
Differential Privacy for Black-Box Statistical Analyses
Nitin Kohli

UC Berkeley Center for Effective Global Action

Berkeley, CA, USA

nitin.kohli@berkeley.edu

Paul Laskowski

UC Berkeley School of Information

Berkeley, CA, USA

paul@ischool.berkeley.edu

ABSTRACT
We formalize a notion of a privacy wrapper, defined as an algorithm

that can take an arbitrary and untrusted script and produce an out-

put with differential privacy guarantees. Our novel privacy wrapper,

named TAHOE, incorporates two design ideas: a type of stability

under subsetting, and randomization over subset size. We show

that TAHOE imposes differential privacy for every possible script.

When the data alphabet is finite and small enough, TAHOE can

be practically run on a single computer. Performance simulations

show that TAHOE has greater accuracy than a benchmark algo-

rithm based on a subsample-and-aggregate approach for certain

scenarios and parameter values.

KEYWORDS
Differential Privacy, Untrusted Code, Black Box, Statistics

1 INTRODUCTION
Consider a scenario involving a holder of personal data and a re-

searcher. The researcher has written an analysis script and would

like to apply it to the data in order to gain insight. The data holder

is concerned with the privacy of individuals in the data, and may

not necessarily trust the researcher. Furthermore, the data holder

may have contractual obligations that prevent them from sharing

information about individuals in the data. The researcher gives

the data holder their analysis script, but the data holder does not

have the resources or expertise to analyze the code for privacy

threats. Instead, the data holder desires a simple way to add privacy

guarantees to the researcher’s script, without looking inside it, so

that the output can be safely returned. This motivates the central

question of this study:

What privacy guarantees can be added to a statistical

analysis script from an untrusted source, treating it

in a black box fashion?

Although many organizations are interested in increasing re-

searcher access to data, the costs given current technology can be

considerable. For example, the US Census Bureau has a program to

allow researchers to interact with raw data. To maintain privacy,

however, the Bureau maintains a set of secure locations around the

country and puts all applicants through a background check.
1
In

another example, Facebook and Social Science One teamed up to

1
For information on US Census’ Secure Research Environment, see https://www.census.

gov/about/adrm/fsrdc/about/secure_rdc.html.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(3), 418–431
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0089

make data about shared URLs available to researchers using differ-

ential privacy [18]. However, to work with the most sensitive data,

researchers must be pre-approved by a university review board,

pass an application process, and undergo monitoring - even at the

level of individual keystrokes.
2

In contrast with existing approaches, the goal of this study is

to enable a researcher to work with private data in an automatic

fashion, without the need for screening procedures to establish trust.

We will refer to a system that achieves this as a privacy wrapper.
Akin to a function wrapper in programming, the idea is to write an

algorithm that mediates all interaction with the researcher’s script,

producing output that is based on the behavior of the script, while

also yielding strong privacy guarantees.

1.1 Considerations for Untrusted Code
Running code from untrusted sources introduces special challenges

to the data holder. To borrow terms from the security literature,

some researchers that submit scripts may be honest, meaning they

abide by the intended use of the system. Others may be considered

malicious, meaning that their true goal is to extract private infor-

mation from the data. A lack of trust suggests that all researchers

must be considered potentially malicious.

A malicious researcher has a variety of techniques to extract

private information from a dataset. Suppose a researcher is looking

for information about a target individual, 𝑡 . The researcher could

write a script that hides 𝑡 ’s income in the trailing digits of the output.

They could code the script so the sum of the digits in the output

is even if 𝑡 is in the data, and odd otherwise. They could make

the script deliberately fail if a certain medical diagnosis appears

in 𝑡 ’s records. Providing further challenges, a malicious researcher

may obfuscate their code, making it difficult to determine its true

purpose. Obfuscation may be performed by hand, or a variety of

automated obfuscation tools may be used by researchers without

special expertise [2, 20].

Following common practice, the data holder might hope to ap-

ply differential privacy by adding noise related to the researcher

script’s sensitivity [11]. Informally, sensitivity refers to how much

the output of a script can change, if one were to change a single

row of the data. Unfortunately, determining the sensitivity of a

researcher script may be difficult, or even impossible.

For an instructive example, again suppose that that an adversary

is interested in a specific target, 𝑡 , which may or may not be in

the data. The adversary writes a script that outputs 0 unless 𝑡 is

in the data, in which case the script outputs some large 𝑉 ≫ 1. If

𝑡 is not in the data, there may be no way to detect that the script

is capable of outputting any value other than 0 - especially if the

script is obfuscated. The adversary may thus hope to trick the data

2
See Data & Security of Social Science One, available at https://socialscience.one/data-

security-privacy.

418

https://www.census.gov/about/adrm/fsrdc/about/secure_rdc.html
https://www.census.gov/about/adrm/fsrdc/about/secure_rdc.html
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0089
https://socialscience.one/data-security-privacy
https://socialscience.one/data-security-privacy

Differential Privacy for Black-Box Statistical Analyses Proceedings on Privacy Enhancing Technologies 2023(3)

holder into assuming the script has low sensitivity, leading them to

add a small amount of noise.

There is also a theoretical reason to believe that determining

the sensitivity of a script is difficult. In the language of the theory

of computation, the property of meeting a sensitivity bound is

semantic and non-trivial. Rice’s theorem tells us that the problem

of deciding if arbitrary code meets such properties is undecidable

[27]. This suggests that a traditional strategy of adding noise based

on sensitivity cannot work in all cases.

1.2 Motivating a Novel Privacy Wrapper
To overcome the challenges of untrusted code, this study intro-

duces a novel privacy wrapper, called TAHOE. TAHOE treats the

researcher script as a black box and uses subsets of data to ensure

a type of sensitivity bound. It has the following properties:

(1) Privacy: Given any researcher script, the mechanism gener-

ated by the wrapper meets approximate differential privacy.
(2) Accuracy: The output of the wrapper is related to the re-

searcher script in the sense that it is found by adding (prede-

termined) noise to the output of the script on some subset of
data.

(3) Flexibility: TAHOE places no limitation on the code writ-

ten by a researcher. Any script that returns a real vector,

including those that may terminate without returning an

output, can be used.

A disadvantage of our algorithm is that the runtime can be

prohibitively large, depending on the privacy parameters chosen.

As we will show in Section 6, TAHOE can be optimized to run

efficiently for the special case of a finite data alphabet.

We will describe TAHOE formally in Section 4. Its design is

motivated by two central ideas, which we present at an intuitive

level.

1.2.1 Remove influential individuals. An individual may be called

influential, roughly speaking, if removing them causes a large

change in the output of a script. For example, suppose that a re-

searcher submits a script to compute the mean age of participants

in a medical trial. If a target individual happens to be very young, an

adversary may be able to distinguish whether they are in the data or

not by observing the mean. On the other hand, if a privacy wrapper

removes the influential individual before running the script, the

presence of the individual can no longer be determined in such a

direct manner.

Based on this observation, we consider looking for a subset of

data, such that removing further individuals does not change the

output very much. This intuition will be formalized in our notion

of stable subsets.

Definition 1. (Informal Version of Definition 7) Given dataset 𝐷 ,

researcher script 𝑅, and threshold 𝛼_ ∈ R, a subset 𝑆 ⊆ 𝐷 is stable
if for any 𝐴, 𝐵 ⊆ 𝑆 of some minimum size, 𝑅 returns a real vector

for both 𝐴 and 𝐵, and | |𝑅(𝐴) − 𝑅(𝐵) | |1 ≤ 𝛼_.

A formal definition of this property is given in Section 4. Based

on our intuition, we search for algorithms that run the script on a

stable subset and add noise to protect privacy.

1.2.2 Randomize number of individuals removed. A further prob-

lem arises when basing a privacy wrapper on stable subsets: the

existence of a stable subset of a given size can itself reveal infor-

mation about individuals in the data. Suppose that a wrapper was

programmed to find a stable subset of some fixed size 𝑛, and release

some output if it exists. If a stable subset of size 𝑛 does not exist,

the system terminates without returning a value, denoted by the

non-response symbol ⊥. A malicious researcher could exploit this

wrapper design to learn whether a target individual, 𝑡 , is inside the

data. An example of a script that does this is given in Algorithm 1.

Algorithm 1: Exploiting fixed 𝑛 through non-response

Input:
• Dataset 𝑆 ⊆ 𝐷

1 (Return 1) If |𝑆 | < 𝑛 or 𝑡 ∈ 𝑆 , return 1.

2 (Or non-response) Else, return ⊥.

If 𝑡 ∈ 𝐷 , the script will output 1 for any subset of size 𝑛 that

contains 𝑡 . Moreover, any such subset is stable, because if any rows

are removed, the size will be less than 𝑛, so the script will again

return 1. On the other hand, if 𝑡 ∉ 𝐷 , the script will return⊥ for any

subset of size 𝑛, so no stable subsets of size 𝑛 exist. Thus, a stable

subset of size 𝑛 exists if and only if 𝑡 ∈ 𝐷 . Therefore the adversary
will know whether the target is in the data, based on whether or

not the wrapper returns an output.

To defend against attacks like this, our second idea is to random-

ize over the size of subsets we consider, 𝑛. Intuitively, by making

the number of individuals we remove random, we may conceal how

many individuals are removed because they are influential.

In Section 4, we define a distribution 𝐺 , used to select a subset

size 𝑛. The size ranges from 𝑁 −𝑀 to 𝑁 , where 𝑁 is the size of the

dataset and𝑀 is a parameter representing the maximum number of

individuals removed. The specific form of 𝐺 is chosen to optimize

privacy parameters. It is necessary that the internal parameter 𝑛 is

kept secret, in order our privacy guarantees to hold.

1.3 Summary of Results
Our algorithm TAHOE (Trim And withHold Or Execute), which
is formally defined in Section 4, combines the two previous ideas.

At a high level, TAHOE begins by selecting a random size 𝑛 from

distribution 𝐺 . TAHOE then checks if any stable subsets of size

𝑛 exist for a dataset 𝐷 , which can be viewed as trimming influen-

tial individuals from the data. If no stable subset of size 𝑛 exists,

TAHOE withholds from responding, represented by non-response

⊥. Otherwise, TAHOE selects a stable subset 𝑆 of size 𝑛 uniformly

at random and executes the researcher’s script 𝑅 on it, with the

addition of Laplace noise.

We prove in Theorem 1 that TAHOE imposes (𝜖, 𝛿)-differential
privacy. More precisely, fixing any researcher script 𝑅, the resulting

behavior of TAHOE can be viewed as a function from the set of

possible datasets to distributions over possible outputs. The dif-

ferential privacy bound applies to this function, and it holds no

matter what script 𝑅 is chosen. Even if every individual is highly

influential with respect to script 𝑅, differential privacy continues

to hold, though the lack of stable subsets implies that TAHOE will

always return ⊥ in this case.

419

Proceedings on Privacy Enhancing Technologies 2023(3) Kohli and Laskowski

Without restrictions on the set of possible data entriesD, TAHOE
is too computationally expensive to be practical. We provide a big-O
bound in Proposition 5, and argue that (whenmaintaining 𝛿 < 1/𝑁),

the runtime is superpolynomial in the size of the dataset.

By contrast, we consider scenarios in which the data alphabet

has finite size, |D| = 𝑓 . In this case, we describe optimizations

that allow TAHOE to run efficiently. Proposition 6 shows that the

runtime now becomes O
(
𝜏𝜖−𝑓 ln(𝛿−1) 𝑓

)
as 𝜖, 𝛿 → 0, where 𝜏 is a

bound on the runtime of 𝑅. In Section 7 we describe the results of

experiments involving finite data alphabets, in which TAHOE is

able to run on a single computer.

In general, measuring the accuracy of TAHOE’s output is difficult,

because its behavior depends crucially on what is in the script 𝑅.

Nevertheless, some guarantees can be derived for special cases.

Theorem 2 shows that when 𝑅 returns a statistically consistent

estimate for a population parameter, and TAHOE is configured to

never return ⊥, TAHOE’s output will be consistent as well.
To better understand the accuracy of TAHOE’s output, we per-

form a set of simulation exercises in Section 7. Each exercise is

based around an honest researcher that wishes to perform a styl-

ized analysis task involving a finite data alphabet. As a benchmark

for comparison, we also simulate the same tasks under the GUPT

system, which is another algorithm that can fill the role of a privacy

wrapper [23]. While these systems are very different from each

other, we establish guidelines to make our comparison as fair as

possible.

The first task we consider is generating a histogram showing

the proportion of each possible data entry. In our experiments, we

find that GUPT outperforms TAHOE for small datasets. However,

above a certain data size, TAHOE’s output becomes more accurate,

reflecting favorable scaling properties. TAHOE also performs rela-

tively well as the size of the alphabet increases, but less well as 𝜖

approaches 0.

The second task we consider is computing the sample entropy

of the data. We once again find that GUPT outperforms TAHOE

for small datasets. TAHOE does gain an advantage as the dataset

grows large, but it takes a much larger dataset (above 10
6
rows)

before TAHOE becomes more accurate than GUPT. We argue that

this is related to the fact that entropy is a one-dimensional quantity,

and to the shape of the entropy function.

2 RELATEDWORKS
Differential privacy was introduced by Dwork et al. as a rigorous

standard for mechanisms that compute real-valued statistics from

personal data [8, 9, 11]. The authors pioneered privacy analysis

based on global sensitivity, which is defined as the maximal change

in a statistic resulting from a one row change to any dataset. Sub-

sequent papers developed variants of the definition of differential

privacy [3, 4, 6, 13, 22] whose analyses leverage global sensitivity. A

number of studies have since developed differentially private mech-

anisms leveraging local sensitivity, which is often much smaller

than global sensitivity [15, 24, 31]. Such approaches cannot imme-

diately be applied to black box researcher scripts, as neither local

nor global sensitivity may be estimated.

Within the differential privacy literature, three high-level strate-

gies can be applied to black boxes. We will refer to these as sub-

sample and aggregate, Lipschitz extension, and restricted language.

In the subsample and aggregate approach, a dataset is divided

into (small) subsets and the researcher script is run on each piece.

The results are then aggregated together in some way to yield

a final answer. Privacy protection emerges from the fact that a

single individual can only affects the output resulting from a single

subset (or a small fraction). Nissim, Raskhodnikova, and Smith were

the first to outline this strategy, providing an example using the

median as the aggregation function with noise calibrated to smooth

sensitivity [24]. GUPT is a similar system, in which the mean is

used as an aggregation function [23]. A feature of both of these

systems is that a bound is required on the script output. As an

alternative, a script can be run on subsamples, then the median

can be released using the the Propose-Test-Release framework of

Dwork and Lei [10]. Such a system does not require any bounds

on the script output, but there is always some probability that

the script returns a non-response character ⊥ instead of returning

an output. The privacy wrapper we propose similarly requires no

bounds on script output, and returns⊥ in some cases. In cases when

the output of a script is categorical instead of metric, aggregation

can be performed through noisy voting [16, 26]. Compared to this

lineage, our privacy wrapper also examines subsets of data, but

does not require an aggregation step. Instead, our work is focused

on finding subsets of data with favorable privacy characteristics

prior to computing statistics.

In the Lipschitz extension approach, a researcher script is re-

placed by an approximating function that has low global sensitivity

but matches the output of the script on at least one reference dataset.

The resulting function is known as a Lipschitz extension, and may

be useful if its output matches the original script on typical datasets.

Furthermore, the low global sensitivity means that a small amount

of noise is sufficient to impose differential privacy. This approach

was pioneered by Jha and Raskhodnikova, who developed algo-

rithms for constructing Lipschitz extensions when each data entry

takes on a finite set of values [14]. The original script is run on

possible databases in a predetermined order, and the output is used

to calibrate the extension.

This approach was extended by Cummings and Durfee, who pre-

sented algorithms for infinite database domains [5]. In their system,

a Lipschitz extension is constructed by first running the source

script on the empty database. The output for any other database is

found recursively, based on the output of its subsets. A theme that

emerges from this work is that a Lipschitz extension is accurate

when the output of the original script on the starting reference

dataset is close to the output on the actual data. Another feature is

that Lipschitz extensions take exponential time to compute, unless

the researcher script is a white box with additional structure that

can be exploited.

Similarly to the above work, our privacy wrapper leverages sub-

setting to avoid searching through the entire space of possible

datasets. However, we only consider subsets above a minimum size.

As long as the researcher script has low sensitivity over this local

domain, our privacy wrapper will output accurate results, even

if the sensitivity bound is broken on other typical datasets. Addi-

tionally, the number of relevant subsets may be far fewer than the

420

Differential Privacy for Black-Box Statistical Analyses Proceedings on Privacy Enhancing Technologies 2023(3)

number considered under a Lipschitz extension approach, though

it is still too large for practical computation when the data alphabet

is infinite.

In the restricted language approach, researchers are permitted

to design their own script, but must use a limited language that

restricts their access to data. An example of such a system is PINQ,

which presents programmers with a SQL-like interface with privacy

guarantees [21]. Other differentially private SQL systems have been

subsequently developed [15, 19, 32]. In a similar fashion, Kifer et al.

propose an architecture in which access to data is mediated by a

privacy layer that implements differentially private mechanisms

[17].

3 PRELIMINARIES
Let D be the set of possible entries that represent one individual

in a dataset. A dataset is represented as a multiset of finite size

with entries in D. Let D★ be the set of all possible datasets. We

say two datasets 𝐷1, 𝐷2 ∈ D★ are neighbors if one can be obtained

from the other by switching exactly one element. That is, 𝐷1 and

𝐷2 are neighbors if there exists 𝑥 ∈ 𝐷1 and 𝑦 ∈ 𝐷2 such that

𝐷2 = (𝐷1 ∪ {𝑦}) \ {𝑥}.
Given a nonempty set Ω, let Δ(Ω) be the set of all probabil-

ity distributions over Ω.3 We define an algorithm as a function

𝐴 : D★ → Δ(R𝑘 ∪ {⊥}). Here, ⊥ is used to represent non-response,

meaning an algorithm fails to return a real value. For ease of expo-

sition, we define a researcher’s script as a deterministic function

𝑅 : D★ → R𝑘 ∪ {⊥}. All results in this paper can be extended to

researcher scripts that are randomized by adding a sampling step

to the wrapper. Let R be the set of all deterministic algorithms.

The notion of differential privacy is rooted in the indistinguisha-
bility of probability distributions [9].

Definition 2. For any nonempty set Ω, two distributions 𝑑1, 𝑑2 ∈
Δ(Ω) are (𝜖, 𝛿)-indistinguishable if for every measurable set 𝐸 ⊆ Ω,
for all 𝑖, 𝑗 ∈ {1, 2}, 𝑑𝑖 (𝐸) ≤ exp(𝜖)𝑑 𝑗 (𝐸) + 𝛿 .

We will denote the (𝜖, 𝛿)-indistinguishability of 𝑑1 and 𝑑2 as

𝑑1 ∼𝜖,𝛿 𝑑2. If 𝑑1, 𝑑2, and 𝑑3 are distributions, then the following

transitive property holds.

Lemma 1. [12] If 𝑑1 ∼𝜖,0 𝑑2, and 𝑑2 ∼𝜖′,0 𝑑3, then 𝑑1 ∼𝜖+𝜖′,0 𝑑3.

Differential privacy applies the notion of indistinguishable proba-

bility distributions to randomized algorithms on neighboring datasets.

Definition 3. (Differential Privacy [8]) An algorithm 𝐴 : D★ →
Δ(R𝑘 ∪ {⊥}) is (𝜖, 𝛿)-differentially private if for any neighboring

datasets 𝐷1 and 𝐷2, 𝐴(𝐷1) ∼𝜖,𝛿 𝐴(𝐷2).

A wrapper is a function𝑊 : D★×R → Δ(R𝑘 ∪{⊥}) that takes a
dataset 𝐷 and an algorithm 𝑅 as input and outputs a noisy response

based on 𝑅 and 𝐷 . We extend the notion of differential privacy to

wrappers as follows.

Definition 4. (Imposition of Differential Privacy) A wrapper𝑊

imposes (𝜖, 𝛿)−differential privacy if for any researcher algorithm

𝑅, the function𝑊 (·, 𝑅) is (𝜖, 𝛿)−differentially private.

3
Technically speaking, Δ(Ω) is the set of all probability distributions over some 𝜎-

algebra of Ω.

Our privacy wrapper will leverage the 𝑘-dimensional Laplace

distribution.

Definition 5. The 𝑘-dimensional Laplace distribution with mean

` ∈ R𝑘 and scale _ > 0, denoted as 𝐿𝑘 (`, _), is the distribution in

Δ(R𝑘) with density function 𝑓 (𝑧) = (2_)−𝑘 exp(−||𝑧 − ` | |1/_).
A necessary and sufficient condition to determine whether two

Laplace distributionswith the same scale _ are (𝛼, 0)-indistinguishable
is given below.

Lemma 2. For _ > 0, | |` − a | |1 ≤ 𝛼_ ⇐⇒ 𝐿𝑘 (`, _) ∼𝛼,0 𝐿𝑘 (a, _).

4 ALGORITHM DESCRIPTION: TAHOE
As noted in Section 1.2, our privacy wrapper TAHOE leverages

stable subsets of random sizes to impose (𝜖, 𝛿)-differential privacy.
In this section, we formalize each of these notions and specify our

algorithm.

4.1 Stable Subsets
Before defining stability, a preliminary concept is that of responsive

datasets. Essentially, this requires that a researcher script does not

return ⊥ when applied to the dataset or any subset of a minimum

size.

Definition 6. (Responsive Subset) A subset 𝑆 ⊆ D★ is called (𝑅, 𝑙)-
responsive if for every 𝑋 ⊆ 𝑆 of size at least 𝑙 , we have 𝑅(𝑋) ∈ R𝑘 .

Note that any multiset 𝑆 of size less than 𝑙 is trivially responsive

by definition. Our definition of stable subsets refines responsiveness
to convey the intuition that removing further individuals does not

greatly affect script output.

Definition 7. (Stability: Formal Version of Informal Definition 1) A

multiset 𝑆 ∈ D★ is called (𝛼, _, 𝑙, 𝑅)−stable if 𝑆 is (𝑅, 𝑙)-responsive,
and for any subsets 𝑋,𝑌 ⊆ 𝑆 of size at least 𝑙 , 𝐿(𝑅(𝑋), _) ∼𝛼,0
𝐿(𝑅(𝑌), _).4

Because 𝛼 , _, 𝑙 , and 𝑅 will not change in this study, we will

omit them and simply refer to the set 𝑆 as stable. Additionally, any
multiset 𝑆 of size less than 𝑙 is trivially stable by definition.

It will be useful to rewrite stability in terms of the following

definitions. Let𝑈 be the set of all vectors of the form (𝑢1, 𝑢2, ..., 𝑢𝑘)
where 𝑢 𝑗 ∈ {−1, +1} for all 𝑗 . For 𝑢 ∈ 𝑈 and 𝑆 ∈ D★ of size at least

𝑙 , define𝑚𝑖𝑛𝑢 (𝑆) and𝑚𝑎𝑥𝑢 (𝑆) as follows:

𝑚𝑖𝑛𝑢 (𝑆) =
{
min𝐴⊆𝑆, |𝐴 | ≥𝑙 𝑢 · 𝑅(𝐴) if 𝑆 is (𝑅, 𝑙)-responsive
−∞ otherwise

and

𝑚𝑎𝑥𝑢 (𝑆) =
{
max𝐴⊆𝑆, |𝐴 | ≥𝑙 𝑢 · 𝑅(𝐴) if 𝑆 is (𝑅, 𝑙)-responsive
∞ otherwise

Now stability can be expressed as follows:

Proposition 1. A multiset 𝑆 ∈ D★ is (𝛼, _, 𝑙, 𝑅)−stable if and only
if either |𝑆 | < 𝑙 , or |𝑆 | ≥ 𝑙 and

max

𝑢∈𝑈

(
𝑚𝑎𝑥𝑢 (𝑆) −𝑚𝑖𝑛𝑢 (𝑆)

)
≤ 𝛼_

4
By Lemma 2, 𝐿 (𝑅 (𝑋), _) ∼𝛼,0 (𝑅 (𝑌), _) ⇐⇒ | |𝑅 (𝑋) − 𝑅 (𝑌) | |1 ≤ 𝛼_.

421

Proceedings on Privacy Enhancing Technologies 2023(3) Kohli and Laskowski

The proof of this proposition can be found in the appendix. From

a computational perspective,𝑚𝑖𝑛𝑢 and𝑚𝑎𝑥𝑢 satisfy a recurrence

relationship which will enable us to check the stability of subsets

more efficiently.

Proposition 2. For 𝑆 ∈ 𝐷★ of size at least 𝑙 , the following hold:

(a) If |𝑆 | = 𝑙 and 𝑅(𝑆) ≠⊥, then𝑚𝑖𝑛𝑢 (𝑆) = 𝑚𝑎𝑥𝑢 (𝑆) = 𝑢 · 𝑅(𝑆)
for all 𝑢 ∈ 𝑈 . Alternatively, if |𝑆 | = 𝑙 and 𝑅(𝑆) =⊥ then
𝑚𝑖𝑛𝑢 (𝑆) = −∞ and𝑚𝑎𝑥𝑢 (𝑆) = ∞.

(b) If |𝑆 | > 𝑙 and 𝑅(𝑆) ≠⊥, letting 𝐶 (𝑆) be the set of subsets of 𝑆
of size |𝑆 | − 1, then for all 𝑢 ∈ 𝑈 ,

𝑚𝑖𝑛𝑢 (𝑆) = min

(
𝑢 · 𝑅(𝑆), min

𝑐∈𝐶 (𝑆)

(
𝑚𝑖𝑛𝑢 (𝑐)

))
and

𝑚𝑎𝑥𝑢 (𝑆) = max

(
𝑢 · 𝑅(𝑆), max

𝑐∈𝐶 (𝑆)

(
𝑚𝑎𝑥𝑢 (𝑐)

))
Alternatively, if |𝑆 | > 𝑙 and 𝑅(𝑆) =⊥, then 𝑚𝑖𝑛𝑢 (𝑆) = −∞
and𝑚𝑎𝑥𝑢 (𝑆) = ∞.

Stable subsets obey certain algebraic properties that facilitate

algorithmic analysis. As the following lemma shows, subsetting a

stable subsets creates another stable subset.

Lemma 3. If 𝑆 is (𝛼, _, 𝑙, 𝑅)−stable, and 𝑆 ′ ⊆ 𝑆 , then 𝑆 ′ is also
(𝛼, _, 𝑙, 𝑅)−stable.

Proof. Consider 𝑆 ′ ⊆ 𝑆 . If |𝑆 ′ | < 𝑙 , then 𝑆 ′ is trivially stable.

Hence, consider the case when |𝑆 ′ | ≥ 𝑙 . For any 𝑋 ⊆ 𝑆 ′ of size at
least 𝑙 , 𝑋 ⊆ 𝑆 , so 𝑅(𝑋) ≠⊥ since 𝑆 is (𝑅, 𝑙)-responsive. Hence, 𝑆 ′ is
(𝑅, 𝑙)-responsive. Take any 𝑋,𝑌 ⊆ 𝑆 ′ of size at least 𝑙 . Since 𝑆 ′ ⊆ 𝑆 ,
the (𝛼, _, 𝑙, 𝑅)−stability of 𝑆 implies 𝐿(𝑅(𝑋), _) ∼𝛼,0 𝐿(𝑅(𝑌), _).
Hence, 𝑆 ′ is also (𝛼, _, 𝑙, 𝑅)−stable. □

Corollary 1. If 𝑆 and 𝑆 are (𝛼, _, 𝑙, 𝑅)−stable, then 𝑆 ∩ 𝑆 is also
(𝛼, _, 𝑙, 𝑅)−stable.

Proof. Apply Lemma 3 with 𝑆 as is and 𝑆 ′ = 𝑆 ∩ 𝑆 . □

Corollary 2. If 𝑆 ⊆ 𝐷 is (𝛼, _, 𝑙, 𝑅)−stable, and 𝐷 and 𝐷 ′ are neigh-
bors, then 𝑆 ∩ 𝐷 ′ is also (𝛼, _, 𝑙, 𝑅)−stable.

Proof. Apply Lemma 3 with 𝑆 as is and 𝑆 ′ = 𝑆 ∩ 𝐷 ′
. □

Given data 𝐷 ∈ D★ and researcher script 𝑅, let𝑚(𝐷, 𝑅) be the
size of the largest stable subset of 𝐷 . The following lemma relates

𝑚 to the idea of neighboring datasets.

Lemma4. When𝐷1, 𝐷2 ∈ D★ are neighbors,𝑚(𝐷1, 𝑅) and𝑚(𝐷2, 𝑅)
differ by at most 1.

Proof. Suppose 𝑆1 is a maximal stable subset of𝐷1. Then 𝑆1∩𝐷2

is a stable subset of𝐷2 by Corollary 2. Further, |𝑆1∩𝐷2 | ≥ |𝑆1 | −1 =
𝑚(𝐷1, 𝑅) − 1. Therefore𝑚(𝐷2, 𝑅) ≥ 𝑚(𝐷1, 𝑅) − 1. By symmetric

argument,𝑚(𝐷1, 𝑅) ≥ 𝑚(𝐷2, 𝑅) − 1. □

4.2 Randomized Subset Sizes
Our algorithm randomly chooses how many individuals to exclude

when searching for a stable subset, making it harder for an adver-

sary to leverage the size of stable subsets to extract information

from the data. Throughout this paper, we will use 𝑁 to represent

the size of a dataset, and𝑀 to represent the maximum number of

entries that a privacy wrapper may exclude. In our algorithm, 𝑀

will be set to the output of the following helper function

ℎ(𝜖, 𝛿, 𝛼) = ⌈𝑄−1
ln(𝛿−1 exp(𝜖)𝑄 + 1)⌉

where 𝑄 = 𝜖 (𝜖 − 4𝛼) (2𝜖 − 4𝛼)−1. Note that𝑀 decreases in both 𝜖

and 𝛿 .

To select a size between 𝑁 −𝑀 and 𝑁 , we define the distribution

𝐺 (𝜖, 𝛼, 𝑁 ,𝑀) as follows: 𝐺 (𝜖, 𝛼, 𝑁 ,𝑀) (𝑛) equals

𝛿 ′ exp
(
min

{
(𝜖 − 4𝛼) (𝑛 − 𝑁 +𝑀) − 2𝛼, 𝜖 (𝑁 − 𝑛)

})
for 𝑛 ∈ {𝑁 − 𝑀, ..., 𝑁 } and 0 otherwise, where 𝛿 ′ is a constant

selected so that the total probability sums to 1. As we will see in

the following section, the normalization constant 𝛿 ′ of 𝐺 is closely

related to the privacy parameter 𝛿 in the (𝜖, 𝛿)-differential privacy
guarantee of TAHOE. We will normally omit the arguments to 𝐺

for readability purposes. A specific example of the shape of𝐺 when

𝑁 = 100, 𝑀 = 42, 𝜖 = 0.1, and 𝛼 = 0.01 is provided in Figure 1. For

these values, 𝛿 ′ ≈ 0.0098.

Figure 1: The distribution 𝐺 (𝑛) when 𝑁 = 100, 𝑀 = 42, 𝜖 = 0.1,

and 𝛼 = 0.01. For these values, 𝛿 ′ ≈ 0.0098.

𝐺 is designed to rise and fall in an exponential manner. In the

privacy analysis of Section 5, it will be helpful to relate the proba-

bility at 𝑛 to the total probability below 𝑛 and the total probability

above 𝑛. This is done by the following two propositions.

Proposition 3. For any 𝑟 in the support of 𝐺 ,

𝐺 (𝑟) ≤ (exp(𝜖 − 4𝛼) − 1)
∑︁
𝑛<𝑟

𝐺 (𝑛) + exp(−2𝛼)𝛿 ′

Proposition 4. For any 𝑟 in the support of 𝐺 ,

𝐺 (𝑟) ≤ (exp(𝜖) − 1)
∑︁
𝑛>𝑟

𝐺 (𝑛) + 𝛿 ′

A proof of Proposition 3 is provided in the Appendix; the proof

of Proposition 4 is similar to the previous one, so we omit it.

422

Differential Privacy for Black-Box Statistical Analyses Proceedings on Privacy Enhancing Technologies 2023(3)

Algorithm 2: TAHOE
Input:
(From Data Holder)

• Dataset 𝐷 with size 𝑁

• Privacy parameters 𝜖 > 0 and 0 < 𝛿 ≤ 1

• Distinguishability parameter 𝛼 < 𝜖/4
such that ℎ(𝜖, 𝛿, 𝛼) < (𝑁 − 1)/2.

(From Researcher)

• Researcher script 𝑅

• Scale parameter _

Output: 𝜔 ∈ R𝑘 ∪ {⊥}
1 (Choose subset size) Set𝑀 = ℎ(𝜖, 𝛿, 𝛼) and sample

𝑛 ∼ 𝐺 (𝜖, 𝛼, 𝑁 ,𝑀).
2 (Compute𝑚𝑖𝑛𝑢 and𝑚𝑎𝑥𝑢)

(a) For all subsets 𝑆 of size 𝑁 − 2𝑀 − 1, execute the

researcher script 𝑅 on 𝑆 . Compute𝑚𝑖𝑛𝑢 (𝑆) =𝑚𝑎𝑥𝑢 (𝑆) for
all 𝑢 ∈ 𝑈 according to the base case in Proposition 2(a).

(b) Set 𝑖 = 𝑁 − 2𝑀 .

(c) While 𝑖 ≤ 𝑛
(I) For each subset 𝑆 of size 𝑖 , execute the researcher

script 𝑅 on 𝑆 . Compute𝑚𝑖𝑛𝑢 (𝑆) and𝑚𝑎𝑥𝑢 (𝑆) for all
𝑢 ∈ 𝑈 according to Proposition 2(b).

(II) Set 𝑖 = 𝑖 + 1.

3 (Check stability) Initialize S = ∅. For each subset 𝑆 of size 𝑛,

check whether 𝑆 is stable according to Proposition 1. If 𝑆 is

stable, add it to set S.
4 (Non-response condition) If S = ∅, set 𝜔 =⊥.
5 (Execute condition) Otherwise, select a stable subset 𝑆 from

S uniformly at random, and sample 𝜔 ∼ 𝐿(𝑅(𝑆), _).
6 Return 𝜔

4.3 Our General Algorithm
Our specific privacy wrapper TAHOE (Trim And withHold Or
Execute) described in Algorithm 2 takes as input a researcher script

𝑅 : D★ → Δ(R𝑘∪{⊥}) and a dataset𝐷 ∈ D★ of size𝑁 . Additionally,

TAHOE uses the following auxiliary parameters: 𝜖 > 0, 𝛿 > 0,

𝛼 < 𝜖/4, and _ > 0.

Configuring TAHOE is complicated by the large number of pa-

rameters, and by the different ways one might want to assess its

behavior. In general, a multi-way trade-off exists among how much

noise TAHOE adds, how likely TAHOE is to return ⊥, the privacy
parameters, and howmuch sampling variation is introduced by sub-

setting. The relationship among these quantities depends on what

is in the researcher script, and therefore cannot be known precisely.

In the following table, we provide some guidance by discussing the

effects of each parameter in general terms.

Table 1: Description of Parameters

𝝐 and 𝜹 : These are the differential privacy parameters, which are

chosen by the data holder. Decreasing 𝜖 and 𝛿 corresponds to a

stronger privacy guarantee. However, setting these parameters

too small presents two disadvantages. One disadvantage is that a

smaller 𝜖 and 𝛿 results in a higher 𝑀 , requiring the algorithm to

consider smaller subsets of data. At least in typical cases, we expect

that increasing𝑀 will make it harder to find stable subsets, resulting

in a higher probability of returning ⊥. Moreover, the requirement

𝑀 = ℎ(𝜖, 𝛿, 𝛼) < (𝑁 − 1)/2 places a lower bound on 𝜖 and 𝛿 . A

second disadvantage is that a small 𝜖 also requires 𝛼 to be smaller,

which may cause TAHOE to return ⊥ with high probability, or

require more noise.

𝝀: This parameter is chosen by the researcher and represents the

scale of added Laplace noise. Decreasing _ results in more accurate

output; however, this also makes the definition of stable subsets

stricter, which increases the probability that TAHOE halts without

returning an output. We propose two heuristics for setting _. One is

to decide how much noise can be added to the result while preserv-

ing its utility. In our experiments, we found that the greatest source

of error was the Laplace noise added in Step 5 of the algorithm.

Further, the standard deviation of this noise is given by

√
2_. The

other heuristic we propose is to compute a value for _ such that

TAHOE is guaranteed to never (or rarely) to output ⊥. We give

examples of such computations in Section 7.

𝜶 : This parameter is chosen by the data holder, and controls how

indistinguishable 𝐿(𝑅(𝐴), _) and 𝐿(𝑅(𝐵), _) must be when 𝐴 and

𝐵 are subsets of a stable set. If 𝛼 is too small, TAHOE will tend to

return⊥with high probability. If𝛼 is too close to 𝜖/4,𝑀 will become

large, increasing the probability of returning⊥. Additionally, setting
𝛼 too high will violate the requirement that𝑀 = ℎ(𝜖, 𝛿, 𝛼) < (𝑁 −
1)/2. In our simulation studies, we have found that 𝛼 = 𝜖/5 is a

reasonable rule of thumb for all scenarios we considered.

5 PRIVACY ANALYSIS OF TAHOE
In this section, we show that our privacy wrapper TAHOE imposes

(𝜖, 𝛿)-differential privacy.
Throughout this section, we will use T𝐷 ∈ Δ(R𝑘 ∪ {⊥}) to

denote the probability distribution induced by TAHOE on dataset

𝐷 , researcher script 𝑅, and parameters 𝜖, 𝛿, 𝛼 , and _. Since 𝐷 is the

only input that will change in the upcoming proofs, we omit writing

the other inputs for readability purposes. For any 𝐷 ∈ D★, write
T𝐷 (·|𝑛) to represents the conditional probability distribution of the

wrapper when 𝑛 has been chosen in Step 1 of Algorithm 2.

Theorem 1. TAHOE imposes (𝜖, 𝛿)-differential privacy.

Before providing the proof, we sketch an outline of our argu-

ment. In order to show that TAHOE imposes (𝜖, 𝛿) differential pri-
vacy, we first show in Lemma 5 that the value of𝑀 set in TAHOE

produces 𝛿 ′ < 𝛿 . Since (𝜖, 𝛿 ′) differential privacy implies (𝜖, 𝛿)-
differential privacy, it is sufficient to show that TAHOE imposes

(𝜖, 𝛿 ′)-differential privacy.
Next, we proceed by considering the behavior of TAHOE on two

neighboring datasets 𝐷1 and 𝐷2. If there are no stable subsets of

size 𝑁 −𝑀 for both of these datasets, then TAHOE returns ⊥ with

probability 1 on both datasets. Hence, the behavior of TAHOE is

constant for all neighboring databases, so TAHOE trivially imposes

(𝜖, 𝛿 ′)-differential privacy.
On the other hand, if there is a stable subset of size 𝑁 −𝑀 of

at least one of the datasets, we can pick any stable subset 𝐾 and

define a reference distribution 𝐻 = 𝐿(𝑅(𝐾), _). For any value of 𝑛

for which TAHOE does not return ⊥, we then show in Lemma 6

423

Proceedings on Privacy Enhancing Technologies 2023(3) Kohli and Laskowski

that both conditional distributions𝑇𝐷1
(·|𝑛) and𝑇𝐷2

(·|𝑛) are (2𝛼, 0)-
indistinguishable from 𝐻 . Using this result, we finish the proof by

showing that, for any measurable set 𝐸 ⊆ R𝑘 ∪ {⊥}, 𝑇𝐷1
(𝐸) ≤

exp(𝜖)𝑇𝐷2
(𝐸) + 𝛿 ′ based on two cases: when ⊥∉ 𝐸 and when ⊥∈ 𝐸.

Proof. We will show that TAHOE imposes (𝜖, 𝛿 ′)-differential
privacy, where 𝛿 ′ is the normalization constant in the definition

of 𝐺 . This is sufficient because of the following lemma, which is

proven in the Appendix.

Lemma 5. Given the value of𝑀 chosen by TAHOE, 𝛿 ′ < 𝛿 .

Let 𝐸 ⊆ R𝑘 ∪ {⊥} be measurable, and let 𝐷1 and 𝐷2 be neigh-

boring datasets. We will prove the bound,

T𝐷1
(𝐸) − 𝛿 ′

T𝐷2
(𝐸) ≤ exp(𝜖)

If there are no stable subsets of size 𝑁 −𝑀 of both 𝐷1 and 𝐷2,

then T𝐷1
and T𝐷2

are the same distribution (giving probability 1

to ⊥), so the bound follows immediately. If there are any stable

subsets of size 𝑁 −𝑀 of either 𝐷1 or 𝐷2, choose one and call it 𝐾 .

Define reference distribution 𝐻 = 𝐿(𝑅(𝐾), _).

Lemma 6. 𝐻 is (2𝛼, 0)−indistinguishable from T𝐷𝑖
(·|𝑛) for any

𝑖 ∈ {1, 2} and for any 𝑛 for which this algorithm does not return ⊥.
Proof. Let S𝑛

𝑖
be the set of stable subsets of size 𝑛 of 𝐷𝑖 . For

𝑖 ∈ {1, 2}, if T𝐷𝑖
(·|𝑛) does not return ⊥, then for all measurable

sets 𝐸 ⊆ R𝑘 ∪ {⊥},

T𝐷𝑖
(·|𝑛) (𝐸) = 1

|S𝑛
𝑖
|

∑︁
𝑆 ∈S𝑛

𝑖

𝐿(𝑅(𝑆), _) (𝐸)

So it is sufficient to show that every distribution of the form

𝐿(𝑅(𝑆), _) where 𝑆 ⊆ 𝐷𝑖 is a stable subset of size 𝑛 ≥ 𝑁 −𝑀 is

2𝛼-indistinguishable from 𝐻 .

For stable 𝑆 ⊆ 𝐷𝑖 of size 𝑛 ≥ 𝑁 − 𝑀 , we first establish that

|𝑆∩𝐾 | ≥ 𝑁 −2𝑀−1. By inclusion-exclusion, |𝑆∪𝐾 | = |𝑆 |+ |𝐾 |−
|𝑆 ∩𝐾 |. Since |𝑆 | ≥ 𝑁 −𝑀 , |𝐾 | = 𝑁 −𝑀 , and 𝑆 ∪𝐾 ⊆ 𝐷1 ∪𝐷2

implies |𝑆∪𝐾 | ≤ |𝐷1∪𝐷2 | = 𝑁 +1, we have |𝑆∩𝐾 | ≥ 𝑁−2𝑀−1.
Because 𝑆 and 𝐾 are stable, and 𝑆 ∩ 𝐾 is a subset of size at

least 𝑁 − 2𝑀 − 1, we have 𝐿(𝑅(𝑆), _) ∼𝛼,0 𝐿(𝑅(𝑆 ∩ 𝐾), _)
by Corollary 1. Additionally, since 𝐾 is stable, and 𝑆 ∩ 𝐾 is

a subset, 𝐿(𝑅(𝐾), _) ∼𝛼,0 𝐿(𝑅(𝑆 ∩𝐾), _). Thus 𝐿(𝑅(𝑆), _) ∼2𝛼,0

𝐿(𝑅(𝐾), _) by Lemma 1. □

Recall that 𝑚(𝐷𝑖 , 𝑅) is the size of the largest stable subset in

𝐷𝑖 . Let 𝑟 = max(𝑚(𝐷1, 𝑅),𝑚(𝐷2, 𝑅)). By Lemma 4, we know that

𝑚(𝐷1, 𝑅),𝑚(𝐷2, 𝑅) ∈ {𝑟 − 1, 𝑟 }. For 𝑖 ∈ {1, 2}, TAHOE returns ⊥
on data 𝐷𝑖 if and only if 𝑛 > 𝑚(𝐷𝑖 , 𝑅). This means that TAHOE

will return ⊥ for any 𝑛 > 𝑟 and will not return ⊥ for any 𝑛 < 𝑟 .

For 𝑖 ∈ {1, 2} the law of total probability implies

T𝐷𝑖
(𝐸) =

∑︁
𝑛<𝑟

T𝐷𝑖
(𝐸 |𝑛)𝐺 (𝑛) + T𝐷𝑖

(𝐸 |𝑟)𝐺 (𝑟) +
∑︁
𝑛>𝑟

T𝐷𝑖
(𝐸 |𝑛)𝐺 (𝑛)

We consider two cases:

Case ⊥∉ 𝐸: For 𝑛 > 𝑟 , TAHOE returns ⊥, so T𝐷𝑖
(𝐸 |𝑛) = 0. Hence,

T𝐷1
(𝐸) =

∑︁
𝑛<𝑟

T𝐷1
(𝐸 |𝑛)𝐺 (𝑛) + T𝐷1

(𝐸 |𝑟)𝐺 (𝑟)

≤
∑︁
𝑛<𝑟

exp(2𝛼)𝐻 (𝐸)𝐺 (𝑛) + exp(2𝛼)𝐻 (𝐸)𝐺 (𝑟)

where the inequality follows from Lemma 6. Additionally,

T𝐷2
(𝐸) =

∑︁
𝑛<𝑟

T𝐷2
(𝐸 |𝑛)𝐺 (𝑛) + T𝐷2

(𝐸 |𝑟)𝐺 (𝑟)

≥
∑︁
𝑛<𝑟

T𝐷2
(𝐸 |𝑛)𝐺 (𝑛)

≥
∑︁
𝑛<𝑟

exp(−2𝛼)𝐻 (𝐸)𝐺 (𝑛)

where the last inequality results from Lemma 6. Combining these

two observations,

T𝐷1
(𝐸) − 𝛿 ′

T𝐷2
(𝐸)

≤

∑
𝑛<𝑟

exp(2𝛼)𝐻 (𝐸)𝐺 (𝑛) + exp(2𝛼)𝐻 (𝐸)𝐺 (𝑟) − 𝛿 ′∑
𝑛<𝑟

exp(−2𝛼)𝐻 (𝐸)𝐺 (𝑛)

= exp(4𝛼)
∑
𝑛<𝑟 𝐺 (𝑛) +𝐺 (𝑟) − exp(−2𝛼)𝐻 (𝐸)−1𝛿 ′∑

𝑛<𝑟 𝐺 (𝑛)

≤ exp(4𝛼)

∑
𝑛<𝑟

𝐺 (𝑛) +𝐺 (𝑟) − exp(−2𝛼)𝛿 ′∑
𝑛<𝑟

𝐺 (𝑛)

where the last inequality follows since 𝐻 (𝐸) ≤ 1. Plugging in 𝐺 (𝑟)
from Proposition 3 and simplifying bounds the ratio by exp(𝜖).
Case ⊥ ∈ 𝐸: By Lemma 6, T𝐷𝑖

(·|𝑛) ∼2𝛼,0 𝐻 (·) when T𝐷𝑖
doesn’t

return ⊥.
When 𝑛 < 𝑟 , T𝐷𝑖

doesn’t return⊥, so T𝐷𝑖
(𝐸 |𝑛) = T𝐷𝑖

(𝐸 \{⊥}|𝑛),
hence exp(−2𝛼)𝐻 (𝐸 \ {⊥}) ≤ T𝐷𝑖

(𝐸 |𝑛) ≤ exp(2𝛼)𝐻 (𝐸 \ {⊥}).
Additionally, T𝐷𝑖

({⊥}|𝑛) = 1 for all 𝑛 > 𝑟 , so T𝐷𝑖
(𝐸 |𝑛) = 1 for all

𝑛 > 𝑟 . Hence,

T𝐷1
(𝐸 |𝑛) =

∑︁
𝑛<𝑟

T𝐷1
(𝐸 |𝑛)𝐺 (𝑛) + T𝐷1

(𝐸 |𝑟)𝐺 (𝑟) +
∑︁
𝑛>𝑟

T𝐷1
(𝐸 |𝑛)𝐺 (𝑛)

≤
∑︁
𝑛<𝑟

exp(2𝛼)𝐻 (𝐸 \ {⊥})𝐺 (𝑛) +𝐺 (𝑟) +
∑︁
𝑛>𝑟

𝐺 (𝑛)

Additionally,

T𝐷2
(𝐸 |𝑛) =

∑︁
𝑛<𝑟

T𝐷1
(𝐸 |𝑛)𝐺 (𝑛) + T𝐷2

(𝐸 |𝑟)𝐺 (𝑟) +
∑︁
𝑛>𝑟

T𝐷2
(𝐸 |𝑛)𝐺 (𝑛)

≥
∑︁
𝑛<𝑟

exp(−2𝛼)𝐻 (𝐸 \ {⊥})𝐺 (𝑛) + T𝐷2
(𝐸 |𝑟)𝐺 (𝑟) +

∑︁
𝑛>𝑟

𝐺 (𝑛)

≥
∑︁
𝑛<𝑟

exp(−2𝛼)𝐻 (𝐸 \ {⊥})𝐺 (𝑛) +
∑︁
𝑛>𝑟

𝐺 (𝑛)

where the last inequality follows as 𝐺 (𝑟) ≥ 0. Combining these

observations,

T𝐷1
(𝐸) − 𝛿 ′

T𝐷2
(𝐸)

≤

∑
𝑛<𝑟

exp(2𝛼)𝐻 (𝐸 \ {⊥})𝐺 (𝑛) +𝐺 (𝑟) + ∑
𝑛>𝑟

𝐺 (𝑛) − 𝛿 ′∑
𝑛<𝑟

exp(−2𝛼)𝐻 (𝐸 \ {⊥})𝐺 (𝑛) + ∑
𝑛>𝑟

𝐺 (𝑛)

Substituting for 𝐺 (𝑟) in the numerator from Proposition 4 and

rearranging, the right-hand side is upper-bounded by

exp(4𝛼)

∑
𝑛<𝑟

𝐻 (𝐸 \ {⊥})𝐺 (𝑛) + exp(𝜖 − 2𝛼) ∑
𝑛>𝑟

𝐺 (𝑛)∑
𝑛<𝑟

𝐻 (𝐸 \ {⊥})𝐺 (𝑛) + exp(2𝛼) ∑
𝑛>𝑟

𝐺 (𝑛)

424

Differential Privacy for Black-Box Statistical Analyses Proceedings on Privacy Enhancing Technologies 2023(3)

Since 𝜖 > 4𝛼 , the fraction is greater than 1, so we can subtract the

first terms from the numerator and denominator and maintain the

inequality:

T𝐷1
(𝐸) − 𝛿 ′

T𝐷2
(𝐸) ≤ exp(4𝛼) exp(𝜖 − 4𝛼)

∑︁
𝑛>𝑟

𝐺 (𝑛)

= exp(𝜖)
∑︁
𝑛>𝑟

𝐺 (𝑛)

≤ exp(𝜖)
□

6 RUNTIME ANALYSIS OF TAHOE
To analyze the execution time of TAHOE, we let 𝜏 represent the

worst case runtime of 𝑅.5 Without any restrictions, TAHOE takes

prohibitively long to execute. The reason is that, in the worst case,

Step 2 of the algorithm requires executing the researcher script on

every possible subset of data with size ranging from 𝑁 − 2𝑀 − 1

to 𝑁 . The following proposition places a bound on the execution

time without any restrictions on |D|. To attain this result, we must

specify how the input parameter 𝛼 changes as the other parameters

change. We suppose that the data holder sets 𝛼 proportional to 𝜖 ,

which is consistent with the rule of thumb (𝜖 = 5𝛼) we use in our

simulations in Section 7.

Proposition 5. For fixed 𝑅 and 𝑘 , and 𝜖 = 𝑔𝛼 for constant 𝑔 > 4,
the worst-case runtime of TAHOE is

O
(
(𝜏 + 𝑁) (𝑁 + 1)𝑔𝜖

−1 (1−ln(𝛿))+3
)

as 𝑁 → ∞ and 𝜖, 𝛿 → 0, where 𝑔 = (4𝑔 − 8) (𝑔 − 4)−1.

A proof of this proposition can be found in the Appendix. For

fixed privacy parameters, 𝜖 and 𝛿 , and fixed 𝜏 , the runtime of

TAHOE is polynomial in 𝑁 . However, a best practice first sug-

gested by Dwork, et al. is to maintain 𝛿 < 1/𝑁 [11]. This causes

the runtime to be superpolynomial in 𝑁 .

6.1 Runtime Analysis for Finite Alphabets
While the runtime bound of Proposition 5 is impractical for all but

small datasets with weak privacy parameters, there is one situation

in which TAHOE can be modified to run much faster. In particular,

when the set of possible data entriesD is finite of size 𝑓 , the number

of unique subsets of 𝐷 ∈ D★ that TAHOE must consider is greatly

reduced. Intuitively, when 𝑁 ≥ 𝑓 , by the pigeonhole principle

some of the rows in the dataset will necessarily hold the same

value; removing any one of them results in the same subset as

removing any other.

More formally, when D = {𝜎1, ..., 𝜎𝑓 } any dataset 𝐷 ∈ D𝑁 can

be written in histogram form as 𝐷 = (𝑣1, ..., 𝑣 𝑓) where 𝑣 𝑗 denotes
the number times 𝜎 𝑗 appears in the dataset and

∑𝑓

𝑗=1
𝑣 𝑗 = 𝑁 [12].

Any subset 𝑆 ⊆ 𝐷 of size at least 𝑁 −𝑖 is represented by a histogram
(𝑣1−𝑤1, 𝑣2−𝑤2, ..., 𝑣 𝑓 −𝑤 𝑓), where each𝑤 𝑗 ∈ {0, ..., 𝑣 𝑗 } represents
the number of excluded data elements with value 𝜎 𝑗 , and the total

5
In practice, to prevent side-channel attacks, we believe the data holder must impose a

timeout on the researcher script. In case 𝑅 breaches the timeout on subset 𝑆 , TAHOE

should assign 𝑅 (𝑆) to be ⊥. The length of the timeout could, in principle, depend on

𝑁 and other parameters.

number of excluded elements is

∑𝑓

𝑗=1
𝑤 𝑗 = 𝑖 . The following lemma

places bounds on the number of such histograms, with the proof

deferred to the Appendix.

Lemma 7. When |D| = 𝑓 , the number of subsets of a dataset𝐷 ∈ D𝑁

(a) of size 𝑁 − 𝑖 for 𝑖 ≥ 0 is upper bounded by
(𝑖+𝑓 −1
𝑓 −1

)
(b) of size at least 𝑁 − 2𝑀 − 1 is upper bounded by

(
2𝑀+1+𝑓

𝑓

)
.

To optimize TAHOE for this setting, we index subsets of 𝐷 ac-

cording to their histograms, in order to avoid duplicating computa-

tions on equivalent subsets. Thus, in Step 2(a), TAHOE must run 𝑅

on every histogram of size 𝑁 − 2𝑀 − 1. By Lemma 7(a), there are

at most

(𝑁−2𝑀−2+𝑓
𝑓 −1

)
such histograms. By similar analysis, in Step

2(c)(I), TAHOE runs 𝑅 on at most

(𝑖+𝑓 −1
𝑓 −1

)
such histograms of size

𝑁 − 𝑖 .
Overall, when TAHOE samples 𝑛 in Step 1, in Step 2 TAHOE

runs 𝑅 on every histogram with size in {𝑁 − 2𝑀 − 1, ..., 𝑛}. In the

worst case, 𝑛 = 𝑁 in Step 1. By Lemma 7(b), the total number of

histograms to check is upper bounded by

(
2𝑀+1+𝑓

𝑓

)
. When |D| = 𝑓 ,

the runtime of TAHOE is given in the following proposition, with

the proof deferred to the appendix.

Proposition 6. For fixed 𝑅, 𝑘 , and D with |D| = 𝑓 , and 𝜖 = 𝑔𝛼 for
constant𝑔 > 4, the worst-case runtime of TAHOE isO

(
𝜏𝜖−𝑓 ln(𝛿−1) 𝑓

)
as 𝜖, 𝛿 → 0.

Notice that the dependency on 𝑁 has disappeared, and a depen-

dency on 𝑓 has been introduced. At an intuitive level, the histogram

representation provides a lower dimensional representation of sub-

sets, reducing the number of subsets that need to be examined. In

upcoming Section 7, we run experiments involving data alphabet

sizes from 2 to 4 and find that the algorithm can readily run on a

single machine.

For finite data alphabets that are too large for TAHOE to run on

a single machine, parallel computation can expand the applicability

of the algorithm. In particular, the most computationally expensive

steps are 2(a) and 2(c)(I). Both of these can be distributed over a

parallel cluster.

7 ACCURACY ANALYSIS OF TAHOE
The performance of privacy-protecting systems is often assessed

via a statement that relates the privacy level to accuracy, which may

be measured in terms of mean squared error (MSE), standard error,

or some other metric. For researcher scripts in general, there is no

way to know what accuracy TAHOE provides for given parameter

values, because that depends crucially on what is inside the script.

However, we are able to provide some results related to accuracy

for specific scripts, or classes of scripts.

Our first result motivates the use of TAHOE for inferential sta-

tistics. When performing inference tasks, it is common to assume

that the data entries are drawn independently from a probability

distribution [29, 30]. Let F be a distribution over the set of data val-

ues D, described by a parameter \ ∈ R𝑘 . Further, let 𝑫𝑁
represent

a random dataset of 𝑁 rows drawn independently and identically

from F. A useful set of scripts are those that estimate \ consistently.
425

Proceedings on Privacy Enhancing Technologies 2023(3) Kohli and Laskowski

Definition 8. A script 𝑅 : D★ → R𝑘 ∪ {⊥} is consistent for
parameter \ ∈ R𝑘 if

plim𝑁→∞𝑅(𝑫𝑁) = \
That is, for any open set

6 𝐵 ⊆ R𝑘 ∪{⊥} that contains \ , P(𝑅(𝑫𝑁) ∈
𝐵) → 1 as 𝑁 → ∞.

When 𝑅 has bounded global sensitivity, it is possible to configure

TAHOE so that it preserves consistency. For this discussion, we

allow that parameters 𝜖 , 𝛼 ,𝑀 , _ may be chosen as functions of 𝑁 .

Three conditions are required. First, 𝛼 and _ must be chosen so that

TAHOE never returns ⊥.7 Second, the noise scale _ must approach

zero as 𝑁 → ∞. Third, 𝑀 must be fixed or grow slowly enough

that lim𝑁→∞ 𝑁 −𝑀 = ∞.

Theorem 2. If 𝑅 is consistent for parameter \ and TAHOE is con-
figured to never return ⊥, lim𝑁→∞ _ = 0, and lim𝑁→∞ 𝑁 −𝑀 = ∞
then the random variable formed by composing TAHOE with 𝑅 is
consistent for parameter \ .

A proof is given in the appendix. A similar result holds for re-

searcher scripts that implement unbiased estimators of \ .

7.1 Accuracy Simulations
To gain insight into additional accuracy characteristics of our pri-

vacy wrapper, we consider a set of example scripts that an (honest)

researcher may want to run. To make the runtime practical, we

chose stylized analysis tasks involving finite data alphabets. For

each script, our goal is to understand how well our privacy wrapper

performs, and compare it to a benchmark.

For this exercise, the benchmark that we select is GUPT, which

follows the sample-and-aggregate strategy [23]. To summarize the

algorithm, GUPT partitions the dataset into 𝑁 0.4
pieces, runs the

script on each piece, then releases the average output with Laplace

noise. Unlike TAHOE, GUPT has the advantage of using pure differ-

ential privacy. As an additional benchmark, we consider the Laplace

mechanism with global sensitivity as a white-box privacy preserv-

ing algorithm [11]. This provides a measure of the cost arising from

treating a script in a black-box fashion.

A comparison of TAHOE and GUPT is complicated by funda-

mental differences between the algorithms. First, the parameters

of each algorithm are different, and setting them requires judge-

ment on the part of the researcher. Second, GUPT guarantees pure

differential privacy while TAHOE uses approximate differential

privacy. Finally, GUPT always provide an output, while TAHOE

sometimes returns ⊥, making it difficult to compare accuracy on

the same scale. These differences between the systems prevent us

from comparing them “straight out of the box.”

To configure TAHOE and GUPT and make the comparison as

fair as possible, we adopt a set of guidelines. First, we follow simple

heuristics to set parameter values when possible. This is aligned

with our view that a privacy wrapper should not require specialized

knowledge on the part of a researcher. Second, we set parameters in

a way that makes the privacy wrappers as comparable as possible.

6
We define a topology over R𝑘 ∪ {⊥} using the Alexandroff Extension [7] of the

standard topology of R𝑘 with the singleton {⊥}.
7
By Lemma 2, a necessary and sufficient condition to ensure TAHOE does not return

⊥ is to set 𝛼 and _ such that | |𝑅 (𝑋) − 𝑅 (𝑌) | |1 ≤ 𝛼_ for all sets 𝑆,𝑋,𝑌 such that

𝑋,𝑌 ⊆ 𝑆 ⊆ 𝐷 , where |𝑆 | ∈ {𝑁 −𝑀, ..., 𝑁 } and |𝑋 |, |𝑌 | ≥ 𝑁 −𝑀 .

In the case of GUPT, the main parameter we must set is the

bounding rectangle for the script output. For the sake of simplicity,

we use the most extreme values that are mathematically possible,

meaning that the output is never censored. In the case of TAHOE,

we must set the noise scale _. For each script, we compute a value

of _ large enough to guarantee that the algorithm never returns ⊥.
This is done so that both systems always output real vectors, and

accuracy can be measured using a common metric (standard error).

An advantage of GUPT that we do not capture in our results is

that it uses pure differential privacy. We nevertheless use a common

𝜖 for all systems. We allow TAHOE to have the extra advantage of

approximate differential privacy, but require that 𝛿 < 1/𝑁 [1, 25].

7.2 Normalized Histogram
The first script we consider is one that returns a normalized his-

togram representing the data. Given alphabet D = (𝜎1, ..., 𝜎𝑓) and
dataset 𝐷 ∈ D𝑁 , define the (un-normalized) histogram H(𝐷) =

(𝑣1, ..., 𝑣 𝑓), where 𝑣 𝑗 denote the number of times 𝜎 𝑗 appears in

𝐷 . A script to return a normalized histogram is then specified by

P(𝐷) = H(𝐷)/|𝐷 |.
At a high level, the normalized histogram is well-matched with a

subsample-and-aggregate strategy, because the proportion of each

𝜎 𝑗 on a small subset of data tends to represent the overall proportion

of 𝜎 𝑗 well [24]. In fact, as long as the subsets have equal size, GUPT

introduces no sampling variation, so the only error comes from

added Laplace noise. To configure GUPT, we set the bound on script

output in each dimension to be [0, 1].
Unlike GUPT, TAHOE introduces both sampling variation and

added noise. Several parameters must be configured to run TAHOE.

We assume that the end user follows our recommendation of setting

𝛼 = 𝜖/5. We follow the practice of setting 𝛿 = 1/(𝑁 + 1).
To guarantee that TAHOE never returns ⊥, it is necessary and

sufficient to make sure it doesn’t return ⊥ when 𝑛 = 𝑁 is cho-

sen in Step 1. This is true whenever the entire dataset 𝐷 is sta-

ble. Equivalently, for any subsets 𝐴, 𝐵 ⊆ 𝐷 , with size at least

𝑁 − 2𝑀 − 1, we must check that | |P(𝐴) − P(𝐵) | |1 ≤ _𝛼 . Let

vector 𝑎 = (𝑎1, .., 𝑎𝑓) = H(𝐷) − H (𝐴) represent how many in-

stances of each 𝜎 𝑗 were removed from 𝐷 to form 𝐴. Likewise, let

𝑏 = (𝑏1, .., 𝑏 𝑓) = H(𝐷) − H (𝐵) . Then | |𝑎 | |1 =
∑𝑓

𝑗=1
𝑎 𝑗 ≤ 2𝑀 + 1

and | |𝑏 | |1 =
∑𝑓

𝑗=1
𝑏 𝑗 ≤ 2𝑀 + 1. We can then write,

| |P(𝐴) − P(𝐵) | |1 = | | (P(𝐷) − P(𝐵)) − (P(𝐷) − P(𝐴)) | |1

=

�������� 𝑏|𝐵 | − 𝑎

|𝐴|

��������
1

≤ ||𝑏 | |1
|𝐵 | + | |𝑎 | |1

|𝐴|

≤ 2𝑀 + 1

|𝐵 | + 2𝑀 + 1

|𝐴|

≤ 2(2𝑀 + 1)
𝑁 − 2𝑀 − 1

where the last inequality follows as |𝐴|, |𝐵 | ≥ 𝑁 − 2𝑀 − 1. Thus

setting _ = 2(2𝑀 + 1)/((𝑁 − 2𝑀 − 1)𝛼) where 𝑀 = ℎ(𝜖, 𝛿, 𝛼) is
sufficient to guarantee that TAHOE never returns ⊥.

426

Differential Privacy for Black-Box Statistical Analyses Proceedings on Privacy Enhancing Technologies 2023(3)

(a) Total error when 𝜖 = 1. (b) View of Figure 2(a)’s area of detail. (c) Total error when 𝑓 = 2 and 𝑁 = 10
5.

Figure 2: The total error, including sampling error and added noise, for the normalized histogram script under different systems
in log-scale.

Given these configurations, we perform experiments in which

GUPT and TAHOE are each executed on a randomly generated

dataset. Each row of data is an independent draw from a discrete

uniform distribution. The parameter 𝜖 is set to values ranging from

0.25 to 2 and 𝑁 is set to values in {102, 103, 104, 105}. The alphabet
size is set to values in {2, 3, 4}. To estimate error, each experiment

was replicated 50 times. All experiments were completed on a single

computer with TAHOE and GUPT implemented in Python.

Each panel of Figure 2 displays the total standard error (root-

mean-square error) for different parameter values. The error for

each histogram is measured using the L1 norm, and includes both

sampling error and added noise as a function of dataset size. In

practice, we found that sampling variation accounted for less than

1% of the total error in typical simulations.

First, as can be seen in Figure 2 (a) and (b), the error of every

system decreases as the data size grows along the horizontal axis.

For small datasets, GUPT outperforms TAHOE, featuring an order

of magnitude less error in some cases. In this range, our internal

parameter 𝑀 is large relative to 𝑁 , meaning that TAHOE must

consider relatively small subsets. These subsets can have signifi-

cantly different proportions, so a lot noise is required to make them

indistinguishable. By contrast, the number of subsets in GUPT is

large as a fraction of 𝑁 , reducing the sensitivity of the output to

any one subset.

For larger datasets, TAHOE’s advantages grow. The internal

parameter𝑀 grows slowly compared to 𝑁 , meaning that the sub-

sets under consideration have more similar proportions. Beyond a

certain dataset size, TAHOE features less total error than GUPT.

Next, as also seen in Figure 2 (a) and (b), increasing the alphabet

size 𝑓 from 2 to 3, and to 4, leads to more error for both privacy

wrappers. As the dimensionality increases, TAHOE shows a relative

advantage, in the sense that it takes fewer rows of data before

TAHOE’s error drops below that of GUPT. In the case of TAHOE,

the noise scale _ does not depend on 𝑓 . Since the same amount of

Laplace noise is added to each dimension of the histogram, the total

added noise increases linearly with 𝑓 . By contrast, the noise scale

used in GUPT is tied to the L1 diameter of the output space, which

is proportional to 𝑓 . Summing over the 𝑓 histogram dimensions,

the total added noise is therefore proportional to 𝑓 2.

Finally, as seen in Figure 2(c), decreasing 𝜖 results in greater error

for every system. In the case of GUPT, the curve is approximately

hyperbolic, since the added noise scale increases with 1/𝜖 . On the

other hand, TAHOE’s total error increases faster as 𝜖 approaches

zero, crossing the curve for GUPT. Examining the expression for

TAHOE’s noise scale _, there is an 𝛼 in the denominator, and 𝛼 is set

proportionally to 𝜖 , which would suggest a hyperbolic relationship.

However, there is an extra dependency on 𝜖 , since𝑀 increases as 𝜖

decreases, driving _ higher for small values of 𝜖 .

7.3 Sample Entropy
We now turn our attention to statistics other than the normalized

histogram. Before we begin, we note that a histogram script could

be used as a building block to compute other statistics. A researcher

could first submit the normalized histogram script from the previous

section to TAHOE, then compute a statistic of interest directly from

the privatized histogram. While this approach is general, there are

situations in which a researcher can achieve more accurate results

by supplying a script that directly computes the statistic of interest.

In this section, we consider a researcher who supplies a script to

compute sample entropy. As a general rule, we have found that for

roughly balanced datasets, a researcher can achieve greater accu-

racy by first computing a histogram using TAHOE, then computing

the entropy of that histogram. For unbalanced datasets with low

entropy, a researcher can achieve greater accuracy by submitting a

script that computes entropy directly.

Again letting 𝑓 represent the size of the data alphabet D, the
sample entropy of database 𝐷 with normalized histogram P(𝐷) =
(𝑝1, ..., 𝑝 𝑓) is defined as,

E(𝐷) = −
𝑓∑︁
𝑗=1

𝑝 𝑗 log2 (𝑝 𝑗)

To configure TAHOE, we set 𝛼 = 𝜖/5 and 𝛿 = 1/(𝑁 +1) as before.
To make the privacy wrappers as comparable as possible, we again

set _ so that TAHOE never returns ⊥. Applying the same argument

we used for the proportion script, we must ensure that for any

subsets 𝐴, 𝐵 ⊆ 𝐷 , with size at least 𝑁 − 2𝑀 − 1, | |E(𝐴) − E(𝐵) | |1 ≤
_𝛼 . While the left hand side can be bounded mathematically, we

427

Proceedings on Privacy Enhancing Technologies 2023(3) Kohli and Laskowski

performed a brute force computational search to find the smallest

value of _.

With our systems configured this way, we use simulation to

measure the error of each system for randomly generated datasets.

Each datapoint is drawn from a discrete uniform distribution over

D. We found experimentally that varying the size of the alphabet

does not significantly alter the results, so we fix the alphabet size

at 3. Parameter 𝜖 is set to values from {1, 2} and 𝑁 is set to values

in {104, 105, 106, 107}. Each experiment was replicated 50 times and

all experiments were run on a single computer.

In Figure 3, we plot the total standard error (root-mean-square

error) as a function of dataset size, for different parameter values.

As in the histogram example, we found that GUPT outperforms

TAHOE for small datasets. TAHOE does overtake GUPT’s perfor-

mance for large enough datasets, but the number of datapoints

required is considerably greater than we observed for the normal-

ized histogram. Several factors can help explain this result. First,

the slope of the entropy function is greatest for unbalanced datasets

with entropy near zero. To set the noise scale _, we must consider

subsets containing all of one letter, for which changing 2𝑀 + 1

entries can result in a large change in entropy. TAHOE therefore

requires a relatively large amount of noise. Second, entropy is a

one-dimensional quantity, so GUPT doesn’t suffer a penalty for

each dimension, as we saw in the previous experiment. Finally,

because the entropy function has slope close to zero for relatively

balanced datasets, and subsets are likely to have proportions close

to 𝐷 , GUPT introduces very little sampling variation.

Figure 3: The total error, including sampling error and added
noise, for the entropy script under different systems in log-
scale.

8 DISCUSSION
This study formalizes the notion of a privacy wrapper: an algorithm

that can pass data to a researcher script and observe the return

values, before returning an output to the user. We believe that this is

a useful framework for reasoning about untrusted code. Differential

privacy extends naturally to this setting, with the standard proba-

bility bound required to hold for every possible script. Moreover,

the script is treated as a black box, avoiding the limitations inherent

in analyzing code.

We present our own design for a privacy wrapper, which we

call TAHOE. Our algorithm operationalizes two core ideas: find

subsets fulfilling a certain stability primitive, and randomize over

the subset size. Due to the large number of subsets involved, TAHOE

is impractically slow in most scenarios. On the other hand, we

consider the special case of a finite data alphabet and describe a set

of optimizations that allow TAHOE to run efficiently.

Performance simulations show that TAHOE’s performance is

comparable to GUPT, a benchmark algorithm from the subsample-

and-aggregate lineage, with TAHOE displaying better accuracy for

some scenarios and parameter values. TAHOE performs relatively

well when the dataset is large, when the dimensionality of the

output is high, and when 𝜖 is not too small.

ACKNOWLEDGMENTS
We are grateful for funding from the UC Berkeley Center for Long-

Term Cybersecurity. This work was greatly improved by comments

from our anonymous reviewers, Adam Smith, and participants in

the workshop, Data Privacy: Foundations and Applications Reunion

at the Simons Institute for the Theory of Computing.

REFERENCES
[1] John M Abowd, Robert Ashmead, Ryan Cumings-Menon, Simson Garfinkel,

Micah Heineck, Christine Heiss, Robert Johns, Daniel Kifer, Philip Leclerc, Ash-

win Machanavajjhala, et al. 2022. The 2020 Census Disclosure Avoidance System

TopDown Algorithm. arXiv preprint arXiv:2204.08986 (2022).
[2] Arini Balakrishnan and Chloe Schulze. 2005. Code obfuscation literature survey.

CS701 Construction of compilers 19 (2005).
[3] Raef Bassily, Adam Groce, Jonathan Katz, and Adam Smith. 2013. Coupled-worlds

privacy: Exploiting adversarial uncertainty in statistical data privacy. In 2013
IEEE 54th Annual Symposium on Foundations of Computer Science. IEEE, 439–448.

[4] Mark Bun and Thomas Steinke. 2016. Concentrated differential privacy: Simpli-

fications, extensions, and lower bounds. In Theory of Cryptography Conference.
Springer, 635–658.

[5] Rachel Cummings and David Durfee. 2020. Individual sensitivity preprocessing

for data privacy. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 528–547.

[6] Damien Desfontaines and Balázs Pejó. 2020. Sok: differential privacies. Proceed-
ings on privacy enhancing technologies 2020, 2 (2020), 288–313.

[7] Richard M Dudley. 2018. Real analysis and probability. CRC Press.

[8] Cynthia Dwork. 2006. Differential Privacy. In Automata, Languages and Pro-
gramming, Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.

[9] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation.

In Annual international conference on the theory and applications of cryptographic
techniques. Springer, 486–503.

[10] Cynthia Dwork and Jing Lei. 2009. Differential privacy and robust statistics. In

Proceedings of the forty-first annual ACM symposium on Theory of computing.
371–380.

[11] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[12] Cynthia Dwork and Aaron Roth. 2014. The algorithmic foundations of differential

privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),
211–407.

[13] Cynthia Dwork and Guy N Rothblum. 2016. Concentrated differential privacy.

arXiv preprint arXiv:1603.01887 (2016).

[14] Madhav Jha and Sofya Raskhodnikova. 2013. Testing and reconstruction of

Lipschitz functions with applications to data privacy. SIAM J. Comput. 42, 2
(2013), 700–731.

[15] Noah Johnson, Joseph PNear, andDawn Song. 2018. Towards practical differential

privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018), 526–
539.

[16] James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. 2018. PATE-GAN:

Generating synthetic data with differential privacy guarantees. In International
Conference on Learning Representations.

[17] Daniel Kifer, Solomon Messing, Aaron Roth, Abhradeep Thakurta, and Danfeng

Zhang. 2020. Guidelines for implementing and auditing differentially private

428

Differential Privacy for Black-Box Statistical Analyses Proceedings on Privacy Enhancing Technologies 2023(3)

systems. arXiv preprint arXiv:2002.04049 (2020).
[18] Gary King and Nathaniel Persily. 2020. Unprecedented facebook urls dataset

now available for academic research through social science one. Social Science
One 13 (2020).

[19] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-

jjhala, Michael Hay, and Gerome Miklau. 2019. Privatesql: a differentially private

sql query engine. Proceedings of the VLDB Endowment 12, 11 (2019), 1371–1384.
[20] Joshua Alexander Kroll. 2015. Accountable algorithms. Ph. D. Dissertation. Prince-

ton University.

[21] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform

for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. 19–30.

[22] Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th computer security
foundations symposium (CSF). IEEE, 263–275.

[23] PrashanthMohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, and David Culler.

2012. GUPT: privacy preserving data analysis made easy. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data. 349–360.

[24] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth sensitivity

and sampling in private data analysis. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing. 75–84.

[25] Hector Page, Charlie Cabot, and Kobbi Nissim. 2018. Differential privacy an

introduction for statistical agencies. NSQR. Government Statistical Service (2018),
1–53.

[26] Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal

Talwar. 2016. Semi-supervised knowledge transfer for deep learning from private

training data. arXiv preprint arXiv:1610.05755 (2016).
[27] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their

decision problems. Transactions of the American Mathematical society 74, 2 (1953),

358–366.

[28] Kenneth H Rosen. 1999. Discrete mathematics & applications. McGraw-Hill.

[29] Adam Smith. 2008. Efficient, differentially private point estimators. arXiv preprint
arXiv:0809.4794 (2008).

[30] Adam Smith. 2011. Privacy-preserving statistical estimation with optimal conver-

gence rates. In Proceedings of the forty-third annual ACM symposium on Theory
of computing. 813–822.

[31] Salil Vadhan. 2017. The complexity of differential privacy. In Tutorials on the
Foundations of Cryptography. Springer, 347–450.

[32] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel

Simmons-Marengo, and Bryant Gipson. 2019. Differentially private sql with

bounded user contribution. arXiv preprint arXiv:1909.01917 (2019).

APPENDIX
Proof of Proposition 1

Proof. To ease notation, let 2
𝑆
𝑙
= {𝐴 ⊆ 𝑆 : |𝐴| ≥ 𝑙}. We will use

the following lemma in the proof:

Lemma 8. If multiset 𝑆 ∈ D★ is (𝑅, 𝑙)−responsive with |𝑆 | ≥ 𝑙 , then

max

𝑋,𝑌 ∈2𝑆
𝑙

| |𝑅(𝑋) − 𝑅(𝑌) | |1 = max

𝑢∈𝑈

(
𝑚𝑎𝑥𝑢 (𝑆) −𝑚𝑖𝑛𝑢 (𝑆)

)
Proof. Take any𝑋,𝑌 ∈ 2

𝑆
𝑙
, and consider | |𝑅(𝑋)−𝑅(𝑌) | |1 =∑𝑘

𝑗=1 |𝑅(𝑋) 𝑗 − 𝑅(𝑌) 𝑗 |. For all 𝑗 ∈ {1, ..., 𝑘}, define 𝑢 (𝑋,𝑌)
𝑗

as 1

if 𝑅(𝑋) 𝑗 ≥ 𝑅(𝑌) 𝑗 , and −1 otherwise. Then, |𝑅(𝑋) 𝑗 −𝑅(𝑌) 𝑗 | =
𝑢
(𝑋,𝑌)
𝑗

(𝑅(𝑋) 𝑗 −𝑅(𝑌) 𝑗) for all 𝑗 . Even more so, for all 𝑗 we have

𝑢
(𝑋,𝑌)
𝑗

(𝑅(𝑋) 𝑗 − 𝑅(𝑌) 𝑗) = max𝑢 𝑗 ∈{−1,+1} 𝑢 𝑗 (𝑅(𝑋) 𝑗 − 𝑅(𝑌) 𝑗)
by construction. Hence,

| |𝑅(𝑋) − 𝑅(𝑌) | |1 =
𝑘∑︁
𝑗=1

max

𝑢 𝑗 ∈{−1,+1}
𝑢 𝑗 (𝑅(𝑋) 𝑗 − 𝑅(𝑌) 𝑗)

= max

𝑢∈𝑈

𝑘∑︁
𝑗=1

𝑢 𝑗 (𝑅(𝑋) 𝑗 − 𝑅(𝑌) 𝑗)

= max

𝑢∈𝑈

(
𝑢 · 𝑅(𝑋) − 𝑢 · 𝑅(𝑌)

)

where the second equality follows because maximizing a sum

of functions, each with a different independent variable 𝑢 𝑗 , is

equivalent to maximizing each function in the sum individu-

ally. It further follows that

max

𝑋,𝑌 ∈2𝑆
𝑙

| |𝑅(𝑋) − 𝑅(𝑌) | |1 = max

𝑋,𝑌 ∈2𝑆
𝑙

max

𝑢∈𝑈

(
𝑢 · 𝑅(𝑋) − 𝑢 · 𝑅(𝑌)

)
= max

𝑢∈𝑈

(
max

𝑋,𝑌 ∈2𝑆
𝑙

(
𝑢 · 𝑅(𝑋) − 𝑢 · 𝑅(𝑌)

))
= max

𝑢∈𝑈

(
max

𝐴∈2𝑆
𝑙

𝑢 · 𝑅(𝐴) − min

𝐴∈2𝑆
𝑙

𝑢 · 𝑅(𝐴)
)

= max

𝑢∈𝑈

(
𝑚𝑎𝑥𝑢 (𝑆) −𝑚𝑖𝑛𝑢 (𝑆)

)
where the second to last equality follows because maximiz-

ing a difference of two functions with different independent

variables is equivalent to maximizing the first function and

minimizing the second one, and the last equality follows by

applying the definition of𝑚𝑎𝑥𝑢 (𝑆) and𝑚𝑖𝑛𝑢 (𝑆). □

Now, we prove both directions of Proposition 1.

(=⇒) Suppose 𝑆 is stable. If |𝑆 | < 𝑙 the result follows immedi-

ately. Otherwise, |𝑆 | ≥ 𝑙 . Then by the definition of stability, 𝑆 is

responsive and for any 𝑋,𝑌 ∈ 2
𝑆
𝑙
, 𝐿𝑘 (𝑅(𝑋), _) ∼𝛼,0 𝐿𝑘 (𝑅(𝑌), _).

By Lemma 2, the last relation can be written as,

max

𝑋,𝑌 ∈2𝑆
𝑙

| |𝑅(𝑋) − 𝑅(𝑌) | |1 ≤ 𝛼_

Since 𝑆 is responsive of minimum size 𝑙 , by Lemma 8,

max

𝑋,𝑌 ∈2𝑆
𝑙

| |𝑅(𝑋) − 𝑅(𝑌) | |1 = max

𝑢∈𝑈

(
𝑚𝑎𝑥𝑢 (𝑆) −𝑚𝑖𝑛𝑢 (𝑆)

)
Combining these results yields the desired inequality of

max

𝑢∈𝑈

(
𝑚𝑎𝑥𝑢 (𝑆) −𝑚𝑖𝑛𝑢 (𝑆)

)
≤ 𝛼_

(⇐=) Suppose |𝑆 | < 𝑙 . Then 𝑆 is stable by definition. Suppose

|𝑆 | ≥ 𝑙 and

max

𝑢∈𝑈

(
𝑚𝑎𝑥𝑢 (𝑆) −𝑚𝑖𝑛𝑢 (𝑆)

)
≤ 𝛼_

We know 𝑆 is responsive, because otherwise, there must be some

𝑋 ∈ 2
𝑆
𝑙
with 𝑅(𝑋) =⊥. But then𝑚𝑖𝑛𝑢 (𝑋) = −∞ and𝑚𝑎𝑥𝑢 (𝑋) = ∞

for all 𝑢 ∈ 𝑈 . This would imply that

max

𝑢∈𝑈

(
𝑚𝑎𝑥𝑢 (𝑆) −𝑚𝑖𝑛𝑢 (𝑆)

)
= ∞ > 𝛼_

giving a contradiction. Finally, by Lemma 8 we have

max

𝑋,𝑌 ∈2𝑆
𝑙

| |𝑅(𝑋) − 𝑅(𝑌) | |1 = max

𝑢∈𝑈

(
𝑚𝑎𝑥𝑢 (𝑆) −𝑚𝑖𝑛𝑢 (𝑆)

)
≤ 𝛼_

completing the proof.

□

429

Proceedings on Privacy Enhancing Technologies 2023(3) Kohli and Laskowski

Proof of Proposition 2
Proof. To prove (a), observe that when |𝑆 | = 𝑙 , the set 𝑆 it-

self is the only subset of size at least 𝑙 . Hence, when 𝑅(𝑆) ≠⊥,
𝑚𝑖𝑛𝑢 (𝑆) = min𝐴⊆𝑆, |𝐴 | ≥𝑙 𝑢 · 𝑅(𝐴) = 𝑢 · 𝑅(𝑆) = max𝐴⊆𝑆, |𝐴 | ≥𝑙 𝑢 ·
𝑅(𝐴) = 𝑚𝑎𝑥𝑢 (𝑆). In the case where 𝑅(𝑆) =⊥, then 𝑆 is not (𝑅, 𝑙)-
responsive, hence𝑚𝑖𝑛𝑢 (𝑆) = −∞ and𝑚𝑎𝑥𝑢 (𝑆) = ∞ by definition.

To prove (b), we first note that for any 𝐴 ⊆ 𝑆 with |𝐴| ≥ 𝑙 , either
𝐴 = 𝑆 or 𝐴 ⊆ 𝑐 for some 𝑐 ∈ 𝐶 (𝑆). Hence, we can write

{𝐴 ⊆ 𝑆 : |𝐴| ≥ 𝑙} = {𝑆} ∪
⋃

𝑐∈𝐶 (𝑆)
{𝐴 ⊆ 𝑐 : |𝐴| ≥ 𝑙}

Then, when 𝑅(𝑆) ≠⊥,
𝑚𝑖𝑛𝑢 (𝑆) = min

𝐴⊆𝑆, |𝐴 | ≥𝑙
𝑢 · 𝑅(𝐴)

= min

(
𝑢 · 𝑅(𝑆), min

𝑐∈𝐶 (𝑆)
min

𝐴⊆𝑐, |𝐴 | ≥𝑙
𝑢 · 𝑅(𝐴)

)
= min

(
𝑢 · 𝑅(𝑆), min

𝑐∈𝐶 (𝑆)

(
𝑚𝑖𝑛𝑢 (𝑐)

))
In the case where 𝑅(𝑆) =⊥, then 𝑆 is not (𝑅, 𝑙)-responsive, hence

𝑚𝑖𝑛𝑢 (𝑆) = −∞ by definition. The proof for𝑚𝑎𝑥𝑢 (𝑆) follows by a

similar argument. □

Proof of Proposition 3
Proof. Note the recurrence: for any 𝑁 −𝑀 ≤ 𝑛 ≤ 𝑁 ,𝐺 (𝑛+1) ≤

exp(𝜖 − 4𝛼)𝐺 (𝑛). Using this, we see that

exp(𝜖 − 4𝛼)
𝑟−1∑︁

𝑛=𝑁−𝑀
𝐺 (𝑛) =

𝑟−1∑︁
𝑛=𝑁−𝑀

exp(𝜖 − 4𝛼)𝐺 (𝑛)

≥
𝑟−1∑︁

𝑛=𝑁−𝑀
𝐺 (𝑛 + 1)

=

𝑟∑︁
𝑛=𝑁−𝑀+1

𝐺 (𝑛)

Subtracting

∑𝑟−1
𝑁−𝑀 𝐺 (𝑛) from both sides, we have,

(exp(𝜖 − 4𝛼) − 1)
𝑟−1∑︁

𝑛=𝑁−𝑀
𝐺 (𝑛) = 𝐺 (𝑟) −𝐺 (𝑁 −𝑀)

≥ 𝐺 (𝑟) − exp(−2𝛼)𝛿 ′

Rearranging gives the desired result. □

Proof of Lemma 5
Proof. The privacy parameter 𝛿 ′ in the distribution 𝐺 can be

computed precisely, as (𝛿 ′)−1 equals
𝑁∑︁

𝑛=𝑁−𝑀
exp

(
min

(
(𝜖 − 4𝛼) (𝑛 − 𝑁 +𝑀) − 2𝛼, 𝜖 (𝑁 − 𝑛)

))
By standard analysis arguments, we can lower bound the sum

with the following integral.

𝑁∫
𝑁−𝑀−1

exp

(
min

{
(𝜖 − 4𝛼) (𝑛 − 𝑁 +𝑀) − 2𝛼, 𝜖 (𝑁 − 𝑛 − 1)

})
𝑑𝑛

To simplify computations, we replace 2𝛼 with 𝜖 , which makes the

integral smaller. Define
ˆ𝛿−1 as

𝑁∫
𝑁−𝑀−1

exp

(
min

{
(𝜖 − 4𝛼) (𝑛 − 𝑁 +𝑀) − 𝜖, 𝜖 (𝑁 − 𝑛 − 1)

})
𝑑𝑛

Then
ˆ𝛿−1 < (𝛿 ′)−1. We set the two arguments to the min function

equal to one another to find the intersection point 𝑛★ = 𝑁 −𝑀 (𝜖 −
4𝛼) (2𝜖 − 4𝛼)−1. Then splitting the integral into two integrals over

(𝑁 −𝑀 − 1, 𝑛★) and (𝑛★, 𝑁) and evaluating them yields

exp(𝜖) ˆ𝛿−1 = exp (𝑀𝑄)
𝑄

−
(
exp(−(𝜖 − 4𝛼))

𝜖 − 4𝛼
− 1

𝜖

)
>

exp (𝑀𝑄)
𝑄

−
(

1

𝜖 − 4𝛼
− 1

𝜖

)
=

exp (𝑀𝑄) − 1

𝑄

where the first inequality follows from 𝜖 > 4𝛼 . By construction in

TAHOE,𝑀 ≥ 𝑄−1
ln(𝛿−1 exp(𝜖)𝑄 + 1). Hence,

ˆ𝛿 =
exp(𝜖)𝑄

exp (𝑀𝑄) − 1

≤ exp(𝜖)𝑄
exp (𝑄−1

ln(𝛿−1 exp(𝜖)𝑄 + 1)𝑄) − 1

= 𝛿

We have shown 𝛿 ′ < ˆ𝛿 ≤ 𝛿 , as required. □

Proof of Proposition 5
Proof. To start, we bound the growth rate of 𝑀 as 𝜖, 𝛿 → 0.

When 𝜖 = 𝑔𝛼 for constant 𝑔 > 4, 𝑄 = 𝜖 (𝑔 − 4) (2𝑔 − 4)−1. Denote
𝑔 = (4𝑔 − 8) (𝑔 − 4)−1, so 𝑄 = 2𝜖/𝑔. Then,

𝑀 =

⌈
𝑔

2𝜖
ln

(
𝛿−1 exp(𝜖) 2̂𝜖

𝑔
+ 1

)⌉
≤ 𝑔

2𝜖
ln

(
𝛿−1 exp(𝜖) 2𝜖

𝑔
+ 1

)
+ 1

Because we are interested in the limit as 𝜖 → 0, we restrict

attention to 𝜖 < 𝑒−1. Then 2 exp(𝜖)𝜖/𝑔 < 2 exp(𝑒−1)𝑒−1/𝑔 =

2 exp(𝑒−1 − 1)/𝑔 < 2/𝑔 < 1. Since ln(·) is an increasing function, it

follows that

𝑀 ≤ 𝑔

2𝜖
ln

(
𝛿−1 + 1

)
+ 1

Using standard analysis, ln(𝐴 + 1) ≤ ln(𝐴) + 1 whenever 𝐴 ≥ 1.

Since 𝛿 ≤ 1, 𝛿−1 ≥ 1, so

𝑀 ≤ 𝑔

2𝜖
ln

(
𝛿−1

)
+ 𝑔

2𝜖
+ 1 =

𝑔

2𝜖

(
1 − ln(𝛿)

)
+ 1

In the worst-case, TAHOE samples 𝑛 = 𝑁 during Step 1. TAHOE

is then required to check stability for all subsets of 𝐷 of sizes be-

tween 𝑁 − 2𝑀 − 1 and 𝑁 . The researcher’s script 𝑅 must run on∑
2𝑀+1
𝑗=0

(𝑁
𝑗

)
subsets in Step 2. For each subset 𝑆 in Step 2, we compute

𝑚𝑖𝑛𝑢 (𝑆) and𝑚𝑎𝑥𝑢 (𝑆) for each 𝑢 ∈ 𝑈 where |𝑈 | = 2
𝑘
. Computing

each of these quantities requires taking a minimum and a maximum

430

Differential Privacy for Black-Box Statistical Analyses Proceedings on Privacy Enhancing Technologies 2023(3)

over 𝐶 (𝑆) from Proposition 2(b), which is bounded by 𝑁 . Hence,

the big-O runtime of Step 2 is

∑
2𝑀+1
𝑗=0

(𝑁
𝑗

)
(𝜏 + 𝑁 2

𝑘).
Since

2𝑀+1∑︁
𝑗=0

(
𝑁

𝑗

)
≤ (𝑁 + 1)2𝑀+1

and 𝑘 is fixed by the proposition, the runtime is

O
(
(𝜏 + 𝑁) (𝑁 + 1)2𝑀+1)

In Step 3, TAHOE computes on at most

(𝑁
𝑁−2𝑀−1

)
subsets and

on 2
𝑘
vectors 𝑢 ∈ 𝑈 , which is less than O

(
(𝜏 + 𝑁) (𝑁 + 1)2𝑀+1)

. It

can be checked that Steps 1, 4, and 5 require fewer operations than

Step 2, and so they do not alter the big-O. Plugging in the upper

bound for𝑀 , the runtime is bounded by

O
(
(𝜏 + 𝑁) (𝑁 + 1)𝑔𝜖

−1 (1−ln(𝛿))+3
)

□

Proof of Lemma 7
Proof. We start by proving (a). The number of histograms of

size 𝑁 − 𝑖 is equal to the number of integer solutions to

∑𝑓

𝑗=1
𝑤 𝑗 = 𝑖

where each 0 ≤ 𝑤 𝑗 ≤ 𝑣 𝑗 . This is never exceeds the number of

integer solutions to

∑𝑓

𝑗=1
𝑤 𝑗 = 𝑖 where each 0 ≤ 𝑤 𝑗 , dropping the

upper bound on each𝑤 𝑗 . By “stars and bars” [28] there are

(𝑖+𝑓 −1
𝑓 −1

)
solutions.

Next, we prove (b). The number of histograms of size at least

𝑁 −2𝑀−1 is equal to the number of integer solutions to

∑𝑓

𝑗=1
𝑤 𝑗 ≤

2𝑀 + 1 where each 0 ≤ 𝑤 𝑗 ≤ 𝑣 𝑗 . This is never exceeds the number

of integer solutions to

∑𝑓

𝑗=1
𝑤 𝑗 ≤ 2𝑀 + 1 where each 0 ≤ 𝑤 𝑗 ,

dropping the upper bound on each 𝑤 𝑗 . Introduce a new variable

𝑤 𝑓 +1 ≥ 0. Then the number of non-negative integer solutions to∑𝑓

𝑗=1
𝑤 𝑗 ≤ 2𝑀 + 1 is the same as the number of non-negative

integer solutions to

∑𝑓 +1
𝑗=1

𝑤 𝑗 = 2𝑀 + 1. By “stars and bars” there

are

(
2𝑀+1+𝑓

𝑓

)
solutions. □

Proof of Proposition 6
Proof. By the proof of Proposition 5

𝑀 ≤ 𝑔

2𝜖
ln(𝛿−1) + 𝑔

2𝜖
+ 1

where 𝑔 = (4𝑔 − 8) (𝑔 − 4)−1. Next, we examine the runtime of

TAHOE as a function of𝑀 . In the worst-case when |D| = 𝑓 , TAHOE
is required to run 𝑅 on at most

(
2𝑀+1+𝑓

𝑓

)
subsets during Step 2. For

each subset 𝑆 in Step 2, we compute𝑚𝑖𝑛𝑢 (𝑆) and𝑚𝑎𝑥𝑢 (𝑆) for each
𝑢 ∈ 𝑈 where |𝑈 | = 2

𝑘
. Computing each of these quantities requires

taking a minimum and a maximum over 𝐶 (𝑆) from Proposition

2(b), which is bounded by 𝑓 . Hence, a big-O bound on Step 2 is(
2𝑀 + 1 + 𝑓

𝑓

)
(𝜏 + 𝑓 2𝑘) = (2𝑀 + 1 + 𝑓) ...(2𝑀 + 2)

𝑓 !
(𝜏 + 𝑓 2𝑘)

≤ (2𝑀 + 1 + 𝑓)...(2𝑀 + 2)
(𝑓 − 1)! (𝜏 + 2

𝑘)

≤ (2𝑀 + 1 + 𝑓) 𝑓 (𝜏 + 2
𝑘)

Since 𝑘 and 𝑓 are fixed by the proposition, the bound is O(𝜏𝑀 𝑓).
In Step 3, TAHOE computes on at most

(
2𝑀+1+𝑓

𝑓

)
subsets and

on 2
𝑘
vectors 𝑢 ∈ 𝑈 , which is less than O(𝜏𝑀 𝑓). It can be checked

that Steps 1, 4, and 5 require fewer operations than Step 2, and so

they do not alter the big-O. Plugging in the upper bound for𝑀 , the

runtime is bounded by

O
(
𝜏

(𝑔
2𝜖

ln(𝛿−1) + 𝑔

2𝜖
+ 1

) 𝑓)
⊆ O

(
𝜏𝜖−𝑓 ln(𝛿−1) 𝑓

)
.

□

Proof of Theorem 2
Proof. Let random variable 𝑺 be the subset chosen by TAHOE,

and let random variable 𝐿 ∼ 𝐿𝑘 (0, _) be the Laplace noise added by
TAHOE. Since TAHOE is configured to never halt, the output of

TAHOE is then the random variable 𝑅(𝑺) + 𝐿.
Let 𝑓𝑛 represent the distribution of 𝑅(𝑫𝑛). Since the data is

drawn independently from D with distribution F, conditional on 𝑛,
𝑆 has the distribution F𝑛 , and so 𝑅(𝑺) has the distribution 𝑓𝑛 .

Therefore, the distribution of 𝑅(𝑺) is ∑𝑁
𝑛=𝑁−𝑀 𝐺 (𝑛) 𝑓𝑛 . Given an

open set 𝐵 ⊆ R𝑘 ∪ {⊥} containing \ , and probability 𝑝 < 1, by

consistency of 𝑅, there exists𝑚 such that for any 𝑛 > 𝑚, 𝑓𝑛 (𝐵) > 𝑝 .
Since lim𝑁→∞ 𝑁 −𝑀 = ∞, we can choose 𝑁 such that 𝑁 −𝑀 > 𝑚,

so

𝑁∑︁
𝑛=𝑁−𝑀

𝐺 (𝑛) 𝑓𝑛 (𝐵) >
𝑁∑︁

𝑛=𝑁−𝑀
𝐺 (𝑛)𝑝 = 𝑝

𝑁∑︁
𝑛=𝑁−𝑀

𝐺 (𝑛) = 𝑝

Therefore 𝑅(𝑺) converges in probability to \ . Since _ → 0 as 𝑁 →
∞, 𝐿 converges in probability to 0. And since addition is continuous,

by the continuous mapping theorem,

plim𝑁→∞

(
𝑅(𝑺) + 𝐿

)
= plim𝑁→∞ 𝑅(𝑺) + plim𝑁→∞ 𝐿 = \

□

431

	Abstract
	1 Introduction
	1.1 Considerations for Untrusted Code
	1.2 Motivating a Novel Privacy Wrapper
	1.3 Summary of Results

	2 Related Works
	3 Preliminaries
	4 Algorithm Description: TAHOE
	4.1 Stable Subsets
	4.2 Randomized Subset Sizes
	4.3 Our General Algorithm

	5 Privacy Analysis of TAHOE
	6 Runtime Analysis of TAHOE
	6.1 Runtime Analysis for Finite Alphabets

	7 Accuracy Analysis of TAHOE
	7.1 Accuracy Simulations
	7.2 Normalized Histogram
	7.3 Sample Entropy

	8 Discussion
	Acknowledgments
	References

