
Convolutions in Overdrive:
Maliciously Secure Convolutions for MPC
Marc Rivinius

University of Stuttgart

Stuttgart, Germany

marc.rivinius@sec.uni-stuttgart.de

Pascal Reisert

University of Stuttgart

Stuttgart, Germany

pascal.reisert@sec.uni-stuttgart.de

Sebastian Hasler

University of Stuttgart

Stuttgart, Germany

sebastian.hasler@sec.uni-stuttgart.de

Ralf Küsters

University of Stuttgart

Stuttgart, Germany

ralf.kuesters@sec.uni-stuttgart.de

ABSTRACT
Machine learning (ML) has seen a strong rise in popularity in recent

years and has become an essential tool for research and industrial

applications. Given the large amount of high quality data needed

and the often sensitive nature of ML data, privacy-preserving collab-

orative ML is of increasing importance. In this paper, we introduce

new actively secure multiparty computation (MPC) protocols which

are specially optimized for privacy-preserving machine learning

applications. We concentrate on the optimization of (tensor) convo-

lutions which belong to the most commonly used components in

ML architectures, especially in convolutional neural networks but

also in recurrent neural networks or transformers, and therefore

have a major impact on the overall performance. Our approach is

based on a generalized form of structured randomness that speeds

up convolutions in a fast online phase. The structured random-

ness is generated with homomorphic encryption using adapted

and newly constructed packing methods for convolutions, which

might be of independent interest. Overall our protocols extend the

state-of-the-art Overdrive family of protocols (Keller et al., EURO-

CRYPT 2018). We implemented our protocols on-top of MP-SPDZ

(Keller, CCS 2020) resulting in a full-featured implementation with

support for faster convolutions. Our evaluation shows that our

protocols outperform state-of-the-art actively secure MPC proto-

cols on ML tasks like evaluating ResNet50 by a factor of 3 or more.

Benchmarks for depthwise convolutions show order-of-magnitude

speed-ups compared to existing approaches.

KEYWORDS
secure multiparty computation, convolutions, neural networks

1 INTRODUCTION
Machine learning (ML) and, in particular, deep learning are more

and more growing in importance for academia and industry. The

performance of an ML model, and hence, its application potential in

real-world use cases, strongly depends on the amount and quality

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(3), 321–353
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0084

of available data. Since many companies are no longer able to

generate the necessary data or models themselves, they have to

rely on collaborations with competitors and other industry players.

Multi-Party Computation for ML.. Secure multiparty computation

(MPC) addresses the challenges related to collaborative privacy-

preserving machine learning. MPC allows several parties, e.g., com-

panies, to compute functions on secret inputs and to reveal only

the function result and no additional information, in particular no

information on the sensitive inputs (beyond what can be inferred

from the result).

Indeed, MPC has been shown to be a suitable tool for privacy-

preserving ML in tasks like inference/evaluation and training (see,

e.g., [16, 32] and Section 1.2). However, most of the MPC protocols

that are specifically designed for ML provide security guarantees

only in special setups, e.g., they require adversaries to follow the

protocol rules (i.e., passive security) or limit the number of adver-

saries (i.e., honest majority). In a mutually distrustful setup, e.g.,

collaborations between industry competitors on highly sensitive

data, these requirements can usually not be guaranteed. We there-

fore strive for a setup that guarantees to an honest party that their

data remains private and that the result is correct even if all other

parties are actively trying to corrupt the computation or gain sensi-

tive information, e.g., by deviating from the previously agreed upon

protocol. MPC protocols that provide this strong form of security

are called actively or maliciously secure.

The currently best MPC protocols in this dishonest majority
setting with active security, are SPDZ [18] or state-of-the-art im-

provements thereof [3, 30, 31]. The efficiency of SPDZ-like protocols
relies on a two-phase approach consisting of an offline and an on-

line phase. In the input-independent offline phase, different forms

of structured random data, e.g., Beaver triples [4], are produced.

Then, this random data is used in the online phase to speed up the

computation on sensitive input data.

Direct Support for Matrix Multiplications and Convolutions. How-
ever, these protocols are not optimized for ML applications. In fact,

SPDZ-like protocols were designed for arithmetic computations on

finite field elements and hence each computation, e.g., a matrix

multiplication or a convolution, has to be realized in a low-level

way with just field addition and multiplication. For our ML opera-

tions and especially convolutions this approach usually leads to an

unnecessary overhead in communication and computation.

321

https://orcid.org/0000-0001-8005-8365
https://orcid.org/0000-0003-1808-6140
https://orcid.org/0000-0003-0300-8350
https://orcid.org/0000-0002-9071-9312
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0084

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

(a) valid (b) same (c) full

Figure 1: Example of Convolutions with Different Paddings.
Here, we visualize how the first component of the output is com-

puted for different padding modes when convolving a 4 × 4 im-

age (blue) and a 3 × 3 filter (orange). The black pixels for same and

full padding show where the image has to be padded with zero

values. The first component of the result (green) is computed by

multiplying the pixels of the padded image component-wise with

the pixels of the filter at the overlapping positions (symbolized with

the hatched copy of the filter) and then summing up these products.

For example, in a convolution of a 2d image 𝒂 and a 2d filter

𝒇 as presented in Fig. 1c, the filter runs over the whole image. In

particular, each entry of the image (e.g., 𝒂[0, 0]) and each entry of

the filter (e.g., 𝒇[0, 0]) is used in several multiplications. Classical

protocols like [18] securely multiply these values with so-called

Beaver multiplications. This requires both 𝒂[0, 0] and 𝒇[0, 0] to be

masked with new masks for each multiplication they occur in and

parties to send around messages between all MPC parties for each

of these maskings. In Fig. 1c, overall 9 maskings of 𝒂[0, 0] and 16

maskings of 𝒇[0, 0] are created and sent.

The impact of this overhead (for each single convolution) on the

efficiency of the overall ML algorithm is usually significant, given

the large number of convolutions used in classical architectures, es-

pecially in convolutional neural networks (CNNs) [23, 35, 36] but also
in recurrent neural networks (RNNs) [28, 38, 51] and transformers
[2, 11, 20].

1

The aforementioned efficiency issues for ML operations have

been addressed by Mohassel and Zhang in [43], who replace the

common Beaver triples with more complex structured random data,

that is, specially adapted to matrix triples for matrix multiplication

and convolution triples for convolutions. Matrix triples and con-

volution triples are perfectly adapted to the respective operations

and no longer suffer from the overhead discussed before with the

example of Fig. 1, i.e., they significantly lower communication and

computational costs compared to standard Beaver triples.

While the protocol by Mohassel and Zhang is merely passively

secure, their construction has been lifted to the actively secure

setting by Chen et al. [14]. However, the focus of [14] is on ma-

trix triples and matrix multiplication rather than convolutions. In

particular, [14] does not use convolution triples but emulates con-

volutions with matrix multiplications. This is more efficient than

the original approach based on Beaver triples but introduces an

overhead linear in the filter size (filter height and width).

1
As already mentioned in the seminal work on transformers [53], matrix multiplica-

tions in a classical transformer can also be viewed as 1 × 1 convolutions.

Actively Secure Convolutions with Dishonest Majorities. In this paper,
we construct an actively secure MPC protocol which directly uses

convolution triples and therefore natively supports convolutions.

We show that our construction leads to a more efficient evaluation

of convolutions than classical actively secure protocols like SPDZ

and the matrix multiplication-based protocol [14], namely, the only

actively secure protocol with direct support for an operation close

to convolutions.

For our protocols we employ the successful two-phase protocol

structure common in SPDZ-like protocols. In our case, in the offline

phase what we call convolution triples are generated, which are

then used in the online phase to very efficiently evaluate convolu-

tions of sensitive inputs. In order to construct these convolutions

triples in an actively secure offline phase, we employ a homomor-
phic encryption scheme (HE), similar to the currently fastest Beaver

triple generation protocol Overdrive [3, 31]. Classically, HE-based

offline phases gain most of their efficiency by amortization, i.e.,

they produce Beaver triples in large batches (with size usually in

the range of 2
12

to 2
18
) to lower the per triple costs for encryp-

tion, zero-knowledge proofs, and other cryptographic tools. This

approach is usually very efficient given the large number of Beaver

triples needed in most applications, i.e., far more than the batch

size. For example, in Fig. 1c we already need 16 · 9 = 144 Beaver

triples for a single (rather small) convolution.

However, direct generalizations of these classical protocols are

usually inefficient for ML applications. The reason is the large

variety of convolutions of different sizes and the often small total

number of convolutions of a specific size in many ML architectures,

e.g., in ResNet [23] (cf. Section 7). A naive approach that produces

a batch of convolution triples for each specific size will ultimately

produce a huge overhead of unused convolution triples and hence

will be inefficient.

New Packing Methods. We solve this issue by developing new pack-
ing methods for convolutions, i.e., we pack the entries of images and

filters suitably into plaintexts of the underlying encryption scheme

and then use the special multiplicative structure of the plaintext

and ciphertext spaces to compute a complete convolution (or mul-

tiple convolutions) with a single ciphertext multiplication. In line

with some of the most recent packing methods, we avoid costly

ciphertext rotations and maskings – primitives used in [14] and

most of the related work (cf. Section 1.2). This simplifies the proto-

cols and reduces the computational load for the parties, while still

utilizing most of the capacity of ciphertext operations. We embed

our method into a new general framework that (apart from our new

and other recent packing methods) also directly supports the com-

putation of scalar products, matrix multiplications, different types

of convolutions, and potentially other operations. In particular, our

general framework describes a wide class of packing methods that

might be of independent interest and can potentially be used for

other applications outside of ML.

Overall, we build a new flexible offline phase that can be instan-

tiated with both our new and already known packing methods. We

solve security issues of recent packings like Bian et al.’s packing [6]

in our setting and prove our protocols secure against attacks by

active adversaries as long as one party remains honest.

322

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

Implementation. We implement our techniques as an extension

to MP-SPDZ [29], the currently most efficient implementation of

SPDZ-like protocols. Our implementation [48] provides convolu-

tion optimized extensions for both the LowGear protocol and the

HighGear protocol of Overdrive [31]. This allows our protocols to

be applied both in setups with a small number of parties, where

LowGear is most efficient, and a setup with many parties, where

HighGear scales better. More precisely, LowGear scales quadrat-

ically in the number of parties and uses cheap primitives, which

make it well-suited for low-party setups. In contrast, HighGear

scales linearly in the number of parties and uses more expensive

ZKP and SHE protocols. Settings with both low and high number

of parties are realistic and we want to support as many settings as

possible. There are application scenarios where the distribution of

the data dictates the number of parties, e.g., there are cases where

one party holds the inputs and one party holds the model (i.e., a two-

party setting) or cases where the data (i.e., model and/or inputs) is

naturally distributed among many parties. Another scenario is the

client-server setting. Here, a setup with two servers is usually most

efficient, but a setup with more servers reduces the risk that all of
them collude to break security. While we focus on the low-party

setup in our evaluation, we also show feasibility of our approach

for more than three parties. We remark that related work usually

concentrates on the low-party setup only.

We also use the optimized zero-knowledge proofs (ZKPs) in-

troduced in TopGear [3] but extended the ZKPs to also support

non-trivial packing methods. By implementing our protocols on

top of the already highly optimized MP-SPDZ framework, we re-

ceive a better overall performance in ML applications since we get

the improved performance for convolutions, while maintaining the

currently best performance of MP-SPDZ for all other operations.

We use our implementation to give an extensive evaluation of our

methods and compare it to the current state-of-the-art implemented

in MP-SPDZ, as well as the state-of-the-art research results of [14].

On benchmarks for ResNet50, we outperform the state-of-the-art by

a factor of 3 to 4.8 (depending on the network setup). For depthwise

convolutions, our protocols are up to 26× faster than the state-of-

the-art.

1.1 Summary of Our Contributions
• We introduce the first actively secure MPC protocol with

direct support for convolutions (Sections 5 and 6).

• We introduce a new efficient convolution triple generation

protocol as part of our offline phase (Sections 6.2 and 6.3).

• The convolution triple production is instantiated with multi-

ple new and recent packing methods (Sections 6.2 and 6.3

and Appendix F.3.2), which might be of independent interest.

• We prove that our online and offline protocols are actively

secure even if only one party is honest (Appendices E and F).

In particular, we solve existing security issues with recent

packings like Bian et al. [6] in the active adversary setup.

• We present new and more efficient packing methods for con-

volutions (Section 4). This includes the first packing method

for depthwise convolutions based on polynomial multipli-

cation in the underlying cyclotomic ring (Section 4.3). Our

packings do not use ciphertext rotations or maskings.

Table 1: RelatedWork in Secure Evaluation of Convolutions

Secu- Major- Conv. Cipher.

Reference rity ity 𝑛 Comp. Ops.
a

MiniONN [39] semi dish. 2 matmul pc

[26] semi dish. 2 mul cc, rot

GAZELLE [27]
b

semi dish. 2 mul pc, rot

LoLa [9] semi dish. 2 matmul pc/cc, rot

[14] mal. dish. any matmul cc, rot

[16, 32] any any any matmul –

CryptGPU [50] semi hon. 3 conv –

APAS [6] semi dish. 2 conv pc
c

CrypTen [34] semi dish. any matmul –

TenSEAL [5] semi dish. 2 matmul pc, rot

Cheetah [25] semi dish. 2 conv pc

HeLayers [1] semi dish. 2
d

matmul pc/cc, rot

Ours mal. dish. any conv pc/cc

a
plaintext-ciphertext multiplications (pc), ciphertext-ciphertext multiplications

(cc), and rotations (rot)

b
used and/or extended in DELPHI [42], CrypTFlow2 [46], GALA [55], HEAR [33],

and [37]; same setting and operations as CHET [19] and HEMET [41]

c
matrix-vector multiplication of a plaintext matrix and an encrypted vector

d
one model owner and a compute server in addition to any number of clients

• We have implemented our complete protocol (offline phase

and online phase) [48], including several packingmethods, as

an extension of MP-SPDZ [29], which is the state-of-the-art

implementation for SPDZ-like protocols (Section 7).

• Wehave evaluated our implementation against generic SPDZ

as well as [14], the state-of-the-art actively secure protocol

for matrix multiplications (Section 7). Our results show that

our specialized operations significantly improve the online

and offline runtime compared to the related work. Our ad-

vantage in the offline phase is 4.82× in the LAN setting and

3.01× in the WAN setting for convolutions as in ResNet50.

For depthwise convolutions, our approach is up to 18.59×
(LAN) or up to 26.53× (WAN) faster. We also observe im-

provements of up to 40.15× (LAN) or 41.84× (WAN) in the

online phase.

A full version of this paper is available online [47].

1.2 Related Work
In Table 1, we summarize recent MPC protocols and focus on the

realization of secure convolutions. As can be seen, most research

focuses on a very specific setting: 2-party or 3-party computations

with passive (semi-honest) security. In contrast, our protocols aim

at active security rather than passive security and allow for a dis-

honest majority of malicious parties, similar to the setup of, e.g.,

[14]. Table 1 also includes an overview of technical realizations

of convolutions and ciphertext operations used in the different

protocols. Convolutions are usually reduced to either field mul-

tiplications (mul), matrix multiplications (matmul), or computed

directly as convolutions (conv). Most protocols realize these with

different ciphertext operations and packing methods. Element-wise

(SIMD) multiplication of encrypted data and ciphertext rotations

323

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

(to align the data encoded in ciphertexts for multiplications) are

used almost exclusively.

Note that these rotations come with two downsides, which we

want to avoid with our protocols. Firstly, ciphertext rotations are

computationally expensive and require additional key material. For

example, for [14] one has to generate around 24.72 GB of non-trivial

data in an actively secure way. Secondly, if plaintext rotations are

used (e.g., in a LowGear-style protocol) one has to make sure that

the plaintexts are rotated correctly. This might require additional

ZKPs or similar constructions to guarantee security in the pres-

ence of misbehaving parties. The same is true for packing methods

that require parties to tile and/or replicate data in a specific way

(e.g., [1]).

Furthermore, some recent works [6, 33, 37] aim to even perform

multiple convolutions in parallel using specialized packingmethods.

A notably unique HE technique [6] uses multiplications of plaintext

matrices with ciphertexts for this. There are also exceptions that

do not (necessarily) use HE, such as CryptGPU [50], which uses

field multiplication without the use of HE, and [16, 32, 34], which

build their protocols generically on matrix multiplications (which

might in turn be realized with HE but other techniques are possible

as well).

Orthogonal to securely computing convolutions, there is also

work on verifiable convolutions, i.e., proving in zero-knowledge

that convolutions are performed correctly [40, 52]. We note that our

protocols guarantee correct computation of convolutions towards

the parties who participate in the protocol. For a discussion on

other privacy-preserving technologies for ML we refer the reader

to [10].

2 PRELIMINARIES AND NOTATION
We use the notation [𝑎..𝑏) B {𝑎, 𝑎 + 1, . . . , 𝑏 − 1} for ranges of
integers. We also use the shorthand [..𝑏) B [0..𝑏). For (image)

domains, we abuse the notation and write ℎ ×𝑤 instead of [0..ℎ) ×
[0..𝑤). Furthermore, we index vectors (and matrices and tensors)

with brackets, i.e., 𝒗[𝑖] is the 𝑖-th element of vector 𝒗. Polynomials

or vectors of polynomials are depicted sans-serif, e.g., x or v.

2.1 Integer Polynomials and Multiplication
Let R = Z[𝑋]/Φ𝑚 (𝑋) be the integer polynomials modulo the𝑚-th

cyclotomic polynomial Φ𝑚 (𝑋) = 𝑋𝑁 + 1 for 𝑚 = 2𝑁 a power

of two. Let 𝒂 ∈ Z𝑁 be the vector of coefficients of a ∈ R, i.e.,
a =

∑𝑁−1

𝑖=0
𝒂[𝑖] · 𝑋 𝑖

. Analogously define 𝒃 ∈ Z𝑁 for b ∈ R. Then
the vector of coefficients 𝒄 ∈ Z𝑁 to the product c = a · b ∈ R can

be computed with a negacyclic convolution:

𝒄[𝑖] = (𝒂 ∗̄ 𝒃)[𝑖] B
𝑁−1∑︁
𝑗=0

(−1)𝑖−𝑗 div𝑁 · 𝒂[𝑗] · 𝒃[𝑖 − 𝑗 mod𝑁] . (1)

To verify this equation recall that𝑋𝑁
modΦ𝑚 (𝑋) = −1. To simplify

notation we will usually identify R and Z𝑁 . This allows us to

compute (negacyclic) convolutions with encryption schemes that

support the homomorphic multiplication of encrypted polynomials,

i.e., 𝒂 or 𝒃 (or both) are encrypted and we are able to obtain an

encrypted product 𝒄 .

2.2 Convolutions in Machine Learning
To simplify the exposition, we restrict ourselves to two-dimensional

convolutions, which is very common in image processing [35, 38,

44, 54]. However, note that our results also carry over to the one-

dimensional case and to higher dimensions (e.g., 3d convolutions).

Let 𝑅 be a commutative ring and denote by 𝑅𝐷 the functions Z𝑘 →
𝑅 with support in the finite domain 𝐷 ⊂ Z𝑘 (𝑘 ∈ N), i.e., functions
that are zero outside of𝐷 . A discrete 2d convolution ∗ : 𝑅𝐷

′×𝑅𝐷 →
𝑅𝐷
′′
with domain 𝐷 ′′ of an image 𝒂 ∈ 𝑅𝐷 (𝐷 = ℎ ×𝑤) and a filter

𝒇 ∈ 𝑅𝐷′ (𝐷 ′ = ℎ′ ×𝑤 ′) is defined as

(𝒇 ∗ 𝒂)[𝑦, 𝑥] B
ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑦′, 𝑥 ′] · 𝒂[𝑦 − 𝑦′, 𝑥 − 𝑥 ′], (2)

for (𝑦, 𝑥) ∈ 𝐷 ′′. We call ∗ a convolution with

• valid padding if 𝐷 ′′ = [ℎ′ − 1..ℎ) × [𝑤 ′ − 1..𝑤), i.e., (2)
accesses only indices of 𝒂 such that (𝑦 − 𝑦′, 𝑥 − 𝑥 ′) ∈ 𝐷 for

all (𝑦′, 𝑥 ′) ∈ 𝐷 ′. This is the case where the filter and the

image overlap completely (e.g., in Fig. 1a).

• same padding if 𝐷 ′′ = [⌊ℎ′/2⌋ ..ℎ + ⌊ℎ′/2⌋) × [⌊𝑤 ′/2⌋ ..𝑤 +
⌊𝑤 ′/2⌋), i.e., |𝐷 | = |𝐷 ′′ | are of the same size and a suitable

number of zero values of 𝒂 outside of 𝐷 are accessed by

(2). As can be seen in Fig. 1b, this means that the image

is extended by roughly half the size of the filter in each

direction.

• full padding if 𝐷 ′′ = (ℎ + ℎ′ − 1) × (𝑤 + 𝑤 ′ − 1), i.e., 𝐷 ′′
is chosen such that all (possibly) non-zero summands in (2)

are accessed. This is the case where the filter and the image

overlap in at least one entry. For this, the image is extended

by the filter size (minus one) in each direction. Figure 1c

visualizes this.

For our packing schemes in Section 4, we will use up(𝐷 ′′) =

up([𝑙 ..ℎ′′) × [𝑣 ..𝑤 ′′)) B (ℎ′′,𝑤 ′′), i.e., the smallest upperbound

for 𝐷 ′′ in each spatial direction that is not included in 𝐷 ′′.
Note that the valid output of the convolution is (in general)

smaller than the input image and with full padding, the output

is larger than the input image. However, for ℎ′ = 𝑤 ′ = 1, these

three types of convolution are equivalent. A simple way to compute

arbitrary convolutions is to compute full convolutions and simply

discarding some parts of the output to get results with same or

valid padding. The same is true for strided convolutions, where we

only want the results for, e.g., every second coordinate.

A related operation is the cross-correlation

(𝒇 ★ 𝒂)[𝑦, 𝑥] :=

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑦′, 𝑥 ′] · 𝒂[𝑦 + 𝑦′, 𝑥 + 𝑥 ′] (3)

(for real-valued 𝒇), which is equivalent to a convolution of a 𝒂 and

a mirrored 𝒇 (see Appendix C.1). Therefore, we will only talk about

convolutions in the following, even if we might want to compute

cross-correlations from time to time.

In ML applications, slightly more complex operations built on 2d

convolutions are considered. For 4d tensors 𝒂 and 𝒇 with domains

𝐷 = 𝑏 ×ℎ ×𝑤 ×𝑑 and 𝐷 ′ = 𝑑 ′×𝑑 ×ℎ′×𝑤 ′, respectively, we define

conv2d(𝒂,𝒇)[𝑖, · , · , 𝑗] B
𝑑−1∑︁
𝑘=0

𝒇[𝑗, 𝑘, · , ·] ★ 𝒂[𝑖, · , · , 𝑘] (4)

324

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

for each (𝑖, 𝑗) ∈ 𝑏 × 𝑑 ′. The padding modes (full, same, valid;

zero-padding) and strides then apply to the individual 2d cross-

correlations (convolutions), i.e., to the finite 𝐷 ′′
𝑖 𝑗𝑘
⊂ Z2

such that

𝒇[𝑗, 𝑘, · , ·]★𝒂[𝑖, · , · , 𝑘] ∈ 𝑅𝐷
′′
𝑖 𝑗𝑘

for (𝑖, 𝑗, 𝑘) ∈ 𝑏×𝑑 ′×𝑑 . Usually, all
𝐷 ′′
𝑖 𝑗𝑘

are the same, and we can simply define up(𝐷 ′′) B up(𝐷 ′′
𝑖 𝑗𝑘
)

for the 4d domain 𝐷 ′′ of the output. In addition to this, there is also

the so-called depthwise (separable) convolution

dconv2d(𝒂,𝒇)[𝑖, · , · , 𝑗] B 𝒇[𝑗, · , ·] ★ 𝒂[𝑖, · , · , 𝑗] (5)

where 𝒇 is now a 3d tensor with domain 𝐷 ′ = 𝑑 ×ℎ′×𝑤 ′. The latter
is used, for example in [2, 15, 24, 49], to reduce the computational

load and the number of trainable parameters compared to conv2d.

2.3 MPC, Secret-Sharing, and SPDZ
The currently most efficient actively secure MPC protocols are

based on the fundamental results in SPDZ [18]. By now there is a

vast amount of work that builds on and extends the original SPDZ

protocol, e.g., [3, 14, 17, 31] (cf. [45] for an overview). We see our

work as an extension to the SPDZ framework or as a SPDZ-like
protocol. What follows is a short overview of the most important

concepts necessary for this work.

2.3.1 Secret-Sharing. For security against a dishonest majority,

i.e., in our setup all but one party might be corrupted, SPDZ uses

a full-threshold additive secret-sharing. For this work, we restrict
ourselves to a finite prime field F𝑝 . We call [𝑥]𝑖 the share of the
secret 𝑥 ∈ F𝑝 and party 𝑃𝑖 . We have that 𝑥 =

∑𝑛−1

𝑖=0
[𝑥]𝑖 for 𝑛 parties,

where (usually) all but one share are chosen uniformly at random –

the last share is chosen such that the sum of all shares reconstructs
the secret. Reconstruction or opening of a share requires the parties

to broadcast their share and each party computes the sum locally:

𝑥 = open([𝑥]𝑖) =
∑𝑛−1

𝑖=0
[𝑥]𝑖 . This secret-sharing scheme is additive,

i.e., [𝑥+𝑦]𝑖 = [𝑥]𝑖 +[𝑦]𝑖 , [𝑐 ·𝑥]𝑖 = 𝑐 · [𝑥]𝑖 , and [𝑥+𝑐]𝑖 = [𝑥]𝑖 +𝑐 · [1]𝑖
for all sharings of 𝑥,𝑦 ∈ F𝑝 , constant 𝑐 ∈ F𝑝 , and [1]𝑖 = 𝛿𝑖 the

Kronecker delta (𝛿𝑖 = 1 if 𝑖 = 0 and zero otherwise).

For active security, this secret-sharing is enhanced by so-called

SPDZ MACs. An authenticated share is then defined as ⟦𝑥⟧𝑖 B
([𝑥]𝑖 , [𝛼 · 𝑥]𝑖) for a (secret) MAC key 𝛼 . Addition of authenticated

shares is done analogously to the addition of shares above, but for

addition of constants ⟦𝑥 + 𝑐⟧𝑖 = ([𝑥]𝑖 + 𝑐 · [1]𝑖 , [𝛼 · 𝑥]𝑖 + 𝑐 · [𝛼]𝑖),
each party 𝑃𝑖 additionally requires a share [𝛼]𝑖 of the MAC key.

The MAC shares are used in a MAC check procedure (cf. Fig. 10

in Appendix A.4) to verify that the parties correctly computed and

opened shares. The MAC key is not revealed during a (successful)

MAC check and many MAC checks can be combined into a single

check [17].

2.3.2 Beaver Multiplication. To multiply two shares ⟦𝑥⟧𝑖 , ⟦𝑦⟧𝑖 ,
one can no longer only perform local operations on shares (as

for linear operations above). Instead, Beaver’s multiplication tech-

nique [4] is used: Given a triple (⟦𝑎⟧𝑖 , ⟦𝑏⟧𝑖 , ⟦𝑐⟧𝑖) with 𝑐 B 𝑎 · 𝑏
and 𝑢 B 𝑥 −𝑎, 𝑣 B 𝑦 −𝑏, we can compute a share of the product as

⟦𝑥 · 𝑦⟧𝑖 = ⟦𝑐⟧𝑖 + ⟦𝑎⟧𝑖 · 𝑣 + 𝑢 · ⟦𝑏⟧𝑖 + 𝑢 · 𝑣 . (6)

The values 𝑢 and 𝑣 are obtained by reconstruction of the shares

[𝑥]𝑖 − [𝑎]𝑖 , [𝑦]𝑖 − [𝑏]𝑖 where the correctness of the openings is

guaranteed by the MAC check. The Beaver triple multiplication can

be generalized to arbitrary bilinear operations, i.e., we can replace

the multiplication in (6) (and in the definition of 𝑐) by other bilinear

operations like matrix multiplications or convolutions [14, 43].

2.4 Homomorphic Encryption and BGV
Similar to other SPDZ-like protocols [3, 17, 18, 31], we base our

offline phase on the BGV encryption scheme of Brakerski et al. [8].

We will therefore shortly repeat the basics of the BGV scheme,

while more details can be found in Appendix A.1.

Let R𝑝 = F𝑝 [𝑋]/Φ𝑚 (𝑋) = R/𝑝R for 𝑝 a prime with 𝑝 =

1 mod𝑚. Let 𝑝 < 𝑞, 𝑞 a prime, and identify R𝑝 with a subset of

R𝑞 in the usual way (cf. [18]). Let (pk, sk) ∈ R2

𝑞 × R𝑞 be a BGV

public key/private key pair, 𝐶 B R2

𝑞 , enc
pk

: R𝑝 × R3

𝑞 ↦→ 𝐶 the

encryption function, and dec
sk

: 𝐶 ↦→ R𝑝 the decryption func-

tion. We use the following notation for encrypted values: ⟨x⟩, e.g.,
⟨x⟩

pk
= enc

pk
(x, r), where we omit the explicit dependency on the

key if it is clear from the context. We also define homomorphic

operations on ciphertexts and denote them with operations of the

same semantics, e.g., x · ⟨y⟩ for plaintext-ciphertext multiplication.

For further details, e.g., the definition of the encryption and decryp-

tion functions, how encryption randomness has to be chosen, and

how ciphertext operations (addition and multiplication) are defined,

see Appendix A.1

3 CONVOLUTION PACKING
There is an obvious similarity between the multiplicative structure

of R depicted in (1) and (1d versions of) the convolutions shown

in (2) and (3). Indeed, with the zero-padding and a large enough 𝑁 ,

we have

(𝒇 ∗ 𝒂)[𝑖] = (𝒇 ∗̄ 𝒂)[𝑖] (7)

and – asmentioned before –we can easily express cross-correlations

as convolutions.

This similarity can be used to represent convolutions as op-

erations on R and then use the homomorphic multiplication of

BGV ciphertexts in SPDZ-like protocols to securely (and efficiently)

compute convolutions in our MPC protocol. For (7), one could, for

example, compute 𝒇 ∗ 𝒂 = dec(⟨𝒇 ⟩ · ⟨𝒂⟩).
However, two problems remain before we can use this in prac-

tice. Firstly, (7) holds a priori only for 1d convolutions but we need

support for higher-dimensional (e.g., 2d) convolutions. Fortunately,

there is a standard way to represent higher dimensional convolu-

tions in terms of 1d convolutions. This construction is described

in Section 3.2.1 and allows us to restrict ourselves to the case of

1d convolutions in most cases. Secondly, 𝑁 is often quite large in

MPC protocols. In order to use the full potential of R, we therefore
need to utilize a large fraction of the convolved slots, usually by

performing multiple convolutions at once. Both problems can be si-

multaneously addressed by so called packing methods. We describe

a general framework for packing methods next.

3.1 General Framework for Convolution
Packing

Before we describe concrete packing methods for convolutions, we

establish a general framework for packing methods that can be used

325

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

to evaluate arbitrary bilinear operations like simple field multiplica-

tions, matrix products, or convolutions. For this, let op : 𝑅𝐷×𝑅𝐷′ →
𝑅𝐷
′′
be a 𝑅-bilinear operation, i.e., for 𝒇 ,𝒇 ′ ∈ 𝑅𝐷

′
, 𝒂, 𝒂′ ∈ 𝑅𝐷 ,

and 𝑠 ∈ 𝑅 we have op(𝒂 + 𝑠 · 𝒂′,𝒇) = op(𝒂,𝒇) + 𝑠 · op(𝒂′,𝒇)
and op(𝒂,𝒇 + 𝑠 · 𝒇 ′) = op(𝒂,𝒇) + 𝑠 · op(𝒂,𝒇 ′). Similarly, let opR :

R𝑢 × R𝑣 → R𝑤 be an 𝑅-bilinear map for some 𝑢, 𝑣,𝑤 ∈ N.

Definition 3.1. Let packi : 𝑅𝐷 → R𝑢 , packf : 𝑅𝐷
′ → R𝑣,

unpackr : R𝑤 → 𝑅𝐷
′′
. We say (packi, packf, unpackr) is a packing

method w.r.t. (op, opR) if for any 𝒂 ∈ 𝑅𝐷 , 𝒇 ∈ 𝑅𝐷′

op(𝒂,𝒇) = unpackr(opR (𝒈, 𝒃)), (8)

where 𝒃 = packi(𝒂) and 𝒈 = packf (𝒇), i.e., 𝒂 is packed with packi,

𝒇 is packed with packf , then the bilinear operation opR is evaluated

on the packed vectors 𝒃 and 𝒈 and the result is then unpacked with

unpackr.

To avoid confusion we will often add additional arguments for

the bilinear operations, e.g., write packi(op, 𝐷, 𝐷 ′, 𝒂) instead of

packi(𝒂). Additionally, most of the discussed packing schemes use

the standard choice of opR = ∗̄ on R ≃ Z𝑁 and 𝑢 = 𝑣 = 𝑤 = 1,

i.e., we express the operation op as a negacyclic convolution or

as a polynomial multiplication in R. The latter can be performed

securely with homomorphic encryption (e.g., BGV; cf. Section 2.4)

and packing (or unpacking) can be performed before the encryption

(or after the decryption, respectively). Note that (8) then becomes

op(𝒂,𝒇) = unpackr(𝒈 ∗̄ 𝒃) (9)

with 𝒃,𝒈 ∈ R for the standard case.

Remark 3.1. While not required by our definition, please note that

all packing methods treated in this paper have the additional feature

that one can also directly unpack packi(𝒂) and packf (𝒇) again, i.e.,
there are maps unpacki : R𝑢 → 𝑅𝐷 and unpackf : R𝑣 → 𝑅𝐷

′
with

unpacki ◦ packi = id𝑅𝐷 , unpackf ◦ packf = id𝑅𝐷′ .

An important subclass of packing methods are those induced

by injective functions on the index sets, which we describe next.

Let] : 𝐷 → 𝐹 be an injective map and 𝜋 : 𝐸 B image(]) → 𝐷

the surjective (left) inverse, i.e. 𝜋 ◦] = id𝐷 . To 𝜋 we can associate

the natural pullback map 𝜋∗ : 𝑅𝐷 → 𝑅𝐸 on the corresponding

function spaces. This means, 𝜋∗ (𝒂) [𝒊] B 𝒂[𝜋 (𝒊)] for all 𝒊 ∈ 𝐸 and

𝜋∗ (𝒂)[] (𝒙)] = 𝒂[𝒙] for 𝒙 ∈ 𝐷 . Note that 𝑅𝐸 embeds into 𝑅𝐹 by

extending function by zero and hence we can interpret 𝜋∗ as a
map to 𝑅𝐹 , i.e., 𝜋∗ (𝒂) [𝒋] = 0 for 𝒋 ∈ 𝐹 \ 𝐸. Similarly, define the

pushforward]∗ : 𝑅𝐹 → 𝑅𝐷 by]∗ (𝒃) [𝒙] B 𝒃[] (𝒙)] for 𝒙 ∈ 𝐷 . We

say 𝜋∗ and]∗ are induced by the injective map].

Definition 3.2. If (packi, packf, unpackr) is a packing method

and the procedures packi : 𝑅𝐷 → R𝑢 , packf : 𝑅𝐷
′ → R𝑣, unpackr :

R𝑤 → 𝑅𝐷
′′
are induced by injective maps mapi : 𝐷 → [..𝑁)𝑢 ,

mapf : 𝐷 ′ → [..𝑁)𝑣,mapr : 𝐷 ′′ → [..𝑁)𝑤 then we say that the

packing method is induced by (mapi,mapf,mapr).

In other words, mapi,mapf,mapr correspond to] above and

packi, packf are defined as pullbacks 𝜋∗ while unpackr is defined

as pushforward]∗.

Remark 3.2. One of the most important examples of a packing

method not induced by functions is the CRT packing discussed in

Appendix B. In particular, this encoding is used in the generation of

Beaver triples where we use our general framework in the special

case 𝐷 = 𝐷 ′ = 𝐷 ′′ = [..𝑁), 𝑅 = F𝑝 a finite field, op = ⊙ compo-

nent-multiplication, and opR the standard choice of polynomial

multiplication as described above.

3.2 Recent Packing Methods
In the following we want concentrate on induced packing methods

recently introduced in the literature. Additionally, we describe Bian

et al.’s packing method in Appendix C.2. In Section 4 we present

new packing methods – partially based on existing methods and

completely new ones.

3.2.1 Multidimensional Convolution Packing. Wefirst want to show

how we can include 2d convolutions in our framework. This will

also be used as part of all other packing methods. Therefore, our

description is similar to the packing methods presented in [6, 25].

However, the version presented here is not bound to a specific

padding but rather supports all popular padding methods (with

zero-padding) discussed above.

Theorem 3.3. Let 𝒂 be a 𝐷 = ℎ × 𝑤 (2d) image and 𝒇 a 𝐷 ′ =
ℎ′ ×𝑤 ′ (2d) filter. Choose 𝐷 ′′ according to the padding mode and let
(ℎ′′,𝑤 ′′) = up(𝐷 ′′). For 𝑁 with ℎ′′ ·𝑤 ′′ ≤ 𝑁 define 𝜙 : ℎ′′×𝑤 ′′ →
[..𝑁), (𝑦, 𝑥) ↦→ 𝑦 · 𝑤 ′′ + 𝑥 . Then the packing of 𝒂 and 𝒇 as (1d)
𝑁 -vectors 𝒃 = packi(∗, 𝐷, 𝐷 ′, 𝒂) and 𝒈 = packf (∗, 𝐷, 𝐷 ′,𝒇) satisfies

(𝒇 ∗ 𝒂)[𝑦, 𝑥] = unpackr(∗, 𝐷, 𝐷 ′,𝒈 ∗̄ 𝒃)[𝑦, 𝑥] (10)

for (𝑦, 𝑥) ∈ 𝐷 ′′, where the packing method (packi, packf, unpackr)
is induced by mapi(𝒙) = mapf (𝒙) = mapr(𝒙) = 𝜙 (𝒙).

Recall that the output domains 𝐷 ′′ corresponds to the popular
padding modes in Section 3. A proof for Theorem 3.3, as well as

the corresponding version for cross-correlations, can be found in

Appendix C.1.

3.2.2 Huang et al.’s Convolution Packing. Huang et al. present a

packing method in [25] with the goal to perform a whole conv2d

operation at once (given a large enough 𝑁). Let 𝜙 (𝑖, 𝑗, 𝑦, 𝑥) = ((𝑖 ·
𝑑 + 𝑗) · ℎ +𝑦) ·𝑤 + 𝑥 be the canonical indexing into a (flattened 4d)

𝑑 ′ × 𝑑 × ℎ ×𝑤 tensor. Huang et al. encode a 1 × ℎ ×𝑤 × 𝑑 image
2

𝒂 and a 𝑑 ′ × 𝑑 × ℎ′ × 𝑤 ′ filter 𝒇 as 𝒃[𝜙 (0, 𝑗, 𝑦, 𝑥)] := 𝒂[0, 𝑦, 𝑥, 𝑗]
and 𝒈[𝜙 (𝑑 ′ − 1 − 𝑖, 𝑑 − 1 − 𝑗, ℎ′ − 1 − 𝑦,𝑤 ′ − 1 − 𝑥)] := 𝒇[𝑖, 𝑗, 𝑦, 𝑥]
(with 𝒃[·] = 0 and 𝒈[·] = 0 at other positions), respectively. Then,

conv2d(𝒇 , 𝒂)[0, 𝑦, 𝑥, 𝑖] = (𝒈 ∗̄ 𝒃)[𝜑] for (𝑖, 𝑦, 𝑥) ∈ 𝑑 ′ × (ℎ −ℎ′ + 1) ×
(𝑤 − 𝑤 ′ + 1) and 𝜑 = 𝜙 (𝑑 ′ − 1 − 𝑖, 𝑑 − 1, ℎ′ − 1 + 𝑦,𝑤 ′ − 1 + 𝑥).
This corresponds to a conv2d for a batch size 𝑏 = 1 and valid

padding (with shifted 𝑥 and 𝑦 indices of the output compared to

the above description). In the framework of Section 3.1, we would

have mapi(0, 𝑦, 𝑥, 𝑗) = 𝜙 (0, 𝑗, 𝑦, 𝑥), mapf (𝑗 ′, 𝑗, 𝑦, 𝑥) = 𝜙 (𝑑 ′ − 1 −
𝑗 ′, 𝑑 − 1 − 𝑗, ℎ′ − 1 − 𝑦,𝑤 ′ − 1 − 𝑥), and mapr(0, 𝑦, 𝑥, 𝑗 ′) = 𝜙 (𝑑 ′ −
1 − 𝑗 ′, 𝑑 − 1, ℎ′ − 1 + 𝑦,𝑤 ′ − 1 + 𝑥). In Section 4.2, we present a

more efficient generalization which can use the same 𝒈 in multiple

batches. This will be particularly useful when the packing is applied

to encrypted versions of 𝒈 and 𝒃 , since then the encryption of 𝒈
has to be sent only once. We remark that sending ciphertexts and

proving their correctness with zero-knowledge proofs is expensive

2
Huang et al. use a ℎ × 𝑤 × 𝑑 image and we extended this trivially to a 4d tensor to

be compatible with our framework.

326

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

and our approach reduces these costs, both the bandwidth and

the runtime, compared to the original version where each batch is

handled as a completely new and unrelated conv2d operation.

4 NEW PACKING METHODS
Here, we present new packing methods for convolutions. This

includes the first packing method for depthwise convolutions that

can be realized with only homomorphic polynomial multiplications.

Appendix D contains the proofs of correctness for each of the

packing methods.

4.1 Simple Convolution Packing
Our first simple convolution packing is based on the multidimen-

sional packing of Section 3.2.1. For a complete conv2d computation,

we deviate slightly from the standard choice opR = ∗̄ and use

instead a linear combination of 𝑑 partial convolutions in (8), i.e.,

opR : R𝑑 × R𝑑 → R, ((𝒈𝑘)𝑘∈𝑑 , (𝒃𝑘)𝑘∈𝑑) ↦→
∑𝑑−1

𝑘=0
𝒈𝑘 ∗̄ 𝒃𝑘 with

(𝒃𝑘)𝑘∈𝑑 = packi(op, 𝐷, 𝐷 ′, 𝒂) and (𝒈𝑘)𝑘∈𝑑 = packf (op, 𝐷, 𝐷 ′,𝒇).
This allows for the simple convolution packing below.

Theorem 4.1. Let 𝒂 be a (4d) 𝐷 = 𝑏 × ℎ × 𝑤 × 𝑑 tensor and
let 𝒇 be a (4d) 𝐷 ′ = 𝑑 ′ × 𝑑 × ℎ′ ×𝑤 ′ tensor. Choose 𝐷 ′′ according
to the padding mode and let (ℎ′′,𝑤 ′′) = up(𝐷 ′′). Let 𝜙 (𝑖, 𝑗, 𝑦, 𝑥) =
((𝑖 ·𝑑 ′+ 𝑗) ·ℎ′′+𝑦) ·𝑤 ′′+𝑥 be the canonical indexing into a (flattened
4d) 𝑏 × 𝑑 ′ × ℎ′′ ×𝑤 ′′ tensor. Let

mapi(𝑖, 𝑦, 𝑥, 𝑗) = (𝜙 (𝑖, 0, 𝑦, 𝑥), 𝑗) ∈ 𝑁 × 𝑑
mapf (𝑗 ′, 𝑗, 𝑦, 𝑥) = (𝜙 (0, 𝑗 ′, ℎ′ − 1 − 𝑦,𝑤 ′ − 1 − 𝑥), 𝑗) ∈ 𝑁 × 𝑑
mapr(𝑖, 𝑦, 𝑥, 𝑗 ′) = 𝜙 (𝑖, 𝑗 ′, 𝑦, 𝑥).

For the induced packing (packi, packf, unpackr) and 𝒃𝑘 ,𝒈𝑘 as above,

conv2d(𝒂,𝒇) = unpackr(conv2d, 𝐷, 𝐷 ′,
𝑑−1∑︁
𝑘=0

𝒈𝑘 ∗̄ 𝒃𝑘). (11)

Compared to Theorem 3.3 we have two additional dimensions

index by 𝑖 and 𝑗 ′. For each index pair (𝑖, 𝑗 ′) we map to a disjoint

subset of [..𝑁) and then apply a modified version of Theorem 3.3

for ★ instead of ∗ (cf. Remark C.1). A single 𝒈𝑘 ∗̄ 𝒃𝑘 then yields

cross-correlations for each batch (𝑏) and output channel (𝑑 ′) and
a fixed input channel (𝑑). We can then simply sum up all 𝑑 sets

of individual cross-correlations to get the full conv2d result. For

details on the proof of Theorem 4.1 we refer to Appendix D.1. A

visual example can be seen in Fig. 2. There, we abstract away the

spatial dimensions with blocks, each representing an ℎ′′ ×𝑤 ′′ slice
(by Theorem 3.3), and only focus on the remaining dimensions.

4.2 Generalization of Huang et al.’s
Convolution Packing

Here, we present a slightly different (but more intuitive) extension

to Huang et al.’s packing method [25] described in Section 3.2.2.

Theorem 4.2. Let 𝒂 be a (4d)𝐷 = 𝑏×ℎ×𝑤×𝑑 tensor and let𝒇 be a
(4d) 𝐷 ′ = 𝑑 ′×𝑑 ×ℎ′×𝑤 ′ tensor. Choose 𝐷 ′′ according to the padding
mode and let (ℎ′′,𝑤 ′′) = up(𝐷 ′′). Let 𝜙 (𝑖, 𝑗, 𝑘,𝑦, 𝑥) = (((𝑖 · 𝑑 ′ + 𝑗) ·
𝑑 + 𝑘) · ℎ′′ + 𝑦) ·𝑤 ′′ + 𝑥 be the canonical indexing into a (flattened
5d) 𝑏 ×𝑑 ′ ×𝑑 ×ℎ′′ ×𝑤 ′′ tensor. Let 𝒃 = packi(conv2d, 𝐷, 𝐷 ′, 𝒂) and

𝒃0 = 𝒂[0,·,·,𝑅] 𝒂[1,·,·,𝑅]
𝒃1 = 𝒂[0,·,·,𝐺] 𝒂[1,·,·,𝐺]
𝒃2 = 𝒂[0,·,·,𝐵] 𝒂[1,·,·,𝐵]
𝒈0 = 𝒇[𝑆,𝑅,·,·] 𝒇[𝑇,𝑅,·,·]
𝒈1 = 𝒇[𝑆,𝐺,·,·] 𝒇[𝑇,𝐺,·,·]
𝒈2 = 𝒇[𝑆,𝐵,·,·] 𝒇[𝑇,𝐵,·,·]

(∑𝑑−1

𝑘=0
𝒈𝑘 ∗̄𝒃𝑘)[𝜙 (0,𝑆,·,·)]

conv2d(𝒂,𝒇)[0,·,·,𝑆]
=

0,·,·,𝑅 1,·,·,𝑅
𝑆,𝑅,·,· 𝑇,𝑅,·,·

0,·,·,𝐺 1,·,·,𝐺
𝑆,𝐺,·,· 𝑇,𝐺,·,·

0,·,·,𝐵 1,·,·,𝐵
𝑆,𝐵,·,· 𝑇,𝐵,·,·

+ +

(∑𝑑−1

𝑘=0
𝒈𝑘 ∗̄𝒃𝑘)[𝜙 (0,𝑇 ,·,·)]

conv2d(𝒂,𝒇)[0,·,·,𝑇]
=

0,·,·,𝑅 1,·,·,𝑅
𝑆,𝑅,·,·𝑇,𝑅,·,·

0,·,·,𝐺 1,·,·,𝐺
𝑆,𝐺,·,·𝑇,𝐺,·,·

0,·,·,𝐵 1,·,·,𝐵
𝑆,𝐵,·,·𝑇,𝐵,·,·

+ +

(∑𝑑−1

𝑘=0
𝒈𝑘 ∗̄𝒃𝑘)[𝜙 (1,𝑆,·,·)]

conv2d(𝒂,𝒇)[1,·,·,𝑆]
=

0,·,·,𝑅 1,·,·,𝑅
𝑆,𝑅,·,·𝑇,𝑅,·,·

0,·,·,𝐺 1,·,·,𝐺
𝑆,𝐺,·,·𝑇,𝐺,·,·

0,·,·,𝐵 1,·,·,𝐵
𝑆,𝐵,·,·𝑇,𝐵,·,·

+ +

(∑𝑑−1

𝑘=0
𝒈𝑘 ∗̄𝒃𝑘)[𝜙 (1,𝑇 ,·,·)]

conv2d(𝒂,𝒇)[1,·,·,𝑇]
=

0,·,·,𝑅 1,·,·,𝑅
𝑆,𝑅,·,·𝑇,𝑅,·,·

0,·,·,𝐺 1,·,·,𝐺
𝑆,𝐺,·,·𝑇,𝐺,·,·

0,·,·,𝐵 1,·,·,𝐵
𝑆,𝐵,·,·𝑇,𝐵,·,·

+ +

Figure 2: Example for the Simple Convolution Packing with
𝑏 = 2, 𝑑 = 3, 𝑑 ′ = 2 (cf. (11)). The packing of the image 𝒂 (blue)

and the filter 𝒇 (orange) is shown at the top. For better readability,

we identify the input channels with the symbols 𝑅,𝐺, 𝐵 and the

output channels with 𝑆,𝑇 . The computation of the convolution

result conv2d(𝒂,𝒇) = unpackr(∑𝑑−1

𝑘=0
𝒈𝑘 ∗̄𝒃𝑘) is shown below. There,

image and filter components are identified by their indices, i.e., we

drop “𝒂” and “𝒇 ”; negated components of 𝒇 are shown with bars

on top. Values of 𝒂 and 𝒇 that are aligned on top of each other are

convolved and the colored (green) boxes show where the partial

convolution is non-zero. These (partial) convolutions are summed

up as part of ∗̄ and as part of the sum over 𝑘 .

𝒈 = packf (conv2d, 𝐷, 𝐷 ′,𝒇). Then,
conv2d(𝒂,𝒇) = unpackr(conv2d, 𝐷, 𝐷 ′,𝒈 ∗̄ 𝒃) (12)

for the packing method (packi, packf, unpackr) induced by mapi(𝑖,
𝑦, 𝑥, 𝑗) = 𝜙 (𝑖, 0, 𝑗, 𝑦, 𝑥), mapf (𝑗 ′, 𝑗, 𝑦, 𝑥) = 𝜙 (0, 𝑗 ′, 𝑑 − 1 − 𝑗, ℎ′ − 1 −
𝑦,𝑤 ′ − 1 − 𝑥), and mapr(𝑖, 𝑦, 𝑥, 𝑗 ′) = 𝜙 (𝑖, 𝑗 ′, 𝑑 − 1, 𝑦, 𝑥).

The intuition of this packing is similar to the simple packing

(cf. Section 4.1): For a pair (𝑖, 𝑗 ′), the image and filter are mapped

to disjoint subsets of [..𝑁) such that (partial) convolutions for

different batches or output dimensions do not overlap. Additionally,

the index 𝑗 along the input depth dimension 𝑑 is chosen so the

image and filter for the same input channel intentionally overlap.

By the structure of the (negacyclic) convolution, the filter has to

be reversed along this dimension. Then, the partial convolutions

are summed up and the result can be obtained in the last slot along

the 𝑑 dimension. A proof can be found in Appendix D.2 and an

example can be seen in Fig. 3. As for Fig. 2, we only ignore the

spatial dimensions in the figure as this is handled by Theorem 3.3.

An example for Huang et al.’s original packing would look similar

(with the before mentioned limitations of only supporting 𝑏 = 1

and valid padding) but the encoding of the filter and decoding of

the result would both be reversed along the 𝑑 ′ axis, as can be seen

when comparing the equations for the packing methods.

With (12), we are then able to pack a whole conv2d operation

into a single convolution. However, if the length of vectors (on

which we can operate) is limited, e.g., when we work with homo-

morphic encryption with a fixed 𝑁 , we cannot perform the whole

operation. Instead, we should split a conv2d operation into smaller

operations (which can be computed as in (12)). This is possible

along all dimensions (batch dimension 𝑏, 𝑥 dimension, 𝑦 dimension,

327

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

𝒃 =
...

...
𝒂[0,·,·,𝑅] 𝒂[0,·,·,𝐺] 𝒂[0,·,·,𝐵] 𝒂[1,·,·,𝑅] 𝒂[1,·,·,𝐺] 𝒂[1,·,·,𝐵]

𝒈 =
...

...
𝒇[𝑆,𝐵,·,·] 𝒇[𝑆,𝐺,·,·] 𝒇[𝑆,𝑅,·,·] 𝒇[𝑇,𝐵,·,·] 𝒇[𝑇,𝐺,·,·] 𝒇[𝑇,𝑅,·,·]

(𝒈∗̄𝒃)[𝜙 (0,𝑆,𝑅,·,·)]
(not used)

=
0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵
𝑆,𝐵,·,· 𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (0,𝑆,𝐺,·,·)]
(not used)

=
0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵

𝑆,𝐵,·,·𝑆,𝐺,·,· 𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (0,𝑆,𝐵,·,·)]
conv2d(𝒂,𝒇)[0,·,·,𝑆] =

0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵
𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,· 𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (0,𝑇 ,𝑅,·,·)]
(not used)

=
0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵

𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,· 𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (0,𝑇 ,𝐺,·,·)]
(not used)

=
0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵

𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,· 𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (0,𝑇 ,𝐵,·,·)]
conv2d(𝒂,𝒇)[0,·,·,𝑇] =

0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵
𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑆,𝑅,·,·)]
(not used)

=
0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵

𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑆,𝐺,·,·)]
(not used)

=
0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵

𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑆,𝐵,·,·)]
conv2d(𝒂,𝒇)[1,·,·,𝑆] =

0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵
𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑇 ,𝑅,·,·)]
(not used)

=
0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵

𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑇 ,𝐺,·,·)]
(not used)

=
0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵

𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑇 ,𝐵,·,·)]
conv2d(𝒂,𝒇)[1,·,·,𝑇] =

0,·,·,𝑅 0,·,·,𝐺 0,·,·,𝐵 1,·,·,𝑅 1,·,·,𝐺 1,·,·,𝐵
𝑆,𝐵,·,·𝑆,𝐺,·,·𝑆,𝑅,·,·𝑇,𝐵,·,·𝑇,𝐺,·,·𝑇,𝑅,·,·

Figure 3: Example for the Generalization of Huang et al.’s
Convolution Packing with 𝑏 = 2, 𝑑 = 3, 𝑑 ′ = 2 (cf. (12)). The
illustration of the image 𝒂 (blue) and the filter 𝒇 (orange) is similar

to Fig. 2. The computation of the convolution result conv2d(𝒂,𝒇) =
unpackr(𝒈 ∗̄ 𝒃) is shown below the packing of 𝒂 and 𝒇 . Values of
𝒂 and 𝒇 that are aligned on top of each other are convolved and

the colored (green) boxes show where the partial convolution is

non-zero. These (partial) convolutions are summed up as part of ∗̄.

input depth dimension 𝑑 , and output depth dimension 𝑑 ′; see [25]
for their version and Section 6.5.2 for ours). Here, our generaliza-

tion not only allows (previously impossible) direct realization of

convolutions (including 𝑏 > 1 and not only valid padding), but it

also improves efficiency as we can move spatial splits (splitting

along the 𝑥 or𝑦 dimensions) into the batch dimension. For example,

in our evaluation, we compute the convolution of a 1×224×224×3

image 𝒂 with a filter 𝒇 as a convolution of a 4× 112× 112× 3 image

with the same filter 𝒇 (recombining the four batches to a larger

convolution triple afterwards). This is still a convolution of a single

image with a single filter and therefore we only need ciphertexts

for a single filter instead of four, as would be the case when we

represent this as four separate 1 × 112 × 112 × 3 convolutions.

4.3 Depthwise Convolution Packing
With the exception of Bian et al. [6], no prior work seems to be able

to pack convolutions in a way suitable for depthwise convolutions

(see Appendix C.2 for a description of Bian et al.’s packing). Here, we

present an alternative to [6] that represents multiple independent

cross-correlations in a single convolution (instead of representing a

depthwise convolution as matrix-vector product). We remark that

𝒃 = 𝒂[0,·,·,𝑆] 𝒂[0,·,·,𝑇] 𝒂[1,·,·,𝑆] 𝒂[1,·,·,𝑇]
𝒈 = 𝒇[𝑆,·,·] 𝒇[𝑇,·,·]

(𝒈∗̄𝒃)[𝜙 (0,𝑆,𝑆,·,·)]
dconv2d(𝒂,𝒇)[0,·,·,𝑆] =

0,·,·,𝑆 0,·,·,𝑇 1,·,·,𝑆 1,·,·,𝑇
𝑆,·,· 𝑇,·,·

(𝒈∗̄𝒃)[𝜙 (0,𝑆,𝑇 ,·,·)]
(not used)

=
0,·,·,𝑆 0,·,·,𝑇 1,·,·,𝑆 1,·,·,𝑇

𝑆,·,· 𝑇,·,·

(𝒈∗̄𝒃)[𝜙 (0,𝑇 ,𝑆,·,·)]
(not used)

=
0,·,·,𝑆 0,·,·,𝑇 1,·,·,𝑆 1,·,·,𝑇

𝑆,·,·𝑇,·,·

(𝒈∗̄𝒃)[𝜙 (0,𝑇 ,𝑇 ,·,·)]
dconv2d(𝒂,𝒇)[0,·,·,𝑇] =

0,·,·,𝑆 0,·,·,𝑇 1,·,·,𝑆 1,·,·,𝑇
𝑆,·,·𝑇,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑆,𝑆,·,·)]
dconv2d(𝒂,𝒇)[1,·,·,𝑆] =

0,·,·,𝑆 0,·,·,𝑇 1,·,·,𝑆 1,·,·,𝑇
𝑆,·,·𝑇,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑆,𝑇 ,·,·)]
(not used)

=
0,·,·,𝑆 0,·,·,𝑇 1,·,·,𝑆 1,·,·,𝑇

𝑆,·,·𝑇,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑇 ,𝑆,·,·)]
(not used)

=
0,·,·,𝑆 0,·,·,𝑇 1,·,·,𝑆 1,·,·,𝑇

𝑆,·,·𝑇,·,·

(𝒈∗̄𝒃)[𝜙 (1,𝑇 ,𝑇 ,·,·)]
dconv2d(𝒂,𝒇)[1,·,·,𝑇] =

0,·,·,𝑆 0,·,·,𝑇 1,·,·,𝑆 1,·,·,𝑇
𝑆,·,·𝑇,·,·

Figure 4: Example for the Depthwise Convolution Packing
with 𝑏 = 𝑑 = 2 (cf. (13)). The illustration of the image 𝒂 (blue) and

the filter 𝒇 (orange) is similar to Fig. 2. For better readability, we

identify the input and output channels with the symbols 𝑆,𝑇 . The

computation of the convolution result dconv2d(𝒂,𝒇) = unpackr(𝒈 ∗̄
𝒃) is shown below the packing of 𝒂 and 𝒇 . Values of 𝒂 and 𝒇 that

are aligned on top of each other are convolved and the colored

(green) boxes showwhere the partial convolution is non-zero. These

(partial) convolutions are summed up as part of ∗̄.

our approach (unlike [6]) can also be used with encryption schemes,

e.g., BGV and BFV, that natively only support the homomorphic

multiplication of polynomials in R.

Theorem 4.3. Let 𝒂 be a (4d) 𝐷 = 𝑏 × ℎ × 𝑤 × 𝑑 tensor and
let 𝒇 be a (3d) 𝐷 ′ = 𝑑 × ℎ′ × 𝑤 ′ tensor. Choose 𝐷 ′′ according to
the padding mode and let (ℎ′′,𝑤 ′′) = up(𝐷 ′′). As in Theorem 4.2,
let 𝜙 (𝑖, 𝑗, 𝑘,𝑦, 𝑥) = (((𝑖 · 𝑑 + 𝑗) · 𝑑 + 𝑘) · ℎ′′ + 𝑦) · 𝑤 ′′ + 𝑥 be the
canonical indexing into a (flattened 5d) 𝑏 × 𝑑 × 𝑑 × ℎ′′ ×𝑤 ′′ tensor.3
Let 𝒃 = packi(dconv2d, 𝐷, 𝐷 ′, 𝒂) and 𝒈 = packf (dconv2d, 𝐷, 𝐷 ′,𝒇).
Then,

dconv2d(𝒂,𝒇) = unpackr(dconv2d, 𝐷, 𝐷 ′,𝒈 ∗̄ 𝒃) (13)

for the packing method (packi, packf, unpackr) induced by mapi(𝑖,
𝑦, 𝑥, 𝑗) = 𝜙 (𝑖, 0, 𝑗, 𝑦, 𝑥), mapf (𝑗, 𝑦, 𝑥) = 𝜙 (0, 𝑗, 0, ℎ′−1−𝑦,𝑤 ′−1−𝑥),
and mapr(𝑖, 𝑦, 𝑥, 𝑗) = 𝜙 (𝑖, 𝑗, 𝑗, 𝑦, 𝑥).

Again, we construct the packing such that each batch 𝑖 is mapped

to disjoint region of [..𝑁). For the depth dimension, we pack the

image and filter such that the 𝒈 ∗̄ 𝒃 yields the convolution for each

channel 𝑗 of the image and channel 𝑗 ′ of the filter. For the output,
we simply select the partial convolution with 𝑗 = 𝑗 ′. While this

might seem wasteful, especially for small images, it is more efficient

than emulating dconv2d with conv2d (cf. Section 7). A proof for

Theorem 4.3 can be found in Appendix D.3.

3
Compared to Section 4.2, we have 𝑑′ = 𝑑 .

328

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

5 MALICIOUSLY SECURE CONVOLUTIONS:
THE ONLINE PHASE

As mentioned before in Section 2.3.2, given a convolution triple

(⟦𝒂⟧𝑖 , ⟦𝒇⟧𝑖 , ⟦𝒄⟧𝑖) for uniformly random 𝒂,𝒇 and 𝒄 = conv2d(𝒂,𝒇),
we can compute a (maliciously secure) convolution of a secret-

shared image ⟦𝒙⟧𝑖 (with the same shape as 𝒂) and a filter ⟦𝒚⟧𝑖
(with the same shape as 𝒇) as a linear combination of the triple and

opened values 𝒖 B 𝒙 − 𝒂, 𝒗 B 𝒚 − 𝒇 (analogously to (6)), i.e.,

⟦conv2d(𝒙,𝒚)⟧𝑖 = ⟦𝒄⟧𝑖 + conv2d(⟦𝒂⟧𝑖 , 𝒗)
+ conv2d(𝒖, ⟦𝒇⟧𝑖) + conv2d(𝒖, 𝒗). (14)

With this, we obtain a share of the convolution result and can induc-

tively compute an arbitrary function on shares – in particular any

convolutional neural network – as we can compute all necessary

operations on shares in a maliciously secure way (scalar multipli-

cations and additions [18], fully connected layers and matrix multi-

plications [14], ReLUs and max pooling [12, 21], etc.). The security

follows from the security of the individual operations (e.g., linear

operations to compute (14)) and the bilinearity of conv2d [14, 43].

The same can be done for depthwise convolutions by simply replac-

ing conv2d by dconv2d above. Strided convolutions and different

paddings can be handled analogously.

The full protocol for the online phase Π
online

, as well as the

corresponding functionality F
online

and the security proof of the

following theorem can be found in Appendix E. Assuming the

existence of F
offline

– an ideal functionality for the offline phase

that generates triples (cf. Section 6) – and F
rand

that allows parties

to sample random values in F𝑝 (used in the MAC check, Fig. 10),

we obtain the following theorem.

Theorem 5.1. The online protocol Π
online

securely implements
the ideal functionality F

online
in the (F

offline
, F

rand
)-hybrid model.

6 MALICIOUSLY SECURE CONVOLUTIONS:
THE OFFLINE PHASE

The convolution triples used in the online phase are generated

in the input-independent offline phase. Different design patterns

for the offline phase can lead to drastically different performance

characteristics of MPC protocols in different application setups (few

parties, low latency communication; many parties, high latency

communication; etc.) and they heavily influence the practicality of

certain approaches. In order to be applicable to these different setups

we instantiate our generic computation methods for convolutions

discussed in Section 4 in multiple ways. Since all of the presented

new offline protocols are based on homomorphic encryption we

first describe the common pattern of these approaches in Section 6.1.

We then introduce specialized protocols for the standard choice (9)

in the case of a low number of parties based (similar to Overdrive’s

LowGear protocol [31]) in Section 6.2 and a larger number of parties

(similar to Overdrive’s HighGear protocol [31] or TopGear [3]) in

Section 6.3. The protocols can be trivially extended to support the

simple packing of Section 4.1. Additionally, we provide a linear

homomorphic offline phase for Bian et al.’s packing technique in

Appendix F.3.2.

Sacrifice(op, ⟦𝒂⟧𝑖 , ⟦𝒇⟧𝑖 , ⟦𝒇 ′⟧𝑖 , ⟦𝒄⟧𝑖 , ⟦𝒄 ′⟧𝑖): Generalized sacri-

ficing to generate a triple with the correct correlation or fail.

1. All parties sample 𝑟 with F
rand

.

2. Open ⟦𝒖⟧𝑖 = ⟦𝑟 · 𝒇 − 𝒇 ′⟧𝑖 to obtain 𝒖.
3. Open ⟦𝒗⟧𝑖 = ⟦𝑟 · 𝒄 − 𝒄 ′ − op(𝒂, 𝒖)⟧𝑖 to obtain 𝒗.
4. Abort if 𝒗 ≠ 0. Perform the MAC check for the openings of 𝒖

and 𝒗 and abort if the check fails.

5. Return (⟦𝒂⟧𝑖 , ⟦𝒇⟧𝑖 , ⟦𝒄⟧𝑖).
ZKP(𝐼): Given an index set 𝐼 ⊆ [..𝑁), compute ciphertexts for

plaintexts 𝒙𝑖 with 𝒙𝑖[𝑙] = 0 for 𝑙 ∈ 𝐼 for each party and prove in

ZK that a suitable witness exists. Output the own plaintext and

the ciphertext for each party.

See Fig. 11 in Appendix A.4.

Figure 5: Utilities for the Offline Phases at Party 𝑃𝑖

6.1 General Construction
In Sections 3 and 4 we have seen how convolutions can be packed

and then evaluated by a polynomial multiplication in a cyclotomic

ring. We first restrict to a single polynomial multiplication and dis-

cuss the case of convolutions that cannot be represented as a single

polynomial multiplication (without increasing 𝑁) in Section 6.5.2.

To securely realize a polynomial multiplication we use the ho-

momorphic properties of the BGV encryption scheme common in

SPDZ-like protocols. Once we can compute convolutions in a secure

way, we can construct the non-trivial third entry 𝒄 = conv2d(𝒂,𝒇)
or a convolution triple. We remark that since our general frame-

work also support simple field multiplication, we can also generate

classical Beaver triples.

Multiplication with homomorphic encryption schemes in our

protocols follows the following pattern. First each party generates

(random) shares locally and encrypts them with their public key.

In order for a ciphertext to be used in a multiplication protocol, a

party first has to show with a zero-knowledge proof (ZKP) that they

know a plaintext witnesses and that the plaintext is well-formed.

In particular, our ZKPs show that the plaintexts are valid packings,

which reduces to showing that certain coefficients (depending on

packi and packf) are zero. This in turn will imply that the sum of the

shares, i.e., the shared secret, will have the same zero coefficients

and therefore represents a valid packing.

Next, the parties multiply their shares with standard multipli-

cation techniques, which are base on either linear homomorphic

encryption in Section 6.2 or somewhat homomorphic encryption

in Section 6.3. Additionally, the shares are authenticated in the

usual way, i.e., by multiplication with ciphertexts of (shares of)

the MAC key 𝛼 . Furthermore, the parties check that the original

shares were authenticated and that no error was introduced in the

multiplication (or resharing for SHE-based protocols). The latter

is done using a new extended sacrificing technique which we will

introduce in Section 6.4.

6.2 Linear Homomorphic Offline Phase
In Fig. 7, we present the (convolution) triple generation of our

protocol based on linear homomorphic encryption. Additional sub-

protocols can be found in Figs. 5 and 6. The construction is based

329

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

Multiply(a𝑖 , b𝑖 , ⟨b0⟩pk
0

, . . . , ⟨b𝑛−1⟩pk𝑛−1

): Compute [c]𝑖 such

that c = (∑𝑛−1

𝑗=0
a𝑗) · (

∑𝑛−1

𝑗=0
b𝑗).

1. For 𝑗 ∈ [..𝑛) \ {𝑖} do the following (in parallel).

1.1. Sample an uniformly random m𝑖, 𝑗 ∈ R𝑝 .
1.2. Compute ⟨c𝑖, 𝑗 ⟩pk𝑗

= a𝑖 · ⟨b𝑗 ⟩pk𝑗
− enc

′
pk𝑗
(m𝑖, 𝑗) where enc

′

is encryption with large drowning noise (larger than normal

encryption randomness; cf. Appendix A.1.1).

1.3. Send ⟨c𝑖, 𝑗 ⟩pk𝑗
to 𝑃 𝑗 and receive ⟨c𝑗,𝑖 ⟩pk𝑖

in return.

1.4. Decrypt ⟨c𝑗,𝑖 ⟩pk𝑖
to c𝑗,𝑖 with dec

sk𝑖
.

2. Compute [c]𝑖 = a𝑖 · b𝑖 +
∑

𝑗≠𝑖 (c𝑗,𝑖 +m𝑖, 𝑗).

Figure 6: Utilities for the Linear Homomorphic Offline Phase
Used in Π

offline-LHE
(cf. Fig. 7) at Party 𝑃𝑖

Protocol Π
offline-LHE

Triples(op, 𝐷, 𝐷 ′): Generate a triple for the bilinear map op.

1. Run ZKP([..𝑁) \ image(mapi(op, 𝐷, 𝐷 ′, ·))) to obtain

(b𝑖 , ⟨b0⟩pk
0

, . . . , ⟨b𝑛−1⟩pk𝑛−1

). Sample uniformly random

g𝑖 , g′𝑖 ∈ R𝑝 such that the 𝑘-th coefficients are zero with

𝑘 ∈ [..𝑁) \ image(mapf (op, 𝐷, 𝐷 ′, ·)). Define [𝒂]𝑖 B
unpacki(op, 𝐷, 𝐷 ′, b𝑖), [𝒇]𝑖 B unpackf (op, 𝐷, 𝐷 ′, g𝑖),
[𝒇 ′]𝑖 B unpackf (op, 𝐷, 𝐷 ′, g′

𝑖
).

2. RunMultiplywith g𝑖 , b𝑖 , and the ciphertexts for b𝑗 to obtain
[c]𝑖 . Analogously, obtain [c′]𝑖 for g′𝑖 , b𝑖 , and the ciphertexts.

3. Run Multiply with b𝑖 , [𝛼]𝑖 , and the ciphertexts of the MAC

key shares to obtain [𝛼 · b]𝑖 . Analogously, obtain [𝛼 · g]𝑖 ,
[𝛼 · g′]𝑖 , [𝛼 · c]𝑖 , and [𝛼 · c′]𝑖 . Unpack these shares to get

[𝛼𝒂]𝑖 , [𝛼𝒇]𝑖 , [𝛼𝒇 ′]𝑖 , [𝛼𝒄]𝑖 , and [𝛼𝒄 ′]𝑖 , respectively.
4. Return Sacrifice(op, ⟦𝒂⟧𝑖 , ⟦𝒇⟧𝑖 , ⟦𝒇 ′⟧𝑖 , ⟦𝒄⟧𝑖 , ⟦𝒄 ′⟧𝑖).

Figure 7: Protocol for the LinearHomomorphic Offline Phase
at Party 𝑃𝑖

on Overdrive’s LowGear protocol [31] but extends it to generate

triples for any bilinear operations that can be represented with the

framework of Section 3.1. (Fig. 7 restricts this to the standard case

(9) for simplicity.)

Analogously to Overdrive LowGear, parties first generate their

shares for 𝒂 and 𝒇 . Here, only one of them (i.e., 𝒂) requires ZKPs
that prove correctness of encrypted shares. These shares are sent

to all parties. Then, the parties can multiply these ciphertexts with

(packings of) their own share of 𝒇 to obtain ciphertexts of pairwise

shares. These pairwise shares are also re-randomized and sent back

to the party that originally sent the encrypted share and holds the

corresponding private key. After receiving all encrypted pairwise

shares, this party can decrypt them and combine them to obtain a

share of the overall product of packings, e.g., an encoding of the

convolution of 𝒂 and 𝒇 . Finally, all shares are authenticated (by

multiplying with encrypted MAC key shares as in LowGear) and

parts of the triples can be sacrificed to guarantee the correct relation

between authenticated triples (cf. Section 6.4).

Note that this construction is much closer to LowGear than, for

example, [25]. In [25], a protocol similar to ourMultiply subpro-

tocol (cf. Fig. 6) is used. However, their version does not drown

the ciphertext containing the pairwise product c𝑖, 𝑗 . Instead, [25]
computes this product and extracts (LWE) ciphertexts for all coeffi-

cients of the product’s (RLWE) ciphertext that are later required

for the shares of the conv2d result. We opted to not follow this

approach for the following reasons. (i) We use larger BGV parame-

ters for drowning ciphertexts for (scalar) Beaver triple generation,

so avoiding drowning does not improve the parameters. (ii) The

technique comes with additional computational overhead. (iii) It is

unclear if maliciously crafted (LWE) ciphertexts might break the

security as [25] only considered semi-honest adversaries. (iv) The

technique could not be reproduced since the reference [13] pointed

to in [25] does not discuss how to obtain LWE ciphertexts from

RLWE ciphertexts (only vice versa). (v) The noise hiding technique

of [25] is not well suited for our protocol, since it introduces a

(probabilistic) 1 bit error in the result.

The following theorem captures the security of our LHE-based

offline phase. A security proof can be found in Appendix F. To follow

the security proofs in [31], the functionalities F
auth-linear

(for lin-

ear operations on shares) and F
auth-MPC

(for linear operations and

triple generation) are used instead of a more traditional offline func-

tionality F
offline

. Additionally, we assume standard functionalities

for sampling random values (F
rand

), committing and decommitting

to values (Fcommit), and generating encryption keys and shares of

the MAC key (Fsetup).
Theorem 6.1. The offline protocol Π

offline-LHE
securely imple-

ments the ideal functionality F
auth-MPC

in the (F
auth-linear

, Fcommit,

F
rand

, Fsetup)-hybrid model with rewinding if the used BGV cryp-
tosystem achieves enhanced CPA-security [31].

Remark 6.1. Please note that the use of rewinding is a standard

tool in these type of protocols (cf. LowGear protocol [31]).

6.3 Somewhat Homomorphic Offline Phase
In Appendix F (Fig. 19), we present a (convolution) triple generation

based on somewhat homomorphic encryption. The construction is

based on Overdrive’s HighGear protocol [31].

Similarly to the linear homomorphic case (cf. Section 6.2), all

parties sample their own shares of 𝒂 and 𝒇 and encrypt them. How-

ever, in the SPDZ-like SHE approach, the share for both 𝒂 and 𝒇
are encrypted. Utilizing a HighGear/TopGear-style ZKP, the parties

prove that the sum of their encrypted shares is a valid ciphertext of

the sum of the shares, i.e., of the shared value 𝒂 or 𝒇 . Therefore, all
parties have a valid ciphertext of (the packing of) 𝒂 and 𝒇 . These
can be multiplied homomorphically with a somewhat homomor-

phic encryption scheme to obtain a ciphertext of the product, e.g.,

of the encoding of a convolution of 𝒂 and 𝒇 . Analogously to the

original approach by [18] the parties can (distributively) decrypt the

product ciphertext, reshare the product and authenticate it. Finally,

sacrificing is used to guarantee that the correlation of the triple is

satisfied (cf. Section 6.4).

Please note, that again the main changes to the HighGear (or

TopGear) protocol are the use of ZKPs that ensure correct packing,

local (un)packing operations, and the adapted sacrificing for con-

volutions. The security of our SHE-based offline phase is given by

the following theorem and the proof in Appendix F. Again, we as-

sume the availability of standard functionality for (de)committing,

randomness generation, and a key/MAC setup.

330

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

Theorem 6.2. The offline protocol Π
offline-SHE

securely imple-
ments the ideal functionality F

offline
in the (Fcommit, Frand, Fsetup)-

hybrid model if the used BGV cryptosystem achieves CPA-security
and has an algorithm for meaningless public key generation [18].

6.4 Sacrificing
While Chen et al. presented a generalization of the Beaver multi-

plication approach for arbitrary bilinear operations in [14], they

did not generalize the sacrificing in the same way.
4
As described

in Section 6.1, sacrificing is necessary in our protocols to ensure

that the produced triple is correctly authenticated. In Fig. 5, we

show a generalization of the sacrificing presented in [30]. Its se-

curity follows directly from [30]. However, the efficiency of the

sacrificing can greatly depend on the type of bilinear operation that

we consider. The reason for this is the inherent asymmetry of the

optimized sacrificing of [30] (compared to the original technique

used in [18]). This is especially true for LowGear-style protocols

that only require expensive ZKPs for one of the triple elements.

In general, one of the triple inputs (i.e., 𝒂 or 𝒇 of a triple (𝒂,𝒇 , 𝒄))
might be more expensive to compute. Therefore, one should con-

sider a reversed version of the sacrificing presented in Fig. 5 taking

shares of 𝒂, 𝒂′,𝒇 , 𝒄, 𝒄 ′ instead. Technically, this can be achieved by

using (op
′(𝒚, 𝒙) = op(𝒙,𝒚), [𝒇]𝑖 , [𝒂]𝑖 , [𝒂′]𝑖 , [𝒄]𝑖 , [𝒄 ′]𝑖) as inputs

to Sacrifice.

6.5 Modifications and Optimizations
While the above MPC protocols are very general (being able to

compute triples for any bilinear function that can be represented

with the standard case (9) of the framework of Section 3.1), small

modification can be used to also support the non-standard bilinear

forms opR in Eq. (8) (e.g., the simple packing of Section 4.1; cf.

Section 6.5.1), handle any size of convolution (cf. Section 6.5.2),

utilize ciphertexts more efficiently (cf. Section 6.5.3), or handle

convolutions with strides larger than 1 and/or non-zero padding

(cf. Section 6.5.4).

6.5.1 Modification for the Simple Convolution Packing. In this para-
graph we discuss how packing images and filters in multiple cipher-

texts (as in Section 4.1) is handled. The overall result then is a sum of

several homomorphic ciphertext products. Extending the protocols

of Sections 6.2 and 6.3 is straightforward. To see that these extended

protocols are still secure, notice that the intermediate steps only

produce shares of intermediate results (as well as ciphertexts that

do not leak any information as they are either blinded in the LHE

protocol or locally computed in the SHE protocol). These interme-

diate shares are summed up to obtain the overall triple. Security of

the extended proof then directly follows from the security results

from Sections 6.2 and 6.3 and the properties of the secret sharing

scheme.

6.5.2 Handling Large Convolutions. Recall that in Sections 3.1

and 4, we usually had to choose 𝑁 large enough to support pack-

ing of all tensor dimensions, e.g., 𝑏 · 𝑑 ′ · ℎ′′ · 𝑤 ′′ ≤ 𝑁 with the

simple packing of Section 4.1 or when 𝑏 · 𝑑 ′ · 𝑑 · ℎ′′ · 𝑤 ′′ ≤ 𝑁

with the generalization of Huang et al.’s packing (cf. Section 4.2).

4
They instead switched to a encryption scheme that allows for additional ciphertext-

ciphertext multiplications and thus no sacrificing is required in [14].

The choice of 𝑁 on the other hand affects other parameters, e.g.,

of the encryption scheme, and can slow down the offline phase

significantly if 𝑁 gets to big. To avoid this blow-up of 𝑁 and pos-

sible parameter changes to the encryption scheme, we split large

convolutions into smaller ones and thereby extend the approach by

[25] from the passively secure setting to the actively secure setting.

While splitting along the batch dimension (𝑏) or output depth di-

mension (𝑑 ′) is straightforward (even in the actively secure setting),

splitting convolutions along the spatial dimensions or the input

depth dimension (𝑑) often lead to an overhead and should then be

avoided. The technical reason for this behavior are the ciphertext

sums in these dimensions that come with our packing methods and

convolution protocols. For irregular splittings, i.e., summands of

different dimensions (e.g., splitting 𝑑 = 11 in parts with 𝑑 = 6 and

𝑑 = 5), we can then no longer use the full amortization potential of

the BGV scheme and the associated ZKPs, which we need in the

actively secure setting. For example, in the worst case we need an

additional ZKP for 40 ciphertexts for each single ciphertext that

encodes a different dimension – hence ZKPs for 80 ciphertexts for

the splitting of 𝑑 = 11 in parts with 𝑑 = 6 and 𝑑 = 5. This large

overhead can be reduced by trivially increasing the ciphertexts for

small dimensions to a common larger dimension, i.e., use the same

dimensions in each part and set certain parts of the ciphertexts

to zero (in our example we get then twice 𝑑 = 6). Nevertheless, a

certain overhead due to the zero coefficients remains. We therefore

preferably split on dimensions where these problems do not occur

and apply irregular splittings only as a last resort.

6.5.3 Combining Ciphertexts for Sacrificing. Finally, we want to
discuss an optimal use of the sacrificing technique in our setup. As

mentioned in Section 6.4 our sacrificing protocol produces, similar

to MASCOT [30], shares of tuples (𝒂,𝒇 ,𝒇 ′, 𝒄, 𝒄 ′) and then discards,

i.e., sacrifices,𝒇 ′
and 𝒄 ′ to check that 𝒄 = conv2d(𝒂,𝒇). Now instead

of generating 𝒄 and 𝒄 ′ separately, e.g., by using two invocations

of Multiply in Fig. 7, we can generate them more efficiently by

combining 𝒇 and 𝒇 ′
into a single large filter and then multiply only

once to get both 𝒄 and 𝒄 ′. For example, we can encode a single

convolution of a 𝑑 × ℎ × 𝑤 × 𝑑 image with a 2𝑑 ′ × 𝑑 × ℎ′ × 𝑤 ′
filter (of twice the output depth dimension 𝑑 ′) in the ciphertext

multiplication. After the multiplication and unpacking, the share of

the result (and of the filter) with doubled output depth can be simply

split in half along the 𝑑 ′ dimension to get a 5-tuple for sacrificing:

one image, two filters, and the result of convolving the image with

two filters. The analogous doubling technique can also be applied

to the batch dimension (𝑏; for conv2d or dconv2d).

Please note that this optimization is orthogonal to the splitting

in Section 6.5.2. We use both optimizations in our implementation.

6.5.4 Special Convolutions. For (depthwise) convolutions with

non-zero padding, e.g., when one expands the (blue) image in Fig. 1

with non-zero values (usually constant values or replicas of the

border pixels), or convolutions with strides of 2 or more, we do not

offer special constructions with our protocols. This is because the

used packing methods that homomorphically compute negacyclic

convolutions require zero-padding so the constructions are correct

(cf. Appendix D) and compute all pixels of the result (i.e., with a

stride of 1). These convolutions can still be computed by expressing

them as a (larger) convolution with zero-padding or by discarding

331

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

parts of the result, respectively. Note that the conv1@7x7 convo-

lution discussed in Section 7 has a stride of 2 and our protocols

outperform the related work, even though our protocol discards

parts of the result.

7 IMPLEMENTATION AND EVALUATION
We have implemented our protocols [48] on top ofMP-SPDZ [29] by

adding support for secure convolutions and depthwise convolutions.

Our implementation extends the online phase with convolution

tuples for faster convolutions, as well as the corresponding convolu-

tion triple generation with both LowGear-style and HighGear-style

protocols in the offline phase. The implementation is fully-featured

as we can use the wide range of other (non-convolution) operations

that are already part of MP-SPDZ.

In the remainder of this section, we show the results for the

empirical evaluation of the protocols developed in this work. We

evaluate our technique for convolutions with images and filters of

typical shapes. We use ResNet50 as a reference for this. Addition-

ally, we benchmark depthwise convolutions for images of different

sizes to show the benefit of our specialized handling of depthwise

convolutions. Note that our protocols do not affect the accuracy of

ML models. The accuracy stays the same as, e.g., in [16, 32], who

perform secure inference or training on MPC. Therefore we here

do not measure accuracy as part of the evaluation.

Evaluation Setup. We ran the benchmarks on a virtual server (AMD

EPYC™ 7443 processor@ 2.85 GHz, 4 to 8 cores) emulating different

network settings: LAN with 10 ms network delay and 1 Gbit/s net-
work bandwidth; and WANwith 35 ms delay and 320 Mbit/s. These
network settings allow us to compare our results to the state-of-the-

art way of computing convolutions as matrix multiplications [14].
5

Our benchmarks utilize only a single thread per party for com-

putations. The benchmarks use 𝑛 = 2 parties for LowGear-style

(LHE-based) offline phases (on 4 cores) and 𝑛 = 4 parties for High-

Gear-style (SHE-based) offline phases (on 8 cores). We benchmark

our protocol in the same setting as [14] for SPDZ-like protocols:

128 bit of computational security, 40 bit of statistical security, and

plaintext modulus of 128 bit. In the following, we analyze the per-

formance of our protocol in the online phase and in the offline

phase.

Runtime in the Offline Phase for Convolutions. In Table 2, we com-

pare the runtime of the classical SPDZ-based MPC computation

with fieldmultiplications (LowGear) and [14] to our implementation

(simple packing and generalization of Huang et al.’s packing). These

benchmarks are for all non-1 × 1 convolutions in ResNet50 [23],

shown separately for each group of layers. The simple packing per-

forms best overall, while the generalization of Huang et al.’s packing

is a close second place. The simple packing is clearly superior to

the LowGear protocol without any optimizations for convolutions

(LAN: 27.52× faster; WAN: 39.66× faster) but also to the matrix

multiplication of [14] (LAN: 4.82× faster; WAN: 3.01× faster). The

5
Chen et al. seem to only provide an implementation for homomorphic matrix opera-

tions – not a full protocol: https://github.com/snwagh/ponytail-public as of 2022-11-03.

Therefore, we compare our results to the numbers given in their paper [14]. We em-

ulate their network settings exactly – with the exception of the LAN setting where

we use a reduced bandwidth of 1 Gbit/s instead of 5 Gbit/s to model a more realistic

setting. Additionally, we use a slightly faster CPU (2.85 GHz instead of 2.7 GHz).

Table 2: Runtime Results for conv2d Operations in the Offline
Phase (in Seconds). Our protocols here are LowGear-based (cf.

Section 6.2). Runtime is given for convolutions of ResNet50 [23].

The layer conv1@7x7 is a convolution of a 1 × 224 × 224 × 3 image

with a 64 × 3 × 7 × 7 filter and stride 2. Other layers convi@3x3 are

for 1 × 7 · 25−i × 7 · 25−i × 2
4+i

images, 2
4+i × 2

4+i × 3 × 3 filters,

and stride 1. The above convolutions are repeated 𝑐 times in layer

convi. We give the runtime for all 𝑐 convolutions of a layer.

OurOur General.

LowGear Matmul Simple Huang et al.

𝑐 Layer [31] [14]
a

Packing Packing

2 Party LAN Setting

1 conv1@7x7 21499
b

7014 382
b

384
b

3 conv2@3x3 63246
c

13420 1913 1914

4 conv3@3x3 83255
c

9016 2409 2615

6 conv4@3x3 119903
c

15459 4184 3962

3 conv5@3x3 56576
c

15459 3631
b

4008
b

Total 344478 60368 12519 12882

2 Party WAN Setting

1 conv1@7x7 53264
b

7408 653
b

649
b

3 conv2@3x3 154090
c

14175 3303 3287

4 conv3@3x3 202938
c

9523 4095 4432

6 conv4@3x3 291982
c

16327 7051 6661

3 conv5@3x3 139118
c

16331 6112
b

6732
b

Total 841392 63764 21214 21761
a
column extrapolated from the runtime results in [14] using Tables 4 and 5

b
extrapolated from results with halved output depth

c
extrapolated from results with output depth 𝑑′ = 2 and 𝑐 = 1

results for [14] show the least increase in runtimewhen the network

gets more limited (comparing LAN to WAN) but the computational

overhead of the HE operations used in their offline phase are still

too costly to outperform our protocol in the WAN setting. If we

compare our results to the protocols in the semi-honest setting (e.g.,

Huang et al. [25] perform the ResNet50 conv1@7x7 convolution

in around 2 s with a smaller plaintext modulus in the WAN setting

without any online-offline separation), we can see that there is still a

large gap in the performance between actively and passively secure

protocols. However, using our convolution packings noticeably

improves upon the state-of-the-art in our actively secure setting.

Comparing our protocol’s HighGear variant to HighGear shows

a 13.43× speed-up for the simple packing and a 12.23× speed-up
for the generalization of Huang et al.’s packing. This was measured

for the 4-partyWAN setting; detailed results can be found in Appen-

dix G. Chen et al. do not evaluate the runtime for their protocol [14]

with more than two parties.

Communication Cost for Convolution Triple Generation. For the
above computation of ResNet50 convolutions, each party needs

to send 2.187 TB of data for the LowGear protocol, 138.672 GB for

our protocol with the simple packing, and 134.635 GB with our

generalization of Huang et al.’s packing, respectively, in the offline

phase. We estimate Chen et al.’s [14] communication cost to be

21.020 GB. As we see above, the low communication cost of [14]

332

https://github.com/snwagh/ponytail-public

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

Table 3: Runtime Results for dconv2d Operations in the Of-
fline Phase (in Seconds). Our protocols here are LowGear-based

(cf. Section 6.2). Runtime is given for 1 × ℎ × ℎ × 512 images and

512 × 3 × 3 filters.

Our Our Gen. Our

LowGear Matmul SimpleHuang et al. Depthw.

ℎ [31] [14]
a

Packing Packing Packing

2 Party LAN Setting

7 37 5153 321 322 55

25 504 25767 323 322 165

50
b

2137 103068 352 352 343

120
b

12279 582335 804 809 1086

240
b

49398 2319034 2657 2667 3704

2 Party WAN Setting

7 90 5444 637 636 121

25 1244 27223 637 637 327

50
b

5155 108892 692 688 664

120
b

29764 615241 1443 1438 1907

240
b

119842 2450076 4520 4516 6227

a
column extrapolated from the runtime results in [14]

b
row extrapolated from results with depth 𝑑 = 32 (except for matmul runtime)

does not translate to a faster protocol as we clearly outperform

theirs in the evaluated setting. This shows that we can successfully

trade communication cost for faster protocols by avoiding expensive

ciphertext rotations with our packing methods. A more detailed

analysis of the communication costs can be found in Appendix G.

Round Complexity in the Offline Phase. Also note that the (theo-

retical) round complexity of the protocols is almost the same. Not

considering the setup (key and MAC generation, etc.), the triple

generation requires 4 rounds for [14], 6 rounds for LowGear-style

protocols (ours and [31]), and 8 rounds for HighGear-style protocols

(ours and [3, 31]).

Runtime in the Offline Phase for Depthwise Convolutions. We also

benchmarked depthwise convolutions. The results are depicted in

Table 3. For dconv2d, filter sizes of 3× 3 are standard [2, 15, 24, 49].

Therefore, we benchmark these for different image sizes. We fix the

depth to 512 due to the separable nature of dconv2d, i.e., each entry

along the depth dimension is independent and thus the runtime

scales linearly with the depth. Runtime for other values of 𝑑 can

simply be extrapolated from our results.

As can be seen in Table 3, the matrix-based approach of [14] is

unsuitable for depthwise convolutions and performs worse than the

standard LowGear protocol. This is because [14] would compute

matrix multiplications with the same size as for a conv2d compu-

tation (with input and output depth set to 512 in this example),

incurring the overhead of the non-optimal emulation of convolu-

tions with matrix multiplications and the overhead of the mismatch

between the 128 × 128 matrices computed by [14] and the matrices

needed to compute convolutions. Note that this still performs bet-

ter than computing a single matrix multiplication for each of the

output channels.

In contrast, we can use our depthwise packing of Section 4.3

which performs well for images of size 50 and below, or compute

conv2d operations to emulate dconv2d (with the simple packing or

the generalized Huang et al. packing) which performswell for larger

images (larger than size 50). The conv2d packings compute only

one output channel for polynomial multiplication and are therefore

slower if we could instead compute multiple channels with the

depthwise packing. If the image size grows, the depthwise packing

would also only compute only one channel per convolution and then

our implementation of the conv2d packings utilize the optimization

in Section 6.5.2 better to compute a few (partial) convolutions per

output channel.

Overall, the right choice of one of our packing schemes can

outperform LowGear for all but the smallest image sizes (LAN:

up to 18.59× faster with ℎ = 240; WAN: up to 26.53× faster with
ℎ = 240) and all of them outperform [14]. We also tested Bian et al.’s

packing scheme (see Appendix G). First tests show considerably

worse performance compared to LowGear (≈100× slower). The

main reason for this inefficiency is the computational overhead

of the modified BGV scheme that we employ for this packing (cf.

Appendix A.2) and the increase in communication from the new

type of ciphertexts.

Runtime in the Online Phase. In the online phase, we compare our

approach (using convolution triples) to the standard SPDZ protocol

(the distinction between LowGear and HighGear is only meaningful

for the offline phase) and the use of matrix triples to emulate con-

volutions (as done in [14]). Note that for matrix triples, we assume

that matrix triples of any shape are already precomputed. This

is the optimal setting for the matrix-based approach and strictly

better than [14] which only produces matrices that are a multiple

of 128 × 128 in size. For the same layers as in Table 2, our approach

with convolution triples clearly outperforms the SPDZ online phase

(LAN: 16.39× faster; WAN: 27.21× faster) and also the approach

based on matrix triples (LAN: 8 % faster; WAN: 12 % faster). The

detailed results can be found in Appendix G.

For depthwise convolutions, our advantage of specialized convo-

lution triples is even more pronounced (in certain cases) compared

to SPDZ (LAN: 19.41× faster on average for ℎ ∈ {7, 25, 50, 120, 240}
and 41.84× faster for ℎ = 7; WAN: 20.14× faster on average and

42.58× faster for ℎ = 7) and also compared to matrix triples (LAN:

13.51× faster on average and 40.15× for ℎ = 7; WAN: 15.70× faster
on average and 41.84× for ℎ = 7). Hence, we observe a consider-

able speed-up for small images (due to the better communication

complexity) that gets smaller as the image size (and computational

complexity) increases. However, even for large images of size 240,

our advantage is 3.87× (LAN) to 5.33× (WAN) compared to matrix

triples.

Storage Cost for Convolutions. To run the above-mentioned convo-

lutions in the online phase, SPDZ requires storage for 188.899 GB of

Beaver triples. Chen et al. would have to store 2.653 GB of 128×128

matrix triples. Our convolution triples require 572 MB.

In summary, our evaluation shows that our implementation

significantly outperforms current actively secure state-of-the-art

protocols for convolution and convolution-based ML tasks.

333

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

ACKNOWLEDGMENTS
Marc Rivinius, Pascal Reisert, and Ralf Küsters were supported

by the CRYPTECS project. The CRYPTECS project has received

funding from the German Federal Ministry of Education and Re-

search under Grant Agreement No. 16KIS1441 and from the French

National Research Agency under Grant Agreement No. ANR-20-

CYAL-0006. Sebastian Hasler was supported by Advantest as part

of the Graduate School “Intelligent Methods for Test and Relia-

bility” (GS-IMTR) at the University of Stuttgart. The authors also

acknowledge support by the state of Baden-Württemberg through

bwHPC.

We thank our anonymous reviewers and our shepherd for their

invaluable feedback. We also thank Andrés Bruhn and Azin Jahedi

from the Institute for Visualization and Interactive Systems at the

University of Stuttgart for providing the computational resources

and assistance with running our experiments.

REFERENCES
[1] Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash,

Lev Greenberg, Ramy Masalha, Guy Moshkowich, Dov Murik, Hayim Shaul, and

Omri Soceanu. 2023. HeLayers: A Tile Tensors Framework for Large Neural

Networks on Encrypted Data. Proc. Priv. Enhancing Technol. 2023, 1 (2023),

325–342.

[2] Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze,

Armand Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek,

and Hervé Jégou. 2021. XCiT: Cross-Covariance Image Transformers. In Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual.
20014–20027.

[3] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. 2019. Using TopGear in

Overdrive: A More Efficient ZKPoK for SPDZ. In Selected Areas in Cryptography
- SAC 2019 - 26th International Conference, Waterloo, ON, Canada, August 12-
16, 2019, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 11959).
Springer, 274–302.

[4] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.

In Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings (Lec-
ture Notes in Computer Science, Vol. 576). Springer, 420–432.

[5] Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfedhal. 2021.

TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic

Encryption. CoRR abs/2104.03152 (2021). arXiv:2104.03152

[6] Song Bian, Dur-e-Shahwar Kundi, Kazuma Hirozawa, Weiqiang Liu, and Takashi

Sato. 2021. APAS: Application-Specific Accelerators for RLWE-Based Homo-

morphic Linear Transformations. IEEE Trans. Inf. Forensics Secur. 16 (2021),

4663–4678.

[7] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-

ing from Classical GapSVP. In Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-
ceedings (Lecture Notes in Computer Science, Vol. 7417). Springer, 868–886.

[8] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully

homomorphic encryption without bootstrapping. In Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012. ACM, 309–325.

[9] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. 2019. Low Latency Pri-

vacy Preserving Inference. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA
(Proceedings of Machine Learning Research, Vol. 97). PMLR, 812–821.

[10] José Cabrero-Holgueras and Sergio Pastrana. 2021. SoK: Privacy-Preserving

Computation Techniques for Deep Learning. Proceedings on Privacy Enhancing
Technologies 2021 (10 2021), 139–162.

[11] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander

Kirillov, and Sergey Zagoruyko. 2020. End-to-End Object Detection with Trans-

formers. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 12346). Springer, 213–229.

[12] Octavian Catrina and Sebastiaan de Hoogh. 2010. Improved Primitives for Secure

Multiparty Integer Computation. In Security and Cryptography for Networks, 7th
International Conference, SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceed-
ings (Lecture Notes in Computer Science, Vol. 6280). Springer, 182–199.

[13] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2021. Efficient Homomorphic

Conversion Between (Ring) LWE Ciphertexts. In Applied Cryptography and
Network Security - 19th International Conference, ACNS 2021, Kamakura, Japan,

June 21-24, 2021, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12726).
Springer, 460–479.

[14] Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo Song, and

Sameer Wagh. 2020. Maliciously Secure Matrix Multiplication with Applications

to Private Deep Learning. In Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part III
(Lecture Notes in Computer Science, Vol. 12493). Springer, 31–59.

[15] François Chollet. 2017. Xception: Deep Learning with Depthwise Separable

Convolutions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society, 1800–

1807.

[16] Anders P. K. Dalskov, Daniel Escudero, andMarcel Keller. 2020. Secure Evaluation

of Quantized Neural Networks. Proc. Priv. Enhancing Technol. 2020, 4 (2020), 355–
375.

[17] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority - Or:

Breaking the SPDZ Limits. In Computer Security - ESORICS 2013 - 18th European
Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 8134). Springer, 1–18.

[18] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In Advances in
Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings (Lecture Notes in Computer Science,
Vol. 7417). Springer, 643–662.

[19] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter, Saeed

Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing

compiler for fully-homomorphic neural-network inferencing. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. ACM, 142–156.

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is

Worth 16x16 Words: Transformers for Image Recognition at Scale. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

[21] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.

2020. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. In

Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part II (Lecture Notes in Computer Science, Vol. 12171). Springer, 823–852.

[22] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homomor-
phic Encryption. Technical Report 2012/144. Cryptology ePrint Archive.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 770–778.

[24] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:

Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861

[25] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:

Lean and Fast Secure Two-Party Deep Neural Network Inference. In 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022.
USENIX Association, 809–826.

[26] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. 2018. Secure

Outsourced Matrix Computation and Application to Neural Networks. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. ACM, 1209–1222.

[27] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In

27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018. USENIX Association, 1651–1669.

[28] Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for

generating image descriptions. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society,

3128–3137.

[29] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Computa-

tion. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020. ACM, 1575–1590.

[30] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster

Malicious Arithmetic Secure Computationwith Oblivious Transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016. ACM, 830–842.

[31] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ

Great Again. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III (Lecture Notes in Computer

334

https://arxiv.org/abs/2104.03152
https://arxiv.org/abs/1704.04861

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

Science, Vol. 10822). Springer, 158–189.
[32] Marcel Keller and Ke Sun. 2022. Secure Quantized Training for Deep Learning.

In International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA (Proceedings of Machine Learning Research, Vol. 162).
PMLR, 10912–10938.

[33] Miran Kim, Xiaoqian Jiang, Kristin E. Lauter, Elkhan Ismayilzada, and Shayan

Shams. 2021. HEAR: Human Action Recognition via Neural Networks on Homo-

morphically Encrypted Data. CoRR abs/2104.09164 (2021). arXiv:2104.09164

[34] Brian Knott, Shobha Venkataraman, Awni Y. Hannun, Shubho Sengupta, Mark

Ibrahim, and Laurens van der Maaten. 2021. CrypTen: Secure Multi-Party Com-

putation Meets Machine Learning. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual. 4961–4973.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Clas-

sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States. 1106–1114.

[36] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.

Howard, Wayne E. Hubbard, and Lawrence D. Jackel. 1989. Backpropagation

Applied to Handwritten Zip Code Recognition. Neural Comput. 1, 4 (1989),

541–551.

[37] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim,

Jong-Seon No, and Woosuk Choi. 2022. Low-Complexity Deep Convolutional

Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel

Convolutions. In International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA (Proceedings of Machine Learning Research,
Vol. 162). PMLR, 12403–12422.

[38] Ming Liang and Xiaolin Hu. 2015. Recurrent convolutional neural network for

object recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 3367–3375.

[39] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network Pre-

dictions via MiniONN Transformations. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017. ACM, 619–631.

[40] Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. zkCNN: Zero Knowledge Proofs

for Convolutional Neural Network Predictions and Accuracy. In CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021. ACM, 2968–2985.

[41] Qian Lou and Lei Jiang. 2021. HEMET: A Homomorphic-Encryption-Friendly

Privacy-Preserving Mobile Neural Network Architecture. In Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event (Proceedings of Machine Learning Research, Vol. 139). PMLR, 7102–

7110.

[42] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and

Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service for Neural

Networks. In 29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020. USENIX Association, 2505–2522.

[43] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society,

19–38.

[44] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. 2014. Learning and

Transferring Mid-level Image Representations Using Convolutional Neural Net-

works. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society, 1717–1724.

[45] Emmanuela Orsini. 2020. Efficient, Actively Secure MPC with a Dishonest

Majority: A Survey. In Arithmetic of Finite Fields - 8th International Workshop,
WAIFI 2020, Rennes, France, July 6-8, 2020, Revised Selected and Invited Papers
(Lecture Notes in Computer Science, Vol. 12542). Springer, 42–71.

[46] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya

Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-Party

Secure Inference. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020. ACM, 325–342.

[47] Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters. 2023. Convo-
lutions in Overdrive: Maliciously Secure Convolutions for MPC. Technical Report
2023/359. Cryptology ePrint Archive.

[48] Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters. 2023. Convolu-

tions in Overdrive: Maliciously Secure Convolutions for MPC (Implementation).

https://github.com/sec-stuttgart/MP-SPDZ-convolution-triples.

[49] Mark Sandler, AndrewG. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE

Computer Society, 4510–4520.

[50] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. 2021. CryptGPU: Fast

Privacy-Preserving Machine Learning on the GPU. In 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,

1021–1038.

[51] Zachary Teed and Jia Deng. 2020. RAFT: Recurrent All-Pairs Field Transforms

for Optical Flow. In Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 12347). Springer, 402–419.

[52] Yifan Tian, Laurent Njilla, Jiawei Yuan, and Shucheng Yu. 2021. Low-Latency

Privacy-Preserving Outsourcing of Deep Neural Network Inference. IEEE Internet
Things J. 8, 5 (2021), 3300–3309.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA. 5998–6008.

[54] Sergey Zagoruyko and Nikos Komodakis. 2015. Learning to compare image

patches via convolutional neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 4353–4361.

[55] Qiao Zhang, Chunsheng Xin, and HongyiWu. 2021. GALA: Greedy ComputAtion

for Linear Algebra in Privacy-Preserved Neural Networks. In 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February 21-25,
2021. The Internet Society.

A PRELIMINARIES (CONTINUED)
Here, we give additional details to the preliminaries outlined in

Section 2. This includes, for example, common MPC subprotocols

and details on BGV, as well as the modification necessary to use

BGV with Bian et al.’s packing [6].

A.1 Homomorphic Encryption and BGV
(Continued)

Here, we present a more detailed description of the BGV encryption

scheme [8]. Some aspects are discussed only on a conceptual level

as the details are less relevant for this work. An interested reader

can find all details in [8, 17].

First, we present the necessary distributions that values are sam-

pled from (cf., e.g., [17, 31]).

• HW
𝑁
ℎ
: Outputs a vector of length 𝑁 with elements chosen

from {−1, 0, 1}. Exactlyℎ ≤ 𝑁 elements are chosen to be non-

zero (uniformly random from {−1, 1}). The others are zero. ℎ
is chosen based on the target security level, e.g., ℎ = 64 + sec

for statistical security parameter sec in [31].

• ZO
𝑁
: Outputs a vector of length 𝑁 with elements chosen

from {−1, 0, 1}. Elements are zero with probability 1/2 and

−1 or 1 with probability 1/4 each.

• DG
𝑁
𝜎 : Outputs a vector of length 𝑁 where each element is

sampled from a discrete Gaussian distribution with variance

𝜎2
. 𝜎 = 3.2 is a common choice [17, 31].

• RC
𝑁
𝜎 = ZO

𝑁 ×DG
𝑁
𝜎 ×DG

𝑁
𝜎 : Outputs encryption random-

ness for BGV, i.e., three vectors sampled from the distribu-

tions (described above).

• UB
𝑁
𝐵
: Outputs a vector of length 𝑁 where each element is

sampled uniformly at random from [−𝐵..𝐵).

In the context of BGV, the resulting 𝑁 -vectors are interpreted as

R𝑞 elements. For this, the output vector is used as coefficient vector

in the polynomial ring (and reduced modulo 𝑞).

Let sk = s be the BGV private key. s is sampled from HW
𝑁
ℎ
.

Then, pk = (a, b) is the corresponding public key for a uniformly

random a ∈ R𝑞 and b = a · s + 𝑝 · e where e is sampled from DG
𝑁
𝜎 .

Encryption is performed with randomness r = (u, v,w) sampled

335

https://arxiv.org/abs/2104.09164
https://github.com/sec-stuttgart/MP-SPDZ-convolution-triples

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

with RC
𝑁
𝜎 , i.e., the encryption of x ∈ R𝑝 is

enc
pk
(x, r) = (b · u + 𝑝 · v + x, a · u + 𝑝 · w). (15)

The corresponding decryption is

dec
sk
(⟨x⟩) = (⟨x⟩[0] − ⟨x⟩[1] · s)mod𝑝 . (16)

We also make use of the following ciphertext operations. Let x, y ∈
R𝑝 and r, r′ ∈ R3

𝑞 be valid encryption randomness, the BGV scheme

(for suitable 𝑝, 𝑞) has the following homomorphic properties:

dec
sk
(enc

pk
(x, r) + enc

pk
(y, r′)) = x + y (17)

dec
sk
(enc

pk
(x, r) + y) = x + y (18)

dec
sk
(enc

pk
(x, r) · enc

pk
(y, r′)) = x · y (19)

dec
sk
(x · enc

pk
(y, r′)) = x · y. (20)

Note that the x + y and x · y are additions and multiplications

of polynomials, where coefficients are additionally taken modulo

𝑝 . We abuse the notation to also write + and · for operations on
ciphertexts but these can be more complex (especially ciphertext-

ciphertext multiplication; see below).

Also note that there is an isomorphism CRT : R𝑝 →
>𝑁−1

𝑘=0
F𝑝

(based on the Chinese remainder theorem) for the plaintext space.

In particular,

CRT(x · y) = CRT(x) ⊙ CRT(y), (21)

where ⊙ is the component-wise multiplication. We remark that

using (21), a single ciphertext-ciphertext multiplication represents

𝑁 underlying field multiplications in F𝑝 . This is used in most SPDZ-

like protocols since [18].

Some MPC protocols use modulus switching and key switching
in the ciphertext-ciphertext multiplication (e.g., [17, 31]), i.e., the

multiplication of two ciphertexts in 𝐶 = R2

𝑞 yields a ciphertext in

𝐶 ′ = R2

𝑞′ that can be decrypted just as before. Note that (16) takes

⟨x⟩ ∈ 𝐶 as input and all operations before the reduction modulo

𝑝 are modulo 𝑞. For ciphertexts after modulus and key switching,

dec
′
sk

: 𝐶 ′ → R𝑝 should be used where the operations are the

same as in (16) but modulo 𝑞′ before the modulo 𝑝 reduction. For

simplicity, we simply write dec
sk

also for this decryption operation.

Details on the ciphertext-ciphertext multiplication, as well as modu-

lus and key switching can be found in [8, 17]. Ciphertext-ciphertext

addition is done component-wise and plaintext-ciphertext mul-

tiplication simply multiplies the plaintext with each ciphertext

component. Ciphertext-plaintext addition can be done by adding

the plaintext to the first component of the ciphertext. (Equivalently,

one could generate a ciphertext for the plaintext by encrypting

it with zero-randomness and then use the ciphertext-ciphertext

addition.)

A.1.1 BGV Noise Drowing. We are interested in an encryption

enc
′
with additional noise (drowning noise) that is large enough

to statistically hide the decryption noise of plaintext of the form

x · ⟨y⟩, i.e., the following.

Theorem A.1. The encryption with drowning noise enc
′
pk
(z) sta-

tistically hides the noise of x · enc
pk
(y) for arbitrary x, y, z ∈ R𝑝 .

This is used in LowGear [31] to build a secure triple generation

from only linear homomorphic encryption. The original approach

of LowGear simply choses encryption randomness (and z) exponen-
tially larger than for normal encryption. We give the newer version,

e.g., implemented in [29], with

enc
′
pk
(z, r′) = enc

pk
(z, r′) (22)

where r′ = (u′, v′,w′) is not sampled from RC
𝑁
𝜎 but from ZO

𝑁 ×
UB

𝑁
𝐵
×DG

𝑁
𝜎 with

𝐵 ≥ 2
sec ·

(⌈partdec
sk
(x · ⟨y⟩)

𝑝

⌉
∞
+
e · u′∞ + w′ · s∞) ,

where partdec is the partial decryption, i.e., decryption without

reduction modulo 𝑝 . This is also the noise than can be observed

after decryption.

Proof of Theorem A.1. Let ⟨x · y⟩ = x · enc
pk
(y, r) with r =

(u, v,w). We get (similarly to the proof of Theorem A.3)

partdec
sk
(x · ⟨y⟩) = partdec

sk
(x · enc

pk
(y, r))

= partdec
sk
(x · b · u + 𝑝 · x · v + x · y,
x · a · u + 𝑝 · x · w)

= x · y + x · b · u + 𝑝 · x · v
− x · a · u · s − 𝑝 · x · w · s

= x · y + x · a · s · u + 𝑝 · x · e · u + 𝑝 · x · v
− x · a · u · s − 𝑝 · x · w · s

= x · y + 𝑝 · x · e · u + 𝑝 · x · v − 𝑝 · x · w · s
and analogously

partdec
sk
(enc

′
pk
(z, r′)) = z + 𝑝 · e · u′ + 𝑝 · v′ − 𝑝 · w′ · s.

By choice of 𝐵, enc
′
pk
(z, r′) statistically hides (the noise of) x · ⟨y⟩

as partdec
sk
(x · ⟨y⟩ + enc

′
pk
(z, r′)) and partdec

sk
(enc

′
pk
(z, r′)) are

statistically indistinguishable. □

A.2 Applying Bian et al.’s Modifications to
Linear Homomorphic BGV

Bian et al. [6] modified (private-key) BFV to homomorphically apply

an arbitrary linear operation to encrypted data vectors. Here, we

present the corresponding modification to (public-key) BGV. The

generation and keys remain the same as in Appendix A.1. However,

we only use the vector notation of polynomial multiplication and

explicit negacyclic convolution instead of polynomial multiplication

here, i.e., sk = 𝒔 and pk = (𝒂, 𝒃) with 𝒃 = 𝒂 ∗̄ 𝒔 + 𝑝 · 𝒆 where 𝒂 is

sampled uniformly random from Z𝑁𝑞 and 𝒆 is sampled with DG
𝑁
𝜎 .

A tool that Bian et al. use (and that is usually not used for BGV) is

the representation of polynomial multiplications (or negacyclic con-

volutions) with (nega)circulant matrices cırc : Z𝑁 → Z𝑁×𝑁 , 𝒗 ↦→
cırc(𝒗) where

cırc(𝒗)[𝑖, 𝑗] B (−1)𝑖−𝑗 div𝑁 · 𝒗[𝑖 − 𝑗 mod𝑁], (23)

𝒄 = 𝒂 ∗̄ 𝒃 = 𝒃 ∗̄ 𝒂 = cırc(𝒂) · 𝒃 = cırc(𝒃) · 𝒂. (24)

This means, we can write the typical polynomial multiplications in

terms of matrix-vector multiplications.

With this, encryption is also similar to (15) but the second ci-

phertext component is expanded:

expandenc
pk
(𝒙, 𝒓) B (𝒃 ∗̄ 𝒖 + 𝑝 · 𝒗 + 𝒙, cırc(𝒂 ∗̄ 𝒖 + 𝑝 ·𝒘)), (25)

336

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

where the encryption randomness 𝒓 = (𝒖, 𝒗,𝒘) is again sampled

from RC
𝑁
𝜎 . We use ⟨⟨ · ⟩⟩

pk
analogously to ⟨ · ⟩

pk
as notation for

expanded ciphertexts under public key pk. Decryption is similar to

(16) but the second part of the ciphertext is now multiplied with 𝒔
as a matrix-vector product (instead of a polynomial multiplication):

expanddec
sk
(⟨⟨𝒙⟩⟩) B (⟨⟨𝒙⟩⟩[0] − ⟨⟨𝒙⟩⟩[1] · 𝒔)mod𝑝 . (26)

As before, all operation in (25) and (26) are modulo 𝑞 (except the

reduction modulo 𝑝 in (26)).

Theorem A.2. The modified BGV scheme (pictured above) is a
correct (public-key) encryption scheme and CPA secure.

Proof. This can be seen by following the proof of [6] but with

the modified BGV scheme instead of BFV. We summarize the core

observations.

Correctness: The scheme still decrypts correctly as we simply

split up the negacyclic convolution of (16) (that appears in form of

a polynomial multiplication) in two. This can be done using (24).

CPA Security: Consider the standard BGV encryption of (15).

Compared to (25), cırc is applied to the second component of a

standard BGV ciphertext. This can be efficiently done (and undone)

without any secret information. Thus, the CPA security of the

modified scheme can be trivially reduced to the CPA security of

the standard BGV scheme. □

Remark A.1. Indeed, we use the standard BGV encryption, ZKPs,

etc. in our protocols to expand BGV ciphertexts on demand with

expand(⟨𝒙⟩) B (⟨𝒙⟩[0], cırc(⟨𝒙⟩[1])) = ⟨⟨𝒙⟩⟩.

In addition to simple linear operations (ciphertext-ciphertext

addition, ciphertext-plaintext addition, and plaintext-ciphertext

multiplication), which can be performed as for standard BGV, the

modified scheme allows for applying linear operations on the en-

crypted plaintext vector.

Theorem A.3. Let 𝑴 ∈ Z𝑁×𝑁𝑝 be the matrix for an arbitrary
linear transformation and 𝒙 ∈ Z𝑁𝑝 . Then,

expanddec
sk
(𝑴 · expandenc

pk
(𝒙, 𝒓)) = 𝑴 · 𝒙 (27)

for valid encryption randomness 𝒓 and

𝑴 · ⟨⟨𝒙⟩⟩ B (𝑴 · ⟨⟨𝒙⟩⟩[0],𝑴 · ⟨⟨𝒙⟩⟩[1]). (28)

Proof. Similar to Theorem A.2, this can be done by following

the steps of the proofs in [6]. Let 𝒓 = (𝒖, 𝒗,𝒘). Then,
expandpartdec

sk
(𝑴 · enc

pk
(𝒙, 𝒓))

= 𝑴 · (𝒃 ∗̄ 𝒖 + 𝑝 · 𝒗 + 𝒙) −𝑴 · cırc(𝒂 ∗̄ 𝒖 + 𝑝 ·𝒘) · 𝒔 (29)

= 𝑴𝒙 +𝑴 (𝒃 ∗̄ 𝒖) −𝑴 cırc(𝒂 ∗̄ 𝒖)𝒔 + 𝑝𝑴𝒗 − 𝑝𝑴 cırc(𝒘)𝒔 (30)

= 𝑴𝒙 +𝑴 (𝒂 ∗̄ 𝒔 ∗̄ 𝒖) −𝑴 cırc(𝒂 ∗̄ 𝒖)𝒔
+ 𝑝𝑴 (𝒆 ∗̄ 𝒖) + 𝑝𝑴𝒗 − 𝑝𝑴 cırc(𝒘)𝒔 (31)

= 𝑴𝒙 + 𝑝𝑴 (𝒆 ∗̄ 𝒖) + 𝑝𝑴𝒗 − 𝑝𝑴 (𝒘 ∗̄ 𝒔) (32)

where expandpartdec is the decryption of (26) without the re-

duction modulo 𝑝 . Equation (29) simply applies the definition of

expandpartdec (cf. (26)) and (28), while (30) and (31) make use of

the linearity of ∗̄ (and cırc) where (31) also applies the definition

of 𝒃 . Finally, (32) follows from (24): 𝑴 (𝒂 ∗̄ 𝒔 ∗̄ 𝒖) = 𝑴 (𝒂 ∗̄ 𝒖 ∗̄ 𝒔) =
𝑴 cırc(𝒂 ∗̄ 𝒖)𝒔.

The partial decryption result of (32)modulo 𝑝 is thus the required

product 𝑴 · 𝒙 if the decryption noise (all of (32)) is not too large

for decryption. Similarly to LowGear, the decryption parameters

(mainly 𝑞 and 𝑁) have to be chosen in such a way. □

A.3 Zero-Knowledge Proofs
In the following, we present the zero-knowledge proofs of knowl-

edge (ZKPoKs) used in our protocols. First, we present a non-in-

teractive proof based on SPDZ [18] (which utilizes the Fiat-Shamir

heuristic). Then, we give an interactive TopGear-style (multiparty)

ZKPoK [3]. The first is used in LowGear-style protocols and the

second one in HighGear-style protocols. Note that one can also

define a non-interactive (non-multiparty) proof with TopGear-style

challenges. This is, for example, done (and implemented) in MP-

SPDZ [29]. Therefore, we use this in our implementation for Low-

Gear-style protocols if 𝐼 = ∅ (as in MP-SPDZ’s implementation of

the standard LowGear protocol [31]). We do not picture this ZKP

variant here.

A.3.1 SPDZ-Style ZKPs. Our SPDZ-style ZKP can be found in

Fig. 8. We slightly change the ZKP compared to SPDZ by requiring

the plaintexts to be zero at fixed positions. In [18], this is only done

with 𝐼 = ∅ and 𝐼 = [1..𝑁). However, one can easily prove this

general version secure in the same way as the original ZKP of [18].

In the protocol, we use a general security parameter secZK and

𝜌 ≈ 2 · 𝜎 ·
√
𝑁 as in [18].

A.3.2 TopGear-Style ZKPs. In Fig. 9, we present the TopGear ZK-

PoK protocol [3]. This is a 𝑛-party ZKPoK and proves that summing

up all parties’ ciphertexts yields a valid ciphertext. Baum et al. [3]

also give only version of this proof for 𝐼 = ∅ or 𝐼 = [1..𝑁). As
with the above changes to the original SPDZ ZKPoK, one can easily

extend this to arbitrary values of 𝐼 and prove it secure.

In the protocol, we use a security parameter secZK for the sta-

tistical distance of the real ZKP execution from a simulation and

𝜌0 = 1, 𝜌1 = 𝜌2 = 20 just like Baum et al. For 𝐼 = ∅, one requires
𝑉 ≥ (sec

soundness
+ 2)/log(𝑚 + 1) for security, where sec

soundness

is the security parameter for the proof soundness. For other values

of 𝐼 , 𝑉 ≥ sec
soundness

+ 1 is required.

A.4 MPC and SPDZ
Here, we want to point out the remaining subprotocols used in

our SPDZ-like protocols. This includes the MAC check (Fig. 10),

ZKP subprotocols (Fig. 11), initialization or setup phases (Figs. 12

and 13), and distributed decryption (Fig. 14). Additionally, our pro-

tocols use several standard functionalities. We do not picture them

here but describe their function shortly. F
rand

is used to agree on

random values. These values are then available at every party and

uniformly random from the required set (usually F𝑝 elements or

challenges for TopGear ZKPs; cf. Appendix A.3.2). Fcommit mod-

els a synchronization step where all parties first send a value to

the functionality and then receive every other party’s value after

all messages of the first round arrived. Finally, Fsetup models key

generation for BGV. Depending on the protocol style (LowGear or

HighGear), these are either keys for every parts or a single public

key and a secret-shared private key.

337

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

Prove(𝐼 , x𝑖 , r𝑖): With parameters 𝐼 ⊆ [..𝑁),𝑈 ,𝑉 ∈ Z, pk𝑗 for

𝑗 ∈ [..𝑛), do the following.

1. Initialization Phase:

1.1. Compute ⟨x𝑖 ⟩pk𝑖
B enc

pk𝑖
(x𝑖 , r𝑖).

2. Commitment Phase:

2.1. Sample y𝑖 ∈ R𝑉𝑞 and s𝑖 ∈ (R𝑉𝑞)3 with

∥y𝑖[𝑘] ∥∞ ≤ 128 · 𝑁 · sec
2

ZK
· 𝑝

2

∥s𝑖[𝑘][𝑙] ∥∞ ≤ 128 · 𝑁 · sec
2

ZK
· 3 · 𝜌

y𝑖[𝑘][𝑙 ′] = 0

for (𝑘, 𝑙, 𝑙 ′) ∈ 𝑉 × 3 × 𝐼 .
2.2. Compute ⟨y𝑖 ⟩pk𝑖

B enc
pk𝑖
(y𝑖 , s𝑖).

3. Challenge Phase:

3.1. Compute hash(⟨y𝑖 ⟩pk𝑖
, ⟨x𝑖 ⟩pk𝑖

) C 𝒆 𝑗 ∈ {0, 1}secZK
for each

party 𝑃 𝑗 .

3.2. Compute𝑾𝒆 𝑗 with𝑾𝒆 𝑗 [𝑘, 𝑙] B 𝒆 𝑗 [𝑘−𝑙] if 0 ≤ 𝑘−𝑙 < secZK

and zero otherwise for each party 𝑃 𝑗 .

4. Response Phase:

4.1. Compute z𝑖 B y𝑖 +𝑾𝒆𝑖 · x𝑖 and t𝑖 B 𝑾𝒆𝑖 · r𝑖 .
4.2. If for any (𝑘, 𝑙) ∈ 𝑉 × 3

∥z𝑖[𝑘] ∥∞ > 128 · 𝑁 · sec
2

ZK
· 𝑝

2

− secZK ·
𝑝

2

∥t𝑖[𝑘][𝑙] ∥∞ > 128 · 𝑁 · sec
2

ZK
· 3 · 𝜌 − secZK · 𝜌 ,

abort and restart the protocol.

4.3. Broadcast (⟨x𝑖 ⟩pk𝑖
, ⟨y𝑖 ⟩pk𝑖

, z𝑖 , t𝑖).
5. Verification Phase:

5.1. Compute ⟨d𝑗 ⟩pk𝑗
B enc

pk𝑗
(z𝑗 , t𝑗) for 𝑗 ∈ [..𝑛).

5.2. Check whether ⟨d𝑗 ⟩pk𝑗
= ⟨y𝑗 ⟩pk𝑗

+ 𝑾𝒆 𝑗 · ⟨x𝑗 ⟩pk𝑗
and

whether

∥z𝑗 [𝑘] ∥∞ ≤ 128 · 𝑁 · sec
2

ZK
· 𝑝

2

∥t𝑗 [𝑘][𝑙] ∥∞ ≤ 128 · 𝑁 · sec
2

ZK
· 3 · 𝜌 · 𝜌𝑙

z𝑗 [𝑘][𝑙 ′] = 0

for (𝑗, 𝑘, 𝑙, 𝑙 ′) ∈ 𝑛 ×𝑉 × 3 × 𝐼 .
5.3. If all previous checks passed, accept the ciphertexts ⟨x𝑗 ⟩pk𝑗

,

otherwise reject them.

Figure 8: SPDZ-Style ZKPoK Subprotocol at Party 𝑃𝑖

B SCALAR MULTIPLICATION PACKING
To show the generality of the framework presented in Section 3.1,

we show that the standard way to generate scalar multiplication

tuples can be captured by our definitions as well. This also allows us

to generate scalar multiplication triples with Figs. 7 and 19 without

defining specific interfaces for this case (as the instantiation of the

protocols with the below instantiation of the packing framework

collapses to the standard construction).

Theorem B.1. Let ⊙ be the component-wise multiplication of two
vectors. Let 𝐷 = 𝐷 ′ = [..𝑁). Let 𝒂 and 𝒇 be vectors of length 𝑁 . Let
𝒃 = packi(⊙, 𝐷, 𝐷 ′, 𝒂) and 𝒈 = packf (⊙, 𝐷, 𝐷 ′,𝒇). Then

(𝒂 ⊙ 𝒇) = unpackr(⊙, 𝐷, 𝐷 ′,𝒈 ∗̄ 𝒃) (33)

Prove(𝐼 , x𝑖 , r𝑖): With parameters 𝐼 ⊆ [..𝑁),𝑈 ,𝑉 ∈ Z, pk𝑗 for

𝑗 ∈ [..𝑛), do the following.

1. Initialization Phase:

1.1. Ensure that pk𝑗 = pk for all 𝑗 ∈ [..𝑛).
1.2. Broadcast ⟨x𝑖 ⟩ B enc

pk
(x𝑖 , r𝑖).

2. Commitment Phase:

2.1. Sample y𝑖 ∈ R𝑉𝑞 and s𝑖 ∈ (R𝑉𝑞)3 with

∥y𝑖[𝑘] ∥∞ ≤ 2
secZK−1 · 𝑝

∥s𝑖[𝑘][𝑙] ∥∞ ≤ 2
secZK · 𝜌𝑙

y𝑖[𝑘][𝑙 ′] = 0

for (𝑘, 𝑙, 𝑙 ′) ∈ 𝑉 × 3 × 𝐼 .
2.2. Broadcast ⟨y𝑖 ⟩ B enc

pk
(y𝑖 , s𝑖).

3. Challenge Phase:

3.1. If 𝐼 = ∅, sample a uniformly random 𝑉 ×𝑈 matrix𝑾 with

entries in {𝑋𝑘 }𝑘∈[..𝑚) ∪{0} using Frand. Otherwise, sample

the entries of𝑾 from {0, 1}.
4. Response Phase:

4.1. Compute z𝑖 B y𝑖 +𝑾 · x𝑖 and t𝑖 B 𝑾 · r𝑖 .
4.2. Broadcast (z𝑖 , t𝑖).
5. Verification Phase:

5.1. Compute ⟨d𝑗 ⟩ B enc
pk
(z𝑗 , t𝑗) for 𝑗 ∈ [..𝑛).

5.2. Compute ⟨x⟩ B ∑𝑛−1

𝑗=0
⟨x𝑗 ⟩, ⟨y⟩ B

∑𝑛−1

𝑗=0
⟨y𝑗 ⟩, ⟨d⟩ B∑𝑛−1

𝑗=0
⟨d𝑗 ⟩, z B

∑𝑛−1

𝑗=0
z𝑗 , and t B

∑𝑛−1

𝑗=0
t𝑗 .

5.3. Check whether ⟨d⟩ = ⟨y⟩ +𝑾 · ⟨x⟩ and whether

∥z[𝑘] ∥∞ ≤ 𝑛 · 2secZK · 𝑝
∥t[𝑘][𝑙] ∥∞ ≤ 2 · 𝑛 · 2secZK · 𝜌𝑙
z𝑗 [𝑘][𝑙 ′] = 0

for (𝑘, 𝑙, 𝑙 ′) ∈ 𝑉 × 3 × 𝐼 .
5.4. If all previous checks passed, accept the ciphertexts ⟨x𝑗 ⟩

and ⟨x⟩, otherwise reject them.

Figure 9: TopGear-Style ZKPoK Subprotocol at Party 𝑃𝑖

CheckMAC(𝑥1, . . . , 𝑥𝑡): For opened values 𝑥𝑘 ∈ F𝑝 , where
the party also has access to ⟦𝑥𝑘⟧𝑖 , 𝑘 ∈ [..𝑡), do the following.

(Adapted from [17].)

1. Let 𝒙 B (𝑥1, . . . , 𝑥𝑡) and let [𝜸]𝑖 B [𝛼 · 𝒙]𝑖 be the vector of
𝑃𝑖 ’s MAC shares.

2. Sample a uniformly random 𝒓 using F
rand

.

3. Compute the dot product 𝑥 B dot(𝒓, 𝒙).
4. Compute [𝛾]𝑖 B dot(𝒓, [𝜸]𝑖) and [𝜎]𝑖 B [𝛾]𝑖 − 𝑥 · [𝛼]𝑖 .
5. Broadcast (using commitments via Fcommit) [𝜎]𝑖 .
6. Reconstruct 𝜎 B

∑𝑛−1

𝑗=0
[𝜎] 𝑗 and abort if 𝜎 ≠ 0.

Figure 10: MAC Check Subprotocol at Party 𝑃𝑖

for packi(⊙, 𝐷, 𝐷 ′, 𝒂)[𝑖] = CRT
−1 (𝒂)[𝑖], packf (⊙, ·) = packi(⊙, ·),

and unpackr(⊙, 𝐷, 𝐷 ′, 𝒄)[𝑖] = CRT(𝒄)[𝑖].

Proof. This follows directly from (21). □

338

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

ZKP(𝐼): Given an index set 𝐼 ⊆ [..𝑁), compute ciphertexts for

plaintexts 𝒙𝑖 with 𝒙𝑖[𝑙] = 0 for 𝑙 ∈ 𝐼 for each party and prove in

ZK that a suitable witness exists. Output the own plaintext and

the ciphertext for each party.

1. Keep track of a list 𝐿𝐼 with elements in R𝑝 ×𝐶𝑛
.

2. If 𝐿𝐼 is empty, do the following.

2.1. Let 𝑈 be the number of ciphertexts to amortize over.

2.2. Sample random x𝑖 ∈ R𝑈𝑝 with x𝑖[𝑘][𝑙] = 0 for (𝑘, 𝑙) ∈ 𝑈 × 𝐼 .
Sample encryption randomness r for x𝑖 .

2.3. If the protocol is LowGear-style, perform a SPDZ-style

ZKP (cf. Appendix A.3.1). If the protocol is HighGear-style,

perform a TopGear-style ZKP (cf. Appendix A.3.2). Obtain

⟨x𝑗 ⟩pk𝑗
for each party 𝑃 𝑗 .

2.4. If the protocol is HighGear-style and 𝐼 = ∅, define x𝑖 B 2·x𝑖
and ⟨x𝑗 ⟩pk𝑗

B 2 · ⟨x𝑗 ⟩pk𝑗
for each party 𝑃 𝑗 .

2.5. Append (x𝑖[𝑘], ⟨x0[𝑘]⟩pk
0

, . . . , ⟨x𝑛−1[𝑘]⟩pk𝑛−1

) for 𝑘 ∈
[..𝑈) to 𝐿𝐼 .

3. Pop and return the last element of 𝐿𝐼 .

Figure 11: ZKP Utility for the Offline Phases at Party 𝑃𝑖

Init: Compute [𝛼]𝑖 and ⟨[𝛼] 𝑗 ⟩pk𝑗
for 𝑗 ∈ [..𝑛). (Adapted from

[31].)

1. RunFsetup to establish public-key private-key pairs (pk𝑗 , sk𝑗)
for each party 𝑃 𝑗 , where the public keys are known afterwards

at every party.

2. Sample the MAC key share [𝛼]𝑖
$← F𝑝 .

3. Sample r𝑖 and perform a SPDZ-style ZKP with 𝐼 = [1..𝑁).

Figure 12: Initialization Step of the Linear Homomorphic
Offline Phase Used in Π

offline-LHE
(cf. Fig. 7) at Party 𝑃𝑖

Init: Compute [𝛼]𝑖 and ⟨𝛼⟩. (Adapted from [3].)

1. Run Fsetup to establish a shared public-key pk and private-

key shares [sk] 𝑗 at each party 𝑃 𝑗 .

2. Sample the MAC key share [𝛼]𝑖
$← F𝑝 .

3. Sample r𝑖 and perform a TopGear-style ZKP with 𝐼 = [1..𝑁)
where the initialization step of the proof additionally uses

commitments (via Fcommit) to broadcast the ciphertexts The

remaining steps can be iterated instead of choosing a large

value of𝑉 to achieve the same security with smaller (memory)

overhead [3].

Figure 13: Initialization Step of the Somewhat Homomorphic
Offline Phase Used in Π

offline-SHE
(cf. Fig. 19) at Party 𝑃𝑖

Remark B.1. Note that the above defines the (un)packing directly

and not via mapping mapi,mapf,mapr. For compatibility with the

protocols that make use of the mapping, e.g., Fig. 19, we define

them as the identity.

Remark B.2. As individual shares for scalar elements are more ver-

satile than 𝑁 -vectors of shares, one can add as a last step of Triples

DistDec(⟨x⟩): Perform distributed decryption to obtain x.
(Adapted from [18].)

1. Let 𝐵 be a bound on the noise of ⟨x⟩ and let ⟨x⟩ C (c0, c1).
2. Sample m𝑖

$← [0..𝐵 · 2sec/(𝑛 · 𝑝))𝑁 .

3. Broadcast x′
𝑖
B 𝛿𝑖 · c0 − c1 · [sk]𝑖 + 𝑝 ·m𝑖

4. Output x B
∑𝑛−1

𝑗=0
x′
𝑗

mod𝑝

ShareDec(⟨x⟩): Perform distributed decryption to obtain [x]𝑖 .
(Adapted from [31].)

1. Let 𝐵 be a bound on the noise of ⟨x⟩ and let ⟨x⟩ C (c0, c1).
2. Sample m𝑖

$← [0..𝐵 · 2sec)𝑁 .

3. Broadcast x′
𝑖
B 𝛿𝑖 · c0 − c1 · [sk]𝑖 −m𝑖 .

4. Output [x]𝑖 B 𝛿𝑖 · (
∑𝑁−1

𝑗=0
x′
𝑗
) +m𝑖 mod 𝑝 .

Figure 14: Distributed Decryption for the Somewhat Homo-
morphic Offline Phase Used in Π

offline-SHE
(cf. Fig. 19) at Party

𝑃𝑖

in Figs. 7 and 19 to split the resulting triple (⟦𝒂⟧𝑖 , ⟦𝒇⟧𝑖 , ⟦𝒄⟧𝑖) with
𝒄 = 𝒂 ⊙ 𝒇 in 𝑁 scalar triples (⟦𝑎𝑘⟧𝑖 , ⟦𝑓𝑘⟧𝑖 , ⟦𝑐𝑘⟧𝑖) = (⟦𝒂⟧𝑖[𝑘],
⟦𝒇⟧𝑖[𝑘], ⟦𝒄⟧𝑖[𝑘]) for 𝑘 ∈ [..𝑁).

C CONVOLUTION PACKING (CONTINUED)
After finishing Section 3.2.1 by giving the proof for Theorem 3.3,

we also give another recent convolution packing method: Bian

et al.’s packing method [6] that performs multiple independent

convolutions by performing a single matrix-vector multiplication.

C.1 Multidimensional Convolution Packing
(Continued)

Here, we give the proof for Theorem 3.3.

Theorem 3.3. Let 𝒂 be a 𝐷 = ℎ × 𝑤 (2d) image and 𝒇 a 𝐷 ′ =
ℎ′ ×𝑤 ′ (2d) filter. Choose 𝐷 ′′ according to the padding mode and let
(ℎ′′,𝑤 ′′) = up(𝐷 ′′). For 𝑁 with ℎ′′ ·𝑤 ′′ ≤ 𝑁 define 𝜙 : ℎ′′×𝑤 ′′ →
[..𝑁), (𝑦, 𝑥) ↦→ 𝑦 · 𝑤 ′′ + 𝑥 . Then the packing of 𝒂 and 𝒇 as (1d)
𝑁 -vectors 𝒃 = packi(∗, 𝐷, 𝐷 ′, 𝒂) and 𝒈 = packf (∗, 𝐷, 𝐷 ′,𝒇) satisfies

(𝒇 ∗ 𝒂)[𝑦, 𝑥] = unpackr(∗, 𝐷, 𝐷 ′,𝒈 ∗̄ 𝒃)[𝑦, 𝑥] (10)

for (𝑦, 𝑥) ∈ 𝐷 ′′, where the packing method (packi, packf, unpackr)
is induced by mapi(𝒙) = mapf (𝒙) = mapr(𝒙) = 𝜙 (𝒙).

339

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

Proof. We start this proof generically for ℎ′′ ≥ ℎ, ℎ′′ ≥ ℎ′,
𝑤 ′′ ≥ 𝑤 ,𝑤 ′′ ≥ 𝑤 ′. We can rewrite (10) as

6

(𝒈 ∗̄ 𝒃)[𝜙 (𝑦, 𝑥)] =
𝑁−1∑︁
𝑘=0

𝒈[𝑘] · 𝒃[𝜙 (𝑦, 𝑥) − 𝑘]

=

ℎ′′−1∑︁
𝑦′=0

𝑤′′−1∑︁
𝑥 ′=0

𝒈[𝜙 (𝑦′, 𝑥 ′)] · 𝒃[𝜙 (𝑦, 𝑥) − 𝜙 (𝑦′, 𝑥 ′)]

=

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑦′, 𝑥 ′] · 𝒃[𝜙 (𝑦, 𝑥) − 𝜙 (𝑦′, 𝑥 ′)] (34)

=

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑦′, 𝑥 ′] · 𝒃[𝜙 (𝑦 − 𝑦′, 𝑥 − 𝑥 ′)] (35)

=

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑦′, 𝑥 ′] · 𝒂[𝑦 − 𝑦′, 𝑥 − 𝑥 ′] (36)

= (𝒇 ∗ 𝒂)[𝑦, 𝑥],

where (34) follows from the definition of 𝒈 and 𝜙 . Equation (35)

follows from the fact that 𝜙 (𝑦, 𝑥) − 𝜙 (𝑦′, 𝑥 ′) = 𝜙 (𝑦 − 𝑦′, 𝑥 − 𝑥 ′):

𝜙 (𝑦, 𝑥) − 𝜙 (𝑦′, 𝑥 ′) = 𝑦 ·𝑤 ′′ + 𝑥 − (𝑦′ ·𝑤 ′′ − 𝑥 ′)
= (𝑦 − 𝑦′) ·𝑤 ′′ + (𝑥 − 𝑥 ′), (37)

which is obviously bilinear. Finally, for (36), we utilize the fact that

𝒃[𝜙 (𝑦−𝑦′, 𝑥 −𝑥 ′)] = 𝒂[𝑦−𝑦′, 𝑥 −𝑥 ′] if (𝑦−𝑦′, 𝑥 −𝑥 ′) ∈ ℎ×𝑤 = 𝐷

and zero otherwise. To see this, we consider the different padding

modes separately.

Full padding: Let ℎ′′ = ℎ +ℎ′− 1,𝑤 ′′ = 𝑤 +𝑤 ′− 1. We know that

−ℎ′ + 1 ≤ 𝑦 − 𝑦′ ≤ ℎ + ℎ′ − 1 and −𝑤 ′ + 1 ≤ 𝑥 − 𝑥 ′ ≤ 𝑤 +𝑤 ′ − 1.

For 𝑦 − 𝑦′ ≥ ℎ or 𝑥 − 𝑥 ′ ≥ 𝑤 , we get 𝒃[𝜙 (𝑦 − 𝑦′, 𝑥 − 𝑥 ′)] = 0 by

construction of 𝒃 . For 𝑥−𝑥 ′ < 0 and𝜑 B 𝜙 (𝑦−𝑦′, 𝑥−𝑥 ′) ≥ 0, we get

𝜑 = 𝜙 (𝑦−𝑦′−1, 𝑥 −𝑥 ′mod𝑤 ′′) and𝑤 ≤ 𝑥 −𝑥 ′mod𝑤 ′′ < 𝑤 ′′, i.e.,
𝒃[𝜑] = 0. Finally, for𝑦−𝑦′ < 0, we get (−ℎ′+1) ·𝑤 ′′−𝑤 ′+1 ≤ 𝜑 < 0.

In this case, we have to do the index calculationmodulo𝑁 . However,

the last (ℎ′ − 1) ·𝑤 ′′ +𝑤 ′ − 1 entries of 𝒃 (or more) are zero: For

𝜙 (ℎ−1,𝑤 −1) < 𝑘 < ℎ′′ ·𝑤 ′′ ≤ 𝑁 , 𝒃[𝑘] = 0. Thus, overall 𝒃[𝜑] = 0

if (𝑦 − 𝑦′, 𝑥 − 𝑥 ′) ∉ 𝐷 .

Same padding: Let ℎ′′ = ℎ + ⌊ℎ′/2⌋,𝑤 ′′ = 𝑤 + ⌊𝑤 ′/2⌋. We know

that ⌊ℎ′/2⌋ −ℎ′ + 1 ≤ 𝑦 −𝑦′ ≤ ℎ + ⌊ℎ′/2⌋ − 1 and ⌊𝑤 ′/2⌋ −𝑤 ′ + 1 ≤
𝑥 − 𝑥 ′ ≤ 𝑤 + ⌊𝑤 ′/2⌋ − 1. For 𝑦 − 𝑦′ ≥ ℎ or 𝑥 − 𝑥 ′ ≥ 𝑤 , we

get the same results as above for full padding. For 𝑥 − 𝑥 ′ < 0

and 𝜑 B 𝜙 (𝑦 − 𝑦′, 𝑥 − 𝑥 ′) ≥ 0, we get 𝑤 ′′ ≥ 𝑥 − 𝑥 ′mod𝑤 ′′ ≥
𝑤 + 2⌊𝑤 ′/2⌋ −𝑤 ′ + 1 ≥ 𝑤 and therefore the same result as above.

For the final case, 𝑦 − 𝑦′ < 0, we get 0 > 𝜑 ≥ (⌊ℎ′/2⌋ − ℎ′ + 1) ·
𝑤 ′′ + ⌊𝑤 ′/2⌋ −𝑤 ′ + 1 ≥ −⌊ℎ′/2⌋ ·𝑤 ′′ − ⌊𝑤 ′/2⌋ and again at least

this many elements are zero.

Valid padding: Let ℎ′′ = ℎ,𝑤 ′′ = 𝑤 . By construction, we always

have (𝑦 − 𝑦′, 𝑥 − 𝑥 ′) ∈ 𝐷 . □

6
Note that, compared to (1), we drop the −1 factor and modulo 𝑁 calculation of the

index of 𝒃 . Both are considered explicitly later (and we see that in all cases where we

would have to multiply by −1 and take the index modulo 𝑁 , 𝒃[·] = 0).

Remark C.1. For cross-correlations, we clearly have

(𝒇 ★ 𝒂)[𝑦 − ℎ′ + 1, 𝑥 −𝑤 ′ + 1]

=

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑦′, 𝑥 ′] · 𝒂[𝑦 + 𝑦′ − ℎ′ + 1, 𝑥 + 𝑥 ′ −𝑤 ′ + 1]

=

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[ℎ′ − 1 − 𝑦′,𝑤 ′ − 1 − 𝑥 ′] · 𝒂[𝑦 − 𝑦′, 𝑥 − 𝑥 ′] (38)

= (𝒇 ′ ∗ 𝒂)[𝑦, 𝑥]

with 𝒇 ′[𝑦, 𝑥] B 𝒇[ℎ′ − 1 − 𝑦,𝑤 ′ − 1 − 𝑥].7 Also note that a cross-

correlation with full padding would have a domain of [−ℎ′ + 1..ℎ) ×
[−𝑤 ′+1..𝑤), i.e., the domain is shifted by (−ℎ′+1,−𝑤 ′+1) compared

to a full convolution.
8
Therefore, simply reversing𝒇 (i.e., convolving

with 𝒇 ′
) is enough to get the cross-correlation result

(𝒇 ★ 𝒂) = unpackr(★, 𝐷, 𝐷 ′,𝒈 ∗̄ 𝒃). (39)

In other words, to get an analogue of Theorem 3.3 for cross-cor-

relations (with (39) instead of (10)), one would use mapf (𝑦, 𝑥) =
𝜙 (ℎ′ − 1 − 𝑦,𝑤 ′ − 1 − 𝑥), while mapi(★, ·) = mapi(∗, ·) and
mapr(★, ·) = mapr(∗, ·).

C.2 Bian et al.’s Parallel Convolution Packing
In [6], Bian et al. propose a technique to perform multiple inde-

pendent convolutions in parallel. In contrast to most other ap-

proaches discussed in this work, their approach does not encode

multiple convolutions into a single polynomial multiplication. In-

stead, they make use of specially constructed matrices. More specif-

ically, they aim to compute 𝒇𝑙 ∗ 𝒂𝑙 for (1d) images 𝒂1, . . . , 𝒂𝑑 ∈ 𝑅𝐷
and (1d) filters𝒇1, . . . ,𝒇𝑑 ∈ 𝑅𝐷

′
.
9
Our bilinear operation op : 𝑅𝐷×𝑑×

𝑅𝐷
′×𝑑 → 𝑅𝐷

′′×𝑑
is in this case just ((𝒂1, . . . , 𝒂𝑑), (𝒇1, . . . ,𝒇𝑑)) ↦→

(𝒇1 ∗ 𝒂1, . . . ,𝒇𝑑 ∗ 𝒂𝑑). For the packing, one would define packi as

the concatenation of the 𝒂𝑙 s into a single vector 𝒂 and the output

of packf as 𝑭 = diag(cırc(𝒇1), . . . , cırc(𝒇𝑑)), i.e., a block-diagonal
matrix with matrices that correspond to convolutions with 𝒇𝑙 in
the 𝑙-th block. opR : 𝑅𝑁×𝑁 × 𝑅𝑁 → 𝑅𝑁 (or R𝑁 × R → R)
is then the matrix multiplication (𝑭 , 𝒂) ↦→ 𝑭 · 𝒂, which yields

𝑭 · 𝒂 = (𝒇1 ∗̄ 𝒂1, . . . ,𝒇𝑑 ∗̄𝒇𝑑)T. This way, one can obtain a vector that

encodes the concatenation of 𝑑 parallel/independent convolutions

with a single matrix-vector product. Please note that our general

framework also supports this matrix variation. To evaluate this se-

curely, they present a variant of a homomorphic encryption scheme

that supports such a matrix-vector multiplication of a plaintext ma-

trix with an encrypted vector. We further extend this, such that the

use in LowGear-style protocols is secure (cf. Appendix F.3.2).

Remark C.2. Instead of of cırc(𝒇𝑙), one could place matrices that

directly encode the convolution with 𝒇𝑙 on the diagonal of 𝑭 . The
same can be done for cross-correlations.

Remark C.3. This construction can be extended and used in a

straightforward way to convolve multiple 2d images with the same

filters, as is needed for conv2d (and also dconv2d).

7
Equation (38) follows by reversing the sums over 𝑥 ′ and 𝑦′.

8
The same is true for same and valid padding.

9
2d images and filters could be first encoded as 1d vectors similar to Theorem 3.3.

340

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

D NEW PACKING METHODS (CONTINUED)
Here, we present the correctness proof for our new packingmethods

of Section 4.

D.1 Simple Convolution Packing (Continued)
First, we start with the proof of Theorem 4.1. Recall (𝒃𝑘)𝑘∈𝑑 =

packi(op, 𝐷, 𝐷 ′, 𝒂) ∈ R𝑑 , and (𝒈𝑘)𝑘∈𝑑 = packf (op, 𝐷, 𝐷 ′,𝒇) ∈ R𝑑 .

Theorem 4.1. Let 𝒂 be a (4d) 𝐷 = 𝑏 × ℎ × 𝑤 × 𝑑 tensor and
let 𝒇 be a (4d) 𝐷 ′ = 𝑑 ′ × 𝑑 × ℎ′ ×𝑤 ′ tensor. Choose 𝐷 ′′ according
to the padding mode and let (ℎ′′,𝑤 ′′) = up(𝐷 ′′). Let 𝜙 (𝑖, 𝑗, 𝑦, 𝑥) =
((𝑖 ·𝑑 ′+ 𝑗) ·ℎ′′+𝑦) ·𝑤 ′′+𝑥 be the canonical indexing into a (flattened
4d) 𝑏 × 𝑑 ′ × ℎ′′ ×𝑤 ′′ tensor. Let

mapi(𝑖, 𝑦, 𝑥, 𝑗) = (𝜙 (𝑖, 0, 𝑦, 𝑥), 𝑗) ∈ 𝑁 × 𝑑
mapf (𝑗 ′, 𝑗, 𝑦, 𝑥) = (𝜙 (0, 𝑗 ′, ℎ′ − 1 − 𝑦,𝑤 ′ − 1 − 𝑥), 𝑗) ∈ 𝑁 × 𝑑
mapr(𝑖, 𝑦, 𝑥, 𝑗 ′) = 𝜙 (𝑖, 𝑗 ′, 𝑦, 𝑥).

For the induced packing (packi, packf, unpackr) and 𝒃𝑘 ,𝒈𝑘 as above,

conv2d(𝒂,𝒇) = unpackr(conv2d, 𝐷, 𝐷 ′,
𝑑−1∑︁
𝑘=0

𝒈𝑘 ∗̄ 𝒃𝑘). (11)

Proof. First note that 𝒃𝑘 ∈ R is induced by mapi(· , · , · , 𝑘) and
𝒈𝑘 ∈ R is induced by mapf (· , 𝑘, · , ·). Now let 𝜑 = 𝜙 (𝑖, 𝑗 ′, 𝑦, 𝑥), 𝜑 ′ =
𝜙 (𝑖 ′, 𝑗, 𝑦′, 𝑥 ′), 𝜑 ′′ = 𝜙 (𝑖, 𝑗 ′ − 𝑗, 𝑦 − 𝑦′, 𝑥 − 𝑥 ′), 𝑦′ = ℎ′ − 1 − 𝑦′, 𝑥 ′ =
𝑤 ′ − 1 − 𝑥 ′. As in the proof of Theorem 3.3, the −1 factors and

modulo computations for accessing 𝒃𝑘 are dropped for readability.

(
𝑑−1∑︁
𝑘=0

𝒈𝑘 ∗̄ 𝒃𝑘)[𝜑] =
𝑑−1∑︁
𝑘=0

𝑁−1∑︁
𝑘′=0

𝒈𝑘[𝑘 ′] · 𝒃𝑘[𝜑 − 𝑘 ′]

=

𝑑−1∑︁
𝑘=0

𝑏−1∑︁
𝑖′=0

𝑑′−1∑︁
𝑗=0

ℎ′′−1∑︁
𝑦′=0

𝑤′′−1∑︁
𝑥 ′=0

𝒈𝑘[𝜑 ′] · 𝒃𝑘[𝜑 − 𝜑 ′] (40)

=

𝑑−1∑︁
𝑘=0

0∑︁
𝑖′=0

𝑑′−1∑︁
𝑗=0

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑗, 𝑘,𝑦′, 𝑥 ′] · 𝒃𝑘[𝜑 − 𝜑 ′] (41)

=

𝑑−1∑︁
𝑘=0

𝑑′−1∑︁
𝑗=0

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑗, 𝑘,𝑦′, 𝑥 ′] · 𝒃𝑘[𝜑 ′′] (42)

=

𝑑−1∑︁
𝑘=0

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑗 ′, 𝑘,𝑦′, 𝑥 ′] · 𝒃𝑘[𝜙 (𝑖, 0, 𝑦 − 𝑦′, 𝑥 − 𝑥 ′)] (43)

=

𝑑−1∑︁
𝑘=0

𝒇[𝑗 ′, 𝑘, · , ·] ★ 𝒂[𝑖, · , · , 𝑘] (44)

= conv2d(𝒂,𝒇)[𝑖, 𝑦, 𝑥, 𝑗 ′,],

where (40) and (41) follow from the definition of 𝜙 and 𝒈𝑘 , i.e.,
𝒈𝑘[𝜙 (𝑖 ′, · , · , ·)] = 0 for 𝑖 ′ ≠ 0. Next, (42) follows from the linearity

of 𝜙 (similarly to (37)), (43) follows from the definition of 𝒃𝑘 , i.e.,
𝒃𝑘[𝜙 (· , 𝑗 ′ − 𝑗, · , ·)] = 0 for 𝑗 ′ ≠ 𝑗 , and (44) follows from the final

steps – (35) and (36) – of Theorem 3.3 for the variant mentioned in

Remark C.1. □

D.2 Generalization of Huang et al.’s
Convolution Packing (Continued)

Here, we give the proof for Theorem 4.2.

Theorem 4.2. Let 𝒂 be a (4d)𝐷 = 𝑏×ℎ×𝑤×𝑑 tensor and let𝒇 be a
(4d) 𝐷 ′ = 𝑑 ′×𝑑 ×ℎ′×𝑤 ′ tensor. Choose 𝐷 ′′ according to the padding
mode and let (ℎ′′,𝑤 ′′) = up(𝐷 ′′). Let 𝜙 (𝑖, 𝑗, 𝑘,𝑦, 𝑥) = (((𝑖 · 𝑑 ′ + 𝑗) ·
𝑑 + 𝑘) · ℎ′′ + 𝑦) ·𝑤 ′′ + 𝑥 be the canonical indexing into a (flattened
5d) 𝑏 ×𝑑 ′ ×𝑑 ×ℎ′′ ×𝑤 ′′ tensor. Let 𝒃 = packi(conv2d, 𝐷, 𝐷 ′, 𝒂) and
𝒈 = packf (conv2d, 𝐷, 𝐷 ′,𝒇). Then,

conv2d(𝒂,𝒇) = unpackr(conv2d, 𝐷, 𝐷 ′,𝒈 ∗̄ 𝒃) (12)

for the packing method (packi, packf, unpackr) induced by mapi(𝑖,
𝑦, 𝑥, 𝑗) = 𝜙 (𝑖, 0, 𝑗, 𝑦, 𝑥), mapf (𝑗 ′, 𝑗, 𝑦, 𝑥) = 𝜙 (0, 𝑗 ′, 𝑑 − 1 − 𝑗, ℎ′ − 1 −
𝑦,𝑤 ′ − 1 − 𝑥), and mapr(𝑖, 𝑦, 𝑥, 𝑗 ′) = 𝜙 (𝑖, 𝑗 ′, 𝑑 − 1, 𝑦, 𝑥).

Proof. Let 𝜑 = 𝜙 (𝑖, 𝑗 ′, 𝑑 − 1, 𝑦, 𝑥), 𝜑 ′ = 𝜙 (𝑖 ′, 𝑗, 𝑘,𝑦′, 𝑥 ′), 𝜑 ′′ =
𝜙 (𝑖, 𝑗 ′ − 𝑗, 𝑘,𝑦 −𝑦′, 𝑥 − 𝑥 ′), 𝑦′ = ℎ′ − 1 −𝑦′, 𝑥 ′ = 𝑤 ′ − 1 − 𝑥 ′. As in
the proof of Theorem 3.3, the −1 factors and modulo computations

for accessing 𝒃 are dropped for readability.

(𝒈 ∗̄ 𝒃)[𝜑] =
𝑁−1∑︁
𝑘′=0

𝒈[𝑘 ′] · 𝒃[𝜑 − 𝑘 ′]

=

𝑏−1∑︁
𝑖′=0

𝑑′−1∑︁
𝑗=0

𝑑−1∑︁
𝑘=0

ℎ′′−1∑︁
𝑦′=0

𝑤′′−1∑︁
𝑥 ′=0

𝒈[𝜑 ′] · 𝒃[𝜑 − 𝜑 ′] (45)

=

0∑︁
𝑖′=0

𝑑′−1∑︁
𝑗=0

𝑑−1∑︁
𝑘=0

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑗, 𝑑 − 1 − 𝑘,𝑦′, 𝑥 ′] · 𝒃[𝜑 − 𝜑 ′] (46)

=

𝑑′−1∑︁
𝑗=0

𝑑−1∑︁
𝑘=0

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑗, 𝑘,𝑦′, 𝑥 ′] · 𝒃[𝜑 ′′] (47)

=

𝑑−1∑︁
𝑘=0

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑗 ′, 𝑘,𝑦′, 𝑥 ′] · 𝒃[𝜙 (𝑖, 0, 𝑘,𝑦 − 𝑦′, 𝑥 − 𝑥 ′)] (48)

=

𝑑−1∑︁
𝑘=0

𝒇[𝑗 ′, 𝑘, · , ·] ★ 𝒂[𝑖, · , · , 𝑘] (49)

= conv2d(𝒂,𝒇)[𝑖, 𝑦, 𝑥, 𝑗 ′],
where (45) and (46) follow from the definition of 𝜙 and 𝒈 (𝒈[𝜑] = 0

for 𝑖 ′ ≠ 0), while (47) uses the linearity of 𝜙 (analogously to (37))

and reverses the sum over 𝑘 (the 𝑑-dimension). Then, (48) follows

from the definition of 𝒃 (𝒃[𝜑 ′′] = 0 for 𝑗 ≠ 𝑗 ′′). Finally, (49) follows
analogously to the last steps in the proof of Theorem 3.3, i.e., (35)

and (36). □

D.3 Depthwise Convolution Packing
(Continued)

Here, we give the proof for Theorem 4.3.

Theorem 4.3. Let 𝒂 be a (4d) 𝐷 = 𝑏 × ℎ × 𝑤 × 𝑑 tensor and
let 𝒇 be a (3d) 𝐷 ′ = 𝑑 × ℎ′ × 𝑤 ′ tensor. Choose 𝐷 ′′ according to
the padding mode and let (ℎ′′,𝑤 ′′) = up(𝐷 ′′). As in Theorem 4.2,
let 𝜙 (𝑖, 𝑗, 𝑘,𝑦, 𝑥) = (((𝑖 · 𝑑 + 𝑗) · 𝑑 + 𝑘) · ℎ′′ + 𝑦) · 𝑤 ′′ + 𝑥 be the
canonical indexing into a (flattened 5d) 𝑏 ×𝑑 ×𝑑 ×ℎ′′ ×𝑤 ′′ tensor.10

10
Compared to Section 4.2, we have 𝑑′ = 𝑑 .

341

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

Let 𝒃 = packi(dconv2d, 𝐷, 𝐷 ′, 𝒂) and 𝒈 = packf (dconv2d, 𝐷, 𝐷 ′,𝒇).
Then,

dconv2d(𝒂,𝒇) = unpackr(dconv2d, 𝐷, 𝐷 ′,𝒈 ∗̄ 𝒃) (13)

for the packing method (packi, packf, unpackr) induced by mapi(𝑖,
𝑦, 𝑥, 𝑗) = 𝜙 (𝑖, 0, 𝑗, 𝑦, 𝑥), mapf (𝑗, 𝑦, 𝑥) = 𝜙 (0, 𝑗, 0, ℎ′−1−𝑦,𝑤 ′−1−𝑥),
and mapr(𝑖, 𝑦, 𝑥, 𝑗) = 𝜙 (𝑖, 𝑗, 𝑗, 𝑦, 𝑥).

Proof. Let 𝜑 = 𝜙 (𝑖, 𝑗, 𝑗, 𝑦, 𝑥), 𝜑 ′ = 𝜙 (𝑖 ′, 𝑗 ′, 𝑘 ′, 𝑦′, 𝑥 ′), 𝑦′ = ℎ′ −
1 − 𝑦′, 𝑥 ′ = 𝑤 ′ − 1 − 𝑥 ′. As in the proof of Theorem 3.3, the −1

factors and modulo computations for accessing 𝒃 are dropped for

readability.

(𝒈 ∗̄ 𝒃)[𝜑] =
𝑁−1∑︁
𝑘=0

𝒈[𝑘] · 𝒃[𝜑 − 𝑘]

=

𝑏−1∑︁
𝑖′=0

𝑑−1∑︁
𝑗 ′=0

𝑑−1∑︁
𝑘′=0

ℎ′′−1∑︁
𝑦′=0

𝑤′′−1∑︁
𝑥 ′=0

𝒈[𝜑 ′] · 𝒃[𝜑 − 𝜑 ′] (50)

=

0∑︁
𝑖′=0

𝑑−1∑︁
𝑗 ′=0

0∑︁
𝑘′=0

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑗 ′, 𝑦′, 𝑥 ′] · 𝒃[𝜑 − 𝜑 ′] (51)

=

𝑑−1∑︁
𝑗 ′=0

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑗 ′, 𝑦′, 𝑥 ′] · 𝒃[𝜙 (𝑖, 𝑗 − 𝑗 ′, 𝑗, 𝑦 − 𝑦′, 𝑥 − 𝑥 ′)] (52)

=

ℎ′−1∑︁
𝑦′=0

𝑤′−1∑︁
𝑥 ′=0

𝒇[𝑗, 𝑦′, 𝑥 ′] · 𝒃[𝜙 (𝑖, 0, 𝑗, 𝑦 − 𝑦′, 𝑥 − 𝑥 ′)] (53)

= 𝒇[𝑗, · , ·] ★ 𝒂[𝑖, · , · , 𝑗] (54)

= dconv2d(𝒂,𝒇)[𝑖, 𝑦, 𝑥, 𝑗], (55)

where the steps are analogous to the ones in Appendix D.2: Equa-

tions (50), (51) and (53) follow – like (45), (46), and (48) – from the

definition of 𝜙,𝒈, 𝒃 , while (52) – just like (47) – uses the linearity of

𝜙 . Finally, (54) follows – analogously to (49) – fromTheorem 3.3. □

E SECURITY OF THE ONLINE PHASE
Before we can prove Theorem 5.1, we give the full online protocol

in Fig. 16 and the corresponding functionality in Fig. 15. Note

that Π
online

also uses F
offline

given in Fig. 17 (cf. Appendix F), as

well as F
rand

that we describe in Appendix A.4. The security of

our offline phase therefore directly follows from the established

security guarantees of the underlying constructions.

Theorem 5.1. The online protocol Π
online

securely implements
the ideal functionality F

online
in the (F

offline
, F

rand
)-hybrid model.

Proof. Compared to SPDZ [17, 18], the only difference in our

protocol is the use of specialized triples for convolutions (and ma-

trix multiplications). This, however, is just a generalization of the

standard Beaver triples for scaler multiplication and is secure for

any bilinear operation [14]. □

F SECURITY OF THE OFFLINE PHASE
Figure 17 pictures the offline functionality that we want to imple-

ment in classical SPDZ-like protocols. Functionalities and subpro-

tocols are discussed in Appendix A.4.

Functionality F
online

Init: On input (init, 𝑝) from all parties.

1. Setup a storage for a write-only mapping of identifiers to

values (or tensors) in F𝑝 .

Input: On input (input, 𝑃𝑖 , ID(𝒙), 𝒙) from 𝑃𝑖 and

(input, 𝑃𝑖 , ID(𝒙)) from all other parties where ID(𝒙) has

not been assigned a value before.

1. Store (ID(𝒙), 𝒙).
Add: On input (add, ID(𝒛), ID(𝒙), ID(𝒚)) from all parties where

ID(𝒛) has not been assigned a value before and ID(𝒙) and ID(𝒚)
have been assigned.

1. Retrieve 𝒙 and 𝒚 via their identifiers.

2. Store (ID(𝒛), 𝒙 +𝒚).
Multiply: On input (mul, ID(𝒛), ID(𝒙), ID(𝒚)) from all parties

where ID(𝒛) has not been assigned a value before and ID(𝒙) and
ID(𝒚) have been assigned.

1. Retrieve 𝒙 and 𝒚 via their identifiers.

2. Store (ID(𝒛), 𝒙 ⊙ 𝒚).
Convolve: On input (conv, ID(𝒛), ID(𝒙), ID(𝒚), params) from all

parties where ID(𝒛) has not been assigned a value before and

ID(𝒙) and ID(𝒚) have been assigned. params are valid convolu-

tion parameters (padding, stride, etc.).

1. Retrieve 𝒙 and 𝒚 via their identifiers.

2. Store (ID(𝒛), conv2d(𝒙,𝒚)) where conv2d respects params.
DepthwiseConvolve: On input

(dconv, ID(𝒛), ID(𝒙), ID(𝒚), params) from all parties where

ID(𝒛) has not been assigned a value before and ID(𝒙) and ID(𝒚)
have been assigned. params are valid convolution parameters

(padding, stride, etc.).

Proceed as in Convolve but with dconv2d instead of conv2d.

MatrixMultiply: On input (matmul, ID(𝒁), ID(𝑿), ID(𝒀)) from
all parties where ID(𝒁) has not been assigned a value before and

ID(𝑿) and ID(𝒀) have been assigned.

1. Retrieve 𝑿 and 𝒀 via their identifiers.

2. Store (ID(𝒁),𝑿 · 𝒀).
Output: On input (output, ID(𝒙)) from all parties where ID(𝒙)
has been assigned.

1. Retrieve 𝒙 and output it to the adversary.

2. If the adversary replies ok, also output this value to all parties.
Otherwise, output ⊥.

Figure 15: Functionality for the Online Phase

F.1 Linear Homomorphic Offline Phase
For the LowGear protocol [31], the security proof does not prove

the security of an online phase that performs an arithmetic circuit

computation and an offline phase that only produces correlated

randomness. Instead a somewhat combined functionality F
auth-MPC

is constructed and the proof shows that LowGear securely imple-

ments this. We omit an explicit depiction of this functionality here,

but the general design follows [31].

F
auth-MPC

behaves as follows. Firstly, a functionality F
auth-linear

can be constructed from F
online

that simply omits the non-linear

342

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

Protocol Π
online

Init: Setup the MPC computation.

1. Send (init, 𝑝) to F
offline

. Receive [𝛼]𝑖 .
Input: For 𝑥1, · · · , 𝑥𝑙 ∈ F𝑝 inputs from a party 𝑃 𝑗 :

1. Invoke Π
online

Input from [18], Fig. 1, for the inputs

𝑥1, · · · , 𝑥𝑙 .
Add(⟦𝒙⟧𝑖 , ⟦𝒚⟧𝑖):
1. Compute ⟦𝒛⟧𝑖 B ⟦𝒙 +𝒚⟧𝑖 locally.

Multiply(⟦𝒙⟧𝑖 , ⟦𝒚⟧𝑖):
1. Retrieve a Beaver triple (⟦𝒂⟧𝑖 , ⟦𝒃⟧𝑖 , ⟦𝒄⟧𝑖) from Foffline

.

2. Open ⟦𝒖⟧𝑖 B ⟦𝒙 − 𝒂⟧𝑖 and ⟦𝒗⟧𝑖 B ⟦𝒚 − 𝒃⟧𝑖 .
3. Compute ⟦𝒛⟧𝑖 B ⟦𝒙 ⊙ 𝒚⟧𝑖 as in (6).

Convolve(⟦𝒙⟧𝑖 , ⟦𝒚⟧𝑖):
1. Retrieve a convolution triple (⟦𝒂⟧𝑖 , ⟦𝒇⟧𝑖 , ⟦𝒄⟧𝑖) from Foffline

.

2. Open ⟦𝒖⟧𝑖 B ⟦𝒙 − 𝒂⟧𝑖 and ⟦𝒗⟧𝑖 B ⟦𝒚 − 𝒇⟧𝑖 .
3. Compute ⟦𝒛⟧𝑖 B ⟦𝒙 ⊙ 𝒚⟧𝑖 as in (14).

DepthwiseConvolve(⟦𝒙⟧𝑖 , ⟦𝒚⟧𝑖):
Proceed as in Convolve but with dconv2d instead of conv2d.

MatrixMultiply(⟦𝑿⟧𝑖 , ⟦𝒀⟧𝑖):
Proceed as in Multiply but with matrix multiplication as

operation.

Output(⟦𝒙⟧𝑖):
1. All parties invoke Π⟦·⟧Check from [31] on all opened values.

If the check succeceeds the parties open (⟦𝒙⟧𝑖) and recon-

struct the output 𝒙; else abort. The parties use Π⟦·⟧Check.
to check 𝒙 and accept the output if the check succeceeds, else

they abort.

Figure 16: Protocol for the Online Phase at Party 𝑃𝑖

Functionality F
offline

Init: On input (init, 𝑝) from all parties.

1. For all parties 𝑃𝑖 sample [𝛼]𝑖 ∈ F𝑝 and send it to 𝑃𝑖 .

Macro GenerateMAC(𝒙, 𝜹): This subroutine generates a MAC

for 𝒙 with adversarial offset 𝜹 .

1. Receive [𝜸]𝑖 for corrupted parties 𝑃𝑖 from the adversary.

2. Set 𝜸 B 𝛼 · 𝒙 + 𝜹 .
3. Sample [𝜸]𝑖 for honest 𝑃𝑖 such that 𝜸 =

∑𝑛−1

𝑖=0
[𝜸]𝑖 .

4. Send the honest parties’ shares to their designated owner.

Triples: On input (triples, op, 𝐷, 𝐷 ′, 𝐷 ′′) from all parties.

1. Receive [𝒂]𝑖 , 𝜹𝒂 ∈ F𝐷𝑝 , [𝒃]𝑖 , 𝜹𝒃 ∈ F𝐷
′

𝑝 , and [𝒄]𝑖 , 𝜹, 𝜹𝒄 ∈ F𝐷
′′

𝑝

for corrupted 𝑃𝑖 from the adversary.

2. Sample [𝒂]𝑖 and [𝒃]𝑖 for honest 𝑃𝑖 uniformly at random. Let

𝒂 B
∑𝑛−1

𝑖=0
[𝒂]𝑖 and similarly for 𝒃 .

3. Let 𝒄 B op(𝒂, 𝒃) + 𝜹 .
4. Sample [𝒄]𝑖 for honest 𝑃𝑖 uniformly at random such that

𝒄 =
∑𝑛−1

𝑖=0
[𝒄]𝑖 .

5. Run GenerateMAC(𝒂, 𝜹𝒂), GenerateMAC(𝒃, 𝜹𝒃), and Gen-
erateMAC(𝒄, 𝜹𝒄).

Figure 17: Functionality for the Offline Phase

Reshare(⟨x⟩): Compute [x]𝑖 . Also compute a new ciphertext ⟨y⟩
with y = x.
1. Run ZKP(∅) to obtain (m𝑖 , ⟨m0⟩, . . . , ⟨m𝑛−1⟩). Define ⟨m⟩ B∑𝑛−1

𝑗=0
⟨m𝑗 ⟩ and [m]𝑖 B m𝑖 .

2. Obtain d by decrypting ⟨x −m⟩ using DistDec.
3. Return ([x]𝑖 B [m + d]𝑖 B [m]𝑖 + d · [1]𝑖 , ⟨y⟩ B ⟨m + d⟩).

Figure 18: Utilities for the Somewhat Homomorphic Offline
Phase Used in Π

offline-SHE
(cf. Fig. 19) at Party 𝑃𝑖

operations (Multiply, Convolve, etc.). This corresponds to F⟦·⟧
in [31]. Secondly, F

auth-MPC
is F

auth-linear
where these omitted op-

erations are contained but changed in the following way. Instead

of taking two already assigned and one unassigned identifier, the

operation takes three unassigned identifiers. It then samples ran-

dom triples for the operation (e.g., a random image and a random

filter of the correct shape for a convolution and then computes

the convolution result) and stores it under the three identifiers.

F
auth-MPC

corresponds to FTriple in [31].

Also, Π
offline-LHE

could use the F
auth-linear

internally for linear

operations in Sacrifice and to authenticate values. Please note, that
to get a standalone protocol description, we did not use F

auth-linear

in Fig. 7.

Theorem 6.1. The offline protocol Π
offline-LHE

securely imple-
ments the ideal functionality F

auth-MPC
in the (F

auth-linear
, Fcommit,

F
rand

, Fsetup)-hybrid model with rewinding if the used BGV cryp-
tosystem achieves enhanced CPA-security [31].

Proof. Compared to LowGear [31], our protocol exhibits the

following changes: (i) Parties possess a single public-key private-key

pair instead of key pairs (pk𝑖, 𝑗 , sk𝑖, 𝑗) between each pair of parties

(𝑃𝑖 , 𝑃 𝑗). (ii) The key pairs are generated by a setup functionality

Fsetup. (iii) Different encodings/packings and adapted ZKPs are

used. The first two points are done to simplify the exposition of

the protocol (a simulator can still decrypt messages encrypted

under the public key of corrupted parties as the key generation

is under control of the simulator in the simulation; the adversary

can encrypt messages that – without access to the private key –

only the intended recipient can decrypt). One could also modify our

protocol and use the original LowGear design instead of changing

(i) and (ii).

For point (iii), notice that the ZKPs only differ in that they addi-

tionally prove that encrypted messages are correctly packed. Hence

this does not influence the security of the protocol. However, notice

that the masks inMultiply are chosen to drown any information

about the multiplication result and additionally hide any structure

that could result from multiplying packed values, i.e., the outputs

of the Multiply step are indistinguishable from what would be

received in LowGear. Therefore, we can simply perform all steps

of the simulation of LowGear’s security proof to also prove our

protocol secure. □

343

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

Protocol Π
offline-SHE

Triples(op, 𝐷, 𝐷 ′): Generate a triple for the bilinear map op.

1. Run ZKP([..𝑁) \ image(mapi(op, 𝐷, 𝐷 ′, ·))) to

obtain (b𝑖 , ⟨b0⟩, . . . , ⟨b𝑛−1⟩). Run ZKP([..𝑁) \
image(mapf (op, 𝐷, 𝐷 ′, ·))) twice to obtain

(g𝑖 , ⟨g0⟩, . . . , ⟨g𝑛−1⟩) and (g′𝑖 , ⟨g
′
0
⟩, . . . , ⟨g′

𝑛−1
⟩). Define ⟨b⟩ B∑𝑛−1

𝑗=0
⟨b𝑗 ⟩, ⟨g⟩ B

∑𝑛−1

𝑗=0
⟨g𝑗 ⟩, ⟨g′⟩ B

∑𝑛−1

𝑗=0
⟨g′

𝑗
⟩, [𝒂]𝑖 B

unpacki(op, 𝐷, 𝐷 ′, b𝑖), [𝒇]𝑖 B unpackf (op, 𝐷, 𝐷 ′, g𝑖),
[𝒇 ′]𝑖 B unpackf (op, 𝐷, 𝐷 ′, g′

𝑖
).

2. Compute ⟨b · g⟩ and ⟨b · g′⟩ with somewhat homomorphic

encryption.

3. Run Reshare with ⟨b · g⟩ and ⟨b · g′⟩ to obtain [b · g]𝑖 , ⟨d⟩,
[b · g′]𝑖 , and ⟨d′⟩. Define [𝒄]𝑖 B unpackr(op, 𝐷, 𝐷 ′, [b · g]𝑖)
and [𝒄 ′]𝑖 B unpackr(op, 𝐷, 𝐷 ′, [b · g′]𝑖).

4. Compute ⟨𝛼 · b⟩, ⟨𝛼 · g⟩, ⟨𝛼 · g′⟩, ⟨𝛼 · d⟩, and ⟨𝛼 · d′⟩.
5. Run ShareDecwith ⟨𝛼 ·b⟩, ⟨𝛼 ·g⟩, ⟨𝛼 ·g′⟩, ⟨𝛼 ·d⟩, and ⟨𝛼 ·d′⟩

to obtain [𝛼 · b]𝑖 , [𝛼 · g]𝑖 , [𝛼 · g′]𝑖 , [𝛼 · d]𝑖 , and [𝛼 · d′]𝑖 .
Unpack these shares to get [𝛼𝒂]𝑖 , [𝛼𝒇]𝑖 , [𝛼𝒇 ′]𝑖 , [𝛼𝒄]𝑖 , and
[𝛼𝒄 ′]𝑖 , respectively.

6. Return Sacrifice(op, ⟦𝒂⟧𝑖 , ⟦𝒇⟧𝑖 , ⟦𝒇 ′⟧𝑖 , ⟦𝒄⟧𝑖 , ⟦𝒄 ′⟧𝑖).

Figure 19: Protocol for the Somewhat Homomorphic Offline
Phase at Party 𝑃𝑖

F.2 Somewhat Homomorphic Offline Phase
Before we continue with the proof of Theorem 6.2, we present the

SHE-based offline protocol and necessary subprotocols in Figs. 13,

14, 18 and 19.

Theorem 6.2. The offline protocol Π
offline-SHE

securely imple-
ments the ideal functionality F

offline
in the (Fcommit, Frand, Fsetup)-

hybrid model if the used BGV cryptosystem achieves CPA-security
and has an algorithm for meaningless public key generation [18].

Proof. The offline protocol Π
offline-SHE

is structured like the

offline phase of HighGear [31] or TopGear [3]. The use of different

encodings/packings and the adapted ZKPs are the only difference

compared to these protocols. As already mentioned above, prov-

ing the necessary properties for the ZKPs can be done by simply

following the proof in [3]. Similarly, the full security proof follows

the blueprint of a SHE-based SPDZ-like offline phase [3, 18, 31],

where the simulator simply has to be adapted to apply the packing

method. Notice that the shares in the output of Reshare and Share-
Dec appear uniformly random in our protocol (independently of

the packing method used), as well as in SPDZ, as the masks are

uniformly random. □

F.3 Linear Homomorphic Offline Phase
Utilizing Bian et al.’s Parallel Convolution
Packing

In this section, we investigate the packing of [6] (cf. Appendix C.2)

as part of an offline phase. To use this convolution packing, Bian

et al. modified the (private-key version of) the BFV encryption

scheme [7, 22] in [6] to support homomorphic matrix-vector multi-

plication. A similar modification for (public-key) BGV is possible

in a straightforward way. We call the encryption algorithm of the

modified BGV instance expandenc and we have expandenc(·) =
expand(enc(·)) (cf. Appendix A.2 for details). The new encryption

scheme can then be used to perform matrix-vector multiplication

with encrypted vectors and plaintext matrices – instead of polyno-

mial multiplications (or negacyclic convolutions). The respective

packing method allows us to encode multiple convolutions in a

single matrix multiplication (cf. Appendix C.2) in an actively secure

way. Before we describe our offline protocol in Appendix F.3.2, we

investigate the combination of the packing from [6] and our new

encryption scheme w.r.t. active security.

F.3.1 Active Security with the Modified BGV Scheme. Recall that
LowGear-style protocols use a pairwise subprotocol that multi-

plies a ciphertext and a plaintext and drowns the result with an

encrypted mask (see Step 1.2. of Multiply in Fig. 6). The straight-

forward extension that simply uses the new encryption scheme

expandenc(·) = expand(enc(·)) comes with a security issue: due

to the underlying packing the matrices and vectors come with a cer-

tain structure. This structure changes under the plaintext-ciphertext

matrix multiplication. Hence the product and the mask no longer

have the same structure. In particular, the mask no longer drowns

all information in the product and information on the plaintext ma-

trix (the structure or the values) are leaked. Obviously not masking

the product at all, as in [6], is also not viable as it directly leaks

information about the plaintext matrix.

Instead, we propose a (secure) alternative encryption expandenc
′

for the mask to be used in a LowGear-style protocol. We remark

that our construction might be of independent interest for other

protocols. Formally, we get the following two security guarantees:

Theorem F.1. Let enc
′ be the encryption with drowning noise

from LowGear (cf. [31] and Appendix A.1.1). The encryption with
drowning noise

expandenc
′
pk
(𝒛, 𝒓) B

𝑁−1∑︁
𝑘=0

𝚫𝑘 · expand(enc
′
pk
(𝒛, 𝒓[𝑘])) (56)

statistically hides the noise of𝑴 · expandenc
pk
(𝒚) for arbitrary𝑴 ∈

Z𝑁×𝑁𝑝 , 𝒚 ∈ Z𝑁𝑝 , 𝒓[𝑘] is encryption randomness for enc
′, 𝒛 ∈ Z𝑁𝑝 is

sampled uniformly at random, and 𝚫𝑘[𝑖, 𝑗] = 𝛿𝑘−𝑖 · 𝛿 𝑗 .

Proof. Let 𝒓[𝑘] = (𝒖[𝑘], 𝒗[𝑘],𝒘[𝑘]). Then, we can rewrite the

decryption noise of (56) via the step of the proof of Theorem A.3 as

expandpartdec
sk
(expandenc

′
pk
(𝒛, 𝒓))

=

𝑁−1∑︁
𝑘=0

𝚫𝑘𝒛 + 𝑝𝚫𝑘 (𝒆 ∗̄ 𝒖[𝑘]) + 𝑝𝚫𝑘𝒗[𝑘] − 𝑝𝚫𝑘 (𝒘[𝑘] ∗̄ 𝒔)

= 𝒛 +
𝑁−1∑︁
𝑘=0

𝑝𝚫𝑘 (𝒆 ∗̄ 𝒖[𝑘]) + 𝑝𝚫𝑘𝒗[𝑘] − 𝑝𝚫𝑘 (𝒘[𝑘] ∗̄ 𝒔). (57)

Analyzing the bounds of this, we get

∥expandpartdec
sk
(expandenc

′
pk
(𝒛, 𝒓))∥∞

= ∥partdec
sk
(enc

′
pk
(𝒛, 𝒓[𝑘]))∥∞

344

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

for any 𝑘 ∈ [..𝑁). Finally, note that for arbitrary 𝒚 ∈ Z𝑁𝑝 , 𝑴 ∈
Z𝑁×𝑁𝑝 , x, y ∈ R𝑝

∥expandpartdec
sk
(𝑴 · expandenc

pk
(𝒚))∥∞

= ∥partdec
sk
(x · enc

pk
(y))∥∞

as we upper-bound both the result of a multiplication of a value

𝒚/y with 𝑴 (i.e., ∥𝑴 · 𝒚∥∞) and with x (i.e., ∥x · y∥∞ where the

multiplication is a polynomial multiplication) by 𝑝 · 𝑁 · ∥𝒚∥∞ and

𝑝 · 𝑁 · ∥y∥∞, respectively. □

Theorem F.2. The encryption with drowning noise expandenc
′ for

the modified BGV scheme computationally hides𝑴 ·expandenc
pk
(𝒚)

(for expandenc
′, 𝑴 , 𝒚, etc. as in Theorem F.1).

Proof. Let (𝒄0, 𝑪1) B ⟨⟨𝒛⟩⟩pk
= expandenc

′
pk
(𝒛, 𝒓) and 𝒓[𝑘] =

(𝒖[𝑘], 𝒗[𝑘],𝒘[𝑘]). For 𝒄0, we have

𝒄0 =

𝑁−1∑︁
𝑘=0

𝚫𝑘 · (𝒃 ∗̄ 𝒖[𝑘] + 𝑝 · 𝒗[𝑘] + 𝒛)

= 𝒛 +
𝑁−1∑︁
𝑘=0

𝚫𝑘 · (𝒃 ∗̄ 𝒖[𝑘] + 𝑝 · 𝒗[𝑘]),

i.e., 𝒛 is masked with (parts of) RLWE samples. For this, note that

𝒃 ∗̄ 𝒖[𝑘] + 𝑝 · 𝒗[𝑘] is indistinguishable from uniformly random (if

𝒃 is uniformly random or indistinguishable from it – as it is for

every party expect the one holding sk). The multiplication with 𝚫𝑘

simply selects the 𝑘-th element of the 𝑘-th RLWE sample. With the

sum over all 𝑘 , we get that the 𝑘-th element of 𝒛 is masked with the

𝑘-th element of the 𝑘-th RLWE sample which is indistinguishable

from random. Therefore, 𝒄0 is indistinguishable from uniformly

random (based on the hardness of the RLWE problem).

For 𝑪1, we notice that 𝑪1 =
∑𝑁−1

𝑘=0
𝚫𝑘 · cırc(𝒂 ∗̄ 𝒖[𝑘] + 𝑝 ·𝒘[𝑘])

and thus

𝑪1[𝑘, 𝑗] = cırc(𝒂 ∗̄ 𝒖[𝑘] + 𝑝 ·𝒘[𝑘])[𝑘, 𝑗],

i.e., column 0 is simply the RLWE sample 𝒂 ∗̄ 𝒖[0] + 𝑝 ·𝒘[0] and
each other column 𝑘 is a negacyclicly rotated RLWE sample 𝒂 ∗̄
𝒖[𝑘] + 𝑝 ·𝒘[𝑘]. The first RLWE sample and all the rotated samples

are indistinguishable from uniformly random (based on the the

hardness of the RLWE problem – if 𝒂 is sampled uniformly at

random) and thus, the whole matrix 𝑪1 is indistinguishable from a

uniformly random matrix. □

Remark F.1. Note that we only use the 𝑘-th coefficient of 𝒗[𝑘] in the
above proof. Therefore, we could give an alternative formulation

expandenc
′
pk
(𝒛, 𝒓) B

𝑁−1∑︁
𝑘=0

𝚫𝑘 · expand(enc
′
pk
(𝒛, (𝒖[𝑘], 𝒗,𝒘[𝑘])))

instead of (56), where 𝒓 = (𝒖, 𝒗,𝒘) with (𝒖[𝑘], 𝒗,𝒘[𝑘]) being (sam-

pled like) valid encryption randomness for enc
′
. This saves sam-

pling some randomness for drowning but has the same computa-

tional complexity (and security). For simplicity, we only use (56) in

the rest of this work.

With this (secure) drowning encryption, we can construct a

LowGear-style protocol (similar to the LHE protocol described in

Protocol Π
modified-offline-LHE

Note that we use the modified BGV scheme (cf. Appendix A.2)

and normal BGV encryption below.

MMultiply(𝑨𝑖 , 𝒃𝑖 , ⟨𝒃0⟩pk
0

, . . . , ⟨𝒃𝑛−1⟩pk𝑛−1

): Compute [𝒄]𝑖 such
that 𝒄 = (∑𝑛−1

𝑗=0
𝑨 𝑗) · (

∑𝑛−1

𝑗=0
𝒃 𝑗).

1. For 𝑗 ∈ [..𝑛) \ {𝑖} do the following (in parallel).

1.1. Sample an uniformly random 𝒎𝑖, 𝑗 ∈ Z𝑁𝑝 .

1.2. Compute ⟨⟨𝒄𝑖, 𝑗 ⟩⟩pk𝑗
= 𝑨𝑖 · expand(⟨𝒃 𝑗 ⟩pk𝑗

) −
expandenc

′
pk𝑗
(𝒎𝑖, 𝑗) where expandenc

′
is encryption

with large drowning noise and adaptions for the modified

BGV scheme (larger than normal encryption randomness;

cf. Appendices A.1.1 and F.3.1).

1.3. Send ⟨⟨𝒄𝑖, 𝑗 ⟩⟩pk𝑗
to 𝑃 𝑗 and receive ⟨⟨𝒄 𝑗,𝑖 ⟩⟩pk𝑖

in return.

1.4. Decrypt ⟨⟨𝒄 𝑗,𝑖 ⟩⟩pk𝑖
to 𝒄 𝑗,𝑖 with expanddec

sk𝑖
.

2. Compute [𝒄]𝑖 = 𝑨𝑖 · 𝒃𝑖 +
∑

𝑗≠𝑖 (𝒄 𝑗,𝑖 +𝒎𝑖, 𝑗).
MTriples(op, 𝐷, 𝐷 ′): Generate a triple for the bilinear map op.

1. Run ZKP([..𝑁) \ image(mapi(op, 𝐷, 𝐷 ′, ·))) to obtain

(𝒃𝑖 , ⟨𝒃0⟩pk
0

, . . . , ⟨𝒃𝑛−1⟩pk𝑛−1

). Sample uniformly random

[𝒇]𝑖 , [𝒇 ′]𝑖 ∈ Z𝐷
′

𝑝 . Define [𝒂]𝑖 B unpacki(op, 𝐷, 𝐷 ′, 𝒃𝑖),
𝑮𝑖 B packf (op, 𝐷, 𝐷 ′, [𝒇]𝑖), 𝑮 ′

𝑖
B packf (op, 𝐷, 𝐷 ′, [𝒇 ′]𝑖),

𝒈𝑖 = packf (op, 𝐷, 𝐷 ′, [𝒇]𝑖), 𝒈′𝑖 = packf (op, 𝐷, 𝐷 ′, [𝒇 ′]𝑖).
2. Run MMultiply with 𝑮𝑖 , 𝒃𝑖 , and the ciphertexts for 𝒃 𝑗 to

obtain [𝒄]𝑖 . Analogously, obtain [𝒄 ′]𝑖 for 𝑮 ′
𝑖
, 𝒃𝑖 , and the ci-

phertexts.

3. Run Multiply with 𝒃𝑖 , [𝛼]𝑖 , and the ciphertexts of the MAC

key shares to obtain [𝛼 · 𝒃]𝑖 . Analogously, obtain [𝛼 · 𝒈]𝑖 ,
[𝛼 · 𝒈′]𝑖 , [𝛼 · 𝒄]𝑖 , and [𝛼 · 𝒄 ′]𝑖 . Unpack these shares to get

[𝛼𝒂]𝑖 , [𝛼𝒇]𝑖 , [𝛼𝒇 ′]𝑖 , [𝛼𝒄]𝑖 , and [𝛼𝒄 ′]𝑖 , respectively.
4. Return Sacrifice(op, ⟦𝒂⟧𝑖 , ⟦𝒇⟧𝑖 , ⟦𝒇 ′⟧𝑖 , ⟦𝒄⟧𝑖 , ⟦𝒄 ′⟧𝑖).

Figure 20: Extension to the Protocol for the Linear Homo-
morphic Offline Phase (cf. Fig. 7) at Party 𝑃𝑖

Section 6.2) but based on matrix-vector products instead of polyno-

mial multiplication, as well as the modified BGV scheme. This is

outlined next.

F.3.2 Offline Protocol Utilizing the Modified BGV Scheme. In Fig-

ure 20, you can find our linear homomorphic offline phase that

utilizes secure matrix-vector products instead of secure polynomial

multiplication. The protocol adds variants of Multiply (cf. Fig. 6)

and Triples (cf. Fig. 7) using these matrix operations: MMultiply
andMTriples.

This offline phase mostly mirrors the linear homomorphic offline

phase of Section 6.2 but with different encodings and homomorphic

matrix-vector multiplications instead of polynomial multiplications

of ciphertexts. Note that we still use the standard BGV scheme for

ZKPs and authentication since the previously described modifica-

tions to BGV are not needed for these subprotocols and would only

lead to an additional overhead from the use of expanded ciphertexts.

Indeed, we can simply perform the standard ZKPs and expand the

ciphertexts later to send less data and reuse existing implementa-

tions. Also, the multiplication with encrypted shares of 𝛼 does not

345

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

require the properties of the modified BGV scheme and can thus

fall back to the same techniques as in Section 6.2.

Similar to Theorem 6.1, the following theorem captures the se-

curity of our modified LHE-based theorem. The required function-

alities are the same as for Theorem 6.1.

Theorem F.3. The offline protocol Π
modified-offline-LHE

securely
implements the ideal functionality F

auth-MPC
in the (F

auth-linear
,

Fcommit, Frand, Fsetup)-hybrid model with rewinding if the used BGV
cryptosystem achieves enhanced CPA-security [31].

Proof. The only difference between MTriples in Fig. 20 and

Triples (in Π
offline-LHE

; Fig. 7) is the use of MMultiply instead

of Multiply. These protocols only differ in the use of classical

BGV or the modified BGV scheme. Our results in Appendix A.2

and Theorems F.1 and F.2 show however that both schemes come

with the same security guarantees. Hence the security of our pro-

tocol Π
modified-offline-LHE

follows exactly as in the proof of Theo-

rem 6.1. □

G IMPLEMENTATION AND EVALUATION
(CONTINUED)

Here, we give supplementary information for our evaluation (cf.

Section 7). Firstly, note that the optimized distributed decryption to

get shares directly (ShareDec in Fig. 18) of [31] is not implemented

in MP-SPDZ [29] as of the time of our implementation.
11

Secondly,

we use a statistical security parameter of sec = 40 and a prime of

length log𝑝 = 128. This implies that our protocols (in the LowGear-

variant) have the same BGV parameters as standard LowGear (𝑁 =

8192 and ciphertext modulus of the same size as LowGear). For

HighGear, a ciphertext modulus that is 9 bit larger than standard

HighGear (and 𝑁 = 16384 as for HighGear) is necessary as we want

to compute (up to) 512 ciphertext additions.

Note that some results for our protocols and LowGear/HighGear

are extrapolated from our experiments as MP-SPDZ does not sup-

port (very) large tensors. Another reasonwhywe extrapolate results

is to finish the experiments in a reasonable time frame. Therefore,

we extrapolate the findings from our experiments for some runs of

LowGear/HighGear and also for our protocols for large depthwise

convolutions. To obtain separate timings for the offline and online

phase of [14], we used their total (online and offline) results and

subtracted timings obtained from experiments of our own for the

online phase with a suitable number of matrix multiplications (cf.

Table 4). As the difference in CPU performance of our machines

and theirs is not large (ours are around 6 % faster) and the offline

phase is considerably slower than the online phase, this is a reason-

able approximation. However, the tables for the overall (online and

offline) performance are available as well. Next, we present more

details that complement Section 7.

Table 5 shows the parameters for all convolutions in ResNet50,
12

as well as the corresponding matrix multiplication that emulates

the convolution. We also show the number of matrix multiplication

one would use with [14] for each convolution. This corresponds to

11
We based our implementation on commit 505d4838c18394e8bb87bc5bae5a8b9c-

c00d65ad of https://github.com/data61/MP-SPDZ.

12
Analyzed based on the model from https://github.com/onnx/models/blob/main/

vision/classification/resnet/model/resnet50-v1-7.onnx as of 2022-11-03.

Table 4: Runtime Results for Matrix Multiplications of
Square 128 × 128 Matrices in the Online Phase (in Seconds).
These results are used as an approximation for the online phase

of [14]. The results are given for 𝑐 · 𝑐 ′ multiplications, where 𝑐

rounds of 𝑐 ′ (parallel) multiplications are computed. The layers and

settings correspond to Tables 2 and 3.

2 Party Setting

𝑐 Layer 𝑐 ′ LAN WAN

1 conv1@7x7 196 61.38 69.13

3 conv2@3x3 125 117.76 130.93

4 conv3@3x3 64 80.95 91.13

6 conv4@3x3 72 136.69 153.31

3 conv5@3x3 144 135.88 150.28

1 dconv2d (ℎ ∈ {7, 9, 11}) 144 45.29 50.09

1 dconv2d (ℎ ∈ {13, 15}) 288 90.24 99.51

1 dconv2d (ℎ ∈ {17, 19}) 432 134.98 147.74

1 dconv2d (ℎ = 21) 576 179.87 195.85

1 dconv2d (ℎ ∈ {23, 25}) 720 224.96 244.93

1 dconv2d (ℎ = 50) 2880 899.82
a

979.72
a

1 dconv2d (ℎ = 120) 16272 5084.01
a

5535.40
a

1 dconv2d (ℎ = 240) 64800 20246.06
a

22043.63
a

a
extrapolated from results with 𝑐′ = 720

the number multiplication for square 128 × 128 matrices that are

required to emulate the multiplication of a 𝑘 × 𝑙 and a 𝑙 ×𝑑 ′ matrix.

LowGear-Style Protocols. To complement the result for the runtime

in the offline phase (Table 2 in Section 7), we give the overall runtime

for our LowGear-style protocols compared to the related work in

Table 6. Additionally, the computation cost can be seen in Table 7

for the offline phase and in Table 8 for the overall (online and offline)

cost.

HighGear-Style Protocols. To evaluate our protocols for a larger

number of parties, we implemented the HighGear variants of our

protocols. The results are given for 𝑛 = 4 parties. We do not com-

pare our HighGear variants to [14] as their only provide results for

𝑛 = 2 parties. Table 9 shows the benchmark results for the pack-

ing schemes and SPDZ with HighGear-based protocols (similar

to Table 2 for LowGear). Again, we can see that the convolution

packing methods outperform the classical SPDZ approach. The

corresponding overall runtime can be found in Table 10. We also

give the communication costs in Tables 11 and 12.

Depthwise Convolutions. Tables 13 and 15 show additional results

for our depthwise convolution experiments (Table 3). The first ex-

pands on Table 3 by giving the results for additional image sizes.

One can clearly see that the (not depthwise) convolution packing

methods (simple packing and generalization of Huang et al.’s pack-

ing) have essentially the same complexity for all small images as

only one output channel can be computed at once. The depthwise

packing can instead compute multiple results at once. The LowGear

protocol is for very small image sizes most efficient (or similarly ef-

ficient to depthwise packing) as the packing method is not perfectly

optimal w.r.t. the usage of ciphertexts slots. The computational

346

https://github.com/data61/MP-SPDZ
https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet50-v1-7.onnx
https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet50-v1-7.onnx

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

Table 5: Convolutions in ResNet50. The convolutions in

ResNet50 [23] can be classified by shape for each layer convi, e.g.,
the first column below corresponds to conv1@7x7 in Table 2 and

the third column to conv2@3x3. For each conv2d operation of

1 × ℎ × ℎ × 𝑑 images and 𝑑 ′ × 𝑑 × ℎ′ × ℎ′ filters (with stride 𝑠), a

corresponding matrix multiplication of a 𝑘 × 𝑙 matrix and a 𝑙 × 𝑑 ′
matrix can be constructed. In [14], these are further decomposed

into 𝑐 ′ matrix multiplications of 128 × 128 matrices. Each type of

convolution is used 𝑐 times in ResNet50, leading to a total of 3190

matrix multiplications in [14] to compute all convolutions.

Convolution Matrix Matrix

Dimensions Dimensions Count

i 𝑐 ℎ 𝑑 ℎ′ 𝑑 ′ 𝑠 𝑘 𝑙 𝑐 ′ 𝑐 · 𝑐 ′

1 1 224 3 7 64 2 12544 147 196 196

2 1 56 64 1 64 1 3136 64 25 25

2 3 56 64 3 64 1 3136 576 125 375

2 4 56 64 1 256 1 3136 64 50 200

2 2 56 256 1 64 1 3136 256 50 100

3 1 56 256 1 128 2 784 256 14 14

3 4 28 128 3 128 1 784 1152 64 252

3 4 28 128 1 512 1 784 128 28 112

3 1 56 256 1 512 2 784 256 56 56

3 3 28 512 1 128 1 784 512 28 84

4 1 28 512 1 256 2 196 512 16 16

4 6 14 256 3 256 1 196 2304 72 432

4 6 14 256 1 1024 1 196 256 32 192

4 1 28 512 1 1024 2 196 512 64 64

4 5 14 1024 1 256 1 196 1024 32 160

5 1 14 1024 1 512 2 49 1024 32 32

5 3 7 512 3 512 1 49 4608 144 432

5 3 7 512 1 2048 1 49 512 64 192

5 1 14 1024 1 2048 2 49 1024 128 128

5 2 7 2048 1 512 1 49 2048 64 128

Total 3190a

a
[14] gives 3298 as the total number of matrix multiplications

overhead from not using convolution triples is for these small im-

ages smaller than the overhead of the packing. However, this is

no longer the case for images of size 11 × 11 (or even 9 × 9 in the

WAN setting). The matrix-based approach [14] computes 128 × 128

matrix multiplications that are considerably oversized for the small

images. Additionally, a depthwise convolution is here emulated by

the same matrix multiplication as for a conv2d with 𝑑 = 𝑑 ′. This
needs less matrix multiplications than using one matrix multiplica-

tion per channel but still leaves much of the matrices unused. The

corresponding overall runtime (online and offline) can be found in

Table 14. The communication cost can be found in Tables 17 and 18.

Table 15 additionally shows benchmarks for our offline phase

based on Bian et al.’s packing. The linear homomorphic offline

phase for this packing seems very slow compared to the other pack-

ing methods. This is mostly due to the factor 𝑁 = 8192 overhead

in computing the secure drowning (Appendix F.3.1) and in the size

of expanded BGV ciphertexts that are sent in MMultiply. Even

Table 6: Overall (Online and Offline) Runtime Results for
conv2d Operations (in Seconds).Our protocols here are LowGear-

based (cf. Section 6.2). Runtime is given for ResNet50 convolution

layers as in Table 2.

OurOur General.

LowGear Matmul Simple Huang et al.

𝑐 Layer [31] [14]
a

Packing Packing

2 Party LAN Setting

1 conv1@7x7 21765
b

7076 400
b

401
b

3 conv2@3x3 64021
c

13538 1961 1962

4 conv3@3x3 84277
c

9097 2471 2678

6 conv4@3x3 121409
c

15595 4274 4053

3 conv5@3x3 57265
c

15595 3676
b

4053
b

Total 348736 60901 12783 13146

2 Party WAN Setting

1 conv1@7x7 53733
b

7477 672
b

668
b

3 conv2@3x3 155454
c

14306 3353 3337

4 conv3@3x3 204759
c

9614 4160 4496

6 conv4@3x3 294773
c

16481 7146 6756

3 conv5@3x3 139118
c

16481 6167
b

6788
b

Total 847838 64359 21497 22045
a
column extrapolated from the runtime results in [14] using Table 5

b
extrapolated from results with halved output depth

c
extrapolated from results with output depth 𝑑′ = 2 and 𝑐 = 1

Table 7: Communication Costs for conv2d Operations in the
Offline Phase (in MB). Our protocols here are LowGear-based (cf.

Section 6.2). Costs are given for ResNet50 convolution layers as in

Table 2.

OurOur General.

LowGear Matmul Simple Huang et al.

𝑐 Layer [31] [14] Packing Packing

2 Party Setting

1 conv1@7x7 137659
a

2442 3967
a

3967
a

3 conv2@3x3 402325
b

4673 20372 20157

4 conv3@3x3 528985
b

3140 25759 26938

6 conv4@3x3 759956
b

5383 45678 41470

3 conv5@3x3 357631
b

5383 42896
a

42104
a

Total 2186556 21020 138672 134635
a
extrapolated from results with halved output depth

b
extrapolated from results with output depth 𝑑′ = 2 and 𝑐 = 1

without the overhead of the secure drowning, one observes that

this packing is slower than the other packing methods or even

standard field multiplication with LowGear. The corresponding

overall runtime (online and offline) can be found in Table 16. The

communication cost can be found in Tables 19 and 20.

Online Phase. Tables 21 and 23 show our runtime results for the

online phase. The online phase is benchmarked for 𝑛 = 2 and 𝑛 = 4,

corresponding to the two settings (i.e., LowGear with two parties

347

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

Table 8: Overall (Online and Offline) Communication Costs
for conv2d Operations (in MB). Our protocols here are LowGear-

based (cf. Section 6.2). Costs are given for ResNet50 convolution

layers as in Table 2.

OurOur General.

LowGear Matmul Simple Huang et al.

𝑐 Layer [31] [14] Packing Packing

2 Party Setting

1 conv1@7x7 141377
a

2545 3972
a

3972
a

3 conv2@3x3 413161
b

4869 20383 20168

4 conv3@3x3 543086
b

3272 25775 26954

6 conv4@3x3 780088
b

5609 45740 41531

3 conv5@3x3 366716
b

5609 43012
a

42219
a

Total 2244429 21904 138881 134844

a
extrapolated from results with halved output depth

b
extrapolated from results with output depth 𝑑′ = 2 and 𝑐 = 1

Table 9: Runtime Results for conv2d Operations in the Offline
Phase (in Seconds). Our protocols here are HighGear-based (cf.

Section 6.3). Runtime is given for ResNet50 convolution layers as

in Table 2.

Our Our General.

HighGear Simple Huang et al.

𝑐 Layer [3, 31] Packing Packing

4 Party WAN Setting

1 conv1@7x7 127999
a

3305
a

3314
a

3 conv2@3x3 373928
b

23068 23396

4 conv3@3x3 489932
b

29543 32172

6 conv4@3x3 697499
b

49684 52305

3 conv5@3x3 323489
b

44320
a

53457
a

Total 2012848 149920 164644
a
extrapolated from results with halved output depth

b
extrapolated from results with output depth 𝑑′ = 2 and 𝑐 = 1

Table 10: Overall (Online and Offline) Runtime Results for
conv2d Operations (in Seconds). Our protocols here are High-
Gear-based (cf. Section 6.3). Runtime is given for ResNet50 convo-

lution layers as in Table 2.

Our Our General.

HighGear Simple Huang et al.

𝑐 Layer [3, 31] Packing Packing

4 Party WAN Setting

1 conv1@7x7 129019
a

3327
a

3335
a

3 conv2@3x3 376894
b

23121 23449

4 conv3@3x3 493809
b

29611 32239

6 conv4@3x3 702893
b

49788 52410

3 conv5@3x3 325924
b

44400
a

53537
a

Total 2028539 150246 164969
a
extrapolated from results with halved output depth

b
extrapolated from results with output depth 𝑑′ = 2 and 𝑐 = 1

Table 11: Communication Costs for conv2d Operations in the
Offline Phase (in MB). Our protocols here are HighGear-based
(cf. Section 6.3). Costs are given for ResNet50 convolution layers as

in Table 2.

Our Our General.

HighGear Simple Huang et al.

𝑐 Layer [3, 31] Packing Packing

4 Party Setting

1 conv1@7x7 476682
a

16857
a

16857
a

3 conv2@3x3 1392396
b

139934 140880

4 conv3@3x3 1820852
b

179672 192660

6 conv4@3x3 2580318
b

303406 308276

3 conv5@3x3 1186961
b

272383
a

315551
a

Total 7457208 912251 974224
a
extrapolated from results with halved output depth

b
extrapolated from results with output depth 𝑑′ = 2 and 𝑐 = 1

Table 12: Overall (Online and Offline) Communication Costs
for conv2d Operations (in MB). Our protocols here are HighGear-
based (cf. Section 6.3). Costs are given for ResNet50 convolution

layers as in Table 2.

Our Our General.

HighGear Simple Huang et al.

𝑐 Layer [3, 31] Packing Packing

4 Party Setting

1 conv1@7x7 482260
a

16865
a

16865
a

3 conv2@3x3 1408649
b

139951 140897

4 conv3@3x3 1842004
b

179696 192684

6 conv4@3x3 2610517
b

303498 308368

3 conv5@3x3 1200588
b

272556
a

315724
a

Total 7544019 912565 974538
a
extrapolated from results with halved output depth

b
extrapolated from results with output depth 𝑑′ = 2 and 𝑐 = 1

and HighGear with four parties) in the offline phase. The results for

evaluating convolutions of ResNet50 show that convolution triples

perform noticeably better than SPDZ for any type of convolution.

However, a similar speed-up can be seen for matrix triples (however

slightly less than for convolution triples). As discussed above, the

main differencewill be the total runtime (or the offline phase). There,

our protocols have a clear advantage. The communication cost can

be seen in Tables 22 and 24. There, we also see a clear advantage

when using convolution triples compared to matrix triples.

Storage Cost. Finally, we give the storage cost for the different

approaches in Tables 25 and 26. The behavior is similar to the

communication cost in the offline phase but the advantage of con-

volution triples is not as pronounced. Note that for the conv1@7x7

convolution, our convolution triples are larger than the respective

matrix triples. This is because (as mentioned in Section 6.5.4) we

only compute the triple for a convolution with full padding and

stride 1, whereas the convolution in question is with same padding

348

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

Table 13: Runtime Results for dconv2d Operations in the Of-
fline Phase (in Seconds). Our protocols here are LowGear-based

(cf. Section 6.2). Runtime is given for 1 × ℎ × ℎ × 512 images and

512 × 3 × 3 filters. This table extends Table 3.

Our Our Gen. Our

LowGear Matmul SimpleHuang et al. Depthw.

ℎ [31] [14]
a

Packing Packing Packing

2 Party LAN Setting

7 37 5153 321 322 55

9 64 5153 321 323 74

11 96 5153 322 321 91

13 132 10307 321 321 92

15 177 10307 321 321 116

17 231 15460 321 322 117

19 288 15460 322 321 117

21 352 20614 322 321 165

23 424 25767 321 322 165

25 504 25767 323 322 165

50
b

2137 103068 352 352 343

120
b

12279 582335 804 809 1086

240
b

49398 2319034 2657 2667 3704

2 Party WAN Setting

7 90 5444 637 636 121

9 157 5444 636 636 155

11 235 5444 635 635 188

13 324 10888 635 636 189

15 435 10888 636 638 234

17 568 16333 637 637 235

19 712 16333 637 635 235

21 867 21779 635 636 327

23 1045 27223 636 637 325

25 1244 27223 637 637 327

50
b

5155 108892 692 688 664

120
b

29764 615241 1443 1438 1907

240
b

119842 2450076 4520 4516 6227

a
column extrapolated from the runtime results in [14]

b
row extrapolated from results with depth 𝑑 = 32 (except for matmul runtime)

an stride 2. One could simply discard also parts of the triple (as

they are not used in the online phase) beforehand to avoid storing

them in the first palace, which reduces the communication cost

even more.

Table 14: Overall (Online and Offline) Runtime Results for
dconv2d Operations (in Seconds). Our protocols here are Low-
Gear-based (cf. Section 6.2). Runtime is given for convolutions of

1 × ℎ × ℎ × 512 images with 512 × 3 × 3 filters.

Our Our Gen. Our

LowGear Matmul SimpleHuang et al. Depthw.

ℎ [31] [14]
a

Packing Packing Packing

2 Party LAN Setting

7 48 5198 322 322 55

9 75 5198 321 323 74

11 108 5198 322 321 92

13 145 10397 321 322 92

15 191 10397 322 322 117

17 246 15595 322 322 117

19 305 15595 323 322 117

21 370 20794 323 322 166

23 444 25992 322 322 166

25 525 25992 323 323 166

50
b

2175 103968 358 359 349

120
b

12448 587419 820 825 1102

240
b

50039 2339280 2709 2719 3757

2 Party WAN Setting

7 127 5494 638 636 122

9 195 5494 637 637 157

11 273 5494 636 636 189

13 363 10987 636 637 190

15 475 10987 637 640 235

17 611 16481 638 639 236

19 756 16481 638 637 236

21 913 21974 637 637 328

23 1093 27468 638 638 327

25 1295 27468 639 639 329

50
b

5254 109872 709 706 682

120
b

30075 620777 1475 1471 1939

240
b

121021 2472120 4606 4603 6313

a
column extrapolated from the runtime results in [14]

b
row extrapolated from results with depth 𝑑 = 32 (except for matmul runtime;

see above)

349

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

Table 15: Runtime Results for dconv2d Operations in the Of-
fline Phase (in Seconds). Our protocols here are LowGear-based

(cf. Section 6.2 and Appendix F.3.2). Runtime is given for convo-

lutions of 1 × ℎ × ℎ × 512 images with 512 × 3 × 3 filters. This

complements Table 3 by adding results for Bian et al.’s packing.

The secure variant of the latter corresponds to the scheme described

in Appendix F.3.1 and the insecure variant is the naive approach

sketched at that very place.

Ours With Ours With

Our Insecure Secure

LowGear Depthwise Bian et al. Bian et al.

ℎ [31] Packing Packing Packing

2 Party LAN Setting

7 37 55 1084 5305

9 64 74 1625 7757

11 96 91 2288 10712

13 132 92 3064 14199

15 177 116 3960 18194

17 231 117 5042 23100

19 288 117 6185 28108

21 352 165 7851 36242

23 424 165 9220 42264

25 504 165 10957 50590

Table 16: Overall (Online and Offline) Runtime Results for
dconv2d Operations (in Seconds). Our protocols here are Low-
Gear-based (cf. Section 6.2 and Appendix F.3.2). Runtime is given

for convolutions of 1 × ℎ × ℎ × 512 images with 512 × 3 × 3 filters.

Runtime is given for the experiments with Bian et al.’s packing as

in Table 15.

Ours With Ours With

Our Insecure Secure

LowGear Depthwise Bian et al. Bian et al.

ℎ [31] Packing Packing Packing

2 Party LAN Setting

7 48 55 1084 5305

9 75 74 1625 7757

11 108 92 2288 10712

13 145 92 3065 14199

15 191 117 3961 18194

17 246 117 5043 23101

19 305 117 6186 28108

21 370 166 7851 36243

23 444 166 9220 42265

25 525 166 10958 50591

Table 17: Communication Costs for dconv2d Operations in
the Offline Phase (in MB). Our protocols here are LowGear-

based (cf. Section 6.2). Costs are given for convolutions of 1 ×
ℎ × ℎ × 512 images with 512 × 3 × 3 filters.

Our Our Gen. Our

LowGear Matmul SimpleHuang et al. Depthw.

ℎ [31] [14] Packing Packing Packing

2 Party Setting

7 233 1794 3502 3502 525

9 407 1794 3502 3502 762

11 611 1794 3502 3502 987

13 844 3588 3503 3503 988

15 1135 3588 3503 3503 1269

17 1484 5383 3504 3504 1270

19 1863 5383 3505 3505 1272

21 2270 7177 3505 3505 1831

23 2736 8971 3506 3506 1833

25 3260 8971 3507 3507 1834

50
a

13504 35885 3959 3959 3980

120
a

77764 202749 9729 9729 14782

240
a

312918 807408 34173 34173 50940

a
row extrapolated from results with depth 𝑑 = 32 (except for matmul costs)

Table 18: Overall (Online and Offline) Communication
Costs for dconv2d Operations (inMB).Our protocols here are
LowGear-based (cf. Section 6.2). Costs are given for convolutions

of 1 × ℎ × ℎ × 512 images with 512 × 3 × 3 filters.

Our Our Gen. Our

LowGear Matmul SimpleHuang et al. Depthw.

ℎ [31] [14] Packing Packing Packing

2 Party Setting

7 239 1870 3502 3502 525

9 418 1870 3503 3503 763

11 627 1870 3503 3503 988

13 866 3739 3504 3504 989

15 1165 3739 3505 3505 1271

17 1524 5609 3506 3506 1273

19 1912 5609 3508 3508 1275

21 2331 7479 3509 3509 1835

23 2809 9349 3511 3511 1837

25 3347 9349 3512 3512 1839

50
a

13863 37395 3980 3980 4000

120
a

79864 211280 9847 9847 14900

240
a

321365 841382 34645 34645 51412

a
row extrapolated from results with depth 𝑑 = 32 (except for matmul costs)

350

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

Table 19: CommunicationCosts for dconv2dOperations in the
Offline Phase (in MB). Our protocols here are LowGear-based (cf.

Section 6.2 and Appendix F.3.2). Costs are given for the experiments

with Bian et al.’s packing as in Table 15.

Ours With Ours With

Our Insecure Secure

LowGear Depthwise Bian et al. Bian et al.

ℎ [31] Packing Packing Packing

2 Party Setting

7 233 525 35483 35483

9 407 762 51613 51613

11 611 987 70966 70966

13 844 988 93544 93544

15 1135 1269 119355 119355

17 1484 1270 151605 151605

19 1863 1272 183864 183864

21 2270 1831 238700 238700

23 2736 1833 277408 277408

25 3260 1834 332244 332244

Table 20: Overall (Online and Offline) Communication Costs
for dconv2dOperations (inMB).Our protocols here are LowGear-

based (cf. Section 6.2 and Appendix F.3.2). Costs are given for the

experiments with Bian et al.’s packing as in Table 15.

Ours With Ours With

Our Insecure Secure

LowGear Depthwise Bian et al. Bian et al.

ℎ [31] Packing Packing Packing

2 Party Setting

7 239 525 35484 35484

9 418 763 51613 51613

11 627 988 70967 70967

13 866 989 93545 93545

15 1165 1271 119357 119357

17 1524 1273 151607 151607

19 1912 1275 183867 183867

21 2331 1835 238704 238704

23 2809 1837 277412 277412

25 3347 1839 332249 332249

Table 21: Runtime Results for conv2d Operations in the On-
line Phase (in Seconds). Runtime is given for ResNet50 convolu-

tion layers as in Table 2.

Mat. Conv. Mat. Conv.

𝑐 Layer SPDZ Trip. Trip. SPDZ Trip. Trip.

2 Party LAN Setting 4 Party LAN Setting

1 conv1
a

265.66 18.69 17.43 439.49 22.39 18.37

3 conv2 774.78 50.20 48.08 1270.92 54.93 49.62

4 conv3 1022.51 65.02 62.38 1662.57 69.03 64.48

6 conv4 1505.93 97.45 90.44 2317.69 103.34 94.51

3 conv5
a

688.66 53.55 45.48 999.41 62.22 53.66

Total4257.55 284.91 263.81 6690.09 311.92 280.64

2 Party WAN Setting 4 Party WAN Setting

1 conv1
a

469.09 22.96 19.12 1020.07 34.39 21.31

3 conv2 1363.91 55.55 49.80 2966.02 70.33 52.78

4 conv3 1821.19 69.66 64.49 3876.37 80.71 67.40

6 conv4 2791.43 105.78 94.86 5393.12 119.70 104.35

3 conv5
a

1266.39 64.05 55.19 2435.73 91.63 80.05

Total7712.00 318.00 283.47 15691.31 396.76 325.89
a
row extrapolated from results with halved output depth

Table 22: Communication Costs for conv2d Operations in the
Online Phase (in MB). Costs are given for ResNet50 convolution

layers as in Table 2.

Matmul Matrix Conv.

𝑐 Layer SPDZ [14] Triples Triples

2 Party Setting

1 conv1@7x7
a

3718.88 102.76 59.16 4.97

3 conv2@3x3 10835.50 196.61 88.47 11.40

4 conv3@3x3 14101.30 132.12 67.24 15.86

6 conv4@3x3 20132.70 226.49 99.98 61.44

3 conv5@3x3
a

9084.90 226.49 134.92 115.66

Total 57873.28 884.47 449.77 209.33

4 Party Setting

1 conv1@7x7
a

5578.32 154.14 88.74 7.45

3 conv2@3x3 16253.23 294.91 132.71 17.11

4 conv3@3x3 21152.02 198.18 100.86 23.79

6 conv4@3x3 30199.22 339.74 149.96 92.16

3 conv5@3x3
a

13627.46 339.74 202.39 173.48

Total 86810.24 1326.71 674.66 313.99
a
row extrapolated from results with halved output depth (expect for

matmul costs)

351

Proceedings on Privacy Enhancing Technologies 2023(3) Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters

Table 23: Runtime Results for dconv2d Operations in the On-
line Phase (in Seconds). Runtime is given for convolutions of

1 × ℎ × ℎ × 512 images with 512 × 3 × 3 filters.

Matrix Conv. Matrix Conv.

ℎ SPDZ Triples Triples SPDZ Triples Triples

2 Party LAN Setting 4 Party LAN Setting

7 10.97 10.53 0.26 11.04 10.57 0.40

9 11.47 10.66 0.33 11.66 10.74 0.47

11 12.11 10.85 0.36 12.54 11.03 0.55

13 12.36 10.88 0.38 13.66 11.20 0.60

15 13.39 11.11 0.44 13.95 11.52 0.70

17 14.77 11.33 0.49 15.44 11.87 0.79

19 16.33 11.57 0.54 16.99 12.06 1.02

21 17.80 11.94 0.60 17.53 12.57 1.15

23 19.93 12.06 0.70 18.71 13.10 1.29

25 20.68 12.58 0.78 20.75 13.90 1.37

50
a

37.27 24.55 6.20 47.76 28.98 9.39

120
a

169.76 56.40 16.06 235.46 81.89 27.39

240
a

640.97 202.27 52.31 1026.19 378.46 80.13

2 Party WAN Setting 4 Party WAN Setting

7 37.11 36.47 0.87 37.34 36.66 1.32

9 37.63 36.64 1.04 38.24 36.99 1.59

11 38.68 36.94 1.06 39.38 37.41 1.70

13 39.59 37.27 1.10 40.81 37.94 1.88

15 40.86 37.78 1.26 42.57 38.49 2.09

17 42.71 38.22 1.34 44.76 39.37 2.33

19 44.45 38.67 1.41 47.31 40.14 3.04

21 46.02 39.08 1.49 50.00 41.10 3.31

23 48.57 40.13 1.66 51.95 42.24 3.60

25 51.30 40.69 1.75 56.00 43.33 3.74

50
a

99.12 65.25 17.45 120.98 81.43 29.24

120
a

310.46 142.29 32.56 534.70 276.65 70.28

240
a

1178.75 461.75 86.59 2428.32 1090.76 175.67

a
row extrapolated from results with depth 𝑑 = 32

Table 24: Communication Costs for dconv2d Operations in
the Online Phase (in MB). Costs are given for convolutions of

1 × ℎ × ℎ × 512 images with 512 × 3 × 3 filters.

Matmul Matrix Conv.

ℎ SPDZ [14] Triples Triples

2 Party Setting

7 5.91 75.50 3.69 0.48

9 10.24 75.50 6.05 0.74

11 15.75 75.50 8.99 1.07

13 22.43 150.99 12.53 1.46

15 30.29 150.99 16.66 1.92

17 39.34 226.49 21.38 2.44

19 49.56 226.49 26.69 3.03

21 60.97 301.99 32.59 3.69

23 73.55 377.49 39.08 4.41

25 87.31 377.49 46.15 5.19

50
a

358.88 1509.95 184.40 20.56

120
a

2099.86 8531.21 1061.76 118.04

240
a

8446.40 33973.86 4246.83 471.93

4 Party Setting

7 8.87 113.25 5.53 0.71

9 15.36 113.25 9.07 1.11

11 23.62 113.25 13.49 1.60

13 33.65 226.49 18.80 2.19

15 45.44 226.49 24.99 2.88

17 59.01 339.74 32.07 3.66

19 74.34 339.74 40.04 4.55

21 91.45 452.98 48.88 5.53

23 110.32 566.23 58.61 6.61

25 130.97 566.23 69.23 7.79

50
a

538.32 2264.92 276.60 30.84

120
a

3149.80 12796.82 1592.66 177.06

240
a

12669.68 50960.79 6370.28 707.91

a
row extrapolated from results with depth 𝑑 = 32 (except for

matmul costs)

Table 25: Storage Costs for conv2d Operations (in MB). Costs
are given for ResNet50 convolution layers as in Table 2.

Matmul Matrix Conv.

𝑐 Layer SPDZ [14] Triples Triples

1 conv1@7x7 11329.34 308.28 85.00 113.46

3 conv2@3x3 33294.39 589.82 196.21 43.47

4 conv3@3x3 44392.51 396.36 147.32 46.47

6 conv4@3x3 66588.77 679.48 209.58 135.46

3 conv5@3x3 33294.39 679.48 250.58 232.88

Total 188899.39 2653.42 888.70 571.74

352

Convolutions in Overdrive: Maliciously Secure Convolutions for MPC Proceedings on Privacy Enhancing Technologies 2023(3)

Table 26: Storage Costs for conv2d Operations (in MB). Costs
are given for convolutions of 1×ℎ×ℎ× 512 images with 512× 3× 3

filters.

Matmul Matrix Conv.

ℎ SPDZ [14] Triples Triples

7 21.68 226.49 8.18 2.28

9 35.83 226.49 13.42 3.46

11 53.53 226.49 19.97 4.90

13 74.76 452.98 27.84 6.60

15 99.53 452.98 37.01 8.57

17 127.84 679.48 47.50 10.80

19 159.69 679.48 59.29 13.29

21 195.08 905.97 72.40 16.04

23 234.01 1132.46 86.82 19.05

25 276.48 1132.46 102.55 22.33

50 1105.92 4529.85 409.75 85.41

120 6370.10 25593.64 2359.44 479.94

240 25480.40 101921.59 9437.33 1903.38

353

	Abstract
	1 Introduction
	1.1 Summary of Our Contributions
	1.2 Related Work

	2 Preliminaries and Notation
	2.1 Integer Polynomials and Multiplication
	2.2 Convolutions in Machine Learning
	2.3 MPC, Secret-Sharing, and SPDZ
	2.4 Homomorphic Encryption and BGV

	3 Convolution Packing
	3.1 General Framework for Convolution Packing
	3.2 Recent Packing Methods

	4 New Packing Methods
	4.1 Simple Convolution Packing
	4.2 Generalization of Huang et al.'s Convolution Packing
	4.3 Depthwise Convolution Packing

	5 Maliciously Secure Convolutions: The Online Phase
	6 Maliciously Secure Convolutions: The Offline Phase
	6.1 General Construction
	6.2 Linear Homomorphic Offline Phase
	6.3 Somewhat Homomorphic Offline Phase
	6.4 Sacrificing
	6.5 Modifications and Optimizations

	7 Implementation and Evaluation
	Acknowledgments
	References
	A Preliminaries (Continued)
	A.1 Homomorphic Encryption and BGV (Continued)
	A.2 Applying Bian et al.'s Modifications to Linear Homomorphic BGV
	A.3 Zero-Knowledge Proofs
	A.4 MPC and SPDZ

	B Scalar Multiplication Packing
	C Convolution Packing (Continued)
	C.1 Multidimensional Convolution Packing (Continued)
	C.2 Bian et al.'s Parallel Convolution Packing

	D New Packing Methods (Continued)
	D.1 Simple Convolution Packing (Continued)
	D.2 Generalization of Huang et al.'s Convolution Packing (Continued)
	D.3 Depthwise Convolution Packing (Continued)

	E Security of the Online Phase
	F Security of the Offline Phase
	F.1 Linear Homomorphic Offline Phase
	F.2 Somewhat Homomorphic Offline Phase
	F.3 Linear Homomorphic Offline Phase Utilizing Bian et al.'s Parallel Convolution Packing

	G Implementation and Evaluation (Continued)

