is the number of active links to the next relay. We only see one part

of a circuit because we measure on ORs. For this reason, we divide

the number of all circuit parts by two to get the overall number of

active circuits. If one link in a circuit is active, the other link will

likely be active within one second. Our results: A 25 % Tor network

has, on average, 24 219 active circuits per second with a standard

deviation of 155. This value comes from ten different 25 % Shadow

simulations with vanilla Tor without packet loss.

4.1.2 Active Shared Links in the Tor Network. Figure 4 depicts the
number of active shared links in the Tor network run with SALSA

verified selectively with Shadow. The number of active shared links

in Figure 4 with Shadow for a 1 %, 10 % and 25 % network is 54.82 %,

20.56 % and 12.51 %, respectively. We repeated the 25 % Shadow sim-

ulations ten times, and on average, the network has 12.5 % shared

links with a standard deviation of 0.2 %, close to 12.0 % from SALSA.

Figure 4 shows these values in the bottom left. We repeated the

1 % and 10% Shadow simulations once since they only serve us to

check SALSA validity.

These results are comparable to the External & Directed by

SALSA (orange line). We have sampled five consensus documents

from November 2021 using tornettools for each network scale. This

tool multiplies the number of relays and users from a 100 % network

times the network scale. The confidence intervals per line are tiny

due to how tornettools samples. The bandwidth distribution for

every sample is very similar, leading to a similar number of shared

links. The only variation comes from the simulation itself.

4.1.3 Influence of Exit Policies on Shared Links. Besides web traf-
fic, file-sharing protocols, such as BitTorrent, are often used over

Tor [26]. Relay operators do not want to deal with abuse issues from

file-sharing; for this reason, Tor has implemented exit policies. An

exit policy filters outgoing connections according to specific rules,

which gets propagated to the Tor client. The Tor client then avoids

choosing exit relays that do not allow the intended network traffic.

As a result, other network traffic can have more simultaneously

shared links since the number of exit relays that allows that type

of traffic is lower.

In 2021, all exit relays allowed HTTP/S traffic with very few

exceptions. The modified Tor client and TorPS can consider exit

policies, but we use them only for HTTP/S traffic. Our shadow

setup does not consider exit policies. Other protocols are at least

included in the average number of active circuits within 10min,

reflecting the live network.

However, with our simulation, we can filter exit relays with spe-

cific exit policies to investigate the influence of these policies on

the number of shared links. We will use the same traffic classifi-

cation from [26], which we have added for completion in Table 1.

Figure 5 compares the different file-sharing classes depending on

the number of shared links. All classes have the same number of

active circuits as a 100 % Tor network. This allows us to compare

these classes as if the whole network would only serve one of those

classes exclusively.
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Figure 5: Shows a comparison of different file-sharing classes
based on [26] versus regular web traffic and the influence
on shared links per second. We compare here only extreme
cases. Each box plot is based on consensus documents from
November 2021 with a 100% Tor network. File-sharing exit
policies can have a significant influence on shared links.

The results show that the number of shared links for file-sharing

protocols are higher compared to regular web traffic due to fewer

exit relays. We compare web traffic, file-sharing and a mixture class.

The mixture class mixes the other classes with measured ratios from

the live network. We describe this in more detail in Section 4.1.7.

Fewer and fewer exit relays are available for the different classes.

On average, for Web or Mixture is 1348, for Various is 45, and for

the remaining classes are around 200 exit relays available. This

leads to a growing number of shared links between middle and exit

relays. We have an average value of 4.3 % for the Web, 6.7 % for

Mixture, 11.3 % for BitTorrent Base, 11.2 % for BitTorrent Extended,

11.2 % for other file-sharing protocols, and 16.2 % for various.

Key Insight: The exit policy influences the number of shared

links and increases the CCI problem, particularly for ORs that

allow file-sharing protocols.

4.1.4 Influence of Link Direction on Shared Links. We consider di-

rected and undirected links. Suppose we have a link between 𝑂𝑅1
and 𝑂𝑅2 and two circuits. The first circuit uses a path from 𝑂𝑅1 to

𝑂𝑅2 and the other vice versa. An undirected link would be shared

Traffic Class TCP Ports

Normal Web Traffic 80, 443

BitTorrent Base [6881–6880]

BitTorrent Extended [6890–6999]

Other File-Sharing 1214,[4661–4666],[6346–6429],6699

Various 25,119,[135-139],445,563

Table 1: Distinguishing features of the traffic classes based
on [26].

since both circuits use the TCP connection between the two ORs. A

directed link would not consider a shared link because the circuits

have different directions. Each OR has its congestion window, so

in theory, they do not affect each other. However, congestion in

one direction could affect the other. Since we have two-way com-

munication, a delayed or lost packet (both are feedback signals for

congestion) in one direction impacts the congestion window from

the other side. In two-way communication, TCP often piggybacks

acknowledgements on data packets. Also, if a router in-between is

congested, it might affect both sides, depending on the cause of con-

gestion. A router running out of memory will affect both directions;

if a send or receive queue is full, it may only affect one direction.

For these reasons, we consider both directed and undirected links.

Figure 4 shows that if we view links as undirected, we have more

shared links. This is mainly due to guard relays which can show up

in the entry and middle positions, in the internal case, and also in

the exit position. It is more likely that a middle relay is picked for

this position if it has the same bandwidth weight as a guard, but

guards have a higher bandwidth weight on average. So two guards

will likely be picked for both positions. That is why we see more

shared links. We included link direction in all our figures where it

makes sense.

4.1.5 Influence of Internal Circuits on Shared Links. Recall that
internal circuits stay within the Tor network; they do not connect

to an external server. They are used for Onion services, measuring

bandwidth, testing and directory connections. Both client and ser-

vice connect to a Rendezvous Point (RP), which acts as a proxy to

exchange data with an Onion service. The RP is chosen as a middle

relay by the client who wants to connect to a service. A client builds

a three-hop circuit, where the last relay is the RP. A service builds

a three-hop circuit to the RP. The last relay before the RP is also

chosen as a middle relay. There is more complexity involved with

Onion services, but we only focus on established connections. We

refer interested readers to [27] for a detailed description of the ren-

dezvous specification. Both client and service now have a three-hop

circuit that is joined on both ends.

The difference between internal and external circuits exit relays

are chosen like middle relays. To integrate these circuits in our

simulation, we build three-hop internal circuits, where the last

relay is chosen as a middle relay. There are more middle than exit

relays. Therefore, we could expect fewer shared links because there

are more possible links overall. However, relays with set guard flags

can also be chosen in the middle position, which leads can lead to

more shared links between guard and middle OPs as well as middle

and exit OPs. This can even increase the number of shared links;

see the green line in Figure 4.

If we first focus on the directed case, both internal and external

are on the same level. This is due to the consensus data fromNovem-

ber 2021. Nevertheless, for the whole year, see Figure 8, internal is

always above external. We will discuss Figure 8 later in Section 4.2.

The difference between both cases is visible for the undirected case,

which is also more critical. We have around a 1 % increase in shared

links.

These figures show extreme cases where all circuits are either

external or internal. The real network has a mixture of both cases

between these extremes. For example, Jansen, Traudt, and Hopper
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Figure 6: Shows the number of active shared links in percent-
age depending on the Tor network scale. Each line represents
a client (OP) with 1, 16, 32 and 64 active circuits. We high-
lighted the values for 100% to show the differences.

[5] found ten times fewer circuits on exit relays than guard relays,

suggesting more internal than external circuits.

Key Insight: Internal circuits have more shared links than

external circuits.

4.1.6 Influence of Guards Relays on Shared Links. Onion Proxies

sample up to 60 guard relays and stick with them. They use these

guards for two months or until they become unavailable. Thus, gen-

erated circuits for one OP will only use a small subset of all guard

relays. Further, clients have a list of three primary guards chosen

from all sampled guards. These primary guards are selected ran-

domly. In the live network, 84 % of OPs use up to 5.0 active circuits

[5] within 10min. We did not measure how many active clients per

second were active; we have only the number of active circuits per

second. Therefore, we do not have the average active circuits per

client, but they are most likely between 1.0 to 5.0. Remember that

84 % of OPs use up to 5.0 active circuits.

If OPs only switch between three guard relays, it increases the

probability of a shared link for their circuits. If we keep the number

of active circuits constant and increase the number of active circuits

per client to 64, then the shared link percentage only increases from

4% to 5 %. As shown in Figure 6, the number of shared links grows

very slowly, even for more significant values. The total number of

circuits is constant for every network scale. The circuits per client

go up to 64, which does not reflect the current network.

We use only one guard per client in SALSA, so that this change

would be even more minor in the live network. Furthermore, we

expect the average number of active circuits per second and per

client to be very close to 1.0, so this increase is neglectable.

Key Insight: Limiting the number of guard relays per client

does not significantly influence the number of shared links.

4.1.7 Results. Our measurements show that the number of active

shared links in a 100 % Tor network range from 3.7 % to 6.9 % in

2021. According to Tor’s path selection algorithm, the involved ORs

in these shared links have the most common bandwidth capabilities.

In November 2021, the number of active shared links ranges from

3.9 % to 6.4 %. Between guard and middle relays, we have 2.9 % to

3.7 %; between middle and exit relays we have 2.5 % to 5.0 % active

shared links.

In the previous sections, we looked only at isolated influences to

establish boundaries between shared links. To estimate how many

shared links are in the live network, we take recent privacy-pre-

serving measurements to get realistic ratios for our influences. Link

direction can only be on or off, we include both cases. Guards have

an influence on shared links, but we estimate it to be very close to

1.0 active circuits per second per client, even if it is bigger, it does

not have much influence.

Jansen, Traudt, and Hopper [5] measured ten times more circuits

on entries than on exits, which can be attributed, among other

things, to internal Tor circuits. We can take this value to calculate

how many internal against external circuits should be included in

our simulation.

Exit policies influence shared links negatively. Jansen and John-

son [26] show that file-sharing protocols are the most common,

second to HTTP/s, but only a few exit relays support those proto-

cols. They also measure how many active web circuits and active

other circuits exist in the current network. We will use this to split

our external circuits into other and web circuits. There are 1.7 times

more other than web circuits. The other circuits will be further split
by traffic class.

If we consider link direction, guards, internal circuits and exit

policies, we come up with around 3.70 % to 6.05 % shared links. The

first value is directed, and the other value is undirected.

To get a better understanding of how shared links affect users.

We need to infer the number of affected users from the number of

actively shared circuit parts, but this is not obvious. The number

of actively shared circuits is a good indicator of getting halfway

there. We measured this number with ten SALSA simulations in a

100 % network. The results show there are 14 812 ± 138 (15 %) active
shared circuits per second, this value is a sum of circuits with only

one shared link 13 805 ± 125 (14 %) and circuits with two shared

links 1006 ± 31 (1 %). This value is close to the number of 15 828 ±
166 active shared circuit parts.

The configuration based on directed links with only external

circuits has a circuit parts over links distribution in Figure 7. The

distribution follows an expected exponential decay. Mainly two

circuits are multiplexed over one link, with 3.5 %, and the rest has

0.3 %.

4.2 Number of Simultaneously Shared Links
with Growing Demand (RQ2)

This section evaluates our second RQ, asking how many simulta-

neously active shared links exist when the demand grows. There

are numerous ideas to integrate Tor directly into web browsers.

Brave [28], for example, has already integrated Tor in its private

browsing mode. For Firefox, there are proposals either to have an

extra Super Private Browsing Mode [29] or to replace the already in-

tegrated private browsing mode [30]. However, researchers [20, 31]

are cautious since Firefox has more than 200 000 000 monthly active
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an unshared link (blue); otherwise a shared link (orange).
Error bars show the standard deviation. Data is based on all
consensus documents from 2021. For every consensus, we
did one simulation in SALSA.

users [32], and this might overload the capacity of the Tor infras-

tructure. For this reason, estimating the number of simultaneously

shared links is crucial when the number of circuits grows.

Section 4.1 discussed the different influences on the number

of shared links. However, the number of relays and users has the

most significant influence. We focus, for now, on the growth of one

or both of these values. If the number of relays and users grows

linearly, we have the same situation as Figure 4; the number of

shared links will decrease exponentially. On the other hand, if only

the number of relays grows, the number of shared links will also

decrease. In the following, we will focus only on the growth of the

number of users and, therefore, the number of active circuits.

We look at the advertised and consumed bandwidth to estimate

how many users the Tor network could handle. Currently, the net-

work has 600Gbit/s advertised and consumes 200Gbit/s of this

bandwidth [21]. Therefore, if we assume a linear relationship be-

tween simultaneously active users and consumed bandwidth, Tor

can handle approximately three times the number of users at the

moment. Even though the number of relays and users has been sta-

ble since 2015, the consumed bandwidth, on the other hand, keeps

growing [21]. We used our simulator from Section 3.1.4 to create

a forecast. Figure 8 depicts our forecast of the number of shared

links when Tor would have a broader deployment.

The current network with 96 000 active circuits, marked with

the red rectangle, has 3.7 % to 6.9 % active shared links. These num-

bers are different from the upper ones, referring to the year 2021

and not only to November 2021. The maximum capacity will have

approximately 8 % to 16 % active shared links marked with the grey

rectangle. Generally, internal circuits have more shared links than

external circuits and undirected links are above directed links.
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Figure 8: Forecast of the number of shared links depending
on the number of active circuits per second. Data reflects
the average of all consensus documents from 2021. The red
rectangle marks the current Tor network. The grey rectangle
is the maximum capacity of the current Tor network. The
orange and blue lines are general-purpose exit circuits. The
red and green lines are internal circuits.

Key Insight: If the Tor infrastructure reaches its capacity
with around 290 k active circuits per second, the number of

shared links amounts to around 8% to 16 %.

4.3 Influence of the CCI with Simultaneously
Shared Links (RQ3)

This section evaluates our third RQ, asking how the CCI problem

influences the current network performance in the face of simulta-

neously shared links. We divide network performance into circuit

built time and file transfer time.

4.3.1 File Transfer Time. There is already supporting evidence [7–

10] that CCI influences the performance of Tor. However, previous

studies did not evaluate this RQ appropriately. For example, Reardon

and Goldberg [9] used a small network, i. e. six relays and eight

clients, to evaluate the CCI problem’s impact. Other studies [7, 8,

10] measured only once, did not indicate confidence intervals, and

still used a small network compared to the current network and

simulation capabilities. Additionally, the Tor protocol has changed

since it integrated KIST [13] as its new traffic scheduler. See Table 5

for a better comparison. For this reason, there is a need to investigate

the performance impact of the CCI problem in a more extensive

simulation.

AlSabah and Goldberg [7] published Per-Circuit TCP-over-IPsec

(PCTCP), a proposal to mitigate the CCI problem. Their idea was to

use a separate TCP connection for each circuit and wrap all these

connections in an Internet Protocol Security (IPsec) tunnel. We

will use a similar approach to use a TLS connection per circuit. We

indicate this approach as PCTLS. Our simulations use a newer Tor

version which already has integrated KIST [11, 12], an application-

level mitigation for the CCI problem.

PCTLS and the other CCI mitigations have two advantages, (1)

preventing TCP HolB and (2) fairer bandwidth allocations due to

multiple congestion windows.
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Figure 9: Time to last byte for a transfer of 50 kB, 1MB and 5MB. Comparison between Vanilla and PCTLS with Shadow in a
25% network with the Shadow 201801 model [33] with and without packet loss. The experiments were repeated ten times per
configuration, and the CDF is plotted with tail-logarithmic y-axes.

This paper shows that KIST, in conjunction with PCTLS, per-

forms better than without PCTLS. Our contribution is a reevalu-

ation of the impact of CCI with a recent Shadow simulation with

a 25 % scale, considering the latest research methods from Jansen,

Tracey, and Goldberg [20]. We compare Vanilla and PCTLS with

the Shadow 201801 model [33] with and without packet loss based

on Tor 0.3.5.18
4
. We measure every configuration ten times.

Each simulation has around 198 clients that measure perfor-

mance when transferring 50 kB, 1MB or 5MB files. These transfers

are not evenly distributed, instead 50 kB is 80 %, 1MB is 13 %, and

5MB is 7 % likely. There is a one-minute pause between each trans-

fer. Tornettools preconfigure these clients. Figure 9 shows the

time to complete a 50 kB, 1MB and 5MB transfer compared to

Vanilla Tor.

The simulation in Figure 9 with PCTLS has no active shared

links since it creates a separate TLS connection for each circuit. On

the other hand, the simulation with Vanilla has 12.5 % active shared

links on average.

Without packet loss for 50 kB, 1MB and 5MB, PCTLS is, on av-

erage, 39ms, 150ms and 703ms faster. With packet loss, PCTLS is,

on average, 172ms, 1764ms and 5696ms faster. With ten measure-

ments for both models, it confirms the impact of shared links.

Key Insight:Our Shadow simulations show that 12.5 % shared

links results in an 8% performance loss.

4.3.2 Circuit Built Time. Performance can be seen as how fast a file

transfer is and how long it takes to create the circuit. Unfortunately,

the latter is also time a user has to wait at startup until the circuit

is built. Figure 10 shows the result of our Shadow simulations

regarding the circuit built time.

Our results in Figure 10 show that PCTLS has longer circuit build

times than Vanilla Tor. This is no surprise considering that every

circuit has its own TLS connection, and it costs time to establish this

connection. Which also leads to more extensive memory consump-

tion. Overall it is, on average, 725ms slower without and 495ms

slower with packet loss. However, if we compare PCTLS directly,

it is not much slower with packet loss. PCTLS uses around 100GB

more RAM, PCTLS uses 527GB and Vanilla uses 430GB on average.

4
Commit ID: 1628af235e5fe06536ad6ec32bf87f2225c82d32
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Figure 10: Circuit built time in seconds. Comparison between
Vanilla and Vanilla+PCTCP with the Shadow 201801 lossless
model, and; Vanilla and Vanilla+PCTCP with the Shadow
2018001 loss model in a 25% network. The experiments were
repeated ten times per configuration, and the CDF is plotted
with tail-logarithmic y-axes.

Vanilla has only nine measurements because the first measurement

did not record the circuit build time.

Key Insight: Avoiding active shared links by creating a sep-

arate TLS connection for all circuits will increase the circuit

build time.

4.4 Verification and Comparision of SALSA
To confirm that SALSA represents the Tor Path Selection Algorithm,

we verify it with Shadow simulations, modified Tor client, and

TorPS. We compare the modified Tor client and TorPS separately

from our Shadow simulations. First we verify the accuracy of our

simulator and later we compare the simulators besides accuracy.

With ShAred Links SimulAtor we can easily isolate effects on

the number of simultaneously shared links and scale the number

of relays. To scale a Network we use tornettools [20]. Isolation
will be explained in more detail later in this section.

As mentioned in Section 3.1.4 we do not implement the complete

Path Algorithm.
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Figure 11: Boxplot that compares the number of active shared
links for TorPS, a modified Tor client, and SALSA. Beware
that the y-axis does not start at 0; instead, at 3.5 %. Every
point per tool is based on a daily consensus document from
November 2021.

For example, instead of using the exit policy to determine an

exit relay, which requires additionally relay microdescriptors, we

only use the exit flag. But only very few relays have no exit flag,

but a suitable exit policy. A relay can be chosen more than once in

the same circuit, but this happens very rarely, under 300 times in

100 000 circuits. We also do not consider other filtering steps in the

path selection algorithm, this includes relay and IP address subnet

families.

These simplification are justified if we compare the modified

Tor client with SALSA in Figure 11. Both are very similar and

the modified Tor client does all filtering steps and considers relay

families.

In Figure 11, every point is simulated as a 100 % Tor network.

Every point per tool is based on one consensus document every day

in November 2021. SALSA’s results match the modified Tor client.

Only TorPS is slightly shifted upwards by 0.2 %. TorPS selects on

average less relays in the guard (−145 ± 40) and middle (−40 ± 16)
position, this leads automatically to more shared links. This hints

at the guard filtering in TorPS as source of this upward shift. In the

modified Tor client we disable long term entry guard selection to

be able to simulate many circuits from one client. But this does not

fully explain the difference.

Even if left out filtering steps have more influence or TorPS is

more accurate we would underestimate the problem. Because we

would chose more relays in one or more circuit positions which

leads to less shared links.

To verify our simulation with Shadow, we simulate networks

at 1 %, 10 % and 25% scale. For a 25 % network, we have five mea-

surements; otherwise, one measurement. Figure 4 depicts our mea-

surements, and the 25 % network is in the bottom left showing.

The average shared links and their difference to SALSA are for 1 %;

54.82 %with a difference of 0.97 %, for 10 %; 20.56 %with a difference

of −0.63 % and for 25 %; 12.51 % with a difference of 0.48 %.

In the remaining section we will show other differences from

SALSA to the modified Tor Client and previous simulators. In addi-

tion, we evaluate the simulators in terms of runtime speed, memory

consumption and scalability and describe how different parameter

can be isolated. For an in-depth description of the simulators, we

refer the reader to Section 3.1.

Shadow [34] is the most prominent simulator, which is highly

accepted by the scientific community to reflect the real Tor network.

However, Shadow is slow and needs high-computing capabilities.

For example, one simulation of a 25 % network on the hardware

described in Section 3.2.1 takes around 3 d, consumes 600GB of

memory at the peak and stores around 110GB. Shadow also has

other shortcomings, e. g. no support for entry guards, onion ser-

vices
5
, and exit policies. Additionally, Shadow cannot be used to

make forecasts.

TorPS, on the other hand, requires consensus documents and

server descriptors. Shadow can generate these documents in con-

junctionwith tornettools [20]. However, that takes around 10min

to 20min of simulation. Building these documents ourselves is pos-

sible but error-prone. TorPS reimplements the Tor Path Selection

Algorithm and simulates path generation over time based on his-

torical data. The simple user model takes samples of circuit paths

at predefined time intervals. Before TorPS can run simulations, it

needs to convert the documents into an internal format. For ex-

ample, a two-month simulation consumes ≈ 50GB of memory and

takes ≈ 50min due to this extra conversion step. A simulation that

takes a sample of 1M circuits per day consumes 6GB and take ≈
40min per day. For these reasons, using TorPS for scaled networks

is cumbersome.

Our modified Tor also requires consensus documents and server

descriptors. Additionally, it needs valid directory authority certifi-

cates, but only when simulating a network smaller than full scale.

The modified Tor client has the same disadvantages as TorPS, ex-

cept it does not need a conversion step and consumes only ≈ 50MB

of memory. However, it takes 2 h to generate 1M circuits. This can

be mitigated by starting multiple Tor instances in parallel.

We developed SALSA to eliminate most of the disadvantages of

the previous simulators and optimise it for speed and scalability.

Table 2 summarises the differences between the simulators. Another

advantage of SALSA is that we can easily isolate specific parameters.

However, this is also possible with the other simulators but requires

more effort. In the following, we describe how to isolate specific

parameters.

Exit Policies: Considering the modified Tor client and TorPS as

black boxes, one could try every TCP port from the traffic

classes in Table 1. However, this process is not feasible, and

in this case, it would be better to modify the consensus

documents directly, as mentioned above. On the other hand,

if we consider both simulators as white boxes, we could

modify the source code to only include exits in the traffic

classes. For TorPS, it would also be possible to modify the

internal format and remove unwanted exits. For SALSA, we

filter out all unwanted exits in the consensus 𝐶 before we

give it to the simulator.

Direction: This has nothing to do with the simulator. All simulator

outputs are circuit paths; we look at the links as directed or

undirected.

5
Shadow in conjunction with tornettools version ≤ 1.1.0.
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Simulator Runtime Memory Scalable

Shadow 1.13 [34] ≈ 3 d ≈ 600GB ✓

TorPS [19] ≈ 40min ≈ 6GB ✗

Modified Tor Client ≈ 2 h ≈ 50MB ✗

SALSA ≈ 5 s ≈ 1GB ✓

Table 2: Comparison between different simulators to esti-
mate the number of shared links in Tor. Shadow is evaluated
for a 25% network and the other simulators to generate 1M
circuits. A 25% network is creating around 2M circuits.

Internal Circuits: With the modified Tor client, we can set a flag

for an internal circuit, and it will launch one. The same is

possible for TorPS. For example, for SALSA, we can set 𝑖 = 1

to generate internal circuits.

Guards relays: With SALSA, we can set the 𝑘 parameter to how

many guards we want per client. It is impossible for the mod-

ified Tor client to have many guard “sessions” with one client.

This is the same problem Shadow has [20]; it simulates many

users per client as optimization and disables entry guards.

In our case, we could launch many clients and generate 𝑘

circuits per client until we have as many circuits as we need.

TorPS already has a parameter called num_guards, which
determines the number of guards per client.

4.5 Different Traffic Types and their Impact
This section investigates different traffic types and their impact on

Tor’s performance. We use both of our setups depicted in Figure 3

and Figure 2. Table 3 summaries the different setups and scenarios.

In the second evaluation, we build on the results of this study.

As already mentioned, a shared link with eight multiplexed cir-

cuit parts is unlikely in the current network. Moreover, a wholly

shared circuit is even more unlikely. Eight multiplexed circuit parts

would only occur in the future if the number of relays stays con-

stant and the number of users grows. In the current network, the

most common case is two shared circuit parts over one link. In

our second setup, we have only two clients, two guard relays, one

middle relay and one exit relay; the link between the middle and

exit relay is shared. The two clients build only one circuit, corre-

sponding to two circuit parts over one link. We use the following

traffic models:

• A 50 kB/s audio streammodel, 400 kbit/s is very high-quality

audio (see Figure 14a);

• A 1MB/s video stream model, this simulates an High Defini-

tion video stream with 30 fps (see Figure 14b); and;

• A 2MB web model, the median website size [35] in 2022, if it

is done with one transmission, it will wait for 10 s and then

start another (see Figure 14c).

• A 5MB bulk model, if it is done with one transmission it

starts immediately another (see Figure 14d);

We use thesemodels in three different scenarios. In all scenarios, one

client always uses the bulkmodel and the other client one of the four

traffic models. We measure each model in each scenario for 5min

and repeat the measurements multiple times. The first scenario is

similar to SharedDropping; it has a delay of 50ms between entry

and exit, 0.1 % packet loss between the middle and exit relay, and;

300Mbit/s bandwidth. But only with two clients and guards. It is a

point of reference for the previous setup. The second scenario has

300Mbit/s bandwidth and no delay, but the link between the middle

and exit is congested with four TCP bulk streams. The third scenario

has a bandwidth limit of 2Mbit/s on all links between relays, with

no delay and the link between middle and exit is also congested

with four TCP bulk streams. The four TCP streams download data

in the client’s direction.

These scenarios highlight the two advantages of PCTLS; (1) pre-

venting TCP HolB and (2) fairer bandwidth allocations due to two

congestion windows. The first one is covered by scenario One. The
second one is covered by scenario Two and Three. In both, PCTLS

should have an advantage over Vanilla.

The results are depicted in Figure 14 in the Appendix. In all

scenarios, the circuit round-trip time is always better for PCTLS.

The two TLS connections can explain this. In the case of PCTLS,

only one connection is affected by packet loss, but Vanilla is al-

ways affected. For the former, it is more likely for one packet to be

sent with the previous sending rate. As a result, PCTLS is always

faster for all models in scenarios One and Three. The longer the
transmission times, the more advantage PCTLS has.

For scenario Two, the audio (Figure 14a) and video (Figure 14b)

models show nearly no differences. Note that in both cases, the

sending rate is limited to one second, so the lines start shortly after

one second. Surprisingly, for the web model (Figure 14c), Vanilla

is faster. This scenario has no packet loss, which is comparable to

NoDropping. Due to time-delayed transmissions in the web model,

the congestion window gets reseted with PCTLS. But Vanilla has a

constant congestion window because of the bulk stream that goes

over the same link. This explains why PCTLS is slower and has a

greater variation. This scenario is not likely in the live network

because the Shadow measurement, which have a similar sending

pattern, does not show an advantage for Vanilla overall. It could

suggest that reusing connections for thus sending patterns is better.

The other traffic models have a constant congestion window for

Vanilla and PCTLS, but PCTLS is faster because it uses two connec-

tions which allows a bigger combined congestion window than a

single connection.

In scenario Three, we have no measurements for the web model

due to its limited bandwidth. The web model starts transmissions

every 10 s without considering if the previous transmission has

finished. This causes the measurements for this model to be aborted.

The results of our local measurements are comparable to the results

of our Shadow setup. Scenario Two is the best case and scenario

Three is the worst case for congestion window scaling. In scenario

Two the sending congestion window is around 120 segments and in

scenario Three ten segments or more. Ten segments is the minimum

congestion window of TCP. This shows that even in the worst case

PCTLS can sent ten segments or more per circuit.

Key Insight: The CCI problem interferes more with Tor per-

formance when packet loss occurs and more circuits are mul-

tiplexed.
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Scenario Name # of Clients BW Limit Delay Packet Loss Traffic Type

NoDropping (ND) 8 300Mbit/s 50ms no bulk

SharedDropping (SD) 8 300Mbit/s 50ms 0.1 % (middle and exit) bulk

DroppingRemaining (DR) 8 300Mbit/s 50ms 0.1 % (client, guard, and middle) bulk

One 2 300Mbit/s 50ms 0.1 % (middle and exit) bulk × {bulk, audio, video, web}

Two 2 300Mbit/s no 4 TCP streams (middle and exit) bulk × {bulk, audio, video, web}

Three 2 2Mbit/s no 4 TCP streams (middle and exit) bulk × {bulk, audio, video, web}

Table 3: We used different scenarios to conduct experiments in our private Tor setup. The first three scenarios are inspired by
[9], and the last three are our own. The traffic type from the last three is bulk combined with either bulk, audio, video or web
traffic.

4.6 Repetition of the Performance Experiments
from 2009

In this evaluation, we repeat the performance experiments from

[9] to have a comparison. We constantly compare Vanilla against

PCTLS. In these local setups, we use TCP CUBIC as a congestion

control algorithm, in contrast to our Shadow setup, which uses TCP

New Reno. In the first setup, we measure three different scenarios.

All scenarios have a delay of 50ms between entry and exit and

300Mbit/s bandwidth. This bandwidth limitation is unlimited from

Tor’s point of view as it cannot fully utilize the bandwidth capacity.

The first scenario has no packet loss and is called NoDropping;
the second scenario has 0.1 % packet loss between middle and exit,

which is called SharedDropping; and; the third scenario has 0.1 %

packet loss on links between client, guards and middles, and is

called DroppingRemaining. These are based on the experiments of

Reardon and Goldberg [9]. The packet loss is uniformly distributed.

On every client, we run TGen [36], which receives 5MB repeatedly

for 5min. We measure the circuit round trip time as well as the

time to transfer 5MB.

The results are depicted in Figure 13 in the Appendix. In scenario

NoDropping, Vanilla is faster than PCTLS, but not by much. In

scenario DroppingRemaining, Vanilla is a bit slower than PCTLS. In

scenario SharedDropping, Vanilla is much slower than PCTLS. The

circuit round trip time is generally lower for PCTLS. This confirms

that the problem is still relevant even with recent improvements.

5 DISCUSSION
5.1 Limitations
We think the number of external shared links is higher than our

measurements; this is why we declare them as conservative esti-

mates. In our experiments, we only count the number of active

links per second in one direction, i. e. from OP to the exit relay.

Therefore we will miss active links in which a Tor cell was sent in

the other direction, i. e. from the exit relay to the OP. This direction

has the most cells, but both directions are similar in overlapping

active links. A similar problem exits with internal shared links. We

do not count the link between RP and the last relay of the Onion

service circuit. This is because both circuits are independent but

should be connected on their ends. The real number of simulta-

neously shared links for internal circuits is slightly higher than

our estimates. In addition, we only model some of the complexity

involved with Onion services. For example, we do not simulate

the link between RPs of the client side and the last relay of the

service side in Section 4.1.5. We also do not consider vanguards,

which protect against guard discovery attacks. They introduce one

additional relay into the circuit before the RP and restrict relay

selection for the middle positions. Finally, we do not consider relay

and IP address subnet families. Relays with the same family can

not be in the same circuit, reducing the possible relays. Again, this

can increase the number of internal and external shared links.

Shadow only implemented TCP New Reno [37] for its congestion

control. As described in Section 2.2, most modern OS use TCP

CUBIC as their default congestion control. This could lead to minor

performance variations in our Shadow simulations. However, the

differences will be insignificant since both, Vanilla and PCTCP

are affected. In our local experimental environment, we used TCP

CUBIC.

After we finished our Shadow simulations without packet loss,

we found a race condition in the PCTLS code, which led to only

one connection being used for multiple circuits. However, this

race condition only happens when a relay simultaneously extends

multiple circuits to another relay. This condition is unlikely in

Shadow since the creation of circuits happens asynchronously. As

far as we know, this race condition affects the original PCTCP code

and the QuicTor implementation of PCTCP. This bug does not affect

our measurements with Vanilla or the local experiments.

Our Shadow setup builds besides general purpose circuits, other

circuits, i. e. around 150 one hop, 800 internal and 400 timeout

measurement circuits. We did not measure the influence of these

circuits on the CCI problem.

5.2 Ethical Principles
One missing measurement in our study is the measurement of the

actual Tor network. However, we decided against measurements

on the live network because of ethical and privacy concerns.

6 RELATEDWORK
Reardon and Goldberg [9] did a comparable study in 2009. As men-

tioned before, we rebuilt their private testbed system with a newer

Tor version. This comparison can be found in Table 4. The latency

degradation is less pronounced for PCTLS but comparable for Vanil-

la. One possible explanation is that we have a different solution

for CCI and 50ms delay instead of 400ms. For throughput degra-

dation, it is the other way around, it is comparable for PCTLS but

for Vanilla it is much worse. We measure the transmission time
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Version Scenario Circuit Throughput TP Deg. TP Deg. [9] Average Latency Lat. Deg. Lat. Deg. [9]

PCTLS NoDropping (ND) 1.97MB/s ± 0.04MB/s 0 % 0% 75.0ms ± 8.8ms 0% 0%

PCTLS DroppingRemaining (DR) 1.79MB/s ± 0.09MB/s 9 % 8% 76.0ms ± 8.2ms 2% 20%

PCTLS SharedDropping (SD) 1.86MB/s ± 0.08MB/s 6 % 4% 76.0ms ± 8.5ms 1% 7%

Vanilla NoDropping (ND) 2.00MB/s ± 0.04MB/s 0 % 0% 88.0ms ± 13.7ms 0% 0%

Vanilla DroppingRemaining (DR) 1.37MB/s ± 0.19MB/s 31 % 6% 91.0ms ± 14.9ms 4% 5.4 %

Vanilla SharedDropping (SD) 0.37MB/s ± 0.04MB/s 81 % 17% 97.0ms ± 15.1ms 10 % 12.9 %

Table 4: Comparison of our results with the results from Reardon and Goldberg [9]. Throughput (TP) and Latency (Lat.)
degradations (deg.) for different scenarios. Columns five and eight are the results from Reardon and Goldberg [9], where a
similar table exists.

for 5MB and calculate throughput afterwards. It could be that the

problem worsened or the measurement method is different. This

comparison indicates that the CCI problem could have gotten worse

with the newer Tor version.

Jansen, Geddes, Wacek, Sherr, and Syverson [11] and Jansen,

Traudt, Geddes, Wacek, Sherr, and Syverson [12] investigated con-

gestion in Tor and discovered two significant problems: First, Tor

writes data sequentially to the socket and second, it writes as much

data to the socket as possible. They proposed KIST, which dynami-

cally calculates the amount of data to write on each socket based on

real-time kernel information. KIST has been merged in Tor version

0.3.2.1-alpha and can be seen as an application layer TCP HolB mit-

igation. However, KIST is most effective if there are many unshared

links. According to the paper the probability of an unshared link is

99.775 %. That can be explained by the fact that the study is from

2014. At that time, the Tor infrastructure was different from today.

AlSabah and Goldberg [7] replaced the TLS connection between

ORs with an IPsec connection. By securing the connection between

ORs on Layer 3, each circuit can have its kernel-level TCP connec-

tion and congestion window. According to their measurements, it

will improve the response time by 60% and reduce the download

time by 30 %. However, Geddes, Jansen, and Hopper [10] found that

PCTCP is vulnerable to socket exhaustion attacks. An attacker can

create arbitrary circuits on a specific path until the OR runs out

of TCP connections since it has a soft and hard limit. Therefore,

they proposed novel connection schedulers that prevent socket

exhaustion attacks while still having the performance advantages

of PCTCP.

A similar idea from Basyoni, Erbad, Alsabah, Fetais, Mohamed,

and Guizani [8] is QuicTor, in which they use QUIC instead of IPsec.

QUIC is defined in RFC 9000 [38] and is a secure and reliable trans-

port protocol based on UDP. In contrast to TCP, QUIC supports

multiple streams in a single connection and avoids the HolB prob-

lem. A packet loss in one stream only affects the same stream, while

other streams can continue exchanging packets. Their performance

evaluation seems promising; however, they have yet to evaluated it

in a large-scale environment, as seen in Table 5.

7 CONCLUSION AND FUTUREWORK
This paper examined the number of simultaneously active shared

links in the Tor network, which is the root cause of CCI. We devel-

oped a novel simulator that we verified with Shadow simulations

Name Year Relays Clients Evaluation

TCPoDTLS [9] 2009 6 8 -

PCTCP [7] 2013 50 500 ExperimenTor [39]

KIST [11] 2014 3600 13 800 Shadow

IMUX [10] 2014 500 1800 Shadow

KIST [12] 2018 2000 49 800 Shadow

QuicTor [8] 2021 50 350 NetMirage

Our Study 2022 1750 200 000 Shadow (n=10)

Table 5: Comparison of different performancemeasurements
from previous studies.

to investigate this problem. According to our measurements, the

current Tor network has around 3.9 % simultaneously active shared

links. The involved ORs have the highest bandwidth capabilities.

An influence on this number has the exit policy and if the Tor

network is used to address internal or external services. Surpris-

ingly, ignoring entry guards and the number of active circuits per

client has little influence on the number of simultaneously active

shared links. We used the simulator and modelled what happens

if the number of active circuits increases up to the limit of the Tor

network. When this happens, the number of simultaneously active

shared links can grow to 16 %. We highlight that our estimates are

conservative. Finally, we run experiments with Shadow with a 25 %

network with Vanilla and PCTLS. Our results show that the CCI

problem directly influences the performance of the Tor network.

In future work, wewant to investigate the implications of the CCI

problem with the latest version of the Tor client that has end-to-end

congestion control integrated. Additionally, we want to compare

the different solutions that have been proposed to mitigate the CCI

problem in Shadow.
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A APPENDIX
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Figure 12: Shows the memory consumption of all shadow simulations over real time. At the peak, the simulation needs
around 600GB of RAM.
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Figure 13: Results for the local testbed setup depicted in Figure 3. We compare Vanilla with PCTLS in three scenarios. Links
have 300Mbit/s bandwidth and 50ms delay between entry and exit. (a) shows the transfer time of 5MB and (b) shows the circuit
build time. (ND) stands for NoDropping, (DR) stands for DroppingRemaining and (SD) stands for SharedDropping.
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Figure 14: Results for the second local testbed setup depicted in Figure 2. We compare Vanilla with PCTLS in three scenarios. For
more details about the scenarios see Section 4.5. For 14a and 14b the sending rate is limited to 50kB/s and 1MB/s respectively.
Scenario One limits bandwidth, has delay and packet loss. It is as point of reference to [9]; Scenario Two has practically no
limitations and shares the bandwwidth with 4 outside TCP streams; and; Scenario Three sets a low bandwidth limit and shares
the bandwidth with 4 outside TCP streams (see Table 3). Beware that the x-axis is broken up and the parts have different scaling
factors.
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Algorithm 1 SALSA – A simplified model of the Tor Path Selection Algorithm

1: function CONSENSUS(𝐶) ⊲ Prepares consensus

2: 𝑁 ← number of relays in 𝐶

3: 𝑊
guards

[1 . . . 𝑁 ] ← 0

4: 𝑊
middles

[1 . . . 𝑁 ] ← 0

5: 𝑊exits [1 . . . 𝑁 ] ← 0

6: for all relays 𝑟 with index 𝑖 in consensus 𝐶 do
7: if 𝑟 has GUARD or EXIT flag then
8: 𝑊

guards
[𝑖] ← 𝑟

bandwidth
× get_weight(𝐶, "position 1", 𝑟

flags
)

9: end if
10: 𝑊

middels
[𝑖] ← 𝑟

bandwidth
× get_weight(𝐶, "position 2", 𝑟

flags
)

11: if 𝑟 has EXIT flag then
12: 𝑊exits [𝑖] ← 𝑟

bandwidth
× get_weight(𝐶, "position 3", 𝑟

flags
)

13: end if
14: end for
15: return 𝑁 ,𝑊

guards
,𝑊

middles
,𝑊exits

16: end function
17: function COUNT(𝐿, 𝑅, 𝑑) ⊲ 𝐿 and 𝑅 are arrays of relays between links exists, 𝑑 the link is directed or undirected

18: if 𝑑 = 0 then ⊲ The order does not matter

19: 𝑢, 𝑠 ← Count all unique and shared links between 𝐿 and 𝑅. Every link that appears more than once is a shared link.

20: else ⊲ The order does matter

21: 𝑢, 𝑠 ← Count all unique and shared links between 𝐿 and 𝑅. Every link that appears more than once is a shared link.

22: end ifreturn 𝑢, 𝑠

23: end function
24: function SALSA(𝐶 , 𝑁circuits, 𝑘 , 𝑖 , 𝑑)⊲ 𝐶 is the consensus document, 𝑁circuits is the number of circuits to generate, 𝑘 number of circuits

per client, 𝑖 = 1 generate internal circuits, 𝑑 = 1 directed links

25: 𝑁,𝑊
guards

,𝑊
middles

,𝑊exits = CONSENUS(𝐶)
26: 𝑅entries ← randomly_chose_n_nodes_by_weight( 𝑁circuits

𝑘
, 1 . . . 𝑁 ,𝑊

guards
)

27: 𝑅entries ← repeat(𝑅entries, 𝑘)
28: 𝑅

middles
← randomly_chose_n_nodes_by_weight(𝑁circuits, 1 . . . 𝑁 ,𝑊

middles
)

29: if 𝑖 = 1 then
30: 𝑅

middles
← randomly_chose_n_nodes_by_weight(𝑁circuits, 1 . . . 𝑁 ,𝑊

middles
)

31: else
32: 𝑅exits ← randomly_chose_n_nodes_by_weight(𝑁circuits, 1 . . . 𝑁 ,𝑊exits)
33: end if
34: 𝐿 ← 𝑅entries |𝑅middles

⊲ Concat both arrays together

35: 𝑅 ← 𝑅
middles

|𝑅exits ⊲ Concat both arrays together

36: 𝑢, 𝑠 =
COUNT(𝐿,𝑅,𝑑)

𝑁
37: return 𝑠

𝑢 × 100 ⊲ Percent shared links

38: end function
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