
DPrio: Efficient Differential Privacy with High Utility for Prio
Dana Keeler

Mozilla Corporation
San Francisco, California, USA

dkeeler@mozilla.com

Chelsea Komlo
University of Waterloo

Waterloo, Ontario, Canada
ckomlo@uwaterloo.ca

Emily Lepert
University of Waterloo

Waterloo, Ontario, Canada
elepert@uwaterloo.ca

Shannon Veitch
ETH Zürich

Zürich, Switzerland
shannon.veitch@inf.ethz.ch

Xi He
University of Waterloo

Waterloo, Ontario, Canada
xi.he@uwaterloo.ca

ABSTRACT
Private data collection systems such as Prio ensure data privacy
by distributing trust among a set of mutually trusted parties, to
allow for aggregate data collection without disclosing any single
client’s data in the clear. While systems like Prio are undergoing
widespread interest and adoption, these systems lack efficient mech-
anisms to provide differential privacy guarantees. In this work, we
present a lightweight method that we call DPrio to augment Prio
and related systems with differential privacy assurances while en-
suring higher data utility than existing noise generation protocols.
We compare our results against four related constructions in the
literature, and identify how DPrio achieves improved data utility
relative to the assumed number of dishonest clients and servers,
with only minimal (and batchable) server communication over-
head. We present several case studies and discuss considerations
for real-world implementations.

KEYWORDS
differential privacy, multi-party computation

1 INTRODUCTION
Prio [17] is a system which enables the collection of aggregate
statistics by a set of servers such that no individual server learns
anything about the clients’ data, except what they can infer from
the aggregate statistic. Prio ensures user privacy assuming all but
one of the Prio servers can be corrupted, and in the case of servers
corrupting data, simply requires the protocol to abort (i.e, the sys-
tem is not robust against misbehaving servers). Unlike prior related
schemes [23], Prio does not assume clients are acting honestly, and
so leverages secret-shared non-interactive proofs (SNIPS) to provide
robustness against malicious clients. In part due to its efficiency and
pragmatic threat model, Prio has already been deployed in practice
at scale, beginning with Mozilla [24] and most recently by the same
organization that supports Let’s Encrypt [2, 32].

Unfortunately, it is well known that reconstruction attacks can
be used to recover individuals’ data from aggregate statistics [28].

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(3), 375–390
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0086

One method of protecting individual clients’ data is with differen-
tial privacy (DP) [20], which allows for formal guarantees about
the privacy of any user’s data within a dataset. By adding noise
to aggregate statistics, we can obtain a guaranteed bound on the
amount of information disclosed about individual user records in
the aggregated query output.

By default, Prio does not ensure differential privacy. The authors
recommend a prior design by Dwork et al. [19] which describes a
multi-party computation protocol among a set of servers to generate
noise. However, in a distributed setting where network calls can fail
and servers maintain heavy load, such 𝑛-of-𝑛 MPC operations are
undesirable. Further, this mechanism requires server computation
and communication among servers that scales linearly relative to
the number of clients, as the operations performed by each client
in the “full participation” model must be partitioned among the
smaller set of servers. On the other hand, clients that add noise
locally by following a local DP mechanism [27] have undesirable
data utility tradeoffs. The local DP method also requires that clients
honestly add noise to their data and often results in data that is
inflexible to a variety of analysis. As such, an ideal DP construction
for a practical Prio deployment is one that achieves high utility as
in the central DP model (where noise is calculated and added by
the trusted data curator directly), with efficiency akin to local DP,
while still remaining within the original threat model of Prio.

In this work, we present a lightweight method that we call DPrio
to add differential privacy to Prio and related systems while en-
suring higher data utility and better efficiency than these prior
noise generation designs. In DPrio, all clients submit secret-shared
noise and servers perform a minimal MPC protocol to select which
client’s noise is added to the aggregate total. Happily, data utility
in DPrio is nearly identical to that achieved by central DP, while
client and server computation and communication remains con-
stant regardless of the number of participating clients or servers.
DPrio is a non-interactive protocol among clients, requires minimal
interaction among servers, and is differentially private against a
small proportion of adversarial clients when at least one server is
honest but curious. Notably, DPrio maintains the existing threat
model of Prio, in that only one server is assumed to be honest.

We also compare our results against two noise generation proto-
cols that we call Client-DP and Server-DP, modeled after existing
notions in the literature [23]. In Client-DP, clients submit a small
amount of noise, which sum to a Gaussian value. In Server-DP,
servers directly add Gaussian noise to their aggregated sums. DPrio

375

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0086

Proceedings on Privacy Enhancing Technologies 2023(3) Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon Veitch, and Xi He

achieves improved data utility over Client-DP and Server-DP with
respect to the assumed number of dishonest parties.
In summary, we present the following contributions:
• A careful analysis of DP schemes in the literature and their
efficiency when used with Prio.
• A lightweight DP mechanism that builds on top of Prio that
we call DPrio. DPrio achieves nearly identical data utility as
central DP while its efficiency remains constant relative to
the number of clients and servers. DPrio does not require
client interaction, but does require minimal server interac-
tion, which can be aggregated within one batched operation.
• We evaluate DPrio relative to existing constructions in the
literature as well as Client-DP and Server-DP. In summary,
DPrio achieves higher data utility than prior constructions.

2 PRELIMINARIES
This section defines the basic notions of privacy and security. We
denote the number of Prio servers as 𝑛 and the number of clients as
𝑁 . We useD to denote the domain for the collection of the records
from the clients.

2.1 Differential Privacy
Differential privacy (DP), introduced by Dwork et al. [20], is a
privacy notion that enables the calculation of aggregate statistics
on users’ data in a privacy-preserving manner.

Definition 2.1 (Differential Privacy). A randomized algo-
rithm𝑀 : D ↦→ Y is (𝜖, 𝛿)-differential privacy (DP), if for any pair
of neighbouring datasets 𝐷, 𝐷 ′ ∈ X𝑙 that differ by a single record,
and for any 𝑇 ⊆ Y we have

Pr[𝑀 (𝐷) ∈ 𝑇] ≤ 𝑒𝜖 Pr[𝑀 (𝐷 ′) ∈ 𝑇] + 𝛿. (1)

If 𝛿 ≠ 0, then we say the mechanism provides approximate differ-
ential privacy. Otherwise, when 𝛿 = 0, it satisfies pure differential
privacy. Intuitively, this definition ensures that a single record only
changes the output distribution by at most a factor of 𝑒𝜖 .

A common method of achieving differential privacy for numer-
ical statistics is the Laplace mechanism [19]. One calculates the
sensitivity, Δ, of the function 𝑓 they want to compute, which de-
termines the largest change to the function output (measured in 𝑙1
norm) by changing a single record, and then adds noise sampled
from a Laplace distribution with parameter Δ/𝜖 .

Theorem 2.1 (Laplace Mechanism [21]). Given a function 𝑓 :
D ↦→ R𝑘 , and a data set 𝐷 ∈ D, the Laplace Mechanism is defined
asM𝐿 (𝐷, 𝑓 (·), 𝜖) = 𝑓 (𝐷) + (𝑌1, ..., 𝑌𝑘) where 𝑌𝑖 are i.i.d. random
variables drawn from Lap(Δ/𝜖). This mechanism achieves 𝜖-DP.

Another additive method of achieving differential privacy is to
add Gaussian noise sampled from the normal distributionN(0, 𝜎2).
We call this Gaussian mechanism, and the sensitivity of the function
Δ in this mechanism uses 𝑙2-norm to measure the maximum change
in the query output when changing a record.

Theorem 2.2 (Gaussian Mechanism [21]). Let 𝜖 ∈ (0, 1) be arbi-
trary. For 𝑐2 > 2 ln(1.25/𝛿), the Gaussian Mechanism with parameter
𝜎 ≥ 𝑐Δ/𝜖 is (𝜖, 𝛿)-differentially private.

It is possible to formulate the Gaussian Mechanism such that
there is no restriction on 𝜖 [14]. Note that the sum of independent
normally distributed random variables is also normal. In particular,
if 𝑌1 ∼ N(0, 𝜎21) and 𝑌2 ∼ N(0, 𝜎

2
2) then 𝑌1 + 𝑌2 ∼ N(0, 𝜎21 + 𝜎

2
2).

That is, adding many Gaussians yields a Gaussian.
One convenient property of DP is its immunity to post-processing.

Intuitively, computing a function on the output of a DP algorithm
does not reduce the privacy guarantee on the sensitive input data.

Theorem 2.3 (Post-Processing [21]). Let 𝑀 : D ↦→ Y be an
(𝜖, 𝛿)-differentially private algorithm. Let 𝑓 : Y ↦→ Z be an arbitrary
randomized mapping. Then 𝑓 ◦𝑀 : D ↦→ Z satsifies (𝜖, 𝛿)-DP.

For the accuracy of DP mechanisms, we use the mean squared
error to measure the amount of noise added by each mechanism.

Definition 2.2. For some randomized mechanismM computing
a (noisy) query 𝑞 over a set of data 𝐷 ∈ D, we define the error to be

ErrorM = E[(𝑞(𝐷) −𝑀 (𝐷))2],
where 𝑞(𝐷) is the true value to the query and 𝑀 (𝐷) is the noised
value.

This work deals with the setting where parties are computa-
tionally bounded which requires the notion of computationally
differential privacy or SIM-CDP [41].

Definition 2.3 (SIM-CDP [41]). An ensemble {𝑓^ }, ^ ∈ N of
randomized functions 𝑓^ : D → R^ provides 𝜖^ -sim-cdp if there ex-
ists an ensemble {𝑓^ }, ^ ∈ N of 𝜖^ -differentially-private mechanisms
𝑓^ : D → R^ and a negligible function negl(·), such that for every
non-uniform ppt tm𝐴, every polynomial 𝑝 (·), every sufficiently large
^ ∈ N, every data set 𝐷 ∈ D of size at most 𝑝 (^), and every advice
string 𝑧^ of size at most 𝑝 (^), it holds that,

| Pr[𝐴^ (𝑓^ (𝐷)) = 1] − Pr[𝐴^ (𝐹^ (𝐷)) = 1] | ≤ negl(^) .
That is, 𝑓^ (𝐷) and 𝐹^ (𝐷) are computationally indistinguishable.

2.2 Secure Multi-party Computation
Secure multi-party computation (MPC) [7, 38] allows a set of partic-
ipants, each holding private data, to jointly compute a function over
their data without revealing to one another any information ex-
cept for the output. A common method of multi-party computation
relies on secret sharing schemes [10, 18, 48], in which an individ-
ual’s data is split into shares and divided amongst the participants
performing the secure computation. After executing the protocol,
participants can reconstruct the output of the function by applying
the corresponding reconstruction protocol of the secret sharing
scheme. Prio uses such protocols to compute the desired statistics
while ensuring privacy of each client’s data.

Prio uses affine-aggregatable encodings (AFEs) to efficiently en-
code data such that it is possible to compute the value of a function
given the sum of the encodings. There exist AFEs for sums [23, 36],
standard deviations [45], counts [13, 40], and least-squares regres-
sions [35] and Prio adapts these AFEs to compute private statistics.

The AFEs used by Prio also apply secret-shared non-interactive
proofs (SNIPs) [17] to verify the input of the clients. The interac-
tive version requires an interaction between a client (prover) and
multiple servers (verifiers) in which the client attempts to prove
to the servers that Verify(𝑥) → 1 without revealing any additional

376

DPrio: Efficient Differential Privacy with High Utility for Prio Proceedings on Privacy Enhancing Technologies 2023(3)

information about 𝑥 . The requirements of this system are analo-
gous to the properties of a zero-knowledge proof system [30] that
is non-interactive; however, Prio is designed for a setting where the
role of the verifier is partitioned among several mutually untrusted
parties. In particular, SNIPs ensure that the information encoded
in the SNIP is both valid (i.e, the information is encoded correctly)
and zero-knowledge (i.e, the servers learn nothing beyond whether
the SNIP is valid or not), assuming that all servers are honest.

In Prio, the server-to-server computation cost is independent
of the complexity of the circuit or the size of the value and is
basically the cost of computing Verify locally. The client-to-server
communication grows linearly with the size of the Verify circuit.

3 RELATEDWORK
We present related work in central and local differential privacy.
We then discuss Dwork-MPC, a multi-party protocol to generate
noise, and past work on assumptions of non-collusion.
Central Differential Privacy. In the central DP model, the data
curator is assumed to be trusted, and can view all client records. The
data curator then directly chooses the appropriate amount of noise
and adds it directly to the data. The US Census Bureau used central
DP to protect sensitive information in the 2020 census [1]. Program-
ming frameworks like PINQ [39] and Ektelo [51] are popular for
leveraging central DP. This model is able to guarantee high data
utility, a goal we similarly maintain for our constructions. However,
it is undesirable when no such a trusted data curator exists.
Local Differential Privacy. In local differential privacy, each client
sends their data along with DP noise to the central server. This
ensures that the clients’ data is differentially private to the central
server and the rest of the clients. Apple [49] and Google [27] use
this model to gather analytics from millions of users. The benefit of
local DP is that each client does not have to trust any other party.
The downside is that it introduces noise on the order of the number
of clients. This is only valuable in instances with a lot of data and
patterns that are still evident despite the noise.
Assumptions of Non-Collusion. To bridge the gap between the
low data utility induced by local DP and the high trust assumptions
by centralized DP, assumptions of non-collusion have been intro-
duced as a “best of both worlds” option. For example, introducing
an intermediate shuffler between clients and the aggregator can
provide anonymity and increase the utility [8, 26]. However, meth-
ods that rely on another party to perform shuffling still requires
that clients locally generate noise and thus cannot achieve utility
equivalent to the central model [5]. A different approach involves
secure computation [22] or encryption of noise to a separate trusted
party [47]. However, these models also introduce undesirably high
trust assumptions in single entities, whereas in the Prio model
requires distributing trust equally among the 𝑛 servers.
MPC Protocols for DP.While Prio does not define DP directly, the
authors reference anMPC protocol defined by Dwork et al. [19] that
we refer to as Dwork-MPC. In Dwork-MPC, noise can be generated
by anMPC protocol by servers, achieving (𝜖, 𝛿)-DP. In its base form,
Dwork-MPC assumes that at least 1/3 of servers are honest. Eriguchi
et al. [25] make improvements to the communication complexity
or success probability of the algorithms in Dwork-MPC; however,
they assume that all servers are honest but curious.

There exists other work which focuses on implementing spe-
cific DP algorithms in an MPC setting. For example, there exist
mechanisms for computing a differentially private median [11, 12],
sampling biased coins [16], and graph queries [46]. Our work differs
from these approaches that design protocols for a particular setting,
since we focus on a generalizable, robust, and scalable framework
that computes statistics accurately with DP guarantees.

4 SYSTEM GOALS
The goal of this work is to provide a lightweight mechanism on
top of an existing Prio architecture to allow for an efficient efficient
mechanism to ensure differential privacy (DP), but with high utility.
In otherwords, we aim for the best of bothworlds— a data collection
mechanism with DP guarantees, without resorting to heavyweight
MPC protocols or outputting noisy data with low utility.

4.1 Overview of Prio
We now describe Prio. This system will serve as the base on which
we build a differentially private solution. The system is executed in
the following steps, illustrated by Fig 1. While Prio does not impose
hard constraints on the number of clients and servers, it assumes a
small number of servers relative to clients. We provide a range of
case studies and their impact on performance in Section 8.

(1) Upload. Each client encodes its data in a prescribed man-
ner and splits its private encoded value into one share per
server employing an affine-aggregatable function (AFE). The
client then constructs a SNIP to prove to the server that the
encoding satisfies certain correctness properties. The client
forwards the shares of the proof and the encoded data to the
corresponding servers.

(2) Verify and Aggregate. Upon receiving data from clients,
the servers verify the SNIP to ensure that the encoding is
well-formed. If the data is well-formed, the servers locally
aggregate their shares.

(3) Publish. Once enough verified data has been received (e.g.,
if the protocol requires one million users’ data) and locally
aggregated, the servers reveal their local aggregations to an
analyst who can accumulate all of the data to obtain the final
statistic.

Figure 1: Overview of Prio. Clients send shares to servers
who validate the associated SNIP and aggregate the data.

The final statistic does not satisfy DP; however, the system is
equipped with several desirable properties. In particular, as long as
one server is honest, the Prio servers learn nothing about the clients’

377

Proceedings on Privacy Enhancing Technologies 2023(3) Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon Veitch, and Xi He

data except what they can learn from the output. The system is
robust if all servers are honest and is correct in the presence of
faulty or malicious clients due to the SNIP proofs. For reference, we
provide additional information on AFEs and SNIPs in Appendix A.

We will elaborate on these assumptions and these properties for
Prio next, and add new assumptions for achieving DP.

4.2 Threat Model
We follow a similar threat model as employed by Prio, but addi-
tionally require an assumption about the bound of honest clients
within the system as a whole. We now describe each party that
participates in the protocol and their capabilities now.

Data Analyst. The data analyst wishes to learn some aggregated
statistic about a user base. We consider the data analyst to be hon-
est but curious — in other words, they are expected to follow the
protocol of simply receiving aggregate statistics.

Clients. In Prio, clients submit zero-knowledge proofs that their
submission is acceptable for the query being performed, to ensure
robustness against misbehaving clients. In all of our schemes, we
make an assumption on the proportion of honest clients, and adjust
our construction accordingly.

Assumption 4.1. The number of clients 𝑁 is large, and the honest
but curious/malicious adversary can control the noise of only a small
number of the clients (𝑚).

While this assumption may be unacceptable for small-scale de-
ployments, it is certainly pragmatic in deployments of Prio for
applications such as modern web browsers.

Servers. Prio provides privacy for client’s data in the setting
where at least one server is honest but curious about the sensitive
data. However, Prio is not robust against misbehaving servers. In
other words, servers are trusted to follow the protocol; if they do not,
they can corrupt the correctness of the data that the data analyst
receives without detection. Our constructions maintain the same
robustness and privacy assumptions. In addition, we assume that
the servers do not collude with the client whose randomness is
chosen. We also show in Appendix C the optimal protocol when
this assumption is removed.

Assumption 4.2. No collusion between clients and severs.

While Assumption 4.2 may be perceived as overly strong, this
perspective does not necessarily extend to real-world deployments.
In the setting that DPrio targets — a large number of honest clients
and small number of servers — this assumption becomes quite
practical. Major browsers such as Firefox and Chrome which use
or plan to use Prio for data collection have millions if not billions
of users. While some malicious clients might exist and collude with
a server, the likelihood that their noise is chosen is small.

4.3 Limitations on Query Type
Prio uses affine-aggregatable encodings which enable the servers
to compute complex statistics by simply computing the sum of
the encodings. To maintain the simplicity of the schemes, we only
consider noise mechanisms which are additive, the most common
of which are the Laplacian and Gaussian mechanisms (Section 2).
As a result, the types of queries that our mechanisms support are
limited to those which are interpretable after adding noise. Our

constructions mainly apply to queries like sums, means, and counts.
We do not consider more complex statistics such as those working
on categorical data. We note that the existing Prio system also
does not consider some complex statistics, including the median.
Determining how to integrate DP for more complex statistics is an
interesting area of future work.

5 ADAPTING PRIORWORK TO PRIO
We now explain how prior work can be adapted to the Prio system
and the limitations of these solutions.

5.1 Dwork-MPC
In the setting of Prio where clients are assumed to interact only with
servers, differential privacy (DP) can be achieved using a variant of
Dwork-MPC [19]. In this variant of Dwork-MPC,𝑛 servers generate
noise from a Gaussian with mean zero and variance 3

2𝜎
2/𝑛, where

𝜎2 takes a lower bound from Theorem 2.2. This approach achieves
(𝜖, 𝛿)-DP when at least 2/3 servers are honest. Note that there is an
asymmetry between the assumed number of servers that honestly
follow the protocol in Prio’s threat model and Dwork-MPC, as Prio
requires at least one honest server, whereas Dwork-MPC assumes
that at least 2/3 servers are honest. While it is possible to generate
noise in a dishonest majority setting, doing so requires performing
𝑂 (𝑛) rounds as demonstrated in prior literature by Beaver and
Goldwasser [6, 29]. As such, we exclude such protocols from our
analysis, as the goal of this work is to provide a mechanism that is
not much more costly from plain Prio.

Dwork-MPC also proposes an variant to prevent a Byzantine
server from adding a significant large amount of noise to its share,
that we call Dwork-MPC*. This approach requires the servers to
cooperatively generate shares of many random bits that can be
transformed shares of a noise drawn from Binomial distribution
(close to a Gaussian noise). The number of high-quality random
bits for achieving (𝜖, 𝛿)-DP should be at least 𝑘 = 64 log(2/𝛿)/𝜖2
[19, §2.1]. All servers must verify that the shared values are in the
specified set. As these bits can be chosen adversarially by the server,
the shares of these bits must be verified and then combined with
high-quality public bits using Verifiable Secret Sharing (VSS) [44]
and a deterministic extractor. The main computation costs of the
protocol are the multiplications for verifying the shares’ member-
ship and the execution of VSS, and hence is proportional to the
number of the coins.

Prio requires the setting where each server “represents” a portion
of a set of 𝑁 clients (roughly 𝑁 /𝑛). Consequently, in Dwork-MPC*,
each server must take on the work of 𝑁 /𝑛 clients, and so is re-
sponsible for contributing at least 𝑘/𝑁 · 𝑁 /𝑛 = 𝑘/𝑛 random bits
and at least 𝑘/𝑛 · 𝑛 = 𝑘 number of shares and their correspond-
ing verification. For example, in a system with three servers, and
where (𝜖 = 0.01, 𝛿 = 10−6), each server would need to generate,
secret share, and verify roughly 1.3 · 106 number of random bit
and their verification, which adds a significant computation and
communication overheads to the servers in Prio.

5.2 Distributed Noise Generation
To align with the assumptions in Prio, we now describe two non-
interactive techniques that allow either only clients (Client-DP)

378

DPrio: Efficient Differential Privacy with High Utility for Prio Proceedings on Privacy Enhancing Technologies 2023(3)

or only servers (Server-DP) to generate noise using the Gaussian
Mechanism where noise sampled from the normal distribution
N(0, 𝜎2) is added to a value. These mechanisms are modeled after
prior work in the literature [23, 31] and can be applied to the Prio
system in order to add differential privacy.

5.2.1 Server-DP: Server Noise Generation. We now describe a mech-
anism to generate noise [31] involving only servers that we call
Server-DP. Server-DP uses the Gaussian mechanism and proper-
ties of independent normally distributed random variables. Let 𝑛
denote the number of servers and suppose that the sensitivity, Δ,
and privacy parameters (𝜖, 𝛿) have been established beforehand.
The protocol used by the servers to add noise is as follows.

(1) Each server samples noise from a normal distributionN(0, 𝜎2)
where 𝜎2 = 2 ln(1.25/𝛿)Δ2

𝜖2
.

(2) When locally summing the shares of data, the servers add
the noise they previously sampled, before revealing their
final sum.

Privacy. Prio ensures that privacy is achieved if at least one server
is honest. For Server-DP, (𝜖, 𝛿)-DP is achieved if at least one server
is honest, by Theorem 2.2. This is a generalization of Dwork-MPC
on the assumptions on the number of honest server. Even when
the adversary (e.g. the data analyst) controls (𝑛 − 1) servers and
(𝑁 − 1) clients, the input of the honest client is protected by the
(𝜖, 𝛿)-DP guarantee.
Utility. Suppose that the output of the mechanism is given to a
data analyst who does not collude with any servers. Server-DP
uses the Gaussian mechanism which has error 𝜎2 when noise is
sampled from a normal distribution N(0, 𝜎2). Assume that there
are 𝑛 servers. Then, the expected error of the result received by the
analyst for Server-DP is ErrorServer-DP = 𝑛(2 ln(1.25/𝛿))Δ2/𝜖2 .
Robustness. Server-DP is robust against adversarial clients when
at minimum one server is honest, and so fits within Prio’s threat
model. Additionally, Server-DP’s robustness includes the correct-
ness, soundness, and zero-knowledge properties assured by the use
of SNIPs. The malicious behavior by clients is limited to sending
incorrect input, but this can be verified by the use of SNIPs.
Extensions. If different assumptions on the number of servers that
collude are made, different noise can be added. Suppose that all
servers are honest, do not collude with one another, and do not
leak the noise that they included in the output. Then the noise
added to the output is normally distributed with parameters 𝜎2 =
𝑛 · 2 ln(1.25/𝛿)Δ

2

𝜖2
where 𝑛 is the number of servers. This ensures

(𝜖/
√
𝑛, 𝛿)-DP, but comes with tradeoffs with respect to utility. This

works well when 𝑛 is small. For example, Crypt𝜖 has two servers
and they add noise in this way [47]. In short, Server-DP introduces
noise that scales linearly relative to the number of honest servers
above the assumed threshold.

5.2.2 Client-DP: Client Noise Generation. We now describe a mech-
anism for clients to add noise [23, 31] that we call Client-DP. In this
mechanism, each client generates noise, and then all noise is added
to the client’s input and then directly included in the aggregate. We
describe the protocol in the most general case, where we assume
some number of malicious clients equal to 𝑚 (𝑚 could be 0). In
summary, all clients perform the following steps:

(1) Sample Gaussian noise from a normal distribution N(0,
(2 ln(1.25/𝛿) · (Δ/𝜖)2)/(𝑁 −𝑚)).

(2) Encode the Gaussian noise according to the same AFE as
the data so that Prio servers can aggregate it directly when
performing share aggregation.

Suppose there are 𝑁 clients, the sensitivity is Δ, and the privacy
parameters 𝜖, 𝛿 have been established. We want each client to gener-
ate noise from a normal distribution N(0, 𝜎2

𝑖
) such that

∑𝑁
𝑖=1 𝜎

2
𝑖
≥

2 ln(1.25/𝛿) · (Δ/𝜖)2. There are a several different options to do
this. First, we could let 𝜎𝑖 = (2 ln(1.25/𝛿) · (Δ/𝜖)2)/𝑁 . This is fairly
straightforward and ensures (𝜖, 𝛿)-DP if the clients honestly sample
noise. An alternative is to assume that some proportion of clients are
malicious, say𝑚 out of 𝑁 clients. Then, having clients sample from
a normal distribution with 𝜎𝑖 = (2 ln(1.25/𝛿) · (Δ/𝜖)2)/(𝑁 −𝑚)
would ensure that the noise provided by honest clients still pro-
vides (𝜖, 𝛿)-DP. Any additional noise added by malicious clients
can be treated as post-processing (Theorem 2.3), and consequently
does not affect the privacy guarantee. This choice depends on the
context of the system as well as the number of clients, since a large
number of clients means that even in the first case, a single client
who incorrectly samples noise will not largely affect the output or
the privacy guarantees. The value for𝑚 is provided to the client as
part of the noise parameters together with 𝜖, 𝛿,Δ. As before, clients
must submit proofs to show that the affine-aggregatable encoding
(AFE) of the noise is correctly generated.
Privacy. Client-DP ensures differential privacy by receiving Gauss-
ian noise from every client. This Gaussian noise is added up, and
the aggregate noise ensures DP. Malicious clients can be taken into
account by estimating how many exist in the system and increasing
the amount of noise honest clients submit to compensate for those
clients. This construction guarantees (𝜖, 𝛿)-DP.
Utility. Suppose that a data analyst, not colluding with any servers,
receives the output of the mechanism. Client-DP also uses the
Gaussian mechanism which has error 𝜎2 when noise is sampled
from a normal distribution N(0, 𝜎2). If we assume that there are𝑚
clients compromised by an honest but curious adversary (e.g, the
data analyst), and 𝑁 clients submit noise values, then we expect
the amount of error of the result received by the analyst to be
ErrorClient-DP = (𝑁 /(𝑁 −𝑚)) (2 ln(1.25/𝛿))Δ2/𝜖2.
Robustness. Client-DP’s robustness against client misbehavior
can be ensured by proving the correctness of client inputs via
SNIPs. However, servers will not be able to verify that the noise
was correctly sampled from the Gaussian distribution.
Extensions.We may consider extending this approach by apply-
ing zero-knowledge proofs as a way to verify that a program to
add noise was executed correctly, as is done in VerDP [43]. Unfor-
tunately, this approach is highly inefficient and would introduce
unreasonable overhead, even if it were able to be integrated into
the structure of the SNIPs used by Prio.

6 DPRIO: DIFFERENTIALLY PRIVATE
STATISTICS WITH HIGH UTILITY

We now describe our construction DPrio that incorporates differ-
ential privacy (DP) into the Prio system, and provide an overview
of the construction in Figure 2. At a high level, instead of many

379

Proceedings on Privacy Enhancing Technologies 2023(3) Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon Veitch, and Xi He

parties adding noise directly as is the case in local DP, Client-DP, or
Server-DP (which is efficient but decreases data utility) or servers
performing MPC operations to generate noise (which has high util-
ity but low efficiency), we propose the following system. Clients
generate noise, but rather than adding noise directly, they secret
share their noise (as their data is secret shared) to the Prio servers.
The Prio servers then perform an efficient two-round MPC protocol
(where the first round can be batched in a pre-processing phase, if
desired) to select a small number of clients’ noise to add. Section 7
shows that this achieves DP, while satisfying high data utility and
efficiency for clients and servers.

Figure 2: Overview of DPrio. Clients send shares to servers
who validate the associated SNIP, select a client’s noise, and

aggregate the data with the noise.

6.1 Client Noise Generation and Submission
Setup. Initially, a system administrator will determine the set of
queries DPrio will support in this instance. It will compute the
sensitivity for each of the queries, and decide upon 𝜖 and 𝛿 values.

Protocol. At the time of submitting data to Prio servers, clients
additionally perform the following steps:

(1) Sample noise 𝜌 ←$ F from a noise distribution F that leads
to a mechanism satisfying (𝜖, 𝛿)-DP.

(2) Encode the noise using the same encoding mechanism as
the statistic they are sending to the Prio servers. Note that
this also includes a SNIP proving that the noise is validly
formatted.

(3) Generate secret shares 𝑠1, . . . , 𝑠𝑛 of the encoded noise using
additive secret sharing, such that 𝜌 =

∑𝑛
𝑖=1 𝑠𝑖 . This step is

the same as that used by the client to generate secret shares
of their statistic to send to the Prio servers.

(4) Submit each 𝑠𝑖 along with the secret share of the client’s data
to the 𝑖 thPrio server.

Any additive mechanism such as the Gaussian or Laplace mech-
anism can be used with the protocol. An additive mechanism is one
where achieving DP only requires adding noise to the statistic. We
now expand on the noise generation and encoding steps.

6.1.1 Noise Generation. To generate noise, all clients begin by
sampling a value from a distribution, where the parameter of this
distribution is fixed at the time of system setup and is chosen to
satisfy the definition of (𝜖, 𝛿)-DP. Each client then encodes this
noise and generate a SNIP in a manner identically to that of the
statistic at hand, as described in Section 4.1. The client then sends
both the statistic SNIP and the noise SNIP to the DPrio servers.
The DPrio servers will choose 𝑐 clients’ noise values at random
(Section 6.2). Before sending the aggregated sum to the data analyst,
the servers will add the selected clients’ noise to the sum. The data
analyst will only see the noised sum after aggregating all sums.

The tricky step in this protocol is that typical noise distributions
are not discrete, so to achieve DP the client would have to send
infinite bits of noise. Since this is not computationally feasible, the
clients must truncate their noise. This issue can be addressed by
using discrete noise generation methods [3, 4, 15, 34, 50]. We adopt
the secure noise generation by [50] to generate integer noise in our
implementation. A more detailed analysis of the noise truncation
can be found in Appendix B. Similar analysis can be applied to
other forms of noise, such as discrete Gaussian noise [15].

6.1.2 Noise Encoding. In this model, we simply require clients
submit a proof that their noise falls within the same encoding
structure as the client’s data itself. This proof does not demonstrate
that clients have picked the noise from the correct distribution.
To protect against misbehaving clients that might simply submit
zero instead of correctly sampled noise, Prio servers perform an
MPC operation to select which client’s noise to add. Therefore, the
security of this construction depends on the assumed bound of
misbehaving clients (Section 7.2).

Encoding the noise uses the same affine-aggregatable encoding
(AFE), as in Section 2.2, as the data itself, allowing servers to aggre-
gate noise with the data without requiring reconstruction. Once
the client has submitted its noise to the servers, it deletes the noise.

While we demonstrate DPrio specifically as a DP mechanism for
Prio, the general approach DPrio follows can extend to alternative
private data collection designs that employ similar multi-server
models for distributing trust when performing data collection.

6.2 Server Noise Selection
We now describe an efficient commit-reveal MPC protocol servers
use to select which clients’ noise. Let 𝑁 be the number of clients
who have submitted noise. We assume that clients’ shares of this
noise ordered in some known manner and the Prio servers know
this ordering (we describe practical ordering options for implemen-
tations in Section 9). Assume the existence of some hash function.

380

DPrio: Efficient Differential Privacy with High Utility for Prio Proceedings on Privacy Enhancing Technologies 2023(3)

(1) Each server selects some random number 𝜌 within the range
[0, 𝜏], where 𝜏 is a multiple of 𝑁 . That is, server 𝑖 selects
some 𝜌𝑖 . To prevent against a server being able to enumer-
ate all possible inputs and select a specific one, each server
also selects some salt value 𝜓𝑖 ∈ [Ψ], where Ψ is some
value too large to exhaust by brute force. Having a large Ψ
prevents a server from waiting to see all the other servers’
commitments, enumerating through all possible hashes, and
selecting a specific 𝜌 to influence which client is chosen.

(2) Each 𝑖 th server computes and publishes the hash𝛼𝑖 = 𝐻 (𝜌𝑖 | |𝜓𝑖)
of their random number to serve as a commitment.

(3) After having received commitments from all other servers,
every server “opens” their commitment, i.e., by publishing
𝜌𝑖 and𝜓𝑖 to each other.

(4) All servers verify each others’ commitments, by checking
𝛼𝑖

?
= 𝐻 (𝜌𝑖 | |𝜓𝑖).

(5) If every check is successful, servers derive 𝜔 =
∑
𝜌𝑖 mod

𝑁 . Here, 𝜔 corresponds to a particular client’s index. The
servers then apply this client’s noise to their aggregated
sums, throwing away the remaining client noise shares.

The initial commitment ensures that no server may sway the result
towards a particular client. If a server attempts to cheat by revealing
an input different to the one they originally chose, the remaining
honest servers will discover this by verifying that the output of the
hash function matches the original commitment. This is a standard
commit-reveal technique to ensure that each party commits to their
contribution before learning all other parties’ contributions.

Before taking this step, the servers have already received shares
of noise from all 𝑁 clients. Once a particular client is chosen, the
servers simply add the corresponding share of noise to their local
sum of data sent by the clients. To add noise in this way, the shares
that are received by the servers must have some ordering, which we
discuss in Section 9. If the protocol would like to add noise values
from 𝑐 clients, without replacement, the servers simply repeat steps
(1)-(5) by excluding previously sampled clients.

We assumed that servers do not collude with clients (Assump-
tion 4.2). A server colluding with a client may learn whether a par-
ticular client’s noise was selected via the noise selection protocol.
In this case, the colluding server could learn the noise value from
the client. Under this non-collusion assumption, our commit-reveal
protocol could be changed to a protocol which deterministically
sets the output (e.g., pick a server and let this server sample a client
id and share the id with others, or fix a client id all the time). How-
ever, the advantage of this commit-reveal protocol is that it can
be easily combined with the shuffle model if we want to remove
the non-collusion assumption (Section 7.3.3). Also, its overhead is
low, as shown in the Section 8.3. In addition, suppose we relax the
non-collusion assumption to cases where servers may collude with
a small number of fixed clients. This commit-reveal protocol pre-
vents these servers from swaying the result towards the colluding
clients, and thus, it has a stronger guarantee than the alternatives.
We discuss alternatives under this collusion in Appendix C.

Unlike prior constructions that employ server cooperation, DPrio
achieves significantly higher efficiency and data utility as the MPC
operation in DPrio is simply to determine which client’s noise to
add, as opposed to cooperating to generate noise directly.

7 PRIVACY AND SECURITY ANALYSIS
7.1 Differential Privacy
We provide a sketch of a security proof that shows our system
satisfies DP, assuming that clients submit well-chosen noise, as de-
scribed in Section 4.2, and then misbehaving clients in Section 7.3.2.

Clients submit encoded shares of data to Prio servers which ul-
timately sum to some statistic. They also submit shares of noise
encoded similarly such that when the shares are summed, we ob-
tain the statistic with noise sampled from a distribution ensuring
(𝜖, 𝛿)-DP. Performing this operation is easily accomplished with
the building blocks already provided by Prio; namely, AFEs (such
as a linear secret sharing scheme) and SNIPs (we expand further
on both in Appendix A). Therefore, after the Prio servers learn the
aggregation of their shares locally, the final reconstructed result
will be the sum of the desired statistic and the noise to achieve DP.
The corresponding mechanism, denoted byM, is simply a pertur-
bation of the aggregate of the client’s input data with noise drawn
from Gaussian (or Laplace) distribution, that satisfies (𝜖, 𝛿)-DP.

7.1.1 DP against Honest Colluding Servers. We claim that the view
and output of an adversary controlling a single server is computation-
ally indistinguishable from that of a simulator with access only to
the output of the mechanismM satisfying (𝜖, 𝛿)-DP, and the total
size of the database. That is, our protocol satisfies computational
differential privacy under SIM-CDP (Definition 2.3).

Let Π denote the protocol executing the mechanismM and let
M(𝐷, 𝜖, 𝛿) denote the output of running the protocol on an input
database 𝐷 with tunable parameters 𝜖, 𝛿 .

Theorem 7.1. Let protocol Π correspond to the execution of mech-
anismM in DPrio. The view and output of an adversary controlling a
server is denoted as ViewΠ (M, 𝐷, 𝜖, 𝛿), OutputΠ (M, 𝐷, 𝜖, 𝛿). There
exists a PPT simulator, Sim, such that Sim(M(𝐷, 𝜖, 𝛿)) is computation-
ally indistinguishable from (ViewΠ (M, 𝐷, 𝜖, 𝛿), OutputΠ (M, 𝐷, 𝜖, 𝛿)).

The original Prio design [17] demonstrated that there exists
an efficient simulator which outputs a transcript of the protocol
execution that is indistinguishable from a real transcript and the
only information that leaks to the adversary is the value of the
function, 𝑓 , being computed on the clients’ private values. The
only difference in DPrio is the noise generation by clients and
sampling a client at random by Prio servers. From the perspective
of an adversary controlling a single server, their view consists only
of that which they could see in Prio and a share of some noise,
which is private in an information-theoretic sense. Assuming that
at least one server is honest, the protocol either outputs a correctly
computed (𝜖, 𝛿)-DP result according to the DP mechanism, or an
incorrect result which is independent of the true answer. In either
case, the adversary learns no more than that which is bounded by
the (𝜖, 𝛿)-DP property. Therefore, we obtain the following result.

Corollary 7.2. Protocol Π satisfies computational differential
privacy under the SIM-CDP notion.

While Theorem 7.1 assumes an adversary controls a single server
and does not control any of the clients, the proof generalizes to the
case where the adversary controls up to (𝑛 − 1) servers, due to the
privacy properties of the AFE which requires 𝑛 out of 𝑛 shares to
reconstruct any input, summarized as follows.

381

Proceedings on Privacy Enhancing Technologies 2023(3) Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon Veitch, and Xi He

Corollary 7.3. Theorem 7.1 holds against an adversary control-
ling all but one of Prio servers.

As Prio does not consider misbehaving servers, we will not
consider misbehaving servers in DPrio as well.

7.1.2 DP against Honest Colluding Clients. Recall that in the DPrio
protocol, each client 𝐶𝑖 ∈ {𝐶1, . . . ,𝐶𝑁 } samples a noise 𝜌𝑖 from a
distribution that achieves (𝜖, 𝛿)-DP, and then the servers randomly
select noise from 𝑐 clients without replacement from the 𝑁 clients’
noise to perturb the answer. Given a set of clients 𝑆 , we use 𝜌𝑆 =∑
𝑖∈𝑆 𝜌𝑖 to denote the sum of the noise variables contributed by 𝑆 .
Let𝑚 be the number of honest but curious clients who collude or

are controlled by an adversary. We assume𝑚 ≥ 1 as the adversary
can simply include one of the clients who knows its own noise.
We want to highlight that this analysis treats the clients’ noise
differently from their input data. In particular, the colluding clients
can only know their own set of noise but not the other clients’ noise,
but they can know the other client’s data from other public sources
as in the standard DP analysis. Hence, we consider an adversary
who knows 𝑁 − 1 clients’ data except the last one in addition to
𝑚 clients’ noise. We would like to show that for any colluding𝑚
clients 𝐴 = {𝐶𝑖1 , . . . ,𝐶𝑖𝑚 } ⊂ {𝐶1, . . . ,𝐶𝑁 }, for any neighboring
databases 𝐷 and 𝐷 ′ that differ by one client’s input data (not a
client in 𝐴), for any output 𝑜 , we have the following guarantee:

Pr
𝐴={𝐶𝑖1 ,...,𝐶𝑖𝑚 }

[𝑜 |𝐷] ≤ 𝑒𝜖 Pr
𝐴={𝐶𝑖1 ,...,𝐶𝑖𝑚 }

[𝑜 |𝐷 ′] + 𝛿. (2)

In this protocol, there are two types of randomnesses involved: (i)
the noise sampled by the clients; (ii) the set of clients selected by the
servers, denoted by 𝑆 = {𝐶𝑠1 , . . . ,𝐶𝑠𝑐 }. Without loss of generality,
we consider the set of compromised𝑚 clients is 𝐴 = {𝐶1, . . . ,𝐶𝑚}.

First, we consider a general and simple case when 𝑐 > 𝑚 ≥ 1,
i.e., the number of noise-providing clients selected by the servers
is more than the number of colluding clients. The colluding clients
do not know the remaining (𝑐 −𝑚) noise values, and hence cannot
break the DP guarantee offered by each single noise.

Theorem 7.4. When 𝑐 > 𝑚 ≥ 1, the protocol against𝑚 number
of colluding clients satisfies (𝜖, 𝛿)-DP guarantee.

Proof. Consider a noisy output 𝑜 and neighbors (𝐷, 𝐷 ′). We
use 𝜌 (𝑆−𝐴) to denote the sum of the noise variables contributed
by the clients in 𝑆 −𝐴 and 𝜌 (𝑆∩𝐴) to denote the sum of the noise
variables contributed by the clients in 𝑆 ∩𝐴. Given that 𝐴 knows
the noise of the first𝑚 clients, we break down the probability of
generating the noisy output 𝑜 into several cases depending on the
intersection size between 𝑆 and 𝐴. Note that 𝑆 −𝐴 is non-empty as
𝑐 > 𝑚 (there is always some client’s noise in 𝑆 not known by 𝐴).

Pr
𝐴={𝐶1,...,𝐶𝑚 }

[𝑜 |𝐷]

=

𝑚∑︁
𝑖=0

Pr[𝜌 (𝑆−𝐴) = 𝑜 − 𝑞(𝐷) − 𝜌 (𝑆∩𝐴) | |𝐴 ∩ 𝑆 | = 𝑖] Pr[|𝐴 ∩ 𝑆 | = 𝑖]

≤
𝑚∑︁
𝑖=0
(𝑒𝜖 Pr[𝜌 (𝑆−𝐴) = 𝑜 − 𝑞(𝐷 ′) − 𝜌 (𝑆∩𝐴) | |𝐴 ∩ 𝑆 | = 𝑖] + 𝛿)

· Pr[|𝐴 ∩ 𝑆 | = 𝑖]

= 𝑒𝜖 (
𝑚∑︁
𝑖=0

Pr[𝜌 (𝑆−𝐴) = 𝑜 − 𝑞(𝐷 ′) − 𝜌 (𝑆∩𝐴) | |𝐴 ∩ 𝑆 | = 𝑖]

· Pr[|𝐴 ∩ 𝑆 | = 𝑖]) + 𝛿
= 𝑒𝜖 Pr

𝐴={𝐶1,...,𝐶𝑚 }
[𝑜 |𝐷 ′] + 𝛿 (3)

A similar proof applies for the general case 𝑐 > 𝑚 ≥ 1. □

If we know the value of𝑚, then setting 𝑐 =𝑚+1 for the protocol
is sufficient to eliminate any adversaries who compromise𝑚 clients
and to ensure the same level of DP guarantee. If setting 𝑐 > 𝑚 + 1,
we can also tighten the privacy parameter of DP for Gaussian noise.
For example, if we take the sum of noise from 𝑐 honest clients who
sampled from a Gaussian distribution with parameter 𝜎2 and𝑚 of
them are compromised by the adversary, the composed noise of the
remaining clients follows a Gaussian distribution with parameter
(𝑐 −𝑚) · 𝜎2. This gives (𝜖/

√
𝑐 −𝑚,𝛿)-DP guarantee.

Next, we consider a general case when 𝑐 ≤ 𝑚. We start with a
basic case when 𝑐 = 1 ≤ 𝑚 (a single client’s noise is selected by the
servers). Let 𝐶𝑠 be the client whose noise is selected. Among all
the adversaries, the ones who control 𝐶𝑠 (including 𝐶𝑠 itself as an
adversary) are able to distinguish between the true database 𝐷 and
its neighbors 𝐷 ′ and hence break the DP guarantee offered by this
single noise. In particular, for any set of𝑚 colluding clients, there
is a probability of 𝑚

𝑁
that the selected client is one of the colluding

clients𝐶𝑠 ∈ 𝐴. If this happens, then given a noisy output 𝑜 , and the
true database instance 𝐷 , then the adversary is certain that one of
its noise can produce the exact 𝑜 . Hence, we have

Pr
𝐴={𝐶1,...,𝐶𝑚 }

[𝑜 |𝐷]

= Pr[𝐶𝑠 ∈ 𝐴] Pr[𝜌𝐶𝑠
= 𝑜 − 𝑞(𝐷) |𝐶𝑠 ∈ 𝐴]

+ Pr[𝐶𝑠 ∉ 𝐴] Pr[𝜌𝐶𝑠
= 𝑜 − 𝑞(𝐷) |𝐶𝑠 ∉ 𝐴] (4)

=
𝑚

𝑁
· 1 + (1 − 𝑚

𝑁
) Pr[𝜌𝐶𝑠

= 𝑜 − 𝑞(𝐷) |𝐶𝑠 ∉ 𝐴]

However, for a true instance’s neighbor 𝐷 ′, the adversary can test
its noise and find that it is very unlikely to produce 𝑜 from 𝐷 ′, i.e.,

Pr
𝐴={𝐶1,...,𝐶𝑚 }

[𝑜 |𝐷 ′]

=
𝑚

𝑁
Pr[𝜌𝐶𝑠

= 𝑜 − 𝑞(𝐷 ′) |𝐶𝑠 ∈ 𝐴]

+(1 − 𝑚

𝑁
) Pr[𝜌𝐶𝑠

= 𝑜 − 𝑞(𝐷 ′)𝐶𝑠 ∉ 𝐴] (5)

≥ 𝑚

𝑁
· 0 + (1 − 𝑚

𝑁
) Pr[𝜌𝐶𝑠

= 𝑜 − 𝑞(𝐷 ′) |𝐶𝑠 ∉ 𝐴]

Though the second probability term in Eqn. (4) and Eqn. (4), Pr[𝜌𝐶𝑠
=

𝑜 − 𝑞(𝐷) |𝐶𝑠 ∉ 𝐴] and Pr[𝜌𝐶𝑠
= 𝑜 − 𝑞(𝐷 ′) |𝐶𝑠 ∉ 𝐴] is bounded by

(𝜖, 𝛿), but the difference in the first term cannot be bounded by the
initial DP parameters (𝜖, 𝛿). This adds an additional failing prob-
ability bounded by 𝑚

𝑁
. In order to reduce this additional failing

probability, we will consider protocols that add 𝑐 > 1 clients’ noise.
If 𝑐 =𝑚 > 1, there exists a set of colluding clients who can break

the DP guarantee, by similar reasoning to the basic protocol with
𝑐 = 1. We discuss how to analyze an upper bound for the additional
failing probability to achieve the initial (𝜖, 𝛿)-DP guarantee by a
single noise. We denote this additional failing probability by 𝛿 ′. It
is possible that the set of colluding clients is exactly the same as the
ones selected by the servers 𝑆 = 𝐴. In this case, given a noisy output

382

DPrio: Efficient Differential Privacy with High Utility for Prio Proceedings on Privacy Enhancing Technologies 2023(3)

𝑜 , and the true database instance 𝐷 , the adversary can be certain
that its noise can produce the exact 𝑜 from 𝐷 . For its neighbors 𝐷 ′,
the probability is much smaller (can be close to 0). Hence,

Pr
𝐴={𝐶1,...,𝐶𝑚 }

[𝑜 |𝐷]

= Pr[𝑆 = 𝐴] Pr[𝜌𝑆 = 𝑜 − 𝑞(𝐷) |𝑆 = 𝐴]
+ Pr[𝐶𝑠 ≠ 𝐴] Pr[𝜌𝑆 = 𝑜 − 𝑞(𝐷) |𝐶𝑠 ≠ 𝐴]

= 1/
(
𝑁

𝑐

)
· 1 + (1 − 1/

(
𝑁

𝑐

)
) Pr[𝜌𝐶𝑠

= 𝑜 − 𝑞(𝐷) |𝐶𝑠 ≠ 𝐴]

≤ 1/
(
𝑁

𝑐

)
· 1 + (1 − 1/

(
𝑁

𝑐

)
) (𝑒𝜖 Pr[𝜌𝐶𝑠

= 𝑜 − 𝑞(𝐷 ′) |𝐶𝑠 ≠ 𝐴] + 𝛿)

≤ 𝑒𝜖 Pr
𝐴={𝐶1,...,𝐶𝑚 }

[𝑜 |𝐷 ′] + 𝛿 + 1/
(
𝑁

𝑐

)
(6)

If 𝑐 < 𝑚, the additional failing probability increases, as there is a
higher chance to find the set of chosen noise than the case when
𝑐 =𝑚. We have the failing probability 𝛿 ′ =

(𝑁−𝑐
𝑚−𝑐

)
/
(𝑁
𝑐

)
. The analysis

can be generalized to any neighbors (𝐷, 𝐷 ′).
Theorem 7.5. When 𝑐 ≤ 𝑚, the protocol against𝑚 number of col-

luding clients satisfy (𝜖, 𝛿 +𝛿 ′)-DP guarantee, where 𝛿 ′ =
(𝑁−𝑐
𝑚−𝑐

)
/
(𝑁
𝑐

)
.

Figure 3: 𝛿 ′ for 1 ≤ 𝑚 ≤ 16 and 𝑁 = 10, 000

Figure 3 shows how 𝛿 ′ changes depending on how big 𝑐 and
𝑚 are. 𝛿 ′ decreases exponentially as 𝑐 gets closer to𝑚 and when
𝑐 ≥ 𝑚, 𝛿 ′ = 0.

The settings inwhich applyingDPrio is appropriate include those
where the assumed number of colluding clients,𝑚, is a constant.
This is appropriate in large networks with millions of users where it
is unlikely that a large proportion of clients would be compromised.
Current use cases of Prio fall into this category, such as collecting
browser telemetry [24]. In these settings, we achieve a reasonable
value for 𝛿 ′. In our evaluation, we set 𝑐 = log𝑁 > 𝑚 (where𝑚 is a
constant) and hence 𝛿 ′ = 0 by Theorem 7.4. Let’s say if𝑚 happens
to be the same as 𝑐 = log(𝑁), then by Theorem 7.5, we have

𝛿 ′ = 1/
(
𝑁

𝑐

)
= 1/

(
𝑁

log𝑁

)
≤ 1/𝑁 log𝑁 . (7)

The failing probability analysis above assumed the adversary has
access to (𝑁 − 1) clients’ data and𝑚 clients’ noise, but still allows

the clients to follow the protocol, the worst case for DP analysis. We
analyze a malicious adversary who controls clients to use incorrect
data and noise distribution in Sections 7.2 and Section 7.3.

7.1.3 Comparison with Prio. Prio originally provided 𝑓 -privacy,
meaning that for an aggregate function 𝑓 , an adversary who con-
trols any number of clients and all but one server learns nothing
about the honest clients’ values 𝑥𝑖 , except what they can learn from
the value 𝑓 (𝑥1, . . . , 𝑥𝑛) itself. DPrio improves upon this property
by ensuring DP. Though the previous protocol presented for DPrio
offers DP under the assumption that the adversary controls either
up to (𝑛 − 1) servers or up to m clients, DPrio still offers the same
𝑓 -privacy in the worst case (i.e., if an adversary controls a Prio
server and learn which client’s noise is chosen, such as by colluding
or directly controlling the client and therefore its choice of noise).

7.2 Robustness against Malicious Clients
Prio is robust against malicious clients when all servers are honest.
That is, a set of malicious clients cannot influence the final aggregate
beyond their ability to choose arbitrary valid inputs, due to the use
of SNIPs to verify that secret-shared data is in fact with respect
to a valid statistic. This guarantee similarly holds true for DPrio
and is similarly accomplished by proving the correctness of clients’
noise via SNIPs. The key distinction between Prio and DPrio in
this regard is that in DPrio, a client submits not just a data value,
but also a noise value. Thus, Prio servers can still verify that the
input is a valid noise value (i.e., some 𝑘-bit integer value). However,
Prio servers cannot verify that the noise was correctly sampled
with respect to some distribution. This poses some risk since clients
can arbitrarily choose very large or very small noise values within
the bound of the allowed range to sway the output in their favour.
However, given a large number of honest clients, it is unlikely that
the servers will choose a malicious client’s noise.

The risk of incorrectly sampled noise being chosen is increased
when we select noise submitted by more than one client, as sug-
gested in Section 7.1.2. We demonstrated that as the number of
noise values chosen from clients, 𝑐 , increases, it decreases the fail-
ing probability of the DP guarantee. However, increasing 𝑐 also
increases the probability that an incorrectly sampled noise value
is included in the final result, therefore decreasing the overall ro-
bustness of the protocol. In particular, suppose the servers choose
𝑐 clients’ noise without replacement and there are 𝑚 malicious
clients. Assume the worst case scenario where all malicious clients
submit incorrectly sampled noise values. Then the probability that
at least one incorrectly sampled noise value is included in the result
is 1 −

(𝑁−𝑚
𝑐

)
/
(𝑁
𝑐

)
. If𝑚 is a small constant relative to 𝑁 , then this

probability is small. Figure 4 shows how this probability changes
depending on 𝑐 and𝑚. It increases linearly as 𝑐 and𝑚 grow larger.
Additionally, we note that the risk this poses is not much different
than the risk of a malicious client submitting incorrect data. This
risk is mitigated by the fact that Prio and DPrio both ensure that
data points and noise values conform to a valid data type; neither
ensure that the data or noise values are necessarily correct. This
vulnerability exists in any system collecting data from clients.

In practice, it is realistic to assume that 𝑁 is large, and that the
adversary controls a small fraction of clients’ input. This assumption
is reasonable, given that Prio is intended to work at large scale.

383

Proceedings on Privacy Enhancing Technologies 2023(3) Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon Veitch, and Xi He

Figure 4: Probability that at least one incorrectly sampled
noise is chosen, for 1 ≤ 𝑚 ≤ 16 and 𝑁 = 10, 000

Major browsers such as Firefox and Chrome which use or plan to
use Prio for data collection have millions if not billions of users.
The alternative solution using MPC to sample noise in a distributed
setting [19] assumes that at most one third of the servers generating
noise are faulty/malicious, where the number of servers may be
very small. Our protocol does not rely on such an assumption.

7.3 Comparison of DP Mechanisms
We present a comparison of security and privacy properties in
Table 1 between DPrio and related constructions.

7.3.1 Server and Analyst Misbehavior. All protocols, except for
the local DP construction require the assumption that servers are
honest but curious. There is, however, a difference in the proportion
of servers which must act honestly. The Dwork MPC construction
requires that at least 2/3 of servers act honestly while the plain Prio
construction only assumes at least one server is honest. Further,
DPrio, Client-DP, and Server-DP all require that at least one server
is honest. All protocols are secure against a Misbehaving Analyst,
i.e. any third party which obtains the output cannot learn more
than what is revealed from the differentially private output.

7.3.2 Client Misbehavior. Clients can misbehave in multiple ways.
They may use incorrect data for the computation, use an incorrect
noise distribution, curiously inspect the final/intermediate output
to learn information about others’ data, or collude with dishon-
est servers. Each model we evaluate can prevent some forms of
misbehavior but not all, with differing implications for data utility.

Assumption on the number of honest clients. DPrio achieves
DP so long as the client noise that is selected is honestly gener-
ated and included in the aggregate sum by the servers. As such,
the security model for DPrio assumes that the client noise that is
selected was honestly sampled. . Conversely, Client-DP assumes
that the sum of client noise that is added is of sufficient quality.
Similarly, Server-DP assumes that the noise generated by the des-
ignated servers has been honestly generated. As such, the utility
of data scales relative to the proportion of assumed honest clients

and servers for both Client-DP and Server-DP (as underestimat-
ing the number of misbehaving entities results in additional noise,
thereby lowering data utility). Conversely, DPrio simply requires
that the probability of selecting noise that was generated by a client
honestly following the protocol to be sufficiently high.

Clients using an incorrect noise distribution. Clients may mis-
behave by using an incorrect noise distribution when adding noise.
For example, they might choose to use a weaker distribution to
impair the DP guarantee, or submit no noise at all. This threat
is irrelevant to Dwork-MPC and Server-DP which do not require
clients to sample noise. On the other hand, Local DP, Client-DP,
and DPrio are more vulnerable to this attack, to varying degrees. In
Local DP, an honest client can ensure their data remains private by
adding sufficient noise to their own data, thus a lack of additional
noise from other parties does not have a catastrophic effect on
their privacy; however, this approach significantly reduces utility.
In Client-DP, we mitigate this attack by making an assumption on
the number of honest clients, as discussed in the previous para-
graph. With a sufficient number of honest clients, we can deter the
effects of the attack while maintaining better utility than the Local
DP model. Finally, in DPrio there is a possibility that a dishonest
client’s noise is chosen. This would be detrimental to the privacy of
the honest clients. Hence, we suggest using DPrio only when the
proportion of clients who might misbehave in this way is small.

Clients colluding with other parties. Depending on how many
parties the misbehaving clients collude with along with how many
servers are included in the misbehavior, different models provide
different protections. We drop 𝛿 from the discussion for simplicity.

Case 1: 𝑁 − 1 clients and 𝑛 − 1 servers are controlled by
an adversary. Dwork-MPC achieves 𝜖-DP if no more than 1

3 of
the servers are corrupted. In this case, since n-1 servers are cor-
rupted, the last server still adds some Gaussian noise (sampled
with variance 3𝜎2

2𝑛), which offers a much weaker DP guarantee of
2𝑛
3 𝜖-DP. Local DP provides 𝜖-DP as each client provides its own
protection. Client-DP provides 𝑁

1−1/𝑚 𝜖-DP and Server-DP provides
𝜖-DP. DPrio does not ensure DP as the servers can collude with the
clients who contribute noise and remove noise from the answer.

Case 2: Adversary controls 𝑁 − 1 clients and fewer than 𝑛
3

servers. Dwork-MPC provides 𝜖-DP as it assumes that at most 1
3

servers collude. The other models provide the same protection as
the prior case.

Case 3: Adversary controls 𝑚 clients and 𝑛 − 1 servers.
Dwork-MPC only provides 2𝑛

3 𝜖-DP since the last server still adds
Gaussian noise with variance 3𝜎2

2𝑛 . Local DP, Client-DP, and Server-
DP all provide 𝜖-DP. DPrio does not offer DP.

Case 4: Adversary controls𝑚 clients and 0 servers. Dwork-
MPC, Local DP, Server-DP, and DPrio all provide 𝜖-DP. Client-DP
ensures 𝑁

1−1/𝑚 𝜖-DP.
Case 5: Adversary controls 0 clients and𝑛−1 servers.Dwork-

MPC provides 2𝑛
3 𝜖-DP since since the last server still adds Gaussian

noise with variance 3𝜎2

2𝑛 . Local DP, Client-DP, Server-DP, and DPrio
all ensure 𝜖-DP.

7.3.3 Collusion Between Clients and Servers. The DPrio design as
described does not necessarily protect against the setting where

384

DPrio: Efficient Differential Privacy with High Utility for Prio Proceedings on Privacy Enhancing Technologies 2023(3)

Plain Prio Dwork-MPC (*) Local DP Client-DP Server-DP DPrio

Robust Against Analyst Misbehavior Yes Yes Yes Yes Yes Yes

Minimum Number of Honest Clients N/A N/A 1 𝑁 −𝑚 N/A 𝑁 −𝑚
Minimum Number of Honest Servers 1 1/3 of total 0 1 1 1

Differential Privacy None Approx. Pure Approx. Approx. Approx.
Table 1: Comparison of Privacy and Security Properties. N/A means the threat is not applicable in that model. Pure refers to
𝜖-DP, and Approx. refers to (𝜖, 𝛿)-DP. HBC means Honest but Curious. We assume at least one honest server and the number of

dishonest clients are below some bound. 𝑁 is the number of clients,𝑚 of which are assumed to be dishonest.

Plain Prio Dwork-MPC* Local DP Client-DP Server-DP/Dwork-MPC DPrio

Client Computation N/A N/A 𝑂 (1) 𝑂 (1) N/A 𝑂 (1)
Server Computation 𝑂 (1) Θ(𝑛) 𝑂 (1) 𝑂 (1) 𝑂 (1) 𝑂 (1)

Client-Server Bandwidth 𝑂 (𝑛𝑁) 𝑂 (𝑛𝑁) 𝑂 (𝑛𝑁) 𝑂 (𝑛𝑁) 𝑂 (𝑛𝑁) 𝑂 (𝑛𝑁)
Server-Server Bandwidth 0 𝑂 (𝑛𝑁) 0 0 0 𝑂 (1)
Server-Server Rounds 0 2 0 0 0 2

Server MPC Overhead N/A 𝑂 (𝑛) 0 0 𝑂 (𝑛) 𝑂 (𝑐)
Data Utility N/A Central Local Central (small𝑚) Central (small 𝑛) Central (small 𝑐)

Table 2: Comparison of Efficiency and Utility Properties. Server-server rounds represents the number of round trips required
between servers. 𝑛 represents the number of servers, and 𝑁 represents the number of clients. 𝑂 (1) represents constant

overhead.

malicious clients collude with a single server. Suppose a malicious
client’s noise is chosen. The malicious client and server can work
together to determine the true result of the statistic once it is pub-
lished, by subtracting the client’s noise. A simple defense against
this attack is to employ an intermediary shuffler between the clients
and servers, to shuffle the submitted noise before sending it to the
DPrio servers. Doing so ensures that DPrio servers cannot link
noise received from the shuffler to noise submitted by DPrio clients.
This technique is commonly considered in the literature as the
shuffle model [9, 26]. While introducing additional overhead of a
separate shuffler entity, employing the shuffle model in combina-
tion with DPrio mitigates potential collusion between clients and
servers while maintaining the utility of the central model.

Alternatively, the servers can perform an oblivious shuffling
protocol upon receiving the data [37], removing the requirement
of an independent shuffler role entirely. Laur et al. [37] provide an
algorithm of oblivious shuffling with communication complexity
𝑂 (2𝑛𝑁 log𝑁) where𝑛 is the number of servers and𝑁 is the number
of data points, a practical option for many real-world use cases of
Prio. When a large number of servers are required, the authors
describe a protocol with a constant number of rounds relative to
servers, achieving total communication complexity of𝑂 (𝑛𝑁 2) over
𝑛 rounds. Alternatively, Movahedi et al. [42] suggest a multi-party
oblivious shuffling algorithm with communication complexity �̃� (1)
over log𝑛 rounds that is secure in a malicious setting of up to 1/3
corrupted servers, the same model as in Dwork-MPC.

8 EVALUATION
We now evaluate and compare our constructions by their utility
guarantees and their performance overheads.

8.1 Accuracy
We use the mean squared error in the final noisy answer out-
putted by the servers to measure the accuracy of each approach.
First, the error for Server-DP (Section 5.2.1) is ErrorServer-DP =

𝑛(2 ln(1.25/𝛿))Δ2/𝜖2, where 𝑛 is the number of servers. This error
only depends on the number of servers.When𝑛 is small, the error of
Server-DP is close to the accuracy of central DP (independent of the
data size/the number of clients 𝑁). This error term is independent
of the number of honest clients.

Next, for Client-DP (Section 5.2.2), the error was computed as
ErrorClient-DP = (𝑁 /(𝑁 −𝑚)) (2 ln(1.25/𝛿))Δ2/𝜖2, where (𝑁 −
𝑚) is the number of honest clients and 𝑁 the number of clients
submitting noise. This approach assumes that the number of honest
colluding clients is no more than𝑚 (these clients still follow the
protocol and submit proper noise). When𝑚 is small, then this error
term is close to the accuracy of central DP.

For DPrio, the error in the final query answer is Error𝐷𝑃𝑟𝑖𝑜 =

2𝑐Δ2/𝜖2, where 𝑐 is the number of clients’ noise sampled by the
servers. As shown in Section 7.1.2, when 𝑐 > 𝑚, DPrio satisfies DP
guarantee, where𝑚 is the number of of honest colluding clients
(Theorem 7.4). When 𝑚 is small (independent of the number of
clients or data size), DPrio sets 𝑐 =𝑚 + 1 and hence its error is also
independent of the data size and has accuracy close to central DP.

385

Proceedings on Privacy Enhancing Technologies 2023(3) Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon Veitch, and Xi He

The three approaches for Prio have error terms close to central
DP, which are all much better than that offered by the local model.
We summarize the results in Table 2, Among them, Client-DP has
the smallest absolute error term. However, Client-DP has the poor-
est robustness against malicious clients who submit a bad noise. As
the servers aggregate every noise from the client, even if only one
client is malicious and submit a bad noise, this noise will be aggre-
gated to the final noisy answer and incur a large error for Client-DP.
On the other hand, DPrio samples a very small number of noise
from the clients, hence it has a small chance to pick a bad client’s
noise. As shown in Section 7.2, the probability that a bad noise is
sampled in the final query answer is small when 𝑐 and𝑚 are small.
Therefore, DPrio has a much better robustness than Client-DP. Last,
Server-DP does not add any client-generated noise, and hence the
accuracy guarantee is not affected at all. Therefore, when the num-
ber of malicious clients is greater than 1 but smaller than than the
number of servers 𝑛 > 𝑚 > 1, DPrio is the best option; when𝑚 > 𝑛,
Server-DP is preferred; when𝑚 = 0, Client-DP is preferred, based
on their corresponding utility guarantee. We generalize the use of
these approaches for Prio with DP in Appendix C.

8.2 Efficiency
We present an efficiency comparison in Table 2 between DPrio,
Client-DP, Server-DP, and related constructions we seek to im-
prove upon. The table summarizes computational costs on the part
of clients and servers, client-server communication costs, server-
server communication costs, computational costs of MPC protocols,
and the number of rounds of MPC protocols, if any. It also summa-
rizes the utility of aggregated data if a DP mechanism is in place. A
single party can sample noise in constant time (𝑂 (1)). For DPrio,
we assume that input sizes to the hash function are fixed, so a single
call to the hash function costs 𝑂 (1).

Although DPrio requires some computation on the part of the
clients and servers, it does not require significant computation costs.
Notably, DPrio requires less computation costs on the part of the
servers than the Dwork MPC method.

8.3 Implementation and Case Studies
8.3.1 Implementation. To empirically assess DPrio, we implement
a library and utility program that processes data from simulated
clients using either Prio or DPrio. This code makes use of libprio-
rs, a Rust implementation of Prio by Divvi Up of ISRG [33], and
consists of less than 700 lines of Rust.We additionally extend libprio-
rs to be able to interpret client data as binary integers rather than
discrete bits during aggregation. This extension requires only 55
additional lines of code. Any project using libprio-rs can make use
of the provided library to implement DPrio with minimal changes.

This library implements the approximate Laplace method de-
scribed by [50] to generate Laplace noise and truncate the noise
generated by clients. We use 𝑏 + 1 bits to store the noise, where
𝑏 =

⌈
log2 ((𝑟6ln(10))/_)

⌉
so that the truncation probability for the

magnitude of the noise greater than 2𝑏 is smaller than 10−6, where
𝑟 is the resolution parameter and _ is the noise parameter 𝑟𝜖

Δ+𝑟 . The
details can be found in Appendix B. As noise can be negative, for
each sampled noise, we add 2𝑏 and encode the shifted value with
𝑏 + 1 bits. This ensures that only shares of positive values are sent

to servers to be operated upon. After aggregation, 𝑐2𝑏 is subtracted
from the sum to find the actual noisy aggregated value, where 𝑐 is
the number of clients’ noise selected.

8.3.2 Setup. We explore a set of case studies to determine the
relative performance of DPrio and Prio. We test the hypothesis that
DPrio incurs limited server processing overhead compared to Prio.
All code is available at https://github.com/DPrio-PoPETs/dprio.

These case studies simulate two servers computing a population
count over a set of clients. Because we focus on server processing
overhead in these studies, to avoid network communication delays
impacting the results, both servers coexist in the same process.
When simulating Prio, the dimension of the data is 1 bit; each client
is either in the population being counted or it is not, as represented
by its data. In other words, each client submits a data point of 0 or
1. The query sums the data of the clients. In one of these studies,
we change 𝜖 and hence the number of bits for the noise in DPrio.
libprio-rs does not distinguish noise from data, so the data must be
of the same dimension as the noise when simulating DPrio.

8.3.3 Results. The first case study varies 𝜖 . We measure the time
it takes the implementation to process input from 10,000 clients
under Prio and DPrio while varying epsilon among the values
0.025, 0.05, 0.1, 0.2, 0.4, and 0.8. The number of clients’ noise values
selected is ⌈𝑙𝑜𝑔2 (𝑁)⌉ = 14. Table 3 lists the average results of
50 runs. As 𝜖 increases, the overhead of DPrio decreases as the
number of bits for storing noise decreases. Similarly, the average
error (the absolute difference between the calculated value and
the actual population count) decreases as 𝜖 increases. Overall, the
server processing overhead incurred by DPrio is indeed minimal at
no more than 5.65% for these parameters.

The second case study varies the number of clients. We measure
the time it takes to process input from 1,000, 10,000, 100,000, or
1,000,000 clients. For these studies, 𝜖 is fixed at 0.1 and the number of
clients’ noise values selected is ⌈𝑙𝑜𝑔2 (𝑁)⌉. As illustrated by Table 4,
the overhead of DPrio remains roughly constant as the number
of clients increases. The average error slightly increases, as the
number of clients’ noise selected is based on the population, which
increases. The server processing overhead incurred by DPrio is
minimal at no more than 6.25% for these parameters.

The third case study varies the number of clients’ noise selected.
We measure the time it takes the implementation to process input
from 10,000 clients while varying the number of clients’ noise
selected from 1 through 16 in a geometric sequence with a common
ratio of 2. 𝜖 is fixed at 0.1. As illustrated by Table 5, the overhead
of DPrio remains roughly constant as the number of clients’ noise
increases. The average error increases, however, as more noises
are selected. The server processing overhead incurred by DPrio is
minimal at no more than 5.45% for these parameters.

In all of the case studies, each client takes around 2.1 times as
much processing time to encode the data submitted to the servers
for DPrio as with Prio. This is due to the increased dimension of
the data in DPrio and the fact that both data and noise has to be en-
coded and submitted, rather than just the data in Prio. However, the
amount of work each individual client does is minuscule compared
to the work done by the servers, so the additional work necessary
for DPrio is not expected to be prohibitive.

386

https://github.com/DPrio-PoPETs/dprio

DPrio: Efficient Differential Privacy with High Utility for Prio Proceedings on Privacy Enhancing Technologies 2023(3)

𝜖 Prio Server Processing Time (ms) DPrio Server Processing Time (ms) Overhead (%) Error
0.025 1793.9 1895.2 5.65% 180.8
0.05 1795.3 1895.7 5.59% 80.0
0.1 1794.2 1891.1 5.40% 38.6
0.2 1793.2 1888.0 5.29% 19.7
0.4 1790.3 1834.7 2.48% 10.6
0.8 1798.5 1841.5 2.39% 5.0

Table 3: Average simulation of server processing time with varying 𝜖. Each simulation has a fixed population size of 10,000
clients, each submitting one bit of data, and ⌈𝑙𝑜𝑔2 (𝑁)⌉ = 14 client noises were selected.

Population Size Client Noises Selected Prio Server Processing Time (ms) DPrio Server Processing Time (ms) Overhead (%) Error
1,000 10 177.9 189.0 6.25% 39.4
10,000 14 1790.9 1887.7 5.41% 40.8
100,000 17 17930.0 18899.9 5.41% 46.6

1,000,000 20 179737.8 189179.1 5.25% 55.4
Table 4: Average simulation of server processing time with varying client population size, each client submitting one bit of

data. Each simulation has a fixed 𝜖 of 0.1. ⌈𝑙𝑜𝑔2 (𝑁)⌉ client noises were selected.

Client Noises Selected Prio Server Processing Time (ms) DPrio Server Processing Time (ms) Overhead (%) Error
1 1802.6 1898.0 5.29% 11.3
2 1804.1 1899.8 5.31% 12.0
4 1793.2 1887.5 5.26% 20.4
8 1793.3 1889.3 5.35% 35.1
16 1803.5 1901.7 5.45% 41.3

Table 5: Average simulation of server processing time with varying client noises elected. Each simulation has a fixed 𝜖 of 0.1
and a fixed population size of 10,000, each client submitting one bit of data.

9 ADDITIONAL CONSIDERATIONS

An Optimization for Large Client Sets. DPrio relies upon the
probability that enough honest clients submit noise such that servers
have a high probability of selecting one honest client at random (or
a small set thereof). When the number of clients is large, however,
it might be sufficient for only a subset of clients to submit noise. In
this setting, clients can use a local probabilistic function (such as
flipping a coin) to determine if they should submit noise.

Deterministically SelectingClientNoise.DPrio assumes servers
have some deterministic selection mechanism. While some imple-
mentations may submit client data along with their identifiers,
others may wish to allow clients to remain anonymous. In this
setting, clients can simply hash their noise locally (along with a
randomly chosen salt) before generating secret shares, and send
this as a one-time identifier to servers to use for selection. If there
is not an exact match between the server’s random value 𝜔 and
a client identifier, a deterministic fuzzy matching mechanism can
instead be used until a match is found.

Extending Beyond Additive Mechanisms.Our construction and
associated privacy property applies to the setting where the servers
wish to compute an integer sum, integer mean, or frequency count.
Of course, the system can be adapted to have the clients sample
noise from different distributions. However, applying more com-
plex mechanisms, such as the exponential mechanism [11], which

require more than simply summing the noise with the statistic may
be more difficult to integrate. We leave this for future work.

10 CONCLUSION
The use of private statistics is no longer of purely academic interest;
systems like Prio are currently being deployed and used by some
of the world’s largest organizations. However, simply aggregat-
ing all client statistics can still allow for denomination attacks; in
such settings, differential privacy provides a formal guarantee for
users’ privacy. In this work, we define a lightweight mechanism
that we call DPrio to add differential privacy to existing Prio sys-
tems, with high data utility. DPrio defines an efficient MPC protocol
that achieves the same utility as centralized differential privacy,
and whose computational overhead to servers remains constant
regardless of the number of participating clients. Further, the as-
sumption about the number of honest clients remains low, unlike
existing distributed noise generation mechanisms along the lines
of Client-DP and Server-DP. While DPrio does require server inter-
action, such interactions can be batched, so at minimum requires
no more communication overhead than plain Prio.

ACKNOWLEDGMENTS
This research received no specific grant from any funding agency
in the public, commercial, or not-for-profit sectors.

387

Proceedings on Privacy Enhancing Technologies 2023(3) Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon Veitch, and Xi He

REFERENCES
[1] Census bureau sets key parameters to protect privacy in 2020 census results, Oct

2021.
[2] Josh Aas and TimGeoghegan. Introducing ISRG Prio Services for Privacy Respect-

ing Metrics. https://www.abetterinternet.org/post/introducing-prio-services/.
Accessed 2021-04-08.

[3] Naman Agarwal, Peter Kairouz, and Ziyu Liu. The skellam mechanism for
differentially private federated learning. NeurIPS, 2021.

[4] Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, and H. Bren-
dan McMahan. Cpsgd: Communication-efficient and differentially-private dis-
tributed sgd. In Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems, NIPS’18, page 7575–7586, Red Hook, NY, USA, 2018.
Curran Associates Inc.

[5] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket
of the shuffle model. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology — CRYPTO 2019, pages 638–667. Springer International
Publishing, 2019.

[6] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty ma-
jority (extended announcement). In 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989, pages 468–473. IEEE Computer Society, 1989.

[7] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. InACMSymposium
on Theory of Computing, page 1–10, 1988.

[8] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés, and Bernhard
Seefeld. Prochlo: Strong privacy for analytics in the crowd. CoRR, abs/1710.00901,
2017.

[9] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard
Seefeld. Prochlo: Strong privacy for analytics in the crowd. In 26th Symposium
on Operating Systems Principles, SOSP ’17, pages 441–459, 2017.

[10] George Robert Blakley. Safeguarding cryptographic keys. In International Work-
shop on Managing Requirements Knowledge (MARK), pages 313–318, 1979.

[11] Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of differ-
entially private median. In 29th USENIX Security Symposium (USENIX Security
20), pages 2147–2164, 2020.

[12] Jonas Böhler and Florian Kerschbaum. Secure sublinear time differentially private
median computation. In Network and Distributed Systems Security Symposium
(NDSS), 2020.

[13] Anne Broadbent and Alain Tapp. Information-theoretic security without an
honest majority. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 410–426. Springer, 2007.

[14] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,
extensions, and lower bounds. CoRR, abs/1605.02065, 2016.

[15] Clément L. Canonne, GautamKamath, and Thomas Steinke. The discrete gaussian
for differential privacy, 2020.

[16] Jeffrey Champion, Abhi Shelat, and Jonathan Ullman. Securely sampling biased
coins with applications to differential privacy. In 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 603–614, 2019.

[17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable compu-
tation of aggregate statistics. In USENIX Conference on Networked Systems Design
and Implementation, NSDI’17, page 259–282, USA, 2017. USENIX Association.

[18] Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-party
computation from any linear secret-sharing scheme. In Advances in Cryptology –
EUROCRYPT 2000, pages 316–334, 2000.

[19] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In Serge
Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, pages 486–503,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[20] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Theory of cryptography conference,
pages 265–284. Springer, 2006.

[21] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407,
2014.

[22] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan Pry-
valov. Differentially private data aggregation with optimal utility. In Proceedings
of the 30th Annual Computer Security Applications Conference, ACSAC ’14, pages
316–325, New York, NY, USA, 2014. Association for Computing Machinery.

[23] Tariq Elahi, George Danezis, and Ian Goldberg. Privex: Private collection of
traffic statistics for anonymous communication networks. In Gail-Joon Ahn,
Moti Yung, and Ninghui Li, editors, ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 1068–
1079. ACM, 2014.

[24] Steven Englehardt. Next steps in privacy-preserving Telemetry with
Prio. blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving\-

telemetry-with-prio/. Accessed 2021-04-08.
[25] Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, and Koji Nuida. Efficient

noise generation to achieve differential privacy with applications to secure mul-
tiparty computation. In International Conference on Financial Cryptography and
Data Security, pages 271–290. Springer, 2021.

[26] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal
Talwar, and Abhradeep Thakurta. Amplification by shuffling: From local to
central differential privacy via anonymity. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2468–2479. SIAM, 2019.

[27] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized ag-
gregatable privacy-preserving ordinal response. In 2014 ACM SIGSAC conference
on computer and communications security, pages 1054–1067, 2014.

[28] Simson Garfinkel, John M Abowd, and Christian Martindale. Understanding
database reconstruction attacks on public data. Communications of the ACM,
62(3):46–53, 2019.

[29] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in
presence of immoral majority. In Alfred Menezes and Scott A. Vanstone, editors,
CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1990, volume 537 of LNCS, pages 77–93. Springer,
1990.

[30] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

[31] Slawomir Goryczka, Li Xiong, and Vaidy S. Sunderam. Secure multiparty ag-
gregation with differential privacy: a comparative study. In Giovanna Guerrini,
editor, Joint 2013 EDBT/ICDT Conferences, EDBT/ICDT ’13, Genoa, Italy, March 22,
2013, pages 155–163. ACM, 2013.

[32] Internet Security Research Group. Let’s Encrypt. https://letsencrypt.org/. Ac-
cessed 2021-04-08.

[33] ISRG. libprio-rs. https://github.com/divviup/libprio-rs. Accessed 2022-04-30.
[34] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian

mechanism for federated learning with secure aggregation. In Marina Meila and
Tong Zhang, editors, International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pages 5201–5212. PMLR, 2021.

[35] Alann F. Karr, Xiaodong Lin, Ashish P. Sanil, and Jerome P. Reiter. Secure
regression on distributed databases. Journal of Computational and Graphical
Statistics, 14(2):263–279, 2005.

[36] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. Privacy-friendly ag-
gregation for the smart-grid. In International symposium on privacy enhancing
technologies symposium, pages 175–191. Springer, 2011.

[37] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-efficient oblivious
database manipulation. In International Conference on Information Security, pages
262–277. Springer, 2011.

[38] Ueli Maurer. Secure multi-party computation made simple. Discrete Applied
Mathematics, 154(2):370–381, 2006.

[39] Frank McSherry. Privacy integrated queries: An extensible platform for privacy-
preserving data analysis. Communications of the ACM, 53(9):89–97, Sep 2010.

[40] Luca Melis, George Danezis, and Emiliano De Cristofaro. Efficient private statis-
tics with succinct sketches. In Network and Distributed Systems Security Sympo-
sium (NDSS), 2016.

[41] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. Computational
differential privacy. InAnnual International Cryptology Conference, pages 126–142.
Springer, 2009.

[42] Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Secure multi-party shuf-
fling. In International Colloquium on Structural Information and Communication
Complexity, pages 459–473. Springer, 2015.

[43] Arjun Narayan, Ariel Feldman, Antonis Papadimitriou, and Andreas Haeberlen.
Verifiable differential privacy. In Proceedings of the Tenth European Conference on
Computer Systems, pages 1–14, 2015.

[44] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Proceedings of the 11th Annual International Cryptology Confer-
ence on Advances in Cryptology, CRYPTO ’91, page 129–140, Berlin, Heidelberg,
1991. Springer-Verlag.

[45] Raluca Ada Popa, Andrew J Blumberg, Hari Balakrishnan, and Frank H Li. Privacy
and accountability for location-based aggregate statistics. In 18th ACM conference
on Computer and communications security, pages 653–666, 2011.

[46] Edo Roth, Karan Newatia, Yiping Ma, Ke Zhong, Sebastian Angel, and Andreas
Haeberlen. Mycelium: Large-scale distributed graph queries with differential
privacy. In ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP),
pages 327–343, 2021.

[47] Amrita Roy Chowdhury, ChenghongWang, Xi He, Ashwin Machanavajjhala, and
Somesh Jha. Crypt𝜖 : Crypto-assisted differential privacy on untrusted servers.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’20, page 603–619, New York, NY, USA, 2020. Association for
Computing Machinery.

[48] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

388

 https://www.abetterinternet.org/post/introducing-prio-services/
blog.mozilla.org/security/2019/06/06/ next-steps-in-privacy-preserving \ -telemetry-with-prio/
blog.mozilla.org/security/2019/06/06/ next-steps-in-privacy-preserving \ -telemetry-with-prio/
 https://letsencrypt.org/
 https://github.com/divviup/libprio-rs

DPrio: Efficient Differential Privacy with High Utility for Prio Proceedings on Privacy Enhancing Technologies 2023(3)

[49] Differential Privacy Team. Learning with privacy at scale. Apple, December
2017.

[50] Google Privacy Team. Secure noise generation. Google, June 2020.
[51] Dan Zhang, Ryan McKenna, Ios Kotsogiannis, Michael Hay, Ashwin Machanava-

jjhala, and Gerome Miklau. Ektelo. 2018 International Conference on Management
of Data, May 2018.

A ADDITIONAL BACKGROUND
INFORMATION

We now provide additional background information on encoding
private information as required by Prio and by extension DPrio.

A.1 Affine-Aggregatable Encodings (AFEs)
Given an input 𝑥1, . . . , 𝑥𝑛 , an affine-aggregatable encoding allows
for “splitting” each input 𝑥𝑖 , 𝑖 ∈ {1, . . . , 𝑛}, such that the functions
𝑓 , 𝑓 ′ exist where

𝑓 ′(𝑥1𝑗 , . . . , 𝑥𝑛𝑗) → 𝑥 𝑗 , for some 𝑗 ∈ {1, . . . , ℓ}, and
𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑥1, . . . , 𝑥ℓ)

Further, an AFE preserves privacy if 𝑓 ′ reveals nothing about
𝑥1, . . . , 𝑥𝑛 beyond the evaluation of 𝑓 ′ on its inputs. Towards this
end, AFEs define the following:

• Encode(𝑥𝑖) → {𝑥𝑖1, . . . , 𝑥𝑖ℓ }: Accepts a data item 𝑥𝑖 , 𝑖 ∈
{1, . . . , 𝑛} and outputs a sharing of 𝑥𝑖 into ℓ parts.
• Verify(𝑥𝑖1, . . . , 𝑥𝑖ℓ) → {0, 1}: Accepts ℓ parts and verifies
they are a valid encoding of 𝑥𝑖 .
• Decode(𝑥1, . . . , 𝑥ℓ): Accepts aggregations of parts and com-
putes the output, which is equal to 𝑓 (𝑥1, . . . , 𝑥𝑛).

One simple example of an AFE is additive secret sharing, where
Encode(𝑥𝑖) simply outputs the set {𝑥𝑖1, . . . , 𝑥𝑖ℓ } such that 𝑥𝑖 =∑ℓ

𝑗=1 𝑥𝑖 𝑗 .

A.2 Secret-Shared Non-Interactive Proofs
(SNIPs)

Clients employ an AFE to partition their data value 𝑥𝑖 into shares
{𝑥𝑖1, . . . , 𝑥𝑖ℓ }, and then upload shares to ℓ Prio servers, such that
each server receives one share. Additionally, clients upload a SNIP,
which is a secret-shared non-interactive zero-knowledge proof of
knowledge demonstrating the data value 𝑥𝑖 is valid with respect to
the corresponding statistic type, given only the shares {𝑥𝑖1, . . . , 𝑥𝑖ℓ },
the SNIPs, and a MPC operation that each Prio server participates
in. For example, if the statistic allows only binary inputs, the set
of SNIPs would demonstrate that 𝑥𝑖 is either zero or one, without
disclosing which is the case.

To perform verification, Prio servers use their SNIP as well as
their share 𝑥𝑖 𝑗 to collectively perform Verify via a multi-party com-
putation (MPC) operation. The output from each server participat-
ing in the Verify protocol is either 0 or 1, indicating whether Verify
completed successfully, and nothing else.

B NOISE TRUNCATION
DPrio uses the approximate Laplace method described by the se-
cure noise generation algorithm [50] to generate Laplace noise and
truncate the noise generated by clients. Approximate Laplace first
sets 𝑟 , the resolution parameter which is the smallest power of

two to be greater than Δ/𝜖
240 in its java implementation 1. Given a

function 𝑓 that maps a database to a real number, 𝑓𝑟 (𝐷) refers
to 𝑓 (𝐷) rounded to the nearest multiple of 𝑟 . Then it samples
an integer 𝑖 with probability proportional to 𝑒−|𝑖 |𝑟𝜖/Δ𝑟 , where
Δ𝑟 = max𝐷,𝐷′ ∥ 𝑓𝑟 (𝐷)− 𝑓𝑟 (𝐷 ′)∥ ≤ Δ+𝑟 . Last, the algorithm returns
𝑓𝑟 (𝐷) + 𝑖𝑟 as the noisy output. This process satisfies 𝜖-differential
privacy.

If we use 𝑏 bits to store the magnitude of the noise, then the
probability for the noise |𝑖𝑟 | greater than 2𝑏 can be charged to the
𝛿 guarantee of the mechanism. We will show the minimum choice
of 𝑏 for this truncation probability to be smaller than 10−6.

The sampling of integer 𝑖 is drawn from a geometric distribution
that is mirrored at 0. The non-negative part of the distribution’s
PDF matches the PDF of a geometric distribution (of parameter
𝑝 = 1 − 𝑒−_ , where _ = 𝑟𝜖

Δ𝑟
) that is shifted to the left by 1 and

scaled accordingly. Let 2𝑏
′
= 2𝑏

𝑟 . The probability for the scaled
non-negative part 𝑖𝑟 to be truncated at 2𝑏 is

𝛿 = Pr[𝑖𝑟 ≥ 2𝑏] = Pr[𝑖 ≥ 2𝑏
′
]

= 1 − Pr[𝑖 < 2𝑏
′
]

= 1 − Pr[𝑖 ≤ 2𝑏
′
] + Pr[𝑖 = 2𝑏

′
]

= 1 − (1 − (1 − 𝑝)2
𝑏′
) + (1 − 𝑝)2

𝑏′−1𝑝

= (1 − 𝑝)2
𝑏′−1

= 𝑒−_ (2
𝑏′−1) ≤ 𝑒−_ (2

𝑏′)

We need _ > 6ln(10)2−𝑏′ = 6ln(10)2−𝑏𝑟 such that 𝛿 ≤ 10−6 (in a
similar fashion as the implementation of [50]). Given chosen values
for 𝜖 , Δ (and hence _ and 𝑟 that depend on 𝜖 and Δ), to maintain the
truncation probability of 𝛿 ≤ 10−6 it suffices to choose the smallest
possible 𝑏 such that

𝑏 >

⌈
log2

(
𝑟6ln(10)

_

)⌉
DPrio uses 𝑏 to truncate the value 𝑖𝑟 at 2𝑏 .

C GENERALIZING DPRIO
DPrio is optimal for a scenario with a large number of clients, very
few of which are malicious or controlled by the adversary. We
can generalize our construction to consider various adversarial
structures. To do so, we present an optimization problem which,
given privacy parameters 𝜖 , 𝛿 , a utility constraint, and an adversarial
structure, returns an optimal setup to achieve (𝜖, 𝛿)-DP in the most
efficient manner. We generalize DPrio by combining it with Server-
DP and Client-DP. That is, there are three points at which a party
can add noise to the function being computed:
• Clients add Gaussian noise using the mechanism described
by Client-DP, each with parameter 𝜎1;
• Clients and servers cooperate to choose Gaussian noise sam-
pled by 𝑐 clients (𝑐 ≥ 1), as in DPrio, with parameter 𝜎2;
• Servers sample Gaussian noise, as in Server-DP, each with
parameter 𝜎3.

1https://github.com/google/differential-privacy/blob/main/java/main/com/google/
privacy/differentialprivacy/LaplaceNoise.java

389

https://github.com/google/differential-privacy/blob/main/java/main/com/google/privacy/differentialprivacy/LaplaceNoise.java
https://github.com/google/differential-privacy/blob/main/java/main/com/google/privacy/differentialprivacy/LaplaceNoise.java

Proceedings on Privacy Enhancing Technologies 2023(3) Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon Veitch, and Xi He

Let 𝑥 denote the number of clients controlled by the adversary
and 𝑦 denote the number of servers controlled by the adversary.
Depending on 𝑥 and 𝑦, we can choose the optimal combination of
the above three options such that the overall guarantees of all the
noise satisfies (𝜖, 𝛿)-DP to such an adversary. The composed noise
in the case of an adversary who controls 𝑥 clients and 𝑦 servers is

𝜎21 · (# of honest clients) + 𝜎
2
2 · 𝑐 · I + 𝜎

2
3 · (# of honest servers)

where I denotes an indicator function which is equal to 1 if 𝑥 or
𝑦 is non-zero but not both, i.e. the adversary does not control a
combination of clients and servers. Otherwise, I = 0. That is, the
noise is

𝜎21 · (𝑁 − 𝑥) + 𝜎
2
2 · 𝑐 · I[(𝑥 ≠ 0) ⊕ (𝑦 ≠ 0)] + 𝜎23 · (𝑛 − 𝑦).

Continuing in line with Section 7.1.2, we assume an upper bound,
𝑚, on the number of clients who collude or are controlled by the
adversary. Here, this value is encompassed by 𝑥 . To achieve (𝜖, 𝛿)-
DP, the total noise should be greater than 𝑓 2Δ2/𝜖 , where 𝑓 2 >

2 ln(1.25/𝛿).
To a data analyst who does not collude with anyone (the best

case), the total error in the noisy aggregate by this construction is
then

𝜎21 · 𝑁 + 𝜎
2
2 · 𝑐 + 𝜎

2
3 · 𝑛.

Minimizing this best case error function for a given worst case
privacy constraint (𝜖, 𝛿) is formalized as follows:

min
𝜎1,𝜎2,𝜎3

𝜎21 · 𝑁 + 𝜎
2
2 · 𝑐 + 𝜎

2
3 · 𝑛

s.t. 𝜎21 · (𝑁 − 𝑥) + 𝜎
2
2 · 𝑐 · I[(𝑥 ≠ 0) ⊕ (𝑦 ≠ 0)]

+ 𝜎23 · (𝑛 − 𝑦) ≥ 2 ln(1.25/𝛿)Δ2/𝜖2

for some given parameters 𝑁,𝑛, 𝑥,𝑦, which determine the adversar-
ial structure. In this generalized setting, we can adapt our construc-
tion to adversaries which collude, submit malformed data, or submit
malformed noise. We do not consider the possibility of Byzantine
failures on the part of servers. Of course, if a client fails to submit
data, their information will simply not be included in the result.

Example C.1. Suppose 𝑥 = 0 and 𝑦 = 𝑛 − 1, i.e., the adversary
controls all but one honest server and no clients. Then, we need to
minimize 𝜎21 · 𝑁 + 𝜎

2
2 · 𝑐 + 𝜎

2
3 · 𝑛 subject to

𝜎21 · 𝑁 + 𝜎
2
2 · 𝑐 + 𝜎

2
3 ≥ 2 ln(1.25/𝛿)Δ2/𝜖2

Solutions which minimize this function are valid according to the
optimization function; however, we can narrow down our options by
making some observations about the adversarial structure. Given that
most of the servers are assumed to be in control of the adversary, we
do not want to instruct potentially compromised servers to sample and
add their own noise to the result. So, we let𝜎3 = 0. On the other hand, if
all clients are honest, we can use either Client-DP or DPrio (with 𝑐 = 1)
to include an optimal amount of noise in the result. In this setting,
DPrio is more robust against client failures, i.e., if a single client fails
(e.g. adds zero noise), Client-DP does not ensure DP, whereas DPrio
still does with a high probability. Hence, the optimal choice in this
setting is to let 𝜎1 = 0 as well and revert to the DPrio solution.

Example C.2. Suppose 𝑥 = 𝑁 − 1 and 𝑦 = 0, i.e., the adversary
controls all but one client and no servers. Then, approaching the
protocol with the Client-DP solution would clearly be non-optimal,

and hence we set 𝜎1 = 0. If the adversary is semi-honest, then DPrio or
Server-DP or some combined of the two are acceptable. If the adversary
may actively change the clients’ noise, the probability that an honest
client’s noise is chosen in DPrio by the servers would be very small,
unless 𝑐 was disproportionately large. So, in this case it is optimal to
let 𝜎1 = 𝜎2 = 0, and revert to the Server-DP solution.

Example C.3. Suppose 𝑥 ≈ 𝑁 /3 and 𝑦 ≈ 𝑛/3. Then we optimize
𝜎21 · 𝑁 + 𝜎

2
2 · 𝑐 + 𝜎

2
3 · 𝑛 subject to

𝜎21 · 2𝑁 /3 + 𝜎
2
3 · 2𝑛/3 ≥ 2 ln(1.25/𝛿)Δ2/𝜖2

In this scenario we do not want to use DPrio because there is a 1/3
chance that a dishonest client’s noise is selected each time a noise
value is chosen and the adversary can determine the value of the noise.
This would violate the DP requirement. Hence, we have 𝜎2 = 0. The
remaining options are to add noise via Client-DP, Server-DP, or some
combination of the two.

Depending on the value of 𝑁 and 𝑛, it may be optimal to have only
servers or only clients add noise if there is a large number of mali-
cious parties that may submit incorrect noise. On the other hand, we
could have clients sample some noise, perform range checks to ensure
that the noise falls within a reasonable range, and then have servers
sample their own noise to add to the result, ultimately distributing
the responsibility between the two types of honest parties. Adding
noise in such a way ensures that even in the face of collusion between
some clients and servers, the adversary cannot determine the true
output by excluding their own noise. Any solution that minimizes the
objective function above according to the privacy constraint would
provide optimal utility.

Example C.4. Suppose 𝑥 ≥ 1 is a small constant and 𝑦 = 𝑛 − 1.
Then, we should not use Client-DP so we let 𝜎1 = 0. We want to
minimize 𝜎22 · 𝑐 + 𝜎

2
3 · 𝑛 subject to

𝜎22 · 𝑐 + 𝜎
2
3 ≥ 2 ln(1.25/𝛿)Δ2/𝜖2 .

In this example, if 𝑥 is small then DPrio is optimal because it is still
robust, as discussed in Section 7.2. The value of 𝑐 also depends on our
assumption on 𝑥 . We require that 𝑐 ≥ 𝑥 + 1 to ensure a DP guarantee
in DPrio. If 𝑐 < 𝑛 then DPrio is preferred. Otherwise, when 𝑐 ≥ 𝑛,
Server-DP is the better approach. For greater robustness, one might
also consider a combination of the two approaches, although this
would decrease the accuracy of the output.

Depending on the given constraints and the adversarial model,
we can choose a combination of noise addition approaches. The
fact that Client-DP, Server-DP, and DPrio are each compatible with
one another makes it simple to combine the approaches and cater
to different needs. The flexibility of these constructions and the
ability to adapt to different scenarios makes this work unique.

390

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Secure Multi-party Computation

	3 Related Work
	4 System Goals
	4.1 Overview of Prio
	4.2 Threat Model
	4.3 Limitations on Query Type

	5 Adapting Prior Work to Prio
	5.1 Dwork-MPC
	5.2 Distributed Noise Generation

	6 DPrio: Differentially Private Statistics with High Utility
	6.1 Client Noise Generation and Submission
	6.2 Server Noise Selection

	7 Privacy and Security Analysis
	7.1 Differential Privacy
	7.2 Robustness against Malicious Clients
	7.3 Comparison of DP Mechanisms

	8 Evaluation
	8.1 Accuracy
	8.2 Efficiency
	8.3 Implementation and Case Studies

	9 Additional Considerations
	10 Conclusion
	Acknowledgments
	References
	A Additional Background Information
	A.1 Affine-Aggregatable Encodings (AFEs)
	A.2 Secret-Shared Non-Interactive Proofs (SNIPs)

	B Noise Truncation
	C Generalizing DPrio

