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ABSTRACT
Proofs of Retrievability are protocols which allow a Client to store

data remotely and to efficiently ensure, via audits, that the entirety

of that data is still intact. Dynamic Proofs of Retrievability (DPoR)

also support efficient retrieval and update of any small portion

of the data. We propose a novel protocol for arbitrary outsourced

data storage that achieves both low remote storage size and audit

complexity. A key ingredient, that can be also of intrinsic interest,

reduces to efficiently evaluating a secret polynomial at given public

points, when the (encrypted) polynomial is stored on an untrusted

Server. The Server performs the evaluations and also returns associ-

ated certificates. A Client can check that the evaluations are correct

using the certificates and some pre-computed keys, more efficiently

than re-evaluating the polynomial. Our protocols support two im-

portant features: the polynomial itself can be encrypted on the

Server, and it can be dynamically updated by changing individual

coefficients cheaply without redoing the entire setup. Our methods

rely on linearly homomorphic encryption and pairings, and our im-

plementation shows good performance for polynomial evaluations

with millions of coefficients, and efficient DPoR with terabytes of

data. For instance, for a 1TB database, compared to the state of art,

we can reduce the Client storage by 5000x, communication size by

20x, and client-side audit time by 2x, at the cost of one order of

magnitude increase in server-side audit time.

KEYWORDS
Verifiable computing, Polynomial commitments, Proof of retriev-

ability

1 INTRODUCTION
With a constant growth in the amount of produced data, it becomes

more and more important to use remote facilities to store this data.

Users and organizations using such outsourcing need to ensure the

integrity of their data.

In this setting, a Client wishes to store her data on an untrusted

Server, then verify (without full retrieval) that the Server still stores

the data intact. The crucial protocol is an Audit, wherein the Client

issues some challenge to the Server, then verifies the response
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using some pre-computed information to prove that the original

data is still recoverable in its entirety. This is the field of Proofs of
Retrievability (PoR), somewhat overlapping with the problem of

Provable Data Possession (PDP) [6, 40].

A variety of tools have been employed to develop efficient PoR

and PDP protocols, see for instance [5, 6, 22, 40, 60, 61] and ref-

erences therein. Retrievability is proven when any sequence of

successful audits can, with high probability, be used to recover the

original data, e.g., by polynomial interpolation; thus any Server

with a good chance to pass a single random audit must hold the

entire data intact. Note that this recovery mechanism is not actu-

ally crucial except to prove the soundness of the audit protocol; the
important feature is how cheaply the audits can be performed by a

Server and resource-constrained Client.

Some of these protocols are based on verifiable computing, so

that a PoR audit consists of some verified computation over the

stored data [36]. Generally speaking, verifiable computing consists

in delegating the computation of a function to an untrusted Server.

This Server returns the result as well as a proof of its correctness,

and verifying a result should be less expensive than computing it

directly. While certified and verified computation protocols date

back decades, the practical need for efficient methods is especially

evident in cloud computing, wherein again a low-powered device,

such as a mobile phone, may wish to outsource expensive and crit-

ical computations to an untrusted, shared-resource, commercial

cloud. The literature on verifiable computation protocols can be

divided into general-purpose computations — of an arbitrary alge-

braic circuit — and more limited but more efficient special-purpose

computations of certain functions (see, e.g., [26, 65] and references

therein). In the latter category, one problem is Verifiable Polynomial

Evaluation (VPE), where a Client wishes to outsource the evalua-

tion of a univariate polynomial 𝑃 on an untrusted Server at given

public points and efficiently verify the result.

Existing VPE protocols usually do not consider dynamicity, at

least not efficiently: even for the modification of a single coefficient,

most of the time the whole protocol has to be reinitialized. Also,

previous PoR protocols would either have a low audit complexity

but a storage size several times that of the database; or have low

remote storage but a less scalable audit complexity. In this paper,

we propose a novel protocol for arbitrary outsourced dynamic data

storage that achieves both low remote storage size and audit com-

plexity. A key ingredient of our protocol is to be able to perform a

dynamic VPE, in order to efficiently handle updates of the database.

A verifiable polynomial evaluation scheme is conventionally

composed of three main algorithms. First, a Client runs Setupp𝑃q
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to compute some public representation of the (potentially secret)

polynomial 𝑃 (which may be stored on the Server) as well as some

private information which will be used to verify later evaluations.

This step may be somewhat expensive, but only needs to be per-

formed once. The second algorithm, Evalp𝑥q, is run by the Server

using a public evaluation point 𝑥 provided by the Client. The Server

produces the evaluation 𝑦 “ 𝑃p𝑥q as well as some proof (or certifi-

cate) Π that this evaluation is correct. Finally, the third algorithm,

Verifyp𝑦,Πq, is run by the Client to check the correctness of the

evaluation. This verification should be always correct and probabilis-
tically sound, meaning that an honest Server can always produce

a result 𝑦 and proof Π that will pass the verification, whereas an

incorrect evaluation 𝑦 will fail the verification with high probabil-

ity for any purported proof Π. Furthermore, the Verify algorithm

should be efficient, ideally much cheaper in time and/or space than

the computation itself.

In the simplest case, the considered polynomial 𝑃 is static and

stored in cleartext by both the Server and the Client. But constraints

can then be added to this framework, when needed:

‚ Polynomial outsourcing. When the Client device has limited

storage, or to facilitate evaluations for multiple Clients, both the

polynomial storage and its computation must be externalized.

Besides evaluation and verification, an additional Read protocol

is often provided to allow random access to some polynomial

coefficients. The challenge is for the Client to obtain the poly-

nomial evaluation while minimizing the communication costs

required to verify it.

‚ Secret polynomial. To guarantee data privacy, the polynomial

could be hidden from the Server, or the Client, or both. Typi-

cally, the polynomial will be stored under a fully- or partially-

homomorphic encryption scheme, in such a way that the Server

can still compute the (necessarily encrypted) evaluation and cer-

tificate for verification. This setting has been extensively studied

in the literature, with both general-purpose protocols as well

as some specific ones for verified polynomial evaluation; see,

e.g., [8, 12, 14, 19, 31, 32, 38, 47, 50, 57].

‚ Dynamic updates. The initial Setup protocol requires knowl-
edge of the entire polynomial and generally is much more costly

than running Verify. This creates a challenge when the Client

wishes to update only a few of the coefficients of the polyno-

mial. A dynamic VPE protocol allows for such updates efficiently.

Namely, the Client and Server storing polynomial 𝑃 “
∑𝑑
𝑖“0

𝑝𝑖𝑋
𝑖

for verified evaluation can engage in an additional Updatep𝑖, 𝑝1
𝑖
q

protocol, which effectively updates 𝑃p𝑥q to 𝑃p𝑥q`p𝑝1
𝑖
´𝑝𝑖q𝑥

𝑖
for

future evaluations. To the best of our knowledge, no prior work

in the literature discusses dynamic updates for verified polyno-

mial evaluation. When the polynomial (as well as any update)

needs to be hidden from the Server, the difficulty is in general

to preserve both secrecy and verifiability while allowing those

efficient partial updates. The importance of allowing efficient

updates is motivated by our application to verifiable data storage,

where a Client outsourcing storage of a large database wishes to

make small changes efficiently.

‚ Private/public verification. The verification protocol is said to

be private when only the party which holds the secrets derived

during Setup can verify evaluations. That is, any potential Ver-

ifiers (sometimes called readers) must be trusted not to divulge

secret information to the untrusted Server. Sometimes, it is desir-

able also to have untrusted Verifiers, who can check the result of

an evaluation without knowing any secrets. In this public verifi-
cation setting, the Client at setup time publishes some additional

information, distributed reliably but insecurely to any Verifiers,

which may be used to check evaluations and proofs issued by the

Server.

1.1 Our contributions
Our contributions are the following:

‚ An (unencrypted) Verifiable Polynomial Evaluation (VPE) scheme

with public verification, supporting secured dynamic updates (Sec-
tion 4 and Table 4). The polynomial is stored in cleartext on the

Server, and the technique used to provide a correct and sound

protocol uses both Merkle trees and pairings. A Horner-like eval-

uation scheme is used to optimize the evaluation of the difference

polynomial for the proof, and no secrets are required to perform

the verification.

‚ A novel encrypted, dynamic and private VPE protocol (Section 5

and Table 12). That is, the polynomial is stored encrypted on

the Server, and efficient updates to individual coefficients can be

performed. This is achieved by combining a linearly homomor-

phic cryptosystem with techniques from the first scheme. Note

however, this scheme does not support public verification as this

verification now requires some secrets from the Client.

‚ A new Dynamic Proofs of Retrievability (DPoR) scheme that is

the first to simultaneously support small Server storage, dynamic

updates, and efficient audits (Section 6 and Table 9), based on our

novel encrypted, dynamic VPE protocol. Previous work either

had poly-logarithmic time audits and linear extra storage, or sub-

linear extra storage and polynomial-time audits; ours is the first to

achieve both sub-linear extra storage and optimal O(log𝑛) Client
time for updates and audits. This could be beneficial especially

in blockchain settings such as FileCoin where the proof and

verification must be done on-chain [56].

‚ A full implementation and experimental timings based on our

encrypted VPE and dynamic PoR protocols that indicate VPE up

to millions of coefficients and DPoR up to terabytes of data, both

with Client cost less than a few milliseconds (Tables 7 and 10).

These contributions are organized as follows. A complete secu-

rity definition of verifiable polynomial evaluation can be found in

Section 2. This definition follows previous results, with the novel

inclusion of an Update protocol. Then Section 3 introduces the tools
for verification of polynomial evaluation. A motivating example is

presented in the form of a direct extension of the bilinear pairing

scheme of [42], now supporting an encrypted input polynomial

(Section 3 and Table 3). Since the privacy of this protocol is not

proven and it supports neither public verifiability nor dynamic

updates, it motivates the more involved contributions of Section 4

(for public verifiability and dynamicity, but on an unciphered poly-

nomial) and of Section 5 (for dynamicity on a ciphered polynomial,

but without public verifiability).

The efficiency of our protocols is measured by the computa-

tional complexity of the Server-side Eval algorithm, the volume
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of persistent Client storage, and the amount of communication

and Client-side complexity to perform a Verify. Improving on

previously-known results, our VPEs protocols all have O(𝑑) (paral-
lelizable) Server-side computation,O(1) communication and Client-

side computation time, and O(1) Client-side persistent storage. We

include some practical timings in Sections 5.4 and 6.3 and Appen-

dix D. In addition, our new dynamic proofs of retrievability require

only 𝑜 (𝑑) extra Server space. This improves on [61] in terms of

Server storage and on [5] in terms of communication and Client

computation complexity for Audit. For instance on a 1TB size data-

base, with a Server extra storage lower than 0.08%, and a Client

persistent storage less than one KB, our Client can check in less

than 7ms that their entire outsourced data is fully recoverable from

the cloud Server.

1.2 Related work
While ours is the first work we are aware of which considers veri-

fiable polynomial computation while hiding the polynomial from

the Server and allowing efficient dynamic updates, there have been

a number of prior works on different settings of the VPE problem.

One line of work considers commitment schemes for polynomial

evaluation [15, 20, 23, 32, 34, 47, 48, 54, 64]. There, the polynomial 𝑃

is known to the Server, who publishes a binding commitment. The

Verifier then confirms that a given evaluation is consistent with the

pre-published commitment. By contrast, our protocols aim to hide
the polynomial 𝑃 from the Server.

Another line of work considers polynomial evaluation as an

encrypted function, which can be evaluated at any chosen point.

Function-hiding inner product encryption (IPE) [2, 13, 44] can be

used to perform polynomial evaluation without revealing the poly-

nomial 𝑃 , but this inherently requires linear-time for the Client,

who must compute the first 𝑑 powers of the desired evaluation

point 𝑥 . Similarly, protocols using a Private Polynomial Evaluation

(PPE) scheme have been developed in [18]. This primitive, based on

an ElGamal scheme, ensures that the polynomial is protected and

that the user is able to verify the result given by the Server. Here the

aim of the protocol is not to outsource the polynomial evaluation,

but to obtain 𝑃p𝑥q and a proof without knowing anything about

the polynomial. To check the proof, as with IPE the Client has to

perform a computation which is linear in the degree of 𝑃 .

A third and more general approach which can be applied to

the VPE problem is that of secure evaluation of arithmetic circuits.

These protocols make use of fully homomorphic encryption (FHE)

to outsource the evaluation of an arbitrary arithmetic circuit with-

out revealing the circuit itself to the Server. The VC Scheme of

[36] is based on Yao’s label construction. 𝑃 is first transformed into

an arithmetic circuit. The circuit is garbled once in a setup phase

and sent to the Server. To later perform a verified evaluation, the

Client sends an encryption of 𝑥 , the Server computes 𝑃p𝑥q through

the garbled circuit, and the Client can verify the result in time

proportional to the circuit depth, which for us is O(log𝑑).
Using similar techniques, Fiore et al. and Elkhiyaoui et al. [9, 27,

30] propose high-degree verified polynomial evaluations. Themajor

issue for these works is that they were not meant to be dynamic:

they use some structured masking that must be updated together

with the polynomial update (otherwise updates leak some secrets).

But then the update is not efficient anymore as the structure impacts

all of the polynomial coefficient masking.

More recently, Fiore et al. [14, 31, 32] propose a new protocol for

more general circuits, using succinct non-interactive arguments of

knowledge (SNARKs) or probabilistically checkable proofs (PCPs)

over a quotient polynomial ring. In contrast to our work, these

protocols use more expensive cryptographic primitives, and they

do not consider the possibility of efficiently updating the polynomial

– while preserving the security properties. A summary of how our

protocols compare to the state of the art is given in Table 1.

Table 1: Comparing verifiable computation schemes for poly-
nomial evaluation of degree 𝑑 . See also [50, Table 1] or [57,
Table 1] (Most of the time dynamicity is not considered in the literature).

Protocol Server Comm. Verif. Dyn. LHE P-Q

BGV11 [9] O(𝑑) O (1) O (1) ✗ D ✗
FG12 [30] O(𝑑) O (1) O (1) ✗ ✗ ✗
libsnark [38] O(𝑑 log𝑑) O (1) O (1) ✗ MT ✗

bulletproof [19] O(𝑑) O (log𝑑) O (𝑑) ✗ D ✗
FGP14 [31] O(𝑑 log𝑑) O (1) O (log𝑑) ✗ FHE ✗

libiop [8] O(𝑑 log𝑑) O
(
log

2 𝑑
)

O(𝑑) ✗ ✗ D
ligero++ [12] O(𝑑 log𝑑) O

(
log

2 𝑑
)

O(𝑑) ✗ ✗ D
FNP20 [32] O(𝑑 log𝑑) O (1) O (log𝑑) ✗ FHE ✗

DORY [47] O(𝑑 log𝑑) O (log𝑑) O (log𝑑) ✗ D ✗

BCFK21 [14] O(𝑑) O
(
log

2 𝑑
)
O
(
log

2 𝑑
)

✗ FHE D
VESPo, Table 12 O(𝑑) O (1) O (1) D D ✗

From this table, we see that many instances, like SNARKS, need

𝑂p𝑑 log𝑑q operations on the Server side, where VESPo remains

linear, 𝑂p𝑑q in the input size. Also dynamicity is usually not con-

sidered in the literature. For us, the difficulty is to be able to mod-

ify a small part of the input, without having to replay the whole

Setup phase, while not compromising security. A salient point is

that many schemes cannot directly handle the encrypted setting. In

some cases a solution could be to simulate the whole encryption

as arithmetic circuits, but this drastically affects performance. For

instance we tried libsnark over a Paillier encryption, this rapidly

exhausted the RAM of our server (i.e. even with degrees as small

as 20), and thus denote this exhaustion by MT (memory thrash-

ing). Finally, we mention if the protocol is feasibly post-quantum

(P-Q) secure in the ’P-Q’ column ([8, 12] are P-Q-secure, [14] do

not mention it but seems P-Q-secure, all the others, including us,

use bilinear pairings). In Appendix E, we abstract the requirements

of our protocols to see if they could be modified to use only post-

quantum secure routines. Our preliminary results there show that

this might be possible but that using quantum-safe routines in our

case would still be several orders of magnitude slower.

In fact, efficiency, linearity, dynamicity and encryption, are all

four of paramount importance for instance for our particular appli-

cation, as detailed next.

Proof of retrievability (PoR) and Provable data possession (PDP)

protocols also have an extensive literature [5, 6, 21, 22, 28, 40, 59–

61, 63]. PDPs, first introduced by Ateniese et al., generally optimize

Server storage and efficiency at the cost of soundness: a PDP audit

only guarantees (probabilistically) that a large fraction of the data

was not altered; a single block deletion or alteration is likely to go

undetected in an audit.
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PoRs have stronger soundness guarantees, but at the expense of

larger and more complicated Server storage, often based on erasure

codes and/or ORAM techniques.

PoR methods based on block erasure encoding are a class of

methods which guarantee with a high probability that the client’s

entire data can be retrieved. The idea is to check the authenticity

of a number of erasure encoding blocks during the data recovery

step but also during the audit algorithm. Those approaches will not

detect a small amount of corrupted data. But the idea is that if there

are very few corrupted blocks, they could be easily recovered via

the error correcting code [46]. Now, state-of-the-art, dynamic, PoR

protocols either incur a constant-factor blowup in Server storage

with poly-logarithmic audit cost [21, 22, 61], or use negligible extra

Server storage space but require polynomial-time audits on the

Client and Server [5, 60]. We refer, e.g., to [5, § 7] for a more detailed

comparison between PoR and PDP schemes. In fact, a lower bound

argument from [5, Theorem 4] proves that some time/space tradeoff

is inherent. Roughly speaking, for any PoR on an𝑁 -bit database, the

product of persistent storage overhead times audit computational

complexity must be at least 𝑁 . We show in Section 6 that with

VESPo, we let the Server perform most of the computations (but

this remains quite fast), so that we still need only negligible extra

Server storage, but drastically reduce the Client communication,

storage and computations.

2 SECURITY PROPERTIES AND
ASSUMPTIONS

2.1 Preliminaries
Pairings. In the following, we use the notation 𝑒 : G1ˆG2 Ñ G𝑇

to denote a bilinear pairing in groups of the same prime order. If

such a pairing exists then G1 and G2 are denoted as bilinear groups.

We often use groups of prime order, in order to be compute within

the exponents. In particular, thanks to the homomorphic property

of exponentiation, we will perform some linear algebra over the

group and need notations for this. For a matrix 𝐴, 𝑔𝐴 denotes the

coefficient-wise exponentiation of a generator 𝑔 to each entry in

𝐴. Similarly, for a matrix𝑊 of group elements and a matrix 𝐵 of

scalars,𝑊 𝐵
denotes the extension of matrix multiplication using

the group action. If we have𝑊 “ 𝑔𝐴 , then𝑊 𝐵 “ p𝑔𝐴q𝐵 . Further,

this quantity can actually be computed if needed by working in the

exponents first, i.e., it is equal to 𝑔p𝐴𝐵q
. For example:(

𝑔

(
𝑎 𝑏
𝑐 𝑑

) ) ( 𝑒
𝑓

)
“

(
𝑔𝑎 𝑔𝑏

𝑔𝑐 𝑔𝑑

) ( 𝑒
𝑓

)
“

(
𝑔𝑎𝑒`𝑏𝑓

𝑔𝑐𝑒`𝑑𝑓

)
“ 𝑔

((
𝑎 𝑏
𝑐 𝑑

) (
𝑒
𝑓

))
. (1)

For the sake of simplicity, when there is no ambiguity, we also use

the associated notation shortcuts like: 𝑒p𝑔

(
𝑎
𝑏

)
1

;𝑔𝑐
2
q “ 𝑒p𝑔1;𝑔2q

(
𝑐𝑎
𝑐𝑏

)
.

Linearly Homomorphic Encryption (LHE).. We will also use a

public-key partially homomorphic encryption scheme where both

addition and multiplication are considered. We need the follow-

ing properties on the linearly homomorphic encryption function

𝐸 (according to the context, we use 𝐸𝑝𝑘 or just 𝐸 to denote the en-

cryption function, similarly for the decryption function, 𝐷 or 𝐷𝑠𝑘 ):

computing several homomorphic additions on ciphered messages

and homomorphic multiplications but only between a ciphered

message and a cleartext.

𝐷p𝐸p𝑚1q𝐸p𝑚2qq “ 𝑚1 `𝑚2 AND 𝐷p𝐸p𝑚1q𝑚2 q “ 𝑚1𝑚2 (2)

Remark 1. For instance, Paillier-like cryptosystems [10, 33, 55] can
satisfy these requirements, via multiplication in the ground ring, for
addition of enciphered messages, and via exponentiation for ciphered
multiplication.

Note though that an implementation with Paillier cryptosystem
of the evaluation 𝑃p𝑟q, in a modular ring Z𝑚 , providing the func-
tionalities of Equation (2), requires some care: indeed these equations
are usually satisfied modulo an RSA composite number 𝑁 , not equal
to𝑚. More precisely, Paillier cryptosystem will provide𝐷p𝐸p𝑃p𝑟qqq ”

p
∑𝑑
𝑖“0

𝑝𝑖𝑟
𝑖q mod 𝑁 . Thus a possibility to recover the correct value,

is to precompute 𝑟 𝑖 mod 𝑚 and require that: p𝑑 ` 1qp𝑚 ´ 1q2 ă 𝑁 .
This way one can actually homomorphically compute over Z and use
the modulo𝑚 only after decryption. See Appendix C for more details.

Merkle Hash Trees. Finally, we will use a Merkle hash tree to

allow verifications of updates. A Merkle hash tree is a tree in which

every leaf is labelled with the cryptographic hash of a data block,

and every other node is labelled with the hash of the labels of its

child nodes [5, 45, 51]. By just storing the root of the tree, one can

check the presence of a given leaf in the tree with only a logarithmic

number of additional nodes (uncles) and hash computations. More

details on how we use them are given in Section 4.1.

2.2 Verifiable scheme
A verifiable dynamic polynomial evaluation (VDPE) scheme con-

sists of five algorithms: Setup, Read, Update, Eval and Verify
between a Client C with state 𝑠𝑡C , a Server S with state 𝑠𝑡S and a

Verifier V with (potentially public) state 𝑠𝑡V . The algorithms can

reject, when specified, if some inconsistencies are detected.

‚ p𝑠𝑡C, 𝑠𝑡V , 𝑠𝑡Sq Ð Setupp1
^ , 𝑃q: On input of the security param-

eter ^ and the polynomial 𝑃 of degree 𝑑˝p𝑃q “ 𝑑 , outputs the

Client state 𝑠𝑡C , the Verifier 𝑠𝑡V and the Server state 𝑠𝑡S . We de-

note by S^p𝑃q “ {Setupp1
^ , 𝑃q} the set of admissible states for

a given polynomial (dependent on the different random choices).

‚ {𝑝𝑖 , reject} Ð Readp𝑖, 𝑠𝑡V , 𝑠𝑡Sq: On input of an index 𝑖 P 0..𝑑 ,

the Verifier/Server states 𝑠𝑡V /𝑠𝑡S , outputs the 𝑖
𝑡ℎ

coefficient of

𝑃 or reject.
‚ {p𝑠𝑡 1

C, 𝑠𝑡
1
V , 𝑠𝑡 1

Sq, reject} Ð Updatep𝑖, 𝑝1
𝑖
, 𝑠𝑡C, 𝑠𝑡V , 𝑠𝑡Sq: On in-

put of an index 𝑖 P 0..𝑑 , data 𝑝1
𝑖
, the Client/Verifier/Server states

𝑠𝑡C/𝑠𝑡V /𝑠𝑡S , outputs newClient/Verifier/Server states 𝑠𝑡C ’/ 𝑠𝑡V ’/

𝑠𝑡S ’, representing the polynomial 𝑃 ` p𝑝1
𝑖

´ 𝑝𝑖q𝑋
𝑖
, or reject. A

variant of this algorithm, 𝛿Update, takes as input the difference
data 𝛿 “ 𝑝1

𝑖
´ 𝑝𝑖 instead of 𝑝1

𝑖
.

‚ {Z , ¯b} Ð Evalp𝑠𝑡S, 𝑟q: On input of the Server state 𝑠𝑡S and an

evaluation point 𝑟 , outputs Z the encrypted value of 𝑃p𝑟q and a

proof
¯b .

‚ {𝑧, reject} Ð Verifyp𝑠𝑡V , 𝑟 , Z , ¯bq: On input of the Verifier state

𝑠𝑡V , the evaluation point 𝑟 , the encrypted value Z of 𝑃p𝑟q and

the proof
¯b , outputs a successful evaluation 𝑧 “ 𝑃p𝑟q or reject.

The Client may use random coins for any algorithm. This is the

general setting for public verification, the idea being that for a private
verification, the Client will play the role of the Verifier too and their
states will be identical: 𝑠𝑡V “ 𝑠𝑡C .
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2.3 Security properties
Adapted from both [31, 42], in order to take into account dynamicity,

we propose the following security game and the associated security

properties:

Figure 1: VDPE soundness security game between two Ob-
servers O1 & O2 (respectively playing the roles of the Client
and the Verifier), a potentially malicious Server A and an
honest Server S
(1) A chooses an initial polynomial 𝑃 .

(2) O1 runs Setup, keeps 𝑠𝑡C and sends the initial Server part,

𝑠𝑡S , of the memory layout to both A and S; and the Verifier
part, 𝑠𝑡V , to O2.

(3) For a polynomial number of steps 𝑡 “ 1, 2, ..., 𝑝𝑜𝑙𝑦p^q, A
picks an operation 𝑜𝑝𝑡 where operation 𝑜𝑝𝑡 is either Update,
Read, Eval or Verify. O1 executes the Update operations

with both A and S, while O2 executes the Read, Eval or

Verify operations also with both A and S.
(4) A is said to win the game, if any cleartext sent by A differs

from that ofS, or, if any cipheredmessage sent byA does not

deciphers like that of S, and neither O1 nor O2 did witness

reject.

Definition 2. (Setup, Read, Update, Eval, Verify) is a secure

publicly verifiable polynomial evaluation scheme if it satisfies the

following three properties:

(i) Correctness. Let 𝑑 P N, 𝑃p𝑋 q “
∑𝑑
𝑖“0

𝑝𝑖𝑋
𝑖
, with p𝑝0, . . . , 𝑝𝑑 q

in a ring R and p𝑠𝑡C, 𝑠𝑡V , 𝑠𝑡Sq P S^p𝑃q, then for any 0 ď 𝑖 ď 𝑑

and 𝑝1
𝑖

P R:
Readp𝑖, 𝑠𝑡V , 𝑠𝑡Sq “ 𝑝𝑖 (3)

Updatep𝑖, 𝑝1
𝑖 , 𝑠𝑡C, 𝑠𝑡V , 𝑠𝑡Sq P S^p𝑃 ` p𝑝1

𝑖 ´ 𝑝𝑖q𝑋
𝑖q (4)

Verifyp𝑠𝑡V , 𝑟 , Evalp𝑠𝑡S, 𝑟qq “ 𝑃p𝑟q (5)

(ii) Soundness.The soundness requirement stipulates that the Client

(or the Verifier) always reject (except with negligible probabil-

ity) if any message sent by the Server deviates from the honest

(correct) behavior
1
. A VDPE scheme is sound, if no polynomial-

time adversary has more than negligible probability in winning

the security game of Figure 1.

(iii) Privacy.We use now the following variant game:A chooses two

initial polynomials 𝑃0, 𝑃1;O1 randomly chooses one bit𝑏 P {0, 1};
the players run steps (2-3) of Figure 1 on 𝑃𝑏 . A VDPE scheme is

private, if no polynomial-time adversary has more than negligible

probability in obtaining 𝑏.

Definition 3. (Setup, Read, Update, Eval, Verify) is a secure

privately verifiable polynomial evaluation scheme if it verifies the

Correctness, Soundness and Privacy requirements of Defini-

tion 2, where the Verifier state 𝑠𝑡V is included in the Client state

𝑠𝑡C and no polynomial-time adversary A has more than negligible

probability in winning either the soundness or the privacy security

games when O1 also plays the role of O2.

1
One might also ask for knowledge soundness (see, e.g., [49]) on the coefficients of the

outsourced polynomial, but this is easily achieved for any VDPE scheme by definition:

the Client can simply interpolate from the evaluations.

In Section 5 we apply our new verifiable protocols to create a

new Dynamic Proofs of Retrievability (DPoR) scheme, provably

achieving correctness, soundness, and retrievability for DPoR. We

follow the exact same security definition for DPoR as in [5], adapted

from [61], which we will not restate here for the sake of brevity.

2.4 Assumptions
To prove the security of our protocols we rely on classical discrete

logarithm and Diffie-Hellman like assumptions, all related to poly-

nomial computations. The first assumption, a decisional one, is the

distinct leading monomials assumption: informally it states that

polynomial evaluations “in the exponents” where the polynomi-

als have distinct leading monomials are merely indistinguishable

from randomness. The formal version is recalled in Definition 6.

We also need computational assumptions, including the hardness

to compute discrete logarithms, in Definition 4, and polynomial

extensions of the hardness to produce Diffie-Hellman-like secrets

even with bilinear pairings, in Definition 5.

Definition 4 (Discrete Logarithm, DLOG, hardness assumption [43,
Def. 9.63]). For a computational security parameter^ P N, a discrete-
logarithm problem is hard relatively to a group G of group order

𝑝 ě 2
2^
, a generator 𝑔 and a randomly sampled element of the

group, ℎ
$

Ð G, if for any probabilistic polynomial-time (ppt) algo-

rithms A𝐷𝐿𝑂𝐺 , there exists a negligible function negl such that

P𝑟 [A𝐷𝐿𝑂𝐺 pG, 𝑔, ℎq “ 𝑥 s.t. ℎ “ 𝑔𝑥 ] ď neglp^q.

Definition 5 (t-Bilinear Strong Diffie-Hellman, t-BSDH, assump-
tion, from [37, 42]). For a computational security parameter ^ P N,
let 𝛼 P Z˚

𝑝 , with 𝑝 ě 2
2^
, and 𝑗 P {1, 2}. Given as input a p𝑡 ` 1q-

tuple

〈
𝑔 𝑗 , 𝑔

𝛼
𝑗
, 𝑔𝛼

2

𝑗
, . . . , 𝑔𝛼

𝑡

𝑗

〉
P G𝑡`1

𝑗
, in a bilinear group G𝑗 of order

𝑝 with a bilinear pairing 𝑒 : G1ˆG2 Ñ G𝑇 , for every ppt-adversary
A𝑡´𝐵𝑆𝐷𝐻 and for any value of 𝑐 P Z𝑝\{´𝛼}, we have the proba-
bility:

P𝑟
[
A𝑡´𝐵𝑆𝐷𝐻 p𝑔1, 𝑔2, 𝑔

𝛼
𝑗 , 𝑔

𝛼2

𝑗 , . . . , 𝑔𝛼
𝑡

𝑗 q “

〈
𝑐, 𝑒p𝑔1;𝑔2q

1

𝛼`𝑐

〉]
ď neglp^q

Next is the distinct leading monomial (DLM) assumption that

states that polynomial evaluations “in the exponents” where the

polynomials have distinct leading monomials are merely indistin-

guishable from randomness. In [1] the assumption is given for

𝑛-multivariate polynomials with matrices of dimension 𝑘ˆ𝑘 and

projections of dimension 𝑘ˆ𝑚 for 𝑘 ě 2 and𝑚 ě 1. Here, we will

only use univariate polynomials, 𝑛 “ 1, and dimensions 𝑘 “ 2,

𝑚 “ 1. We therefore recall the assumption only for this particular

case.

Definition 6 (Distinct Leading Monomial, DLM, assumption [1,
Theorem 6]). Let G “ ⟨𝑔⟩ be a bilinear group of prime order 𝑝 . The

advantage of an adversary A against the p2, 1, 𝑑q-DLM security of

G, denoted Adv
p2,1,𝑑q´DLM

G
pAq, is the probability of success in the

game defined in Table 2 and is negligible, with A being restricted

to make queries 𝑃 P 𝑍𝑝 r𝑇 s such that for any challenge 𝑃 , the

maximum degree in one indeterminate in 𝑃 is at most 𝑑 , and for any

sequence p𝑃1, . . . , 𝑃𝑞q of queries, there exists an invertible matrix

𝑀 P Z
𝑞ˆ𝑞
𝑝 such that the leading monomials of𝑀 ¨ r𝑃1, . . . , 𝑃𝑞s

⊺
are

distinct.

358



VESPo: Verified Evaluation of Secret Polynomials Proceedings on Privacy Enhancing Technologies 2023(3)

Table 2: p2, 1, 𝑑q-DLM security game for a bilinear group G [1]

Init Challengep𝑃q Responsep𝑏1q

𝑟
$

Ð Z2ˆ2

𝑝 If 𝑏 ““ 0

Return 𝑏1 ““ 𝑏𝛽
$

Ð Z2

𝑝 Then Return 𝑦 Ð 𝑔𝑃p𝑟q¨𝛽

𝑏
$

Ð {0, 1} Else Return 𝑦 $

Ð G2

In fact, the DLM security can also be reduced to the Matrix Diffie-

Hellman assumption (MDDH) [1, Theorem 5], a generalization of

the widely used decision linear assumption [3, 4, 7, 35, 53].

Eventually, when we use Merkle Hash Tree, we need to apply a

Collision Resistant Hash Function (CRHF), so that finding different

hash trees with the same root is hard.

Overall, since we consider the semantic security of the cryptosys-

tem, we assume that adversaries are probabilistic polynomial time

machines. More precisely we considerMalicious adversaries: a
corrupted Server controls the network and stops, forges or listens

to messages in order to gain information or fool the Client.

3 TOOLS FOR THE VERIFICATION OF A
POLYNOMIAL EVALUATION

Our first step is to define a verification protocol for polynomial

evaluation that supports a ciphered input polynomial over a finite

ring Z𝑝 . For this we start with ideas mostly from [9, 42], in order

to highlight the difficulties in our setting: adding dynamicity and

encryption; that is allowing to modify only parts of the inputs at a

low cost, while dealing with covert inputs and preserving a proven

security. More precisely, our modifications allow the adaptation

of the security proof in order to incorporate the updates, and re-

quire some algorithmic tricks to preserve the linearity of the Server

computations.

First, we define a difference polynomial that we will use to check

consistency.

Definition 7. For a polynomial 𝑃p𝑋 q P Z𝑝 r𝑋 s “
∑𝑑
𝑖“0

𝑝𝑖𝑋
𝑖
of de-

gree𝑑 , let its subset polynomials be:𝑇𝑘,𝑃 p𝑋 q “
∑𝑑
𝑖“𝑘`1

𝑝𝑖𝑋
𝑖´𝑘´1 “∑𝑑´1´𝑘

𝑗“0
𝑝 𝑗`𝑘´1

𝑋 𝑗
.

Lemma 8. Let 𝑄𝑃 p𝑌,𝑋 q “
𝑃p𝑌 q´𝑃p𝑋 q

𝑌´𝑋
be the difference polyno-

mial of a polynomial 𝑃 ; then:

𝑄𝑃 p𝑌,𝑋 q “

𝑑∑︁
𝑖“1

𝑝𝑖

𝑖´1∑︁
𝑘“0

𝑌 𝑖´𝑘´1𝑋𝑘 “

𝑑´1∑︁
𝑘“0

𝑇𝑘,𝑃 p𝑌 q𝑋𝑘
(6)

Proof. As𝑌 𝑖 ´𝑋 𝑖 “ p𝑌´𝑋 qp
∑𝑖´1

𝑘“0
𝑌 𝑖´𝑘´1𝑋𝑘q, we obtain that

𝑄𝑃 p𝑌,𝑋 q “
∑𝑑
𝑖“1

𝑝𝑖
∑𝑖´1

𝑘“0
𝑌 𝑖´𝑘´1𝑋𝑘

. This is also 𝑄𝑃 p𝑌,𝑋 q “∑𝑑´1

𝑘“0
𝑋𝑘

(∑𝑑
𝑖“𝑘`1

𝑝𝑖𝑌
𝑖´𝑘´1

)
. □

This identity relates two evaluations of 𝑃 : 𝑃p𝑌 q “ 𝑃p𝑋 q ` p𝑌 ´

𝑋 q𝑄𝑃 p𝑌,𝑋 q. This equation allows one to verify 𝑧
?

“ 𝑃p𝑟q by check-

ing, for a secret 𝑠 , that:

𝑃p𝑠q “ 𝑧 ` p𝑠 ´ 𝑟q𝑄𝑃 p𝑠, 𝑟q (7)

For this, let 𝐸, 𝐷 be the encryption and decryption functions of a

partially homomorphic cryptosystem, supporting addition of two ci-

phertexts and multiplication of ciphertext by a cleartext, as in Equa-

tion (2). Therefore it is possible to evaluate a ciphered polynomial

at a clear evaluation point, using powers of the evaluation point:

for 𝑥 “ r1, 𝑟 , 𝑟2, . . . , 𝑟𝑑 s, denote by 𝐸p𝑃q
⊺

d 𝑥 “
∏𝑑

𝑖“0
𝐸p𝑝𝑖q

𝑟 𝑖 “

𝐸p𝑃p𝑟qq, the homomorphic polynomial evaluation.

Similarly, if 𝐻 “ rℎ0, . . . , ℎ𝑑 s “ r𝑔𝑎0 , . . . , 𝑔𝑎𝑑 s, denote by 𝐻 d

𝑥 “
∏𝑑

𝑖“0
ℎ
𝑥𝑖
𝑖

“ 𝑔
∑
𝑎𝑖𝑥𝑖

the dot-product in the exponents. Then Ta-

ble 3 shows how the Server produces the evaluation via the partially

homomorphic cipher and the subset polynomials (in this table, and

in the following protocols presentations, time passes from top to

bottom only, driven by the "Communications" column). Then this

evaluation is bound to be correct by the consistency check in the

exponents.

Proposition 9 (A proof is given in Appendix B). The protocol
of Table 3 is correct and sound under the 𝑑-BSDH assumption.

Several issues remain with this protocol: first it is not dynamic.

Indeed, for a dynamic version, the problem is that updating only

one coefficient of 𝑃 requires to update up to 𝑑 ´ 1 coefficients of 𝐻 .

This work would be of the same order of magnitude as recomputing

the whole setup. Second it is not fully hiding the coefficients of 𝑃

as they are just put in the exponents without any masking, and we

do not prove the privacy requirement
2
. Third, the protocol is not

fully publicly verifiable since the decryption key of the partially

homomorphic system is required. We incrementally solve the first

two issues in the remainder of this paper and obtain a fully secure

private protocol. We also are able to provide a dynamic protocol,

publicly verifiable, but for an unciphered polynomial. Combining all

three properties, that is, designing a publicly verifiable dynamic pro-

tocol for ciphered polynomials, preserving a good efficiency while

still being secure, remains an open question to us (usually when

adapting a static protocol, either dynamicity involves too much

recomputation or the security is compromised by the updates).

4 OUTSOURCED DYNAMIC VERIFICATION OF
THE EVALUATION

In order to be able to deal with updates, a classical tool is to add

Merkle trees that are updated along with the polynomial parts.

Checking the root of the Merkle tree allows for logarithmic verifi-

cations and updates of any coefficient of the polynomial. Modifica-

tions of the polynomial coefficients are also included in the Client

state so that old polynomials cannot be used for the verification of

Eval. The difficulty then is to preserve a linear time Server with a

fast and light Client; we show next how to achieve this.

4.1 Merkle trees for logarithmic Client storage
In order to avoid storing the polynomial coefficients on the Client

side, we thus use a Merkle hash tree [5, 45, 51]. Then it is sufficient

to store the root of the Merkle tree: under the CRHF assumption, a

malicious Server cannot give back different polynomial coefficients.

2
Efficient updates in similar schemes are considered, e.g., in [64] but to a protocol that

verifies coefficients known to the Server, not its evaluation at hidden coefficients

359



Proceedings on Privacy Enhancing Technologies 2023(3) Jean-Guillaume Dumas, Aude Maignan, Clément Pernet, and Daniel S. Roche

Table 3: Verifiable Ciphered Polynomial Evaluation

Server Communications Client

Setup
G1,G2,G𝑇 groups of order 𝑝 𝑃 P Z𝑝 r𝑋 s, 1 ď 𝑑˝p𝑃q ď 𝑑 ; let 𝑠

$

Ð Z𝑝

pairing 𝑒 , gen. 𝑔1, 𝑔2, 𝑔𝑇 “ 𝑒p𝑔1;𝑔2q 𝑊 Ð 𝐸𝑝𝑘p𝑃q, K Ð 𝑔
𝑃p𝑠q

𝑇
, 𝐻 Ð r𝑔

𝑇𝑘,𝑃 p𝑠q

2
s
𝑑´1

𝑘“0

Output : 𝑠𝑡S “ {𝑝𝑘,G1,2,𝑇 ,𝑊 ,𝐻 } L
𝑊,𝐻

9999999999999999 𝑠𝑡C “ {𝑝𝑘, 𝑠𝑘,G1,2,𝑇 , 𝑔1,2,𝑇 , 𝑒,K, 𝑠}

Eval/Verify
Form 𝑥 Ð r1, 𝑟 , 𝑟2, . . . , 𝑟𝑑 s

⊺
L

𝑟
9999999999999999 𝑟

$

Ð Z𝑝

Z “ 𝑊 ⊺ d 𝑥 ; b “ 𝐻⊺ d 𝑥
0..𝑑´1

Z , b
9999999999999999K 𝑒p𝑔

𝑠´𝑟
1

; bq𝑔
𝐷𝑠𝑘 pZ q

𝑇

?

“ K
Output : 𝐷𝑠𝑘pZ q or reject

For our purpose, an implementation of such trees must just provide

the following algorithms:

‚ 𝑇 Ð MTTreep𝑋 q creates a Merkle hash tree from a database 𝑋 .

‚ 𝑟 Ð MTRootp𝑋 q computes from scratch the root of the Merkle hash

tree of the whole database 𝑋 .

‚ 𝐿 Ð MTUnclesp𝑖,𝑇 q retrieves a list of “uncle” node hashes along the

path in the tree to index 𝑖 .

‚ 𝑟 Ð MTpathRootp𝑖, 𝑎, 𝐿q computes the root of the Merkle hash tree

from a leaf element 𝑎 and the associated path of uncles 𝐿.

‚ 𝑇 1 Ð MTupdLeafp𝑖, 𝑎,𝑇 q updates the whole Merkle tree 𝑇 by chang-

ing the 𝑖-th leaf to be 𝑎.

The correctness requirements are that, for any index 𝑖 and data-

bases 𝑋,𝑌 which are identical except possibly for the 𝑖’th index

index (i.e., @ 𝑗 ‰ 𝑖, 𝑥 𝑗 “ 𝑦 𝑗 ), we have

MTRootp𝑋 q “ MTpathRoot (𝑖, 𝑥𝑖 , MTUncles (𝑖, MTTreep𝑋 q)) (8)

MTTreep𝑋 q “ MTupdLeafp𝑖, 𝑥𝑖 , 𝑌 q (9)

And the soundness requirement is that no P.P.T. adversary can

compute a tuple p𝑋, 𝑖, 𝑏, 𝐿q such that

𝑥𝑖 ‰ 𝑏 and MTRootp𝑋 q “ MTpathRootp𝑖, 𝑏, 𝐿q. (10)

4.2 Public dynamic unciphered polynomial
evaluation

Thanks to these additional Merkle-tree operations, we can now

give a protocol for the public verification of the evaluation of a

dynamic polynomial 𝑃 . It consists in five algorithms (Setup, Read,
Update, Eval, Verify) detailed in Table 4 and it requires, for now,

a symmetric pairing.
During the Setup algorithm, the Client sends the unciphered

polynomial to the Server and deletes it to minimize its storage. The

Client uses a random coin 𝑠 to create some data to be published

or to be sent to the Server. The Verifier collects the published data

and is authorized to run the Read and the Verify algorithms. But

she is not authorized to run the Setup and Update algorithms (she

does not know 𝑠). At any point the Client can take the role of a

Verifier. This is shown in Table 4, where the different states are

as follows: 𝑠𝑡V “ {G,G𝑇 , 𝑔, 𝑒,K1,K2, 𝑟𝑃 }, 𝑠𝑡C “ 𝑠𝑡V Y {𝑠} and
𝑠𝑡S “ {G, 𝑔, 𝑃,𝑇𝑃 , 𝑆}.

Proposition 10 (A proof is given in Appendix B). The protocol
of Table 4 is correct and sound under the 𝑑-BSDH and CRHF assump-
tions.

One difficulty is to preserve a linear-time Server. We show next

that this is indeed possible here.

4.3 Efficient linear-time evaluation
As a first approach to evaluate our protocols, we consider that

the cardinality of the coefficient domain is a constant. Therefore,

we count as arithmetic operations in the field not only the usual

addition, subtraction, multiplication and inversion, but also the

exponentiations that are independent of the degree of the polyno-

mial. We thus express our asymptotic complexity bounds in Table 5,

only with respect to that degree 𝑑 . The main idea is to evaluate

the polynomial of Equation (6) (with a priori a quadratic number

of monomials) in a Horner-like fashion, so that it requires only a

linear number of operations.

Proposition 11 (A proof is given in Appendix B). In Table 4,
the setup protocol requires O(𝑑) arithmetic and hashing operations;
the update protocol requires O(𝑙𝑜𝑔p𝑑q) arithmetic and hashing oper-
ations; the verification protocol requires O(1) communications and
arithmetic operations for the Client, and O(𝑑) arithmetic operations
for the Server.

In the next Section, we then propose a novel fully private proto-

col, combining and formalizing the ideas from the encrypted one

and the dynamic one.

5 FULLY PRIVATE, DYNAMIC AND CIPHERED
POLYNOMIAL EVALUATION

So far we have a polynomial evaluation verification, that allows

efficient updates of its coefficients. We now propose a schemewhich

combines the polynomial evaluation with the externalization of

the polynomial itself. For this, two more ingredients are added

in Section 5.1: an efficientmasking in the exponents in order to fulfill

the hiding security property and an outsourcing of the (ciphered)

polynomial itself. This latter feature allows the Client to not even

store the polynomial and reduces her need for permanent storage

to a small constant number of field elements. For this we use Merkle

hash trees presented in Section 4.1. They ensure the authenticity of

the coefficient updates, with the storage of only one hash. Finally

note that the bilinear pairing need not be symmetric anymore, but

need to be applied twice for the security hypothesis to hold.

We start the section with the security tools and then the linear

algebra algorithms we will use and then give a full formalization
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Table 4: Public and Dynamic unciphered polynomial evaluation

Server Communications Client/Verifier

Setup

G,G𝑇 of order 𝑝 , gen. 𝑔 𝑃 P Z𝑝 r𝑋 s, 1 ď 𝑑˝p𝑃q ď 𝑑 ; let 𝑠
$

Ð Z𝑝

symm. pairing 𝑒 K1 Ð 𝑒

(
𝑔𝑃p𝑠q

;𝑔

)
, K2 Ð 𝑔𝑠 , 𝑆 Ð r𝑔𝑠

𝑘
s
𝑑´1

𝑘“0

𝑇𝑃 Ð MTTreep𝑃q L
𝑃, 𝑆

9999999999999999 𝑟𝑃 Ð MTRootp𝑃q

Output : 𝑠𝑡S “ {G, 𝑃,𝑇𝑃 , 𝑆} 𝑠𝑡V “ {G,G𝑇 , 𝑔, 𝑒,K1,K2, 𝑟𝑃 }, 𝑠𝑡C “ 𝑠𝑡V Y {𝑠}

Read
L

𝑖
9999999999999999

𝐿𝑖 Ð MTUnclesp𝑖, 𝑃,𝑇𝑃 q
𝑝𝑖 , 𝐿𝑖

9999999999999999K 𝑟𝑃
?

“ MTpathRootp𝑖, 𝑝𝑖 , 𝐿𝑖q

Output : 𝑝𝑖 or reject

Update

L
𝑖, 𝑝1

𝑖
9999999999999999

𝐿𝑖 Ð MTUnclesp𝑖, 𝑃,𝑇𝑃 q
𝑝𝑖 , 𝐿𝑖

9999999999999999K 𝑟𝑃
?

“ MTpathRootp𝑖, 𝑝𝑖 , 𝐿𝑖q, 𝑟
1
𝑃

Ð MTpathRootp𝑖, 𝑝1
𝑖
, 𝐿𝑖q

𝑇𝑃 Ð MTupdLeafp𝑖, 𝑝1
𝑖
,𝑇𝑃 q; 𝑝𝑖 Ð 𝑝1

𝑖
K 1

1
Ð K1 ¨ 𝑒

(
𝑔𝑠

𝑖p𝑝1
𝑖´𝑝𝑖q

;𝑔

)
Output : 𝑠𝑡S “ {G, 𝑃,𝑇𝑃 , 𝑆} 𝑠𝑡V “ {G,G𝑇 , 𝑔, 𝑒,K 1

1,K2, 𝑟
1
𝑃
}, 𝑠𝑡C “ 𝑠𝑡V Y {𝑠} or reject

Eval/Verify
Form 𝑥 Ð r1, 𝑟 , 𝑟2, . . . , 𝑟𝑑 s

⊺
L

𝑟
9999999999999999 𝑟

$

Ð Z𝑝

Z Ð 𝑃p𝑟q; b Ð
∏𝑑

𝑖“1

∏𝑖´1

𝑘“0
𝑆
𝑝𝑖𝑥𝑘
𝑖´𝑘´1

Z , b
9999999999999999K 𝑒pb ;K2{𝑔𝑟 q𝑒p𝑔Z ;𝑔q

?

“ K1

Output : 𝐷pZ q or reject

Table 5: Complexity bounds for the publicly verifiable dy-
namic and unciphered polynomial evaluation of Table 4 for
a degree 𝑑 polynomial.

Server Communication Client

Storage O(𝑑) O(1)

C
o
m
p
u
t
. Setup O(𝑑) O(𝑑) O(𝑑)

Read/Update O(logp𝑑q) O(logp𝑑q) O(logp𝑑q)
Eval/Verify O(𝑑) O(1) O(1)

and the associated proofs of security. We end the section with

experiments showing the efficiency of our approach.

5.1 Security requirements
Here we add a secret masking of the polynomial coefficients in

order to make the protocol hiding. For this we use the security

hypothesis of Definition 6: indeed, DLM security states that in a

bilinear group G of prime order, the values p𝑔𝑃1p𝐴q𝛽 , . . . , 𝑔𝑃𝑑 p𝐴q𝛽q

are indistinguishable from a random tuple of the same size, when

𝑃1, . . . , 𝑃𝑑 have distinct leading monomials of bounded degree and

𝐴 and 𝛽 are the 2ˆ2 and 2ˆ1 secrets. Therefore, in our modified

protocol, the coefficients 𝑔Φ
𝑖𝛽

for a secret 2ˆ2 matrix Φ, are indis-
tinguishable from a random tuple (𝑔Γ𝑖 ) since the polynomials 𝑋 𝑖

,

𝑖 “ 1..𝑑 are just distinct monomials.

5.2 Linear algebra toolbox
For the next protocol to hold, we need to adapt the difference

polynomial to the matrix case. For instance Lemma 8 holds in the

matrix case provided that the, now matrices, 𝑌 and 𝑋 commute and

that 𝑌 ´ 𝑋 is invertible. Let 𝐼𝑛 be the 𝑛ˆ𝑛 identity matrix. Then,

we will for instance use 𝑌 “ 𝑠𝐼2 and 𝑋 “ 𝑟𝐼2 with 𝑠 ‰ 𝑟 .

Also to speed-up things with the DLM masks, we need to effi-

ciently compute geometric sums of matrices. Thanks to Fiduccia’s

algorithm [29], this is easily done with a number of operations

logarithmic in the exponent, provided that 1 is not an eigenvalue

of the matrix. Indeed, first, any matrix commutes with the iden-

tity so the geometric sum can be computed via one matrix ex-

ponentiation, one matrix inverse and one matrix multiplication:∑𝑑
𝑖“0

𝐴𝑖 “ p𝐴𝑑`1 ´ 𝐼𝑛qp𝐴 ´ 𝐼𝑛q´1
. Then, second, Fiduccia’s al-

gorithm computes the exponentiation modulo the characteristic

polynomial, using the square and multiply fast recursive algorithm.

This is summarized in Algorithms 1 and 2 and analyzed in Appen-

dix B.

Lemma 12. Algorithm 2, computing the matrix geometric sum,
requires between 40 ` 8⌈log

2
p𝑑𝑝 ` 1q⌉ and 40 ` 11⌈log

2
p𝑑𝑝 ` 1q⌉

arithmetic operations.

Proof. Counting only (modular) field operations, Algorithm 1

requires between 8 and 11 times ⌈log
2
p𝑑𝑝q⌉ additions and multi-

plications depending on the binary decomposition of 𝑑𝑝 . Then we

have 5 operations for the matrix inverse, twice 6 operations for

the matrix-vector multiplications and 18 operations for the ma-

trix polynomial evaluation. Plus 5 operations for the characteristic

polynomial. □
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Algorithm 1 Degree 2 modular monomial powers (2-MMP)

Input: 𝑑 P Z, 𝑑 ě 1, 𝑃 “ 𝑝0 ` 𝑝1𝑍 ` 𝑍 2 P Z𝑝 r𝑍 s monic degree 2

polynomial.

Output: 𝑍𝑑
mod 𝑃 .

1: if 𝑑 ““ 1 then return 𝑍

2: 𝑇 Ð 2-MMPp⌊𝑑{2⌋, 𝑃q;

3: 𝑆 Ð p𝑡2

0
´ 𝑡2

1
𝑝0q ` p2𝑡0𝑡1 ´ 𝑡2

1
𝑝1q𝑍 ; {𝑇 p𝑍q2

modulo 𝑃p𝑍q}

4: if 𝑑 is odd then
5: return p´𝑠1𝑝0q ` p𝑠0 ´ 𝑠1𝑝1q𝑍 ; {𝑍 ¨ 𝑆p𝑍q modulo 𝑃p𝑍q}

6: else
7: return 𝑆 .

8: end if

Algorithm 2 Projected matrix geometric sum (PMGS)

Input: 𝑘 P Z, 𝐴 “

(
𝑎 𝑏
𝑐 𝑑

)
P Z2ˆ2

𝑝 , s.t. 𝐴 ´ 𝐼2 is invertible, 𝛽 P Z2

𝑝 .

Output:
∑𝑘
𝑖“0

𝐴𝑖𝛽 .

1: Let 𝜋p𝑍q “ p𝑎𝑑 ´ 𝑏𝑐q ´ p𝑎 ` 𝑑q𝑍 ` 𝑍 2
; {The characteristic

polynomial of 𝐴}

2: Let 𝐹 p𝑍q “ 𝑓0 ` 𝑓1𝑍 “ 2-MMPp𝑘 ` 1, 𝜋q; {𝑍𝑘`1
mod 𝜋p𝑍q,

using Algorithm 1}

3: return p𝑓1𝐴`p𝑓0 ´1q𝐼2qp𝐴´𝐼2q´1𝛽 .{p𝐴𝑘`1 ´𝐼2qp𝐴´𝐼2q´1𝛽}

5.3 Formalization of the protocol
The dynamic externalized polynomial evaluation scheme consist of

the following algorithms Setup, Read, Update, Eval and Verify
between a Client C with state 𝑠𝑡C and the Server S of state 𝑠𝑡S .
Following the definition of a VDPE scheme of Section 2.2, Setup is

detailed in Algorithm 3; Read is detailed in Algorithm 4; Update is

detailed in Algorithm 5; Eval is detailed in Algorithm 6; and Verify
is detailed in Algorithm 7. Finally, a lighter variant of Setup and

Update (detailed in Algorithm 8) dedicated to the DPoR protocol

is proposed. The exchanges are summarized in Table 12 of Appen-

dix A.

Remark 13. We show next how to use a dynamic VPE protocol inside
a DPoR scheme. There, the client updates a polynomial coefficient 𝑝𝑖
by sending an encryption of only the difference 𝛿 “ 𝑝1

𝑖
´ 𝑝𝑖 without

needing to know the value of 𝑝𝑖 . In this variant, the value of 𝑝𝑖 does
not have to be checked and the hash tree is superfluous.

We thus consider 𝛿Setup, a variant of Setup where the client does
not need MTRootp𝑊 q (line 5 of Algorithm 3) and the server does not
compute the tree at all (remove MTTreep𝑊 q, line 9). 𝑠𝑡C and 𝑠𝑡S are
therefore reduced to 𝑠𝑡C “ {𝑝𝑘, 𝑠𝑘,G1,2,𝑇 , 𝑔1,2,𝑇 , 𝑒, 𝑠, 𝛼, 𝛽,Φ, ¯K, 𝑑𝑝 }
and 𝑠𝑡S “ {𝑝𝑘,G1,2,𝑇 , 𝑒,𝑊 , 𝑆, 𝐻 } (note that this prevents using the
Read operation on the polynomial). In addition, we also consider a
variant of the Update algorithm, which takes 𝛿 “ 𝑝1

𝑖
´ 𝑝𝑖 as input

instead of 𝑝𝑖 , as detailed in Algorithm 8. The corresponding dynamic
(from the difference) externalized polynomial evaluation scheme is
then reduced to the algorithms 𝛿Setup, 𝛿Update, Eval and Verify.

We have now our main result for the Dynamic Verified Evalua-

tion of Secret Polynomials.

Theorem 14 (A proof is given in Appendix B). Under the 𝑑-
BSDH, DLOG, CRHF and DLM security assumptions of Section 2, the

Algorithm 3 Setupp1
^ , 𝑃q

Input: 1
^
; 𝑝 P P, 𝑃 “

∑𝑑
𝑖“0

𝑝𝑖𝑋
𝑖 P Z𝑝 r𝑋 s;

Input: a partially homomorphic cryptosystem 𝐸{𝐷 satisfy-

ing Equation (2), for any dot-product of size 𝑑 ` 1, modulo 𝑝 .
Output: 𝑠𝑡S , 𝑠𝑡C .
1: Client: generates order 𝑝 groups G1, G2, G𝑇 with non-

degenerate pairing 𝑒 : G1 ˆ G2 Ñ G𝑇 and generators

𝑔1, 𝑔2, 𝑔𝑇 “ 𝑒p𝑔1;𝑔2q;

2: Client: generates a public/private key pair p𝑝𝑘, 𝑠𝑘q for 𝐸{𝐷 ;

3: Client: randomly selects 𝑠
$

Ð Z𝑝z{0, 1}, 𝛼, 𝛽 $

Ð Z2

𝑝 , Φ
$

Ð Z2ˆ2

𝑝 ,

s. t. 𝑠Φ ´ 𝐼2 is invertible;

4: Client: computes 𝑃p𝑋 q “
∑𝑑
𝑖“0

𝑋 𝑖p𝑝𝑖𝛼`Φ𝑖𝛽q,𝑊 “ 𝐸𝑝𝑘p𝑃q “

r𝐸p𝑝𝑖qs𝑑
𝑖“0

, 𝑆 “ r𝑔𝑠
𝑘

1
s
𝑑´1

𝑘“0
P G𝑑

1
, 𝐻 “ r𝑔

𝑝𝑖
2

s𝑑
𝑖“1

P G2ˆ𝑑
2

,
¯K “

𝑔
𝑃p𝑠q

𝑇
P G2

𝑇
and 𝑑𝑝“𝑑 mod𝜑p𝑝q ” 𝑑 mod𝑝´1;

5: Client: 𝑟𝑊 “ MTRootp𝑊 q; {root of the Merkle tree}

6: Client: sends 𝑝𝑘,G1,G2, 𝑔1, 𝑔2,G𝑇 , 𝑒,𝑊 , 𝑆, 𝐻 to the Server;

7: 𝑠𝑡C Ð {𝑝𝑘, 𝑠𝑘,G1,2,𝑇 , 𝑔1,2,𝑇 , 𝑒, 𝑠, 𝛼, 𝛽,Φ, ¯K, 𝑟𝑊 , 𝑑𝑝 };
8: Client: return 𝑠𝑡C ;
9: Server: 𝑇𝑊 Ð MTTreep𝑊 q; {the Merkle tree}
10: Server: return 𝑠𝑡S Ð {𝑝𝑘,G1,2,𝑇 , 𝑒,𝑊 ,𝑇𝑊 , 𝑆, 𝐻 }.

Algorithm 4 Readp𝑖𝑠𝑡C, 𝑠𝑡Sq

Input: 𝑖 P r0..𝑑s, p𝑠𝑡C, 𝑠𝑡Sq “ Setupp1
^ , 𝑃q.

Output: 𝑝𝑖 the value of the 𝑖𝑡ℎ coefficient of 𝑃 .

1: Client: sends 𝑖;

2: Server: 𝐿𝑖 Ð MTUnclesp𝑖,𝑊 ,𝑇𝑊 q;

3: Server: sends𝑤𝑖 , 𝐿𝑖 to the Client;

4: if 𝑟𝑊 ‰ MTpathRootp𝑖,𝑤𝑖 , 𝐿𝑖q then
{the stored root does not match the received element and uncles}

5: Client: return reject.
6: else
7: Client: computes 𝑝𝑖 “ 𝐷p𝑤𝑖q;

8: end if

protocol composed of Algorithms 3 to 8 (summarized in Table 12) is
a fully secure verifiable polynomial evaluation scheme, as defined
in Definition 2 and the complexity bounds of its algorithms are given
in Table 6.

For the complexity bounds we still consider the cardinality of

the coefficient domain to be a constant (so that, again, even ex-

ponentiations not involving the degree are considered constant)

and we also consider that one encryption/decryption with the lin-

early homomorphic cryptosystem requires a number of arithmetic

operations constant with respect to the degree.

5.4 Experiments
To assess the efficiency of our protocol, we implemented Table 12

using the following libraries
3
: gmp-6.2.1 for modular operations,

fflas-ffpack-2.4.3 for linear algebra, relic-0.6.0 for Paillier’s
cryptosystem and pairings (we used a “bn-p254” pairing), libsnark
(commit 2af4402) for baseline polynomial evaluation verification.

3
https://gmplib.org, https://linbox-team.github.io/fflas-ffpack, https://github.com/

scipr-lab/libsnark.git, https://github.com/relic-toolkit/relic.
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Algorithm 5 Updatep𝑖, 𝑝1
𝑖
, 𝑠𝑡C, 𝑠𝑡Sq

Input: 𝑖 P r0..𝑑s, 𝑝1
𝑖

P Z˚
𝑝 , p𝑠𝑡C, 𝑠𝑡Sq “ Setupp1

^ , 𝑃q.

Output: p𝑠𝑡 1
C, 𝑠𝑡

1
Sq “ Setupp1

^ , 𝑃 ` p𝑝1
𝑖

´ 𝑝𝑖q𝑋
𝑖q or reject.

1: Client: gets 𝑠𝑡C “ p𝑝𝑘, 𝑠𝑘,G1,2,𝑇 , 𝑔1,2,𝑇 , 𝑒, 𝑠, 𝛼, 𝛽,Φ, ¯K, 𝑟𝑊 , 𝑑𝑝q,

2: Client: computes𝑤 1
𝑖

“ 𝐸p𝑝1
𝑖
q,

3: Client: computes 𝐻 1
𝑖

Ð 𝑔
𝑝1
𝑖𝛼`Φ𝑖𝛽

2

4: Client: sends 𝑖,𝑤 1
𝑖
if p𝑖 ą 0q sends 𝐻 1

𝑖
;

5: Server: 𝐿𝑖 Ð MTUnclesp𝑖,𝑊 ,𝑇𝑊 q;

6: Server: 𝑇 1
𝑊

Ð MTupdLeafp𝑖,𝑤 1
𝑖
,𝑇𝑊 q; {updates the Merkle tree}

7: Server: sends𝑤𝑖 , 𝐿𝑖 to the Client;

8: Server: 𝑠𝑡˚
S Ð 𝑠𝑡S\{𝑇𝑊 ,𝑤𝑖 }

⋃{𝑇 1
𝑊
,𝑤 1

𝑖
}

9: if 𝑖 ““ 0 then Server: return 𝑠𝑡 1
S Ð 𝑠𝑡˚

S
else Server: return 𝑠𝑡 1

S Ð 𝑠𝑡˚
S\{𝐻𝑖 }

⋃
2

𝑗“1
{ ¯𝐻 1

𝑖 r 𝑗s}
10: if 𝑟𝑊 ‰ MTpathRootp𝑖,𝑤𝑖 , 𝐿𝑖q then

{the stored root does not match the received element and uncles}
11: Client: return reject.
12: else
13: Client: computes Δ Ð 𝑔

p𝑝1
𝑖´𝑝𝑖q𝛼

2
;

14: Client: computes
¯K 1r 𝑗s Ð 𝑒p𝑔1;Δr 𝑗s𝑠

𝑖
q ¨ ¯Kr 𝑗s for 𝑗“1..2;

15: Client: computes 𝑟 1
𝑊

“ MTpathRootp𝑖,𝑤 1
𝑖
, 𝐿𝑖q;

16: Client: return 𝑠𝑡 1
C Ð 𝑠𝑡C\{ ¯K, 𝑟𝑊 }⋃{ ¯K 1, 𝑟 1

𝑊
}.

17: end if

Algorithm 6 Evalp𝑠𝑡S, 𝑟q

Input: 𝑠𝑡S and a evaluation point 𝑟 P Z𝑝 ;

Output: Z the encrypted evaluation of 𝑃p𝑟q and a proof
¯b .

1: Server: computes Z “ 𝑊 ⊺ d 𝑥 “
∏𝑑

𝑖“0
𝑤

p𝑟 𝑖 mod 𝑝q

𝑖
{via Equation (2), see also, e.g., Remark 1 and Algorithm 10}

2: Server:
¯b “ r1G𝑇 , 1G𝑇 s

⊺
P G2

𝑇
; 𝑡 “ 1G1

;

3: for 𝑖 “ 1 to 𝑑 do {Following the ideas of Section 4.3}

4: Server: 𝑡 Ð 𝑆𝑖´1 ¨ 𝑡𝑟 ;

5: Server:
¯br 𝑗s Ð ¯br 𝑗s ¨ 𝑒p𝑡 ;𝐻𝑖 r 𝑗sq for 𝑗“1..2;

6: end for
7: Server: return Z , ¯b .

Algorithm 7 Verifyp𝑠𝑡C, 𝑟 , Z , ¯bq

Input: 𝑠𝑡C , the evaluation point 𝑟 P Z𝑝 , its encrypted evaluation

Z and a proof
¯b ;

Output: 𝑧 “ 𝑃p𝑟q or reject.

1: Client: computes 𝑟Φ and 𝑐 Ð

(
p𝑟Φq𝑑𝑝`1 ´ 𝐼2

)
¨ p𝑟Φ´ 𝐼2q´1 ¨𝛽

{via Algorithm 2}

2: Client: computes 𝑧 “ 𝐷𝑠𝑘pZ q mod 𝑝;

3: if ¯br 𝑗s𝑠´𝑟𝑔
𝑧𝛼r𝑗s`𝑐r𝑗s

𝑇
“ ¯Kr 𝑗s for 𝑗“1..2 then

4: Client: return 𝑧.

5: else
6: Client: return reject.
7: end if

Our source code to perform these experiments is available via the

following GitHub repository: https://github.com/jgdumas/vespo.

Algorithm 8 𝛿Updatep𝑖, 𝛿, 𝑠𝑡C, 𝑠𝑡Sq

Input: 𝑖 P r0..𝑑s, 𝛿 P Z˚
𝑝 , p𝑠𝑡C, 𝑠𝑡Sq “ Setupp1

^ , 𝑃q.

Output: p𝑠𝑡 1
C, 𝑠𝑡

1
Sq “ Setupp1

^ , 𝑃 ` 𝛿𝑋 𝑖q or reject.

1: Client: computes 𝑒𝛿 “ 𝐸𝑝𝑘p𝛿q, Δ “ 𝑔𝛿𝛼
2

;

2: Client: sends 𝑖, 𝑒𝛿 ,Δ to the Server;

3: Server: sends𝑤𝑖 to the Client;

4: if 𝑖 ““ 0 then Server: return 𝑠𝑡 1
S Ð 𝑠𝑡˚

S
else Server: return 𝑠𝑡 1

S Ð 𝑠𝑡˚
S\{𝐻𝑖 }

⋃
2

𝑗“1
{𝐻𝑖 r 𝑗s ¨ Δr 𝑗s}

5: Client: computes
¯K 1r 𝑗s Ð 𝑒p𝑔1;Δr 𝑗s𝑠

𝑖
q ¨ ¯Kr 𝑗s for 𝑗“1..2;

6: Client: return 𝑠𝑡 1
C Ð 𝑠𝑡C\{ ¯K}⋃{ ¯K 1}.

Table 6: Complexity bounds for verifiable dynamic and ci-
phered polynomial evaluation (function of the degree 𝑑 of the poly-

nomial, for groups of supposed constant cardinality: number of group ele-

ments/arithmetic operations).

Server Communication Client

Storage O(𝑑) O(1)
C
o
m
p
u
t
.

Setup O(𝑑) O(𝑑) O(𝑑)
Read O(logp𝑑q) O(logp𝑑q) O(logp𝑑q)

Update O(logp𝑑q) O(logp𝑑q) O(logp𝑑q)
𝛿Update O(1) O(1) O(1)

Eval/ Verify O(𝑑) O(1) O(1)

To observe the effect of the chosen homomorphic systems (Pail-

lier with an RSA modulus size of 2048 bits and the pairing), we ran

the experiments, on a single core of an intel Gold 6126 2.6GHz for

the Client and Horner computations and on one or four cores for

the Server (the parallelization of the prefix-like Server part of Algo-

rithm 6 is given in Appendix D). In Table 7, we thus compare the

Server time to the Client time of our protocol, to that of a simple

(witness) polynomial evaluation (Horner-like) in this group and of

an unciphered static polynomial evaluation with a SNARK (a ci-

phered evaluation with these SNARK would require to arithmetize

the Homomorphic cryptosystem and seems still out of reach).

First of all, of course, the Server time, using homomorphic arith-

metic, can be several orders of magnitude slower than the simple

polynomial evaluation, while indeed being clearly linear. Second,

for the protocol itself, we see that both homomorphic evaluations

of the Server are quite similar, even if the Paillier cryptosystem is

more expensive for large modulus. Then, on the Client side and

for the considered degrees, the dominant computation is that of

a single Paillier’s deciphering (and that the only part in practice

potentially non-constant in the degree is by far the most negligible).

Third our Client is even faster than an unciphered one (we use less

pairings than libsnark) and for a large enough degree, we can

observe the Client time to win over the linear time pure polynomial

evaluation. Also, our ciphered Server slowdown remains within a

factor close to four (or only two without Paillier) when compared

to the static and unciphered one.
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Table 7: Comparative behaviors of pairings and Paillier sys-
tem on the Server and Client sides with a 254-bits group size
for the protocol of Table 12 (column ’pows’ is the time to perform the

lhs exponentiations (by 𝑠 ´ 𝑟 and by 𝐷pZ q𝛼r𝑗s ` 𝑐r𝑗s); column ’c’ times the

matrix geometric sum; and column ’D’ times the single Paillier’s deciphering;

below are some baseline comparisons: ’Horner’ is a witness direct evaluation

in that group, ’libsnark’ is an unciphered and static polynomial evaluation

verification. Each experiment was performed 11 times and we report the me-

dian value, with a maximum variance lower than 16.4% between runs).

Degree

Server Certification Client Verification

1 core 4 cores 1 core

Z b Z b 𝐷 𝑐 pows

256 0.12s 0.08s 0.04s 0.03s

0.9ms ă0.1ms 0.7ms

512 0.24s 0.15s 0.07s 0.05s

1024 0.48s 0.30s 0.13s 0.10s

2048 0.95s 0.61s 0.26s 0.18s

4096 1.90s 1.22s 0.51s 0.35s

8192 3.82s 2.44s 1.01s 0.70s

16384 7.58s 4.87s 2.02s 1.40s

32768 15.24s 9.78s 4.05s 2.75s

65536 30.55s 19.58s 8.06s 5.45s

131072 60.82s 39.02s 16.15s 10.90s

Client Server (1 core) Proof

1 core 𝑑˝
256 1024 8192 131072 size

Horner (no verif., no crypt.) ă0.1ms 0.2ms 1.6ms 32.0ms -

libsnark (no crypt.) 3.8ms 0.04s 0.12s 0.74s 10.57s 287B

Here (v. & c. & dyn.) 1.6ms 0.20s 0.78s 6.26s 99.84s 320B

6 LOW SERVER STORAGE DYNAMIC POR
Recall that Proofs of Retrievability (PoR) allow a Client with limited

storage, who has outsourced her data to an untrusted Server, to

confirm via an efficient Audit protocol that the data is still being
stored in its entirety. The lower bound of [5, Theorem 4] proves that

a tradeoff is inevitable between low/high audit cost and high/low

storage overhead. The dynamic PoR schemes of [22, 61] optimize for

fast audits. They incur a large O(𝑁 ) storage overhead on the Server,
but can perform audits with only plog𝑁 qO(1)

communication and

computation for the Client and Server.

Table 8: Attributes of some selected DPoR schemes

Protocol

Server Client

Extra Audit Audit
Storage

Audit

Storage Comput. Comm. Comput.

[61] O(𝑁 ) O(log𝑁 ) O(log𝑁 ) O(1) O(log𝑁 )
[5] 𝑜 (𝑁 ) 𝑁 ` 𝑜 (𝑁 ) O

(√
𝑁

)
O(1) O

(√
𝑁

)
Here 𝑜 (𝑁 ) 𝑁 ` 𝑜 (𝑁 ) O(log𝑁 ) O(1) O(log𝑁 )

Instead, [5] optimizes for small storage; their scheme has only

sub-linear storage overhead of O(𝑁 { log𝑁 ), but a higher audit cost
of O(𝑁 ) on the Server, and Op

√
𝑁 q Client time and communication.

The authors demonstrate that, for reasonable deployment scenar-

ios on commercial cloud platforms, the higher audit cost is more

than offset by the greatly reduced costs of extra persistent storage,

especially if audits are only performed a few times per day.

We here further improve on the low storage overhead approach

of [5], by our scheme with a small 𝑜 (𝑁 ) storage overhead, but only
O(log𝑁 ) communication and Client computation cost for audits.

That is, our new protocol still benefits from small storage overhead,

while effectively pushing the higher computational cost of audits

(which is inevitable from the lower bound) entirely off the Client

and onto the Server. These savings are highlighted in Table 8.

An easy argument demonstrates that our O(log𝑁 ) Client cost
for audits is optimal. If each audit has 𝑜 (log𝑁 ) cost (and thus

transcript size), then the total number of possible transcripts is

𝑜 (𝑁 ), which is a contradiction with the definition of retrievability;

not every 𝑁 -bit database could be recoverable via independent

audit transcripts.

6.1 Matrix based approach for audits
Here we summarize the DPoR of [5] upon which our new scheme is

based. The premise is to treat the data, consisting of𝑁 bits organized

in machine words, as a matrix 𝑀 P Z𝑚ˆ𝑛
𝑝 , where Z𝑝 is a suitable

finite field of size 𝑝 . Crucially, the choice of ring Z𝑝 does not require

any modification to the raw data itself; that is, any element of the

matrix 𝑀 can be retrieved in 𝑂p1q time from the underlying raw

data storage. The scheme is based on the commutativity of matrix-

vector products. During an Init phase, the Client chooses a secret

vector 𝑢 of dimension𝑚 and computes 𝑣⊺ “ 𝑢⊺𝑀 ; both vectors 𝑢

and 𝑣 are then stored by the Client for later use, while the Server

stores the original data and hence the matrix𝑀 in the clear. Reading

or updating individual entries in𝑀 (Read, and Write protocols in
the DPoR case), can be performed efficiently with the use of Merkle

hash trees and from the observation that changing one element of

𝑀 only requires changing one entry in the Client’s secret control

vector 𝑣 . To perform an Audit, the Client and Server engage in a

1-round protocol:

(1) Client chooses a random vector 𝑥 of dimension 𝑛, and sends 𝑥

to Server.

(2) Server computes 𝑦 “ 𝑀𝑥 and sends the dimension-𝑚 vector 𝑦

back to Client.

(3) Client computes two dot products 𝑢⊺𝑦 and 𝑣⊺𝑥 , and checks that

they are equal.

The proof of retrievability relies on the fact that observing sev-

eral successful audits allows, with high probability, recovery of the

correct matrix𝑀 , and therefore of the entire database. The commu-

nication costs are O(𝑛) and O(𝑚) in steps 1 and 2 respectively, and

the Client computation in step 3 is O(𝑚 ` 𝑛), resulting in Op
√
𝑁 q

total communication and Client computation when optimizing the

matrix dimensions to roughly𝑚 “ 𝑛 “
√
𝑁 .

While this square-matrix setup is the basic protocol presented

by [5], the authors also discuss a potential improvement in commu-

nication complexity. Instead of 𝑥 being uniformly random over Z𝑛𝑝 ,

it can instead be a structured vector formed from a single random
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Table 9: Private verifiable Client/Server DPoR protocol with low storage Server

Server Communications Client

Init

Input: 𝑝 prime, cryptosystem 𝐸{𝐷

Input:𝑀 P Z𝑚ˆ𝑛
𝑝

𝛾
$

Ð Z˚
𝑝 , 𝑢

⊺ Ð r𝛾𝑖 s
𝑚´1

𝑖“0
P Z𝑚𝑝

𝑣⊺ Ð 𝑢⊺𝑀 P Z𝑛𝑝�� ��𝛿Setup
ÐÝÝÝÝÝÝÝÝÝÝÝÝÝ 𝑉𝑒𝑐𝑡2𝑃𝑜𝑙𝑦p𝑣q4

𝑠𝑡S ÐÝÝÝÝÝÝÝÝÝÝÝÝÝ ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ 𝑠𝑡C

𝑇𝑀 Ð MTTreep𝑀q L
𝑀

9999999999999999 𝑟𝑀 Ð MTRootp𝑀q

Output: 𝑠𝑡S, 𝑀,𝑇𝑀 Output: 𝑠𝑡C, 𝛾, 𝑟𝑀

Write

𝐿𝑀𝑖𝑘
Ð MTUnclesp𝑘 ` 𝑖¨𝑛,𝑀,𝑇𝑀 q L

𝑖, 𝑘
9999999999999999 Input: 𝑖, 𝑘, 𝑀 1

𝑖𝑘
𝑀𝑖𝑘 , 𝐿𝑀𝑖𝑘

,𝑤𝑘
9999999999999999K 𝑟𝑀

?

“ MTpathRootp𝑘 ` 𝑖¨𝑛,𝑀𝑖𝑘 , 𝐿𝑀𝑖𝑘
q

𝛿 Ð 𝛾𝑖p𝑀 1
𝑖𝑘

´ 𝑀𝑖𝑘q

𝑠𝑡S ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ �� ��𝛿Update
ÐÝÝÝÝÝÝÝÝÝÝÝÝÝ 𝛿, 𝑠𝑡C

𝑠𝑡S ÐÝÝÝÝÝÝÝÝÝÝÝÝÝ ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ 𝑠𝑡C

𝑀𝑖𝑘 Ð 𝑀 1
𝑖𝑘
, 𝑇𝑀 Ð MTupdLeafp𝑘 ` 𝑖¨𝑛,𝑀 1

𝑖𝑘
,𝑇𝑀 q L

𝑀 1
𝑖𝑘

9999999999999999 𝑟𝑀 Ð MTpathRootp𝑘 ` 𝑖¨𝑛,𝑀 1
𝑖𝑘
, 𝐿𝑀𝑖𝑘

q

Output: 𝑠𝑡S, 𝑀,𝑇𝑀 Output: 𝑠𝑡C, 𝑟𝑀 or reject

Audit

form 𝑥 Ð r𝑟𝑘 s
𝑛´1

𝑘“0

⊺ P Z𝑛𝑝 , then 𝑦 Ð 𝑀𝑥 L
𝑟

9999999999999999 𝑟
$

Ð Z˚
𝑝 s.t. p𝑟Φ ´ 𝐼2q P 𝐺𝐿2pZ𝑝q

𝑠𝑡S, 𝑟 ÝÑ �� ��Eval
Z , ¯b ÐÝ

𝑦, Z , ¯b
9999999999999999K

�� ��Verify
ÐÝ 𝑠𝑡C, 𝑟 , Z , ¯b

ÝÑ 𝐷𝑠𝑘pZ q𝑜𝑟 reject

𝑢⊺𝑦
?

“ 𝐷𝑠𝑘pZ q

Output: accept or reject

element 𝑟 P Z𝑝 as 𝑥 “ r𝑟 𝑖 s𝑛
𝑖“1

. Then the communication on step 1

is reduced to constant, and hence the total communication depends

only on the row dimension O(𝑚). By choosing a rectangular matrix

𝑀 with few rows and many columns, the communication can be

made arbitrarily small. The tradeoff for this reduction in communi-

cation complexity is higher Client storage of the control vector 𝑣 as

well as higher Client computation cost for the 𝑛-dimensional dot

product 𝑣⊺𝑥 . In [5], the authors found that the savings in communi-

cation were not worth the higher Client storage and computation,

and their experimental evaluation was based on the square matrix

version with overhead Op
√
𝑁 q.

6.2 Bootstrapping Client via VESPo
Now we show how to modify the reduced communication version

of the DPoR protocol of [5] just presented in order to eliminate

the costly Client storage of 𝑣 P Z𝑛𝑝 and computation of 𝑣⊺𝑥 during

audits. Our improved protocol is based on the observation that,

when the audit challenge vector 𝑥 is structured as 𝑥 “ r𝑟 𝑖 s, then

the expensive Client dot product computation of 𝑣⊺𝑥 is actually

a polynomial evaluation: if the entire of 𝑣 are the coefficients of a

polynomial 𝑃 , then 𝑣⊺𝑥 is simply 𝑃p𝑟q. We therefore eliminate the

O(𝑛) Client persistent storage and computation cost during audits

by outsourcing the (encrypted) storage of vector 𝑣 and computation

of 𝑣⊺𝑥 “ 𝑃p𝑟q with our novel protocol for dynamic, encrypted,

4
Converts the vector 𝑣 into the polynomial 𝑃p𝑥q “

∑𝑛´1

𝑖“0
𝑣𝑖𝑥

𝑖
.

verifiable polynomial evaluation scheme of Table 12. The obtained

private-verification DPoR protocol, combining that of [5] with our

ciphered polynomial evaluation in Section 5, is presented in Table 9.

Theorem 15 (A proof is given in Appendix B). The protocol
of Table 9 is correct and sound under the 𝑑-BSDH, DLOG, CRHF and
DLM security assumptions.

6.3 Experiments
We now compare our modification of the DPoR protocol with the

one in [5]. Table 10 has three blocks of experiments, each for four

database sizes ranging from 1GB to 1TB. The first block of exper-

iments is a run of the original statistically secure DPoR protocol

with two dotproducts for the verification, considering the matrix

as 56 bits elements modulo a 57-bits prime. The second block of

experiments is our new modification, but still using close to square

matrices. Subject now to computational security, we have to use

a larger coefficient domain, namely here a 254-bits prime (with

associated bilinear groups and a 2048-bits Paillier modulus, both es-

timated equivalent to a 112-bit computational security).We separate

the timings of the Write phase in two phases, the remaining linear

algebra phase and the new polynomial evaluation phase (𝛿Update).
In the third block of experiments we use a more rectangular matrix,

trying to reduce communications while not increasing too much

the Server computational effort.

Overall, we see first in Table 10, that changing the coefficient

domain size increases the computational effort of the Server in the
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Table 10: Modification of the DPoR audit protocol, with 254-bits groups, 2048-bits Paillier, on a Gold 6126 2.6GHz & 10 GB/core
(real time are median values for a single run; each experiment was performed 11 times; the maximum relative difference between the runs was at most 3.6%).

Database 1GB 10GB 100GB 1TB

Private-verified audit using 57-bits prime [5, Figure 1 & Tables 5-6-7]
5

Matrix view 12339ˆ12432 39131ˆ39200 123831ˆ123872 396281ˆ396368

Server extra storage ă0.01% ă0.01% ă0.01% ă0.01%

Client Storage 169KB 535KB 1 693KB 5 418KB

Server Audit (1/12 cores) 0.29s/0.04s 2.68s/0.30s 29.04s/3.36s 219.7s/41.48s

Communications 169KB 535KB 1 693KB 5 418KB

Client Audit (1 core) 0.6ms 1.7ms 5.3ms 18.3ms

Square Dynamic-ciphered delegated polynomial evaluation with 254-bits groups of Table 9
6

Matrix view 5815ˆ5816 18390ˆ18390 58154ˆ58154 186092ˆ186093

Server extra storage 0.12% 0.04% 0.01% ă0.01%

Client storage 0.94KB 0.94KB 0.94KB 0.94KB

Server Audit (1/12 cores): matrix-vector step 1.1s/0.2s 11.3s/1.3s 113.4s/12.9s 1 152.5s/131.1s

Server Audit (1/12 cores): polynomial step 4.4s/0.5s 13.5s/1.4s 42.6s/4.2s 141.7s/13.4s

Communications 181KB 571KB 1 803KB 5 770KB

Client Audit (1 core): dotproduct step 3.2ms 8.4ms 13.1ms 37.9ms

Client Audit (1 core): polynomial step 1.7ms 1.7ms 1.7ms 1.7ms

Rectangular Dynamic-ciphered delegated polynomial evaluation with 254-bits groups of Table 9
6

Matrix view 6599ˆ5125 7265ˆ46551 7929ˆ426519 8600ˆ4026778

Server extra storage 0.11% 0.10% 0.09% 0.08%

Client storage 0.94KB 0.94KB 0.94KB 0.94KB

Server Audit (1/12 cores): matrix-vector step 1.1s/0.2s 11.3s/1.3s 113.2s/12.8s 1 147.9s/130.7s

Server Audit (1/12 cores): polynomial step 3.8s/0.4s 35.5s/3.6s 324.1s/30.6s 3 064.8s/283.6s

Communications 205KB 226KB 246KB 267KB

Client Audit (1 core): dotproduct step 3.7ms 4.0ms 4.4ms 4.8ms

Client Audit (1 core): polynomial step 1.7ms 1.7ms 1.7ms 1.7ms

linear algebra phase. Still, reducing the dimension of the dotproduct

for the Client, as shown in he third block, allows the Client to be

faster for databases larger than 100GB. In any case, the Client audit

computational effort is never larger than a few milliseconds and

thus the dominant part is most certainly communications. On this

aspect, we see that our modification allows for large reductions in

both the Client storage (even with square matrices) and the overall

communications. Indeed, the Client private state is the vector di-

mension, the Paillier’s private key, twelve group elements and two

Merkle tree roots; while the communications are mostly one vector

of modular integers in the smallest dimension.

The price to pay is from about a factor of four (large database) to

an order of magnitude (tiny database) for the Server computations

(more limited losses in the more realistic case where the Server can

use multiple cores). In any case, the persistent Client storage is go-

ing from dozens of MB to less than one KB, and the communication

volume can be decreased by more than two orders of magnitude.

7 CONCLUSION
We have presented a protocol verifying publicly a dynamic unci-

phered polynomial evaluation and then a protocol verifying pri-

vately a dynamic ciphered polynomial evaluation. Now, combining

efficient and proven dynamicity for ciphered polynomial with pub-

lic verifiability raises security issues and reminds an open problem.

Still, we have also presented a protocol verifying the outsourced

evaluation of secret polynomials. Client verification is of the order

of a fewmilliseconds and is faster than direct polynomial evaluation

over a small finite field, as soon as the degree of the polynomial is

larger than a few thousand.

This enables us in turn to reduce by several orders of magnitude

the communications, Client storage and Client computations for

state-of-the-art low Server-storage dynamic proofs of retrievability.
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A OVERVIEW OF VESPO EXCHANGES
We here recall in Table 12, the summary of the exchanges of Algo-

rithms 3 to 8. This gives an overview of our verifiable & dynamic

evaluation of ciphered polynomials.

With this summary we can refine in Table 11 the results of Ta-

ble 6 if we are using Paillier for the LHE (a Paillier encryption is 1

modular exponentiation and 3 modular multiplications, a Paillier

decryption is 1 exponentiation and 1 multiplication, homomorphic

multiplication is an exponentiation and homomorphic addition is

a multiplication; then we approximate Algorithm 1 with 6 expo-

nentiationsand 40 modular operations and we approximate the

application of the pairing bilinear map with 1 exponentiation).

Table 11: Dominant terms in operations counts for Table 12
using Paillier (a value of 𝑥 approximates in fact 𝑥 ` 𝑜p𝑥q; then “Hash”
counts calls to the cryptographic hash function, “mexp” is for modular expo-
nentiations, “group” is for the other arithmetic operations).

Alg.

Server Client

group mexp Hash group mexp Hash

3 0 0 2𝑑 17𝑑 6𝑑 2𝑑

4 0 0 0 1 1 ⌈log
2
p𝑑q⌉

5 0 0 ⌈log
2
p𝑑q⌉ 18 16 2⌈log

2
p𝑑q⌉

8 3 0 0 8 8 0

6/7 3𝑑 4𝑑 0 52 11 0

B PROOFS OF THE PROPOSITIONS AND
THEOREMS

Now, we give the proofs of the propositions in Sections 3 and 4

and of our main theorems for our private and dynamic ciphered

polynomials evaluation protocol and our low Server storage and

audit complexity DPoR.

Proposition 9 (From page 359). The protocol of Table 3 is correct
and sound under the 𝑑-BSDH assumption.

Proof. Correctness. First, Z “ 𝑊 ⊺ d 𝑥 “
∏𝑑

𝑖“0
𝐸p𝑝𝑖q

p𝑟 𝑖q “

𝐸p𝑃p𝑟qq. Then, second, b “ 𝐻⊺ d 𝑥 “
∏𝑑´1

𝑘“0
𝑔
𝑇𝑘,𝑃 p𝑠q𝑟𝑘

2
“ 𝑔

𝑄𝑃 p𝑠,𝑟q

2
,

by Lemma 8. Therefore, the verification is that𝑔
𝑄𝑃 p𝑠,𝑟qp𝑠´𝑟q`𝑃p𝑟q

𝑇

?

“

𝑔
𝑃p𝑠q

𝑇
and this is guaranteed by Equation (7).

Soundness. Let
〈
𝑔2, 𝑔

𝑠
2
, 𝑔𝑠

2

2
, . . . , 𝑔𝑠

𝑡

2

〉
P G𝑡`1

2
be a t-BSDH in-

stance and suppose that there exists an attack to the Audit protocol.

Let r𝑝0, . . . , 𝑝𝑡 s
$

Ð Z𝑡`1

𝑝 for a degree 𝑡 polynomial and 𝑑 “ 𝑡 .

Then compute directly𝑊 “ 𝐸p𝑃q, 𝑇𝑘,𝑃 “
∑𝑡
𝑖“𝑘`1

𝑝𝑖𝑌
𝑖´𝑘´1 “∑𝑡´1´𝑘

𝑗“0
𝑡𝑘,𝑗𝑌

𝑗
and homomorphically compute:

K “ 𝑒

(
𝑔1;

〈
𝑔2, 𝑔

𝑠
2
, 𝑔𝑠

2

2
, . . . , 𝑔𝑠

𝑡

2

〉
d r𝑝0, . . . , 𝑝𝑡 s

)
,

together with 𝐻 “ rℎ𝑘 s, where ℎ𝑘 “

〈
𝑔2, 𝑔

𝑠
2
, 𝑔𝑠

2

2
, . . . , 𝑔𝑠

𝑡´1´𝑘

2

〉
d

r𝑡𝑘,0, . . . , 𝑡𝑘,𝑡´1´𝑘 s. These inputs are indistinguishable from a generic

setup of the protocol of Table 3 and can thus be given to its attacker.
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Table 12: Private & Dynamic, Ciphered polynomial evaluation, summarizing Algorithms 3 to 8.

Server Communications Client

Setup

G1,G2,G𝑇 groups of order 𝑝 𝑃 P Z𝑝 r𝑋 s, 1 ď 𝑑˝p𝑃q ď 𝑑

pairing 𝑒 to G𝑇 , 𝑠
$

Ð Z𝑝z{0, 1}, 𝛼, 𝛽 $

Ð Z2

𝑝 , Φ
$

Ð Z2ˆ2

𝑝 ,

gen. 𝑔1, 𝑔2, 𝑔𝑇 “ 𝑒p𝑔1;𝑔2q s.t. p𝑠Φ ´ 𝐼2q P 𝐺𝐿2pZ𝑝q

Let 𝑃p𝑋 q Ð
∑𝑑
𝑖“0

𝑋 𝑖p𝑝𝑖𝛼 ` Φ𝑖𝛽q

Alg. 3 𝑊 Ð 𝐸𝑝𝑘p𝑃q, 𝑆 Ð r𝑔𝑠
𝑘

1
s
𝑑´1

𝑘“0
PG𝑑

1

¯K Ð 𝑔
𝑃p𝑠q

𝑇
PG2

𝑇
, 𝐻 Ð r𝑔

𝑝𝑖
2

s𝑑
𝑖“1

PG2ˆ𝑑
2

𝑇𝑊 Ð MTTreep𝑊 q L
𝑊,𝐻, 𝑆

9999999999999999 𝑑𝑝 Ð 𝑑 mod 𝜑p𝑝q, 𝑟𝑊 Ð MTRootp𝑊 q

Output : 𝑠𝑡S “ {𝑝𝑘,G1,2,𝑇 , 𝑒,𝑊 ,𝑇𝑊 , 𝑆, 𝐻 } 𝑠𝑡C “ {𝑝𝑘, 𝑠𝑘,G1,2,𝑇 , 𝑔1,2,𝑇 , 𝑒, 𝑠, 𝛼, 𝛽,Φ, ¯K, 𝑟𝑊 , 𝑑𝑝 }

Read
L

𝑖
9999999999999999

Alg. 4 𝐿𝑖 Ð MTUnclesp𝑖,𝑊 ,𝑇𝑊 q
𝑤𝑖 , 𝐿𝑖

9999999999999999K 𝑟𝑊
?

“ MTpathRootp𝑖,𝑤𝑖 , 𝐿𝑖q

Output : 𝑝𝑖 Ð 𝐷𝑠𝑘p𝑤𝑖q or reject

Update
L
𝑖,𝑤 1

𝑖
, 𝑖 𝑓 p𝑖 ą 0q𝐻 1

𝑖
9999999999999999 𝑤 1

𝑖
Ð 𝐸𝑝𝑘p𝑝1

𝑖
q, 𝐻 1

𝑖
Ð 𝑔

𝑝1
𝑖𝛼`Φ𝑖𝛽

2

Alg. 5 𝐿𝑖 Ð MTUnclesp𝑖,𝑊 ,𝑇𝑊 q
𝑤𝑖 , 𝐿𝑖

9999999999999999K 𝑟𝑊
?

“ MTpathRootp𝑖,𝑤𝑖 , 𝐿𝑖q

𝑇𝑊 Ð MTupdLeafp𝑖,𝑤 1
𝑖
,𝑇𝑊 q 𝑟𝑊 Ð MTpathRootp𝑖,𝑤 1

𝑖
, 𝐿𝑖q

𝑤𝑖 Ð 𝑤 1
𝑖

Δ Ð 𝑔
p𝑝1

𝑖´𝑝𝑖q𝛼

2
,

¯Kr 𝑗s Ð 𝑒p𝑔1,Δr 𝑗s𝑠
𝑖
q ¨ ¯Kr 𝑗s

Output : 𝑠𝑡S “ {𝑝𝑘,G1,2,𝑇 , 𝑒,𝑊 ,𝑇𝑊 , 𝑆, 𝐻 } 𝑠𝑡C “ {𝑝𝑘, 𝑠𝑘,G1,2,𝑇 , 𝑔1,2,𝑇 , 𝑒, 𝑠, 𝛼, 𝛽,Φ, ¯K, 𝑟𝑊 , 𝑑𝑝 }
or reject

𝛿Update If 𝑖 ą 0, 𝐻 1
𝑖
r 𝑗s Ð Δr 𝑗s ¨ 𝐻𝑖 r 𝑗s for 𝑗“1..2 L

𝑖, 𝑒𝛿 ,Δ
9999999999999999 𝑒𝛿 Ð 𝐸𝑝𝑘p𝛿q, Δ Ð 𝑔𝛿𝛼

2

Alg. 8 𝑤𝑖 Ð 𝑤𝑖 ¨ 𝑒𝛿
¯Kr 𝑗s Ð 𝑒p𝑔1;Δr 𝑗s𝑠

𝑖
q ¨ ¯Kr 𝑗s

Output : 𝑠𝑡S “ {𝑝𝑘,G1,2,𝑇 , 𝑒,𝑊 , 𝑆, 𝐻 } 𝑠𝑡C “ {𝑝𝑘, 𝑠𝑘,G1,2,𝑇 , 𝑔1,2,𝑇 , 𝑒, 𝑠, 𝛼, 𝛽,Φ, ¯K, 𝑑𝑝 }

Eval/Verify Form 𝑥 Ð r1, 𝑟 , 𝑟2, . . . , 𝑟𝑑 s
⊺

L
𝑟

9999999999999999 For 𝑟 P Z𝑝 s.t. p𝑟Φ ´ 𝐼2q P 𝐺𝐿2pZ𝑝q

Alg. 6/7

Z Ð 𝑊 ⊺ d 𝑥 𝑐 Ð pp𝑟Φq𝑑𝑝`1 ´ 𝐼2qp𝑟Φ ´ 𝐼2q´1𝛽

¯br 𝑗s Ð
∏𝑑

𝑖“1

∏𝑖´1

𝑘“0
𝑒p𝑆𝑖´𝑘´1

;𝐻𝑖 r 𝑗sq
𝑥𝑘
, 𝑗“1..2

Z , ¯b
9999999999999999K ¯br 𝑗s𝑠´𝑟𝑔

𝐷𝑠𝑘 pZ q𝛼r𝑗s`𝑐r𝑗s

𝑇

?

“ ¯Kr 𝑗s for 𝑗“1..2

Output : 𝐷𝑠𝑘pZ q or reject

Finally, select a random evaluation point 𝑟 and compute pZ , bq.

The supposition is that an attacker of the Audit part of the proto-
col can get pZ 1, b 1q, with some advantage, such that p𝐷pZ 1q, b 1q ‰

p𝐷pZ q, bq, even though both would be passing the verification. Now,

on the one hand, if 𝐷pZ 1q “ 𝐷pZ q, then b ‰ b 1
and it must

be that 𝑒p𝑔
𝑠´𝑟
1

; bq𝑔
𝐷pZ q

𝑇
“ K and 𝑒p𝑔

𝑠´𝑟
1

; b 1q𝑔
𝐷pZ q

𝑇
“ K . There-

fore, if 𝑟 ‰ 𝑠 , then 𝑒p𝑔
𝑠´𝑟
1

; bq “ 𝑒p𝑔
𝑠´𝑟
1

; b 1q contradicts the fact

that b ‰ b 1
; so 𝑟 “ 𝑠 , and the secret can be exposed. On the

other hand, if 𝐷pZ 1q ‰ 𝐷pZ q, then it means that we must have

the equality p𝑒p𝑔1; bq{p𝑒p𝑔1; b 1qq𝑠´𝑟 “ 𝑔
𝐷pZ 1q´𝐷pZ q

𝑇
and therefore:(

𝑒p𝑔1;bq

𝑒p𝑔1;b 1q

) 1

𝐷pZ 1q´𝐷pZ q
“ 𝑔

1

𝑠´𝑟

𝑇
. This proves that the adversary would

solve the t-BSDH

〈
´𝑟, 𝑒p𝑔1;𝑔2q

1

𝑠´𝑟

〉
challenge with the same ad-

vantage. □

From this proof, one can see that using a decipherable partially

homomorphic function for the coefficients of 𝑃 is required for the

soundness (otherwise one could not compute the exponentiation

on b{b 1
).

Proposition 10 (From page 360). The protocol of Table 4 is correct
and sound under the 𝑑-BSDH and CRHF assumptions.

Proof. Correctness. First, (8) gives the correctness of Read. For
Update, (9) provides the correctness of the hash tree. Then, with

𝛿 “ 𝑝1
𝑖

´ 𝑝𝑖 , the new polynomial is 𝑃 1p𝑠q “ 𝑃p𝑠q ` 𝛿𝑠𝑖 , so that

the key is updated as K 1
1

“ K1 ¨ 𝑒p𝑔𝛿𝑠
𝑖
;𝑔q. Now for the evaluation,

first, b “
∏𝑑

𝑖“1

∏𝑖´1

𝑘“0
𝑆
𝑝𝑖𝑥𝑘
𝑖´𝑘´1

“ 𝑔
∑∑

𝑠𝑖´𝑘´1𝑝𝑖𝑥𝑘 “ 𝑔𝑄𝑃 p𝑟,𝑠q
and,

second, we have that:

𝑒pb ;K2{𝑔𝑟 q𝑒p𝑔;𝑔qZ “ 𝑒pb ;𝑔𝑠´𝑟 q𝑒p𝑔;𝑔q𝑃p𝑟q “

𝑒p𝑔;𝑔q𝑄𝑃 p𝑟,𝑠qp𝑠´𝑟q`𝑃p𝑟q “ 𝑒p𝑔;𝑔q𝑃p𝑠q .

Hence we see that 𝑒pb ;K2{𝑔𝑟 q𝑒p𝑔;𝑔qZ “ K1 and, therefore, the

protocol is correct.

Soundness. First for the Read/Update parts. Suppose an attacker
can provide 𝑝1

𝑖
‰ 𝑝𝑖 that passes the Merkle root check. This would

violate the soundness property of Equation (10), which is derived

from the collision resistance of the underlying hash function.
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Second, for the Eval/Verify parts. Let

〈
𝑔,𝑔𝑠 , 𝑔𝑠

2

, . . . , 𝑔𝑠
𝑡
〉

P

G𝑡`1
be a t-BSDH instance. For the setup phase, just set 𝑑 “ 𝑡

and then randomly select r𝑝0, . . . , 𝑝𝑡 s
$

Ð Z𝑡`1

𝑝 . Then set 𝑆 “〈
G, 𝑔, 𝑔𝑠 , 𝑔𝑠

2

, . . . , 𝑔𝑠
𝑡
〉
and

K1 “ 𝑒

(〈
𝑔,𝑔𝑠 , 𝑔𝑠

2

, . . . , 𝑔𝑠
𝑡
〉

d r𝑝0, . . . , 𝑝𝑡 s;𝑔

)
.

These inputs are indistinguishable from generic inputs to the proto-

col of Table 4. For any number of update phase, randomly select 𝑝1
𝑖

(or 𝛿), receive 𝑝𝑖 and 𝐿𝑖 from the Server, computeK 1
1

“ K1𝑒p𝑆𝛿
𝑖

;𝑔q

and refresh 𝑟𝑝 . Finally, select a random evaluation point 𝑟 , com-

pute pZ , bq and call an attacker of the Eval part of the protocol

to get pZ 1, b 1q such that pZ 1, b 1q ‰ pZ , bq, even though both are

passing the verification. If Z 1 “ Z , then as b ‰ b 1
it must be

that 𝑟 “ 𝑠 and the secret is revealed; otherwise, Z 1 ‰ Z and we

have both 𝑒pb 1
;K2{𝑔𝑟 q𝑒p𝑔;𝑔qZ

1

“ K1, on the one hand, and K1 “

𝑒pb ;K2{𝑔𝑟 q𝑒p𝑔;𝑔qZ , on the other hand. This gives 𝑒p
b 1

b
;𝑔𝑠´𝑟 q “

𝑒p𝑔Z´Z 1

;𝑔q and thus 𝑒

(
p
b 1

b
q𝑠´𝑟

;𝑔

)
“ 𝑒p𝑔Z´Z 1

;𝑔q. Finally, we have

that: 𝑒

(
b

b 1 ;𝑔

) 1

Z 1´Z
“ 𝑒p𝑔;𝑔q

1

𝑠´𝑟 . This proves that the adversary

would solve the t-BSDH

〈
´𝑟, 𝑒p𝑔;𝑔q

1

𝑠´𝑟

〉
challenge with the same

advantage. □

Proposition 11 (From page 360). In Table 4, the setup protocol
requires O(𝑑) arithmetic and hashing operations; the update protocol
requiresO(𝑙𝑜𝑔p𝑑q) arithmetic and hashing operations; the verification
protocol requires O(1) communications and arithmetic operations for
the Client, and O(𝑑) arithmetic operations for the Server.

Proof. The setup phase requires the Client to perform one poly-

nomial evaluation and 𝑑 exponentiations for 𝑂p𝑑q arithmetic oper-

ations, together with the computation of the Merkle tree on both

sides, for 𝑂p𝑑q hashing operations.

For the update phase, the Client computes the root of the Merkle

tree from the new value 𝑝𝑖 ` 𝛿 and the path 𝐿𝑖 given by the Server

in O(logp𝑑q). She also has to compute an exponentiation and a

product in Z𝑝 r𝑋 s, this is in O(1).
For the verification phase, communications are just 3 group

elements. The Client work is only 2 pairing and 2 exponentiations

and 1 product.

Now for the Server. First, computing Z is 𝑑 ` 1 homomorphic

multiplications and 𝑑 additions. Second, the Server has to compute

b “
∏𝑑

𝑖“1

∏𝑖´1

𝑘“0
𝑆
𝑝𝑖𝑥𝑘
𝑖´𝑘´1

“
∏𝑑

𝑖“1

(∏𝑖´1

𝑘“0
𝑆𝑟

𝑘

𝑖´𝑘´1

)𝑝𝑖
. Therefore,

one can use a Horner-like prefix computation [41]: consider 𝑡0 “

1, and 𝑡𝑖 “ 𝑆𝑖´1 ¨ 𝑡𝑟
𝑖´1

, then 𝑡1 “ 𝑆0, 𝑡2 “ 𝑆1𝑆
𝑟
0
and therefore

𝑡𝑖 “ 𝑆𝑖´1p𝑆𝑖´2 . . . p𝑆2p𝑆1𝑆
𝑟
0
q𝑟 q𝑟 . . .q𝑟 “

∏𝑖´1

𝑘“0
𝑆𝑟

𝑘

𝑖´𝑘´1
. Thus one

can use the following Algorithm 9 to compute b .

Computing b then requires at most 2𝑑 exponentiations and 2𝑑

multiplications. □

Theorem 14 (From page 362). Under the 𝑑-BSDH, DLOG, CRHF
and DLM security assumptions of Section 2, the protocol composed
of Algorithms 3 to 8 (summarized in Table 12) is a fully secure veri-
fiable polynomial evaluation scheme, as defined in Definition 2 and
the complexity bounds of its algorithms are given in Table 6.

Algorithm 9 Homomorphic linear prefix evaluation of the differ-

ence polynomial

Input: 𝑟 , r𝑆0, . . . , 𝑆𝑑´1
s, r𝑝1, . . . , 𝑝𝑑 s.

Output: b “
∏𝑑

𝑖“1

(∏𝑖´1

𝑘“0
𝑆𝑟

𝑘

𝑖´𝑘´1

)𝑝𝑖
.

1: b “ 1; 𝑡 “ 1;

2: for 𝑖 “ 1 to 𝑑 do
3: 𝑡 Ð 𝑆𝑖´1 ¨ 𝑡𝑟 ; {𝑡𝑖 “

∏𝑖´1

𝑘“0
𝑆𝑟

𝑘

𝑖´𝑘´1
}

4: b Ð b ¨ 𝑡𝑝𝑖 .

5: end for
6: return b .

Proof. First of all, we have that:{
𝐻 1
𝑖

“ 𝐻𝑖 .Δ
𝑤 1
𝑖

“ 𝑤𝑖 .𝑒𝛿
ô

{
Δ “ 𝐻 1

𝑖
.𝐻

´1

𝑖

𝑒𝛿 “ 𝑤 1
𝑖
.𝑤

´1

𝑖

Therefore, it is equivalent to consider the protocols using only

Algorithm 5 or only Algorithm 8 or any combinations of both. Also,

the Read part is identical to that of Table 4 and so are the associated
security proofs.

Correctness. For the Update operation, 𝑃 1p𝑠q “ 𝑃 1p𝑠 ¨ 𝐼2q “

p𝑝1
𝑖
´𝑝𝑖q𝑠

𝑖𝛼`𝑃p𝑠 ¨𝐼2q and 𝑒p𝑔1;𝑔
𝑃 1p𝑠¨𝐼2qr𝑗s

2
q “ 𝑒p𝑔1;𝑔

𝑠𝑖p𝑝1
𝑖´𝑝𝑖q𝛼r𝑗s

2
q¨

𝑒p𝑔1;𝑔
𝑃p𝑠¨𝐼2qr𝑗s

2
q “ 𝑒p𝑔1; p𝐻 1

𝑖
r 𝑗s¨𝐻𝑖 r 𝑗s

´1q𝑠
𝑖
q¨𝑔

𝑃p𝑠qr𝑗s

𝑇
“ 𝑒p𝑔1; p𝐻 1

𝑖
r 𝑗s¨

𝐻𝑖 r 𝑗s
´1q𝑠

𝑖
q ¨ ¯Kr 𝑗s for 𝑗 “ 1..2. Finally, We use the left hand

side of Lemma 8 and Equation (7). Applied to 𝑃 , this is:
¯b “∏𝑑

𝑖“1

∏𝑖´1

𝑘“0
𝑒p𝑆𝑖´𝑘´1

;𝐻𝑖q
𝑥𝑘 “

∏𝑑
𝑖“1

∏𝑖´1

𝑘“0
𝑒p𝑔𝑠

𝑖´𝑘´1

1
;𝑔2

𝑃𝑖 q𝑟
𝑘
so

that
¯b “ 𝑒p𝑔1;𝑔2q𝑄𝑃 p𝑠¨𝐼2,𝑟 ¨𝐼2q

. Denote by 𝐺p𝑍q “
𝑍𝑑`1´1

𝑍´1
. Now

𝑃p𝑋 q “ 𝑃p𝑋 q𝛼 ` 𝐺p𝑋Φq𝛽 , then 𝑐 “ 𝐺p𝑟Φq𝛽 “ 𝐺p𝑟 ¨ 𝐼2Φq𝛽 and

thus 𝑃p𝑟 ¨𝐼2q “ 𝐷pZ q𝛼`𝑐 “ 𝑃p𝑟q𝛼`𝑐 . Therefore the verification in

Eval/Verify is indeed that 𝑔
𝑄𝑃 p𝑠¨𝐼2,𝑟 ¨𝐼2qp𝑠´𝑟q`𝑃p𝑟 ¨𝐼2q

𝑇

?

“ 𝑔
𝑃p𝑠¨𝐼2q

𝑇
“

𝑔
𝑃p𝑠q

𝑇
.

Complexity bounds. In terms of storage, apart from the pub-

lic/private key pair and the groups, the Client just has to store nine

elements mod 𝑝 , that is 𝑠 , 𝛼 ‰ r0, 0s, 𝛽 , and Φ, together with two

group elements,
¯K ; the Server has to store the polynomial ciphered

thrice, the ciphered powers of 𝑠 and the Merkle tree for the ciphered

polynomial: all this is 𝑂p𝑑q. In terms of communications, during

the Update phase the Client sends one index and three group ele-

ments, while receiving one group element and the list of its logp𝑑q

uncles. During the Eval/Verify phase, only four elements are ex-

changed. Finally, in terms of computations, the Server performs

𝑂p𝑑q operations for the Merkle tree generation at Setup; fetches
𝑂plogp𝑑qq uncles at Update; and 𝑂p𝑑q (homomorphic) operations

at Verify, thanks to Algorithm 9. For the Client, Update requires
𝑂plogp𝑑qq arithmetic operations to check the uncles and to com-

pute the exponentiation 𝑠𝑖 and Φ𝑖 , together with a constant number

of other arithmetic operations, independent of the degree. Similarly,

computing p𝑟Φq𝑑𝑝`1
also requires 𝑂p𝑚𝑖𝑛{logp𝑑q, logp𝑝q}q classi-

cal arithmetic operations thanks to Algorithm 2. This is O(1) if 𝑝
is considered constant and the rest is also a constant number of

operations that are independent of the degree.

Soundness. Let
〈
𝑔1, 𝑔

𝑠
1
, 𝑔𝑠

2

1
, . . . , 𝑔𝑠

𝑡

1

〉
P G𝑡`1

1
be a t-BSDH in-

stance. For the setup phase, randomly select 𝛼, 𝛽,Φ and r𝑝0, . . . , 𝑝𝑡 s.
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Then compute𝑊 “ 𝐸p𝑃q,𝐻 “ 𝑔𝑃
2
, and let 𝑆 “

〈
𝑔1, 𝑔

𝑠
1
, 𝑔𝑠

2

1
, . . . , 𝑔𝑠

𝑡

1

〉
.

Finally homomorphically compute:

¯K “ 𝑒

(〈
𝑔1, 𝑔

𝑠
1
, 𝑔𝑠

2

1
, . . . , 𝑔𝑠

𝑡

1

〉
d r𝑝0, . . . , 𝑝𝑡 s;𝑔2

)
.

These inputs are indistinguishable from random inputs to the pro-

tocol of Table 12. For any number of update phases, randomly

select 𝑖 and 𝑝1
𝑖
and compute 𝑤 1

𝑖
Ð 𝐸p𝑝1

𝑖
q, 𝐻 1

𝑖
Ð 𝑔

𝑝1
𝑖𝛼`Φ𝑖𝛽

2
and

Δ “ 𝑔𝛿𝛼
2

. Also compute K 1 “ 𝑒p𝑆
p𝑝1

𝑖´𝑝𝑖q𝛼

𝑖
;𝑔2q ¨ K . Finally, se-

lect a random evaluation point 𝑟 , compute pZ , ¯bq and call an at-

tacker of the Eval part of the protocol to get pZ 1, ¯b 1q such that

p𝐷pZ 1q, ¯b 1q ‰ p𝐷pZ q, ¯bq, even though both are passing the verifica-

tion. This means, again, that if, on the one hand, 𝐷pZ 1q “ 𝐷pZ q,

then
¯bp𝑠´𝑟q “ ¯b 1p𝑠´𝑟q

with
¯b ‰ ¯b 1

. Therefore 𝑠 “ 𝑟 and the

secret is exposed. If, on the other hand, 𝐷pZ 1q ‰ 𝐷pZ q then, as

𝛼 ‰ r0, 0s, set 𝑗 P {1, 2} such that 𝛼r 𝑗s ‰ 0 and we have again:(
¯br𝑗s
¯b 1r𝑗s

) 1

𝛼r𝑗sp𝐷pZ 1q´𝐷pZ qq
“ 𝑒p𝑔1;𝑔2q

1

𝑠´𝑟 . This proves that the adver-

sary would solve the t-BSDH

〈
´𝑟, 𝑒p𝑔1;𝑔2q

1

𝑠´𝑟

〉
challenge.

Privacy.We show that the protocol is hiding both 𝑝𝑖 and 𝑝𝑖 .

For 𝑝𝑖 first. Let 𝐵 “ 𝑔𝑏
2
be a DLOG instance. For the setup phase,

randomly select 𝑠, 𝛼,Φ, 𝑑 , r𝑝0, . . . , 𝑝𝑑 s and two non-zero elements

𝑏1, 𝑏2 P Z˚
𝑝 . Then compute𝑊 “ 𝐸p𝑃q, 𝐻𝑖 “ 𝑔

𝛼𝑝𝑖
2

𝐵Φ
𝑖 r𝑏1,𝑏2s

⊺
, 𝑆 “〈

𝑔1, 𝑔
𝑠
1
, 𝑔𝑠

2

1
, . . . , 𝑔𝑠

𝑡

1

〉
, and

¯K “ 𝑒p𝑔1;𝑔
𝛼𝑃p𝑠q

2
𝐵𝐺p𝑠Φqr𝑏1,𝑏2s

⊺
q. These

inputs are indistinguishable from random inputs to the protocol

of Table 12. For any update phase, randomly select 𝑖 and 𝑝1
𝑖
and

compute𝑤 1
𝑖

Ð 𝐸p𝑝1
𝑖
q, 𝐻 1

𝑖
Ð 𝑔

𝑝1
𝑖𝛼`Φ𝑖𝛽

2
and Δ “ 𝑔𝛼𝛿

2
. Also compute

¯K 1r 𝑗s “ 𝑒p𝑔1;Δ𝑠
𝑖
q¨ ¯Kr 𝑗s for 𝑗“1..2. Such updates are indistinguish-

able from random updates to the protocol of Table 12. Randomly

select any number of evaluation points 𝑟 and run the associated

Eval phases, randomly alternated with Update phases. Now, if

an attacker can find from this transcript one coefficient 𝑝𝑖 r 𝑗s for

𝑗 P {1, 2}, then compute 𝑏 “ p𝑝𝑖 r 𝑗s ´ 𝑝𝑖𝛼r 𝑗sq{pΦ𝑖 r𝑏1, 𝑏2s
⊺

qr 𝑗s and

the DLOG is revealed.

For 𝑝𝑖 , we proceed with a sequence of two indistinguishable

games. Under DLM security, cf. Definition 6, the parameter 𝐻𝑖 ,

or more precisely, the pair p𝐸p𝑝𝑖q, 𝑔
𝑝𝑖𝛼`Φ𝑖𝛽

2
q, is indistinguishable

from p𝐸p𝑝𝑖q, 𝑔
𝑝𝑖𝛼`Γ𝑖
2

q for some random 2-dimensional vectors Γ𝑖 .
Therefore the protocol of Table 12 is indistinguishable, as a whole,

from the same protocol whereΦ𝑖𝛽 is everywhere replaced by Γ𝑖 , and
𝑐 is (now inefficiently) computed as

∑
𝑟 𝑖Γ𝑖 . Now we prove that the

latter is hiding. Let 𝑍 “ 𝐸p𝜔q be the cipher of a secret𝜔 . Randomly

select𝑑 and r𝑢0, . . . , 𝑢𝑑 s
$

Ð Z𝑑`1

𝑝 . Compute𝑊𝑖 “ 𝑍 ¨𝐸p𝑢𝑖q “ 𝐸p𝜔`

𝑢𝑖q. Randomly select 𝛼 and ℎ𝑖 (so that Γ𝑖 “ log𝑔2

pℎ𝑖q ´ p𝜔 `𝑢𝑖q𝛼 P

Z2

𝑝 exists, but remains unknown) for 𝑖 “ 1..𝑑 . Randomly select 𝑠 and

compute
¯K “ 𝑒p𝑔1;𝐻 d r1, 𝑠, . . . , 𝑠𝑑 sq. For any number of updates,

randomly select 𝑝1
𝑖
, compute 𝑤 1

𝑖
Ð 𝐸p𝑝1

𝑖
q so that 𝛿 “ 𝑝1

𝑖
´ 𝑝𝑖 “

p𝜔`𝑢1
𝑖
q´p𝜔`𝑢𝑖q “ 𝑢1

𝑖
´𝑢𝑖 . Thus update𝑢

1
𝑖

Ð 𝛿`𝑢𝑖 and, therefore,

compute Δ “ 𝑔𝛿𝛼
2

and
¯K 1r 𝑗s “ 𝑒p𝑔1;Δr 𝑗s𝑠

𝑖
q ¨ ¯Kr 𝑗s for 𝑗“1..2.

Alternatively run such updates with random Eval phases; all this
is indistinguishable from a normal transcript of the protocol. Now

if from this transcript an attacker could find one 𝑝 𝑗 , then compute

𝜔 “ 𝑝 𝑗 ´ 𝑢 𝑗 and the encrypted value would be revealed. □

Theorem 15 (From page 365). The protocol of Table 9 is correct
and sound under the 𝑑-BSDH, DLOG, CRHF and DLM security as-
sumptions.

Proof. For the sake of simplicity, we here only consider the case

𝑡 “ 1, that is a single control vector.

Correctness. Assume that all the parties are honest. After each

update phase, thanks to the correctness of the Merkle hash tree

algorithms, we have 𝑤⊺ “ 𝐸p𝑢⊺𝑀q and ¯K “ 𝑒p𝑔1;𝑔𝑣𝜎
2

q. To see

this, suppose a modification of the database at indices 𝑖 and 𝑘 ,

and let 𝑀 1 “ 𝑀 ` p𝑀 1
𝑖𝑘

´ 𝑀𝑖𝑘qE𝑖𝑘 where E𝑖𝑘 is the single en-

try matrix with 1 at position p𝑖, 𝑘q. We have 𝑢⊺𝑀 1 “ 𝑢⊺𝑀 `

𝑢⊺p𝑀 1
𝑖𝑘

´ 𝑀𝑖𝑘qE𝑖𝑘 “ 𝑢⊺𝑀 ` 𝛾𝑖𝑒𝑘p𝑀 1
𝑖𝑘

´ 𝑀𝑖𝑘q where 𝑒𝑘 is the

𝑘-th canonical vector. Thus, 𝑣 1 “ 𝑣 ` 𝛾𝑖p𝑀 1
𝑖𝑘

´ 𝑀𝑖𝑘q𝑒𝑘 “ 𝑣 `

𝛿𝑒𝑘 satisfies 𝑢⊺𝑀 1 “ 𝑣 1⊺
. Only the 𝑘-th coefficients are differ-

ent in 𝑣 and 𝑣 1
, and in 𝑤 and 𝑤 1

as well. For the latter, 𝑤 1
𝑘

“

𝐸p𝑣 1
𝑘

q “ 𝐸p𝑣𝑘 ` 𝛿q “ 𝐸p𝑣𝑘q𝐸p𝛿q “ 𝑤𝑘𝐸p𝛿q. The Server thus

computes 𝑤 1
such that 𝑤 1 “ 𝐸p𝑢⊺𝑀 1q. Moreover, for 𝑗 “ 1..2,

𝑣 1r 𝑗s “ 𝑣r 𝑗s ` 𝛿𝛼r 𝑗s𝑒𝑘 , so that, similarly, 𝐻 1
𝑘

r 𝑗s “ Δr 𝑗s𝐻𝑘 r 𝑗s with

Δ “ 𝑔𝛿𝛼
2

, and
¯K 1r 𝑗s “ 𝑒p𝑔1;𝑔

𝑣1r𝑗s𝜎

2
q “ 𝑒p𝑔1;𝑔

𝑣r𝑗s𝜎

2
𝑔
𝛿𝛼r𝑗s𝑒𝑘𝜎

2
q “

¯Kr 𝑗s ¨ 𝑒p𝑔1;𝑔
𝛿𝛼r𝑗s𝑠𝑘

2
q “ ¯Kr 𝑗s ¨ 𝑒p𝑔1;Δr 𝑗s𝑠

𝑘
q. Now, concerning

the audit phase. Since we consider the polynomial evaluation as

a dotproduct, the application of Proposition 8 to our notations

gives: p𝑠 ´ 𝑟q

(∑𝑛´1

𝑖“1

∑𝑖´1

𝑘“0
𝑣𝑖𝑠

𝑖´𝑘´1𝑟𝑘
)

`
∑𝑛´1

𝑖“0
𝑣𝑖𝑟

𝑖 “
∑𝑛´1

𝑖“0
𝑣𝑖𝑠

𝑖
.

Thus we have:
¯b “

∏𝑛´1

𝑖“1

∏𝑖´1

𝑘“0
𝑒p𝑆𝑖´𝑘´1

;𝐻𝑖q
𝑥𝑘

so that also
¯b “∏𝑛´1

𝑖“1

∏𝑖´1

𝑘“0
𝑒p𝑔𝑠

𝑖´𝑘´1

1
;𝑔2

𝑣𝑖 q𝑟
𝑘

“ 𝑒p𝑔1;𝑔2q
∑𝑛´1

𝑖“1

∑𝑖´1

𝑘“0
𝑣𝑖𝑠

𝑖´𝑘´1𝑟𝑘
.

Moreover, 𝛼𝐷pZ q ` 𝑐 “ 𝛼𝑣𝑥 ` pp𝑟Φq𝑑`1 ´ 𝐼2qp𝑟Φ ´ 𝐼2q´1𝛽 “

𝛼𝑣𝑥 `
∑𝑛´1

𝑘“0
𝑟𝑘Φ𝑘𝛽 “ 𝑣𝑥 . Thus we have that

¯Kr 𝑗s “ 𝑔
𝑣r𝑗s𝜎

𝑇
“

𝑔
p𝑠´𝑟qp

∑𝑛´1

𝑖“1

∑𝑖´1

𝑘“0
𝑣𝑖 r𝑗s𝑠

𝑖´𝑘´1𝑟𝑘 q`𝑣r𝑗s𝑥

𝑇
. From the setup, this means

that
¯Kr 𝑗s “ ¯br 𝑗s𝑠´𝑟𝑔

𝐷pZ q𝛼r𝑗s`𝑐r𝑗s

𝑇
and, finally, 𝑢⊺𝑦 “ 𝑢⊺𝑀𝑥 “

𝑣⊺𝑥 .

Soundness. An attacker to the protocol must provide p𝑦1, Z 1, b 1q

such that p𝑦1, Z 1, b 1q ‰ p𝑦, Z , bq, but still 𝑢⊺𝑦1 “ 𝐷𝑠𝑘p ¯Z 1q, with a

non negligible advantage 𝜖 . There are two cases: if p𝐷𝑠𝑘p ¯Z 1q, b 1q ‰

p𝐷𝑠𝑘p ¯Z q, bq then the attacker had to break the polynomial evalua-

tion; otherwise, it must be that 𝑢⊺𝑦1 “ 𝑢⊺𝑦 with 𝑦1 ‰ 𝑦.

For the first case, Theorem 14 assesses the security of the poly-

nomial evaluation. For the second case, we consider 𝑇 “ 𝐸𝑝𝑘p𝑡q

the cipher of a secret 𝑡 by the homomorphic scheme. Here, we

use again the fact that the protocol of Table 9 is indistinguishable

as a whole from the same protocol where, within the polynomial

evaluation of, Φ𝑖𝛽 is everywhere replaced by a random Γ𝑖 . Further,
this is indistinguishable from a third protocol where, at each Write
of index 𝑖 , a new Γ1

𝑖
is also randomly redrawn and replaces Γ𝑖 in the

Client state. We thus continue the proof with this third game setting.

Now, using 𝑒ℓ the ℓ-th canonical vector of Z𝑚𝑝 , we can (abstractly)

consider �̃� “ 𝑢 ` 𝑡𝑒ℓ and 𝑣
⊺ “ �̃�⊺𝑀 “ p𝑢⊺ ` 𝑡𝑒ℓq𝑀 “ 𝑣 ` 𝑡𝑀ℓ,˚.

Then, for the Init phase, we can randomly select𝑚, 𝑛 and ℓ ď 𝑚.

Then also𝑀 P Z𝑚ˆ𝑛
𝑝 , 𝑢 P Z𝑚𝑝 , and compute 𝑣⊺ “ 𝑢⊺𝑀 . From this,

compute𝑤𝑘 “ 𝐸p𝑣𝑘q𝑇𝑀ℓ𝑘 “ 𝐸p𝑣𝑘 ` 𝑡𝑀ℓ𝑘q “ 𝐸p𝑣𝑘q. We also ran-

domly select 𝑠, 𝛼 and 𝐻𝑘 (so that Γ𝑘 “ log𝑔2

p𝐻𝑘q ´ 𝑣𝑘𝛼 exists, but

is unknown). For any Write phases, compute𝑤 1
𝑘

“ 𝑤𝑘𝑇
𝑀 1

ℓ𝑘
´𝑀ℓ𝑘
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and select randomly a Δ (so that𝐻 1
𝑘

r 𝑗s “ 𝐻𝑘 r 𝑗sΔr 𝑗s for 𝑗“1..2 now

correspond to a new Γ1
𝑘

“ log𝑔2

p𝐻 1
𝑘

q ´ 𝑣 1
𝑘
𝛼 still unknown). Finally,

the attacker provides a vector 𝑦1
such that both �̃�⊺p𝑦1 ´ 𝑦q “ 0

and 𝑦1 ‰ 𝑦 mod 𝑝 . Since ℓ is randomly chosen from 1..𝑚, the

probability that the vectors are distinct at index ℓ , in other words

that 𝑦1
ℓ

‰ 𝑦ℓ mod 𝑝 , is at least 1{𝑚. If this is the case, then, de-

noting 𝑧 “ 𝑦1 ´ 𝑦, we have that 𝑧ℓ ‰ 0 mod 𝑝 . Now, �̃�⊺𝑧 “ 0

implies that 𝑢⊺𝑧 ` 𝑡𝑧ℓ “ 0 so that the secret can be computed as

𝑡 ” ´𝑧ℓ
´1 ¨ p𝑢⊺𝑧q mod 𝑝 and the homomorphic cryptosystem is

subject to an attack with advantage 𝜖{𝑚. □

C PAILLIER’S CRYPTOSYSTEM AS THE
LINEARLY HOMOMORPHIC PRIMITIVE

Paillier’s homomorphic system works modulo some RSA composite

number 𝑁 . Now it is possible to use it to compute evaluations

modulo a different 𝑚 (for instance a prime), provided that 𝑚 is

small enough: consider the modulo 𝑚 operations to be over Z,
perform the homomorphic operations, and use𝑚 only to reduce

after decryption. This is illustrated in Algorithm 10.

Algorithm 10 Homomorphic modular polynomial evaluation with

a different Paillier modulus

Input: An integer 𝑟 P r0..𝑚 ´ 1s;

Input: A Paillier cryptosystem p𝐸, 𝐷q with modulus 𝑁 ą p𝑚´1q2
.

Input: p𝐸p𝑝0q, . . . , 𝐸p𝑝𝑑 qq P Z𝑑`1

𝑁
, such that @𝑖, 𝑝𝑖 P r0..𝑚 ´ 1s

and 𝑑 ă 𝑁
p𝑚´1q2

´ 1.

Output: 𝑐 P Z𝑁 such that 𝐷p𝑐q mod 𝑚 ” 𝑃p𝑟q mod 𝑚 ”∑𝑑
𝑖“0

𝑝𝑖𝑟
𝑖

mod 𝑚.

1: let 𝑥0 “ 1 and 𝑐0 “ 𝐸p𝑝0q;

2: for 𝑖 “ 1 to 𝑑 do
3: 𝑥𝑖 Ð 𝑥𝑖´1 ¨ 𝑟 mod 𝑚; {Now 𝑥𝑖 P r0..𝑚 ´ 1s}

4: 𝑐𝑖 Ð 𝑐𝑖´1 ¨ 𝐸p𝑝𝑖q
𝑥𝑖
; {Now 𝑐 “ 𝐸p

∑𝑖
𝑘“0

𝑝𝑖𝑥𝑖q}

5: end for
6: return 𝑐 “ 𝑐𝑑 .

Lemma 16. Algorithm 10 is correct.

Proof. If 0 ď 𝑝𝑖 ď p𝑚 ´ 1q, then as 𝑥𝑖 ” 𝑟 𝑖 mod 𝑚 is consid-

ered as an integer between 0 and 𝑚 ´ 1, then 0 ď
∑𝑑
𝑖“0

𝑝𝑖𝑥𝑖 ď

p𝑑 ` 1qp𝑚 ´ 1q2 ă 𝑁 by the constraints on 𝑑 and 𝑁 . Therefore∑𝑑
𝑖“0

𝑝𝑖𝑥𝑖 mod 𝑁 “
∑𝑑
𝑖“0

𝑝𝑖𝑥𝑖 P Z and now 𝐷p𝑐q mod 𝑚 “∑𝑑
𝑖“0

𝑝𝑖𝑥𝑖 mod 𝑚 ” 𝑃p𝑟q. □

D PARALLEL PREFIX-LIKE ALGORITHM FOR
THE SERVER

We here provide the parallelization we used for the Server audits in

our experiments. For the DPoR, the matrix-vector product part was

already parallelized in [5, Table 6], a Server auditing the 1TB data-

base in a few minutes. For the polynomial part, as the dimensions

become more rectangular, as we can see in Table 10, the Server’s

polynomial part is sometimes not negligible anymore, thus also

benefits from some parallelization. For this, we would need to par-

allelize both the homomorphic dot-product and the Horner-like

pairings. On the one hand, the former operations, line 1 in Algo-

rithm 6, can be blocked in independent exponentiations and final

multiplications in a binary tree. On the other hand, for the latter

operations, a standard “baby steps / giant steps” approach can be

employed for the iteration of lines 3-6 in Algorithm 6:

‚ First, for steps of size 𝑘 , compute 𝑡𝑟
𝑘
, then 𝑡𝑟

𝑘 𝑗
for 𝑗“1..p𝑑{𝑘q as a

parallel prefix; then iterates the multiplications by the coefficients

of 𝑆 in parallel for the 𝑑{𝑘 blocks.

‚ Second, then all the pairings could be computed in parallel and

their final multiplications performed again with a binary tree.

This is exposed in Algorithm 11.

Algorithm 11 Parallel Server Eval

Input: Group order 𝑝 , polynomial degree 𝑑 , evaluation point 𝑟 and

vectors𝑊 , 𝑆 , 𝐻 r 𝑗s, all as in Algorithm 6.

Input: Cutting parameter 𝑞 (e.g. can be the number of threads).

Output: SERVER Z , ¯br 𝑗s for 𝑗“1..2.

1: Let p𝑏, [q P N2
s.t. 𝑑 ` 1 “ 𝑏𝑞 ` [, with 0 ď [ ă 𝑞;

2: Set 𝑏𝑘 Ð

{
𝑘p𝑏 ` 1q 𝑘 “ 0..p[ ´ 1q

𝑘𝑏 ` [ 𝑘 “ [..𝑞
{𝑞 blocks of size 𝑏 ` 1 or

𝑏}

{PHASE A: 𝑟 𝑖 mod 𝑝 , for 𝑖 “ 0..𝑑}

3: 𝜌0 Ð 1, 𝜌1 Ð 𝑟 ,𝑖 Ð 1;

4: while 𝑖 ď 𝑑 do {⌈log
2
p𝑑q⌉ parallel steps}

5: parfor 𝑘 “ 1..𝑚𝑖𝑛p𝑖;𝑑 ´ 𝑖q do
6: 𝜌𝑖`𝑘 Ð 𝜌𝑖 ¨ 𝜌𝑘 mod 𝑝;

7: end parfor
8: 𝑖 Ð 2𝑖;

9: end while
{PHASE B: Z “ 𝑊 ⊺ d 𝑥 “

∏𝑑
𝑖“0

𝑤
p𝑟 𝑖 mod 𝑝q

𝑖
}

10: parfor 𝑘 “ 1..𝑞 do {𝑞 blocks of size 𝑏 or 𝑏 ` 1 in parallel}

11: Z𝑘 Ð
∏𝑏𝑘´1

𝑖“𝑏𝑘´1

𝑤
𝜌𝑖
𝑖

12: end parfor
13: Z Ð

∏𝑞

𝑘“1
Z𝑘 {⌈log

2
p𝑞q⌉ parallel steps}

{PHASE C: 𝑢ℓ “
∏ℓ

𝑘“0
𝑆𝑟

𝑘

ℓ´𝑘
, for ℓ “ 0..p𝑑 ´ 1q}

14: 𝑢0 Ð 𝑆0;

15: for 𝑘 “ 1 to 𝑞 ´ 1 do {𝑞 parallel steps}

16: 𝑢𝑏𝑘 Ð 𝑢
𝜌𝑏𝑘´𝑏𝑘´1

𝑏𝑘´1

∏𝑏𝑘
ℓ“𝑏𝑘´1`1

𝑆
𝜌𝑏𝑘´ℓ

ℓ
;

17: end for
18: parfor 𝑘 “ 0..p𝑞 ´ 1q do{𝑞 blocks of size 𝑏 or 𝑏 ´ 1 in parallel}

19: for ℓ “ 0 to 𝑏𝑘`1
´ 𝑏𝑘 ´ 1 do

20: 𝑢𝑏𝑘`ℓ`1
Ð 𝑆𝑏𝑘`ℓ`1

¨ 𝑢𝑟
𝑏𝑘`ℓ

;

21: end for
22: end parfor

{PHASE D:
¯b “

∏𝑑
𝑖“1

∏𝑖´1

𝑘“0
𝑒p𝑆𝑖´1´𝑘 ;𝐻𝑖q

𝑟𝑘
}

23:
¯b “ r1G𝑇 , 1G𝑇 s

⊺
P G2

𝑇
;

24: for 𝑗 “ 1 to 2 do
25: parfor 𝑘 “ 1..𝑞 do {𝑞 blocks of size 𝑏 or 𝑏 ` 1 in parallel}

26:
¯b𝑘 r 𝑗s Ð

∏𝑏𝑘´1

ℓ“𝑏𝑘´1

𝑒p𝑢ℓ ;𝐻ℓ´1r 𝑗sq

27: end parfor
28:

¯br 𝑗s Ð
∏𝑞

𝑘“1

¯b𝑘 r 𝑗s {⌈log
2
p𝑞q⌉ parallel steps}

29: end for
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Lemma 17. Algorithm 11 is correct, work-optimal with work𝑊𝑞 “

𝑂p𝑑q and runs in time𝑊𝑞{𝑞 ` 𝑜p𝑊𝑞q on 𝑞 processors.

Proof. Correctness of phases A, B and D stems directly from

the correctness of Algorithm 6. Phase C is correct since the new

variables 𝑢ℓ satisfy {𝑢0 “ 𝑆0, 𝑢ℓ`1 “ 𝑆ℓ`1𝑢
𝑟
ℓ
}.

Then, 𝑝 is the prime group order, and for any homomorphic

system satisfying Equation (2) we have:

‚ PhaseA: requires𝑑 multiplicationsmodulo 𝑝 with depth𝑂plogp𝑑qq

and the parallelism is thus only bounded by Brent’s law [17,

Lemma 2];

‚ Phase B: requires 𝑑 ` 1 homomorphic exponentiations and 𝑑

homomorphic multiplications with a depth of 𝑏 “ 𝑑{𝑞 such

operations and the parallelism is thus only bounded by Brent’s

law;

‚ Phase C: requires 𝑑 exponentiations and multiplications in G1.

But this is implemented in parallel with a depth of 𝑏 “ 𝑑{𝑞 such

operations, only after precomputing 𝑞 ´ 1 times 𝑏 operations

each with a depth of logp𝑏q;

‚ Phase D: requires 𝑑 pairings and 𝑑 ´ 1 multiplications in G𝑇 with

a depth of 𝑏 “ 𝑑{𝑞 such operations and the parallelism is thus

only bounded by Brent’s law.

So only Phase C requires more operations in parallel than in

sequence. And that number of operations is 𝑑 ` 𝑏p𝑞 ´ 1q expo-

nentiations and multiplications if ran on 𝑞 processors. This latter

work is in fact optimal for prefix-like computations as shown in

[62, Corollary 4] (see also [58]): indeed consider a family of binary

gates \𝜌𝑖 p𝑎, 𝑏q that on inputs 𝑎 and 𝑏 compute 𝑎 ¨ 𝑏𝜌𝑖 , that is one

multiplication and one exponentiation. They satisfy the conditions

of [62, Corollary 4] and thus computing all the 𝑢ℓ is lower bounded

by 𝑑p2 ´ 1{𝑞q calls to that gate when ran on 𝑞 processors. □

Remark 18. The accumulated independent exponentiations/pairings
of lines 11, 16 and 26 of Algorithm 11 can in fact be gathered in small
batches, where each batch can factorize some computations (e.g. using
a generalized Shamir trick with multiple exponentiations in G1, or
using NAF windows, etc.). Therefore, on the one hand, with respect to
a purely sequential computation, the extra work required by Phase
C (when used with more than 2 processors) is in fact batched. On
the other hand, the other part of Phase C cannot benefit from these
batches and is therefore dominant, but is more parallel. Therefore,
as shown also in Table 13, this allows us to reach, on multiple cores,
pretty good overall practical speed-ups.

Table 13: Parallel Server-side VESPo

Degree 5816 18390 58154 186093 426519 4026778

1 core 4.4s 13.5s 42.6s 141.7s 324.1s 3 064.8s

4 cores 1.2s 3.8s 11.8s 38.3s 87.8s 831.6s

8 cores 0.7s 2.0s 6.3s 19.9s 45.4s 428.9s

12 cores 0.5s 1.4s 4.2s 13.4s 30.6s 283.6s

This parallelism can be used to further reduce the Server latency

for large databases, to allow faster multi-user queries, and thus to

make the scheme even more practically relevant.

E POST-QUANTUM HOMOMORPHIC
ROUTINES

The use of linearly homomorphic encryption (e.g., Paillier) and

pairings means that, as implemented, our protocols are not resis-

tant to quantum attacks. In response to recent recommendations

by NIST and other standards organizations that all cryptographic

solutions be made quantum-resistant, we considered the impacts

of replacing these primitives with fully homomorphic encryption

(FHE) primitives which are believed to be quantum-resistant.

Unfortunately, there are two reasons why further work is needed

before we could recommend using FHE in our protocols. First,

as we discuss in detail below, our preliminary implementation

results are prohibitively slow using state of the art FHE libraries,

due apparently to the inherent non-linear nature of polynomial

evaluation on encrypted evaluation points. Second, our proof of

security as written reduces the soundness guarantee to the 𝑡-BSDH

problem, which has no analogue in FHE cryptosystems, and it is

not clear what different assumption on FHE primitives could be

used in its place.

We now detail our preliminary investigation into using FHE in

our protocols, to better explain the shortcomings mentioned above

and hopefully encourage future work in this direction.

We need two systems. First, where we use Paillier’s cryptosys-

tem, our protocols were already abstracted by the requirements

of Equation (2). It is thus possible to use instead any quantum-

safe linearly homomorphic primitives. There, Paillier’s routine with

larger parameters might be a possibility, see e.g. [11]. Other possibil-

ities for now is to use quantum-safe fully homomorphic encryption,

like BGV [16], here without bootstrapping.

Second, we need to modify the parts where we use pairings, in

order to replace them with quantum-safe routines. For this we first

abstract the requirements. Denote by E, and resp. D, the homo-

morphic encryption, resp. decryption, functions. We want those

to support homomorphic addition, homomorphic multiplication

between a ciphered message and a cleartext, together with depth-1

homomorphic multiplication between two ciphertexts and with

homomorphic equality testing (in a private setting, this latter re-

quirements can also for instance be implemented by decryption

and direct equality testing). We can notate these requirements as

follows:

DpEp𝑚1q ‘ Ep𝑚2qq “ 𝑚1 `𝑚2

DpEp𝑚1q𝑚2 q “ 𝑚1 ˆ𝑚2

DpEp𝑚1q b Ep𝑚2qq “ 𝑚1 ˆ𝑚2

Ep𝑚1q
?

“l Ep𝑚2q ðñ 𝑚1

?

“ 𝑚2

The pairings parts in Table 12 are now transformed as in Table 14:

The two important issues are then the security analysis and the

performance. First, the security analysis we have performed de-

pends on assumptions of pairings (namely the hardness of 𝑡-BSDH).

For Table 14 we would need to use some other assumption on the

chosen FHE primitives. Second, our protocol efficiency crucially

depends on efficient ciphertext-cleartext multiplication. We here

report on some attempts with the BGV system implemented with

the SEAL [52] and the HElib [39] libraries.
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Table 14: Abstraction of the pairings functionalities

Setup ¯K Ð Ep𝑃p𝑠qq, 𝑆 Ð rEp𝑠𝑘qs
𝑑´1

𝑘“0
,

𝐻 Ð rEp𝑝𝑖𝛼 ` Φ𝑖𝛽s𝑑
𝑖“1

Update ¯K Ð E
(
𝛼p𝑝1

𝑖
´ 𝑝𝑖q𝑠

𝑖
)

‘ ¯K
Eval ¯b Ð ‘𝑑

𝑖“1

(
‘
𝑖´1

𝑘“0
𝑆
𝑥𝑘
𝑖´𝑘´1

)
b 𝐻𝑖

Verify ¯b𝑠´𝑟 ‘ Ep𝐷pZ q𝛼 ` 𝑐q
?

“l ¯K

We were able to make our protocol work with these LWE-like

implementations but for now there is a prohibitive performance

price to pay, for two reasons:

(1) A first constraint in SEAL andHElib is the size of the cleartext

modulus which can usually not yet be very large, in practice

at most some small fraction of a machine word.

(2) A second limitation for these libraries, is that the ciphertext-

cleartext multiplication is not much more efficient than

ciphertext-ciphertext, since the noise in the polynomials

is similarly increasing in both cases.

More precisely, for the computation of our coefficient Z , we were

able to use batched arithmetic with both SEAL and HElib and this

is quite efficient, but works only for very small primes.

Differently, this is for the computation of our second coeffi-

cient, b , that the price to pay is much too prohibitive, even for

very small primes and (too) low security parameters. Indeed, to

compute b , our Server scheme involves computations of the form

𝑆3 ‘ 𝑆𝑟
2

‘ 𝑆𝑟
2

1
‘ 𝑆𝑟

3

0
, where 𝑟 is a cleartext and the 𝑆𝑖 are ci-

phertexts. On the one hand, if the 𝑟𝑘 are precomputed, this is of

constant multiplicative depth 1, even when counting ciphertext-

cleartext multiplications, but then the overall double-loop scheme

of Lemma 8 is quadratic-time. On the other hand, if b is instead

homomorphically computed with the linear prefix-like Algorithm 9,

the computations now involve in fact computations of the form

𝑆3 ‘ p𝑆2 ‘ p𝑆1 ‘ p𝑆𝑟
0
qq𝑟 q𝑟 . As mentioned, even though the in-

volved multiplications are only ciphertext-cleartext, in the available

libraries the noises increase linearly, much closer to a linear multi-

plicative depth. Bootstrapping is thus required a linear number of

times. For instance, the latency of a BGV bootstrapping operation

costs at least several dozen seconds [39]
4
. We provide in Table 15,

evaluations of our scheme using either SEAL and the quadratic,

depth-1 version, or HElib and the linear, but bootstrapped version.

Comparing with Table 7, we see that quantum-safe routines are for

now still several orders of magnitude slower.

The dominant cost in these experiments is in fact the bootstrap-

ping. Future work thus might be:

‚ Designing a post-quantum linearly homomorphic encryp-

tion with efficient ciphertext-cleartext multiplication

‚ Transforming the computation of b so that it is more batch-

able (a strategy could be to start by adapting the paralleliza-

tion presented in Appendix D, so that more identical opera-

tions could be performed simultaneously)

4
In contrast, some other libraries, such as FHEW [25] and TFHE [24], may have faster

bootstrapping operations but require to re-implement the homomorphic arithmetic

with boolean circuits.

Table 15: Post-quantum prototypes (SEAL modulo 1032193, with

123.1 eq. security, 4096-batched Z , and quadratic-time b ; HElib modulo 31, with

39.5 eq. security, 24-batched Z , and linear-time but bootstrapped b ).

Deg.

Server

Client

Z b bootstrap.

S
E
A
L

32 ă0.01s 2.03s 0

6.57ms

64 ă0.01s 5.45s 0

128 ă0.01s 20.95s 0

256 ă0.01s 82.14s 0

512 ă0.01s 325.87s 0

1024 ă0.01s 1 294.88s 0

2048 ă0.01s 5 171.84s 0

4096 ă0.01s 20 667.99s 0

H
E
l
i
b

32 0.01s 7.26s 0

283.44ms

64 0.01s 80.02s 13

128 0.02s 257.20s 45

256 0.03s 613.83s 109

512 0.05s 1 334.52s 238

1024 0.10s 2 765.61s 493

2048 0.20s 5 643.51s 1005

4096 0.39s 11 382.50s 2030

For instance, phase C in Algorithm 11 is solely responsible for

the multiplicative depth. Then we see that line 16 can be performed

with a depth of 𝑞, while line 20 can be performed with 𝑞 depth-𝑏

operations, with 𝑑 “ 𝑏𝑞. With some FHE implementations (as

reflected in Table 15) the first aggregated multiplications require

less bootstrapping. Thus, depending on their respective costs and

the actual architecture, some choices of 𝑏 (and 𝑞) might reduce the

overall required bootstraps. By looking at Tables 7 and 15, we see

that even such a (small) constant gain in bootstrapping is not yet

sufficient to compete with the pairings.
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