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ABSTRACT
Location-based services have brought significant convenience to

people in their daily lives, and trajectory data are also in high de-

mand. However, directly releasing those data raises privacy and

liability (e.g., due to unauthorized distribution of such datasets)

concerns since location data contain users’ sensitive information,

e.g., regular moving patterns and favorite spots. To address this, we

propose a novel fingerprinting scheme that simultaneously identi-

fies unauthorized redistribution of location trajectory datasets and

provides differential privacy guarantees for shared data. Observing

data utility degradation due to differentially private mechanisms,

we introduce a utility-focused post-processing scheme to regain

spatio-temporal correlations between points in a location trajec-

tory. We further integrate this post-processing scheme into our

fingerprinting scheme as a sampling method. The proposed fin-

gerprinting scheme alleviates the degradation in the utility of the

shared dataset due to the noise introduced by differentially private

mechanisms (i.e., adds the fingerprint by preserving the publicly

known statistics of the data). Meanwhile, it does not violate differ-

ential privacy throughout the entire process due to immunity to

post-processing, a fundamental property of differential privacy. Our

proposed fingerprinting scheme is robust against known and well-

studied attacks against a fingerprinting scheme including random

flipping attacks, correlation-based flipping attacks, and collusions

among multiple parties, making it difficult for the attackers to infer

the fingerprint codes and avoid accusation. Through experiments

on two real-life location trajectory datasets and two synthetic ones,

we show that our scheme achieves high fingerprint robustness and

outperforms existing approaches. Furthermore, the proposed fin-

gerprinting scheme increases data utility for differentially private

datasets, which is beneficial to data analyzers.
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1 INTRODUCTION
Location-based services have become one of the most popular ser-

vices in our daily lives thanks to rapid evolution in mobile technolo-

gies and the internet of things. Location-based service providers

often require a large amount of location-based information from

users to support their services. For example, Google Maps [2] col-

lects accurate location data from users in real time and plans optimal

routes during navigation and offers place suggestions while users

search the app. Food delivery services, e.g., Doordash [1], demand

approximate location information from users for restaurant rec-

ommendation and keep track of food couriers for a better user

experience. Most individuals are subtly accustomed to the conve-

nient lifestyles using these location-based services, and hence share

their location data with such location-based service providers vol-

untarily (with consent). Thus, such service providers build large

location datasets.

Datasets of location trajectories are of great use, and sharing

them brings vast benefits. In addition to moving patterns, much

more information is included and can be inferred from these datasets

(e.g., age, job, or home address). By analyzing datasets, data analytics

companies can offer proper suggestions to the service providers in

order to improve their user experience, adjust marketing strategies,

or even determine locations of new facilities. Advertisement com-

panies can learn from these data to accurately promote to specific

customers. Researchers can propose new approaches and validate

them on these datasets.

Location-based service providers (e.g., Google) can share such

trajectory datasets with a limited number of parties, called data ana-

lyzers. Some examples of data analyzers are researchers and analytic

institutions. Access to location datasets is typically restricted within

such analyzers parties as location datasets contain sensitive infor-

mation. Nevertheless, malicious data analyzers, e.g., motivated by

profit, may leak their copies to unauthorized parties, which brings

significant privacy concerns. In order to prevent unauthorized redis-

tribution, service providers should embed a unique fingerprint into

datasets for each data analyzer to enable the traceability of potential

leakage. Such fingerprint should be robust against multiple attacks,

e.g., distortion attacks and collusion attacks, since the attackers

may try distort it by modifying some points or even colluding with

other malicious parties to get rid of accusation. By analyzing the

embedded fingerprint in the leaked dataset, the service provider

can identify the source of the leakage, withdraw its access to the

dataset, and even punish it. Thus, knowing that the leaked dataset

will be traced back to them, attackers become less motivated to leak

the copies of the received datasets.

There are several existing fingerprintingmechanisms, e.g., Boneh-

Shaw codes [5] and Tardos codes [31]. However, those traditional

digital fingerprinting schemes cannot be directly applied to the

location datasets because of correlations in the location datasets
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and their particular utility requirements. In a location trajectory,

i.e., an ordered sequence of location points in a location dataset,

location points are highly correlated with each other, especially

the adjacent location points. For instance, in a walking trajectory,

recorded every 10 seconds, it is not likely to have two contigu-

ous location points one kilometer apart from each other. Also, by

knowing the previous and the following points in a given location

trajectory, one can accurately estimate/infer the intermediate point

with high confidence. Thus, using publicly available correlation

models (constructed from public location datasets), an attacker can

identify the points that violate the expected correlations as the fin-

gerprinted data points. It can then distort or remove such identified

data points (i.e., distort the fingerprint), making it harder for service

providers to detect the source of a leaked dataset. We observed (and

show via experiments) that existing fingerprint codes are vulner-

able to such correlation-based attacks, since they do not consider

pairwise correlations. Therefore, in this paper, we propose a robust

correlation-based fingerprinting scheme that is robust against mul-

tiple attacks, e.g., including correlation attacks, majority collusion

attacks, and probabilistic collusion attacks.

However, in recent years, privacy concerns about sensitive datasets

have attracted massive attention. Researchers have also been in-

vestigating the privacy of trajectory datasets [4, 11]. User identi-

ties have been shown to be deanonymized with high confidence

given only a pattern of four location points [11]. Therefore, sim-

ple anonymization on identifiers/quasi-identifiers is not sufficient

to protect the individuals’ location privacy. Under differential pri-

vacy (DP - a state-of-the-art concept for privacy preservation that

quantifies and limits the information acquired from the attacker’s

perspective), researchers have proposed several solutions to miti-

gate privacy leakage while sharing location data, e.g., PIM [33] and

AdaTrace [16]. However, existing privacy-preserving approaches

for location data and datasets (i) do not provide liability guarantees

against dataset leakage (unauthorized redistribution); and (ii) bring

excessive noise to datasets and thus sacrifice data utility. Some

location-based services (e.g., navigation) that do not tolerate such

low utility may be unwilling to apply privacy protection to their

datasets.

To the best of our knowledge, no existing work can tackle both

issues, i.e., guaranteeing differential privacy and offering finger-

printing robustness, simultaneously. It is true that one can apply

an arbitrary differentially private mechanism followed by an exist-

ing fingerprinting scheme, or vice versa. However, such differen-

tially private mechanisms or fingerprinting schemes have their own

drawbacks for location datasets. For instance, existing methods that

achieve differential privacy on location datasets either omit critical

information [16] or require impractical restrictions [20]. In terms of

fingerprinting, existing schemes [5, 19, 31] are limited in their abil-

ity to account for correlations in location datasets. These schemes

often require specific types of data, and they do not incorporate

such correlations in their methodology, thus resulting in signifi-

cant utility loss in the shared dataset. To solve these problems, we

propose our solution that ensures a differential privacy guarantee

and high fingerprinting robustness along with high data utility at

the same time.

In this work, we introduce a robust fingerprinting scheme for

location datasets that are protected under differential privacy using

probabilistic sampling. The proposed scheme checks spatial and

temporal correlations along the trajectories and considers highly

probable location points based on public correlations during finger-

printing. The fingerprinting scheme offers high detection accuracy

against multiple attacks against a fingerprinting scheme, e.g., ran-

dom flipping attacks, correlation-based flipping attacks, majority

collusion attacks, and probabilistic collusion attacks [34]. The selec-

tion of the privacy-preserving technique can be arbitrary. We select

the planar isotropic mechanism (PIM) [33] as the building block to

protect trajectory privacy. Other differentially private approaches

can also be used (e.g., AdaTrace [16], a state-of-the-art synthetic

approach to release location datasets under differential privacy).

We demonstrate this flexibility of the proposed scheme through

evaluations in Section 6.4.2. To mitigate data utility degradation

due to privacy-preserving methods, we propose a utility-focused

post-processing scheme that aims to restore correlations between

adjacent points along a trajectory. During this process, we check

the 2-gram transitions in the trajectory and replace each location

point that has a low probability with a highly probable one by

considering the directional information of the transition. We inte-

grate this post-processing scheme into our proposed fingerprinting

scheme such that the fingerprinting scheme can protect unautho-

rized redistribution and boost data utility at the same time.

We implement our proposed scheme using two real-life datasets,

i.e., the GeoLife dataset [37] and the Taxi dataset [25], and two syn-

thetic datasets generated from the Brinkhoff generator [7]. We com-

pare our scheme with state-of-the-art fingerprinting approaches,

i.e., Boneh-Shaw codes and Tardos codes, and evaluate the fin-

gerprint robustness against random flipping attacks, correlation-

based flipping attacks, majority collusion attacks, and probabilistic

collusion attacks. We also evaluate data utility in terms of query

answering of location points and patterns, area popularity, trip

error, diameter error, and trajectory similarity. We observe that our

scheme provides significantly better data utility than the existing

approaches.

Our main contributions can be summarized as follows.

• We propose a probabilistic fingerprinting scheme that uti-

lizes publicly known correlations for location datasets.

• We propose a utility-focused post-processing scheme to im-

prove data utility for the location datasets that are protected

under differential privacy and further integrate it into the

proposed fingerprinting scheme.

• The fingerprinting scheme achieves high fingerprint robust-

ness on differentially private datasets against several known

attacks.

• We evaluate our proposed scheme concerning fingerprint

robustness and data utility on four datasets, and show that

our scheme outperforms state-of-the-art approaches.

The remainder of the paper is organized as follows. We review

the existing work in Section 2 and provide the preliminaries in

Section 3. We present the system and threat models in Section 4. In

Section 5, we introduce the proposed scheme in detail. We evaluate

our proposed scheme in Section 6. In Section 7, we discuss several

topics related to our approach. Section 8 concludes the paper.

2 RELATEDWORK
In this section, we introduce some existingworks in location privacy

and digital fingerprinting, respectively.
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2.1 Trajectory Privacy
Location data contain sensitive information such as moving pat-

terns and preferred locations. Traditional privacy enhancing tech-

niques, e.g., k-anonymity [30] and l-diversity [24], have been adapted

to the location setting. However, for a location dataset, those tech-

niques have limitations in dealing with data streams with vari-

ous lengths. For instance, some works [3, 14] split the trajectories

into equal-length fragments and achieve privacy on the fragment,

which is not sufficient for privacy protection on trajectories. Dif-

ferential privacy [12] as a popular privacy definition has been

used to protect location datasets in recent years [8, 28, 29, 35].

Geo-indistinguishability [4] defines a variant of differential pri-

vacy based on the distance between the points of interests, but it

only works on location points instead of trajectories. Several meth-

ods [9, 16, 18] provide differential privacy to the statistics of the

original location datasets. He et al. [18] design a hierarchical tree

for storing regional spatial correlations and sample trajectories by

walking along the tree paths. Gursoy et al. [16] extract four sta-

tistical features from a location dataset under differential privacy

and generate a synthetic dataset using those noisy features. These

works completely eliminate moving features of any specific user

while preserving statistics, which improves user’s location privacy

but significantly decreases the usability of the dataset in certain

services, e.g., map navigation and carpooling. Meanwhile, some re-

searchers use perturbation-based approaches instead. [20] releases

differentially private trajectories by sampling and interpolating

them, but the scheme has the additional restriction that starting

and ending locations should be known to the public. PIM [33] dis-

torts each location point in a trajectory based on prior knowledge

from previously released points. This approach is the only exist-

ing one that takes spatio-temporal correlations into consideration

during differentially private release. However, it introduces zig-

zag patterns for lower privacy budgets (i.e., privacy protection is

stronger) in the shared trajectories and loses pairwise correlation

along a trajectory, making it also suffers from utility loss.

2.2 Digital Fingerprinting
Digital fingerprinting embeds a unique identifier, e.g., a sequence of

marks, into the data by adding, removing, or editing partial values

of the data. Several works have been proposed to enable digital

fingerprinting for data distribution [5, 10, 31]. Boneh and Shaw

design a fingerprint code and prevent receivers from colluding [5].

Tardos et al. propose a probability-based fingerprinting scheme that

can catch all suspicious individuals simultaneously [31] and has

less code length than the Boneh and Shaw’s. Wu et al. introduce

a fingerprinting scheme that embeds binary fingerprint codes to-

wards multimedia [32]. However, those methods are designed for

binary streams, where pairwise correlations are omitted in most

cases. Considering correlations, some researchers aim to provide

fingerprint robustness in data with various types, i.e., relational

databases [19, 21–23]. These approaches only work on specific data

types and cannot be applied to location datasets since location tra-

jectories have high pairwise correlations. Considering correlations,

[34] introduces a fingerprinting scheme for sequential data that con-

siders correlations between data points. Still, it requires the possible

states for a data point to be limited, discrete, and inter-transitable.

3 PRELIMINARIES
In this section, we first introduce the definition of differential pri-

vacy and its key property: immunity to post-processing. We then

introduce two popular collusion-resistant fingerprinting schemes as

the baseline approaches against collusion attacks. We integrate one

of the schemes into our proposed robust fingerprinting scheme (i.e.,

the Boneh-Shaw codes) and compare it with the vanilla versions of

these schemes in Section 6.

3.1 Differential Privacy
Differential privacy (DP) quantifies privacy and limits the inference

of any single individual from observing the query results between

neighboring databases. The formal definition is as follows:

Definition 3.1 (Differential Privacy). [12] For any neighboring

datasets 𝐷, 𝐷 ′ that differ only in one data record, a randomized al-

gorithmM satisfies 𝜖-differential privacy if for all possible outputs

S ⊆ 𝑅𝑎𝑛𝑔𝑒 (M)

𝑃𝑟 (M(𝐷) ∈ S) ≤ 𝑒𝜖 ∗ 𝑃𝑟 (M(𝐷 ′) ∈ S).

An important proposition of differential privacy is its immunity

to post-processing. It ensures that the differential privacy guarantee

still holds when a mapping function is performed on the output

from a differentially private mechanism as long as the function

does not utilize the actual value. The formal definition is as follows:

Proposition 3.2 (Post-processing). [13] LetM be a random-
ized algorithm that is 𝜖-differentially private. For any arbitrary ran-
domized mapping 𝑓 : R𝑞 → R𝑟 where 𝑝, 𝑞 ∈ N+, 𝑓 ◦ M is 𝜖-
differentially private.

Hence, perturbations to the differentially private outputs without

knowing the original values do not violate the privacy guarantee.

3.2 Planar Isotropic Mechanism
The planar isotropic mechanism (PIM) [33] aims to protect each

location point along an individual’s location trajectory under dif-

ferential privacy. It constructs the correlations of a trajectory using

a Markov chain, which is treated as a hidden Markov model from

the attacker’s perspective. Based on adversarial knowledge, i.e., the

probability distribution of the location, the method adds calibrated

noise to the actual location and shares the perturbed location. At

timestamp 𝑡 , let 𝑝−𝑡 and 𝑝+𝑡 respectively represent the prior and

posterior probability distributions, with 𝑝−𝑡 [𝑖] denoting the prior
probability of location 𝑠𝑖 in the location alphabet G, and 𝑝+𝑡 [𝑖] cor-
responding to 𝑠𝑖 ’s posterior probability. To share a noisy location,

PIM calculates the prior probability distribution 𝑝−𝑡 as 𝑝−𝑡 = 𝑝+
𝑡−1𝑀 ,

where𝑀 denotes the transition matrix. Based on the prior proba-

bilities, it builds a 𝛿-location set Δ𝑋𝑡 that contains the minimum

number of locations with the probability sum greater than or equal

to 1 − 𝛿 , i.e., Δ𝑋𝑡 =𝑚𝑖𝑛{𝑠𝑖 |
∑
𝑠𝑖 𝑝
−
𝑡 [𝑖] ≥ 1 − 𝛿}, which means that

a subset of locations with a total probability less than 𝛿 is omitted.

After that, PIM releases the perturbed location given Δ𝑋𝑡 at times-

tamp 𝑡 , and calls it 𝑧𝑡 . The posterior probability distribution is then

updated to 𝑝+𝑡 [𝑖] = 𝑃𝑟 (u∗𝑡 = 𝑠𝑖 |z𝑡 ) =
𝑃𝑟 (z𝑡 |u∗𝑡=𝑠𝑖 )𝑝−𝑡 [𝑖 ]∑
𝑗 𝑃𝑟 (z𝑡 |u∗𝑡=𝑠 𝑗 )𝑝−𝑡 [ 𝑗 ]

for each

location 𝑠 𝑗 , where 𝑢
∗
𝑡 is the true location at timestamp 𝑡 .

The PIM generation can be summarized as follows:

(1) Generates a convex hull 𝐾 ′ from Δ𝑋𝑡 ;
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Table 1: Symbols and notations.
X = [𝑥1, 𝑥2, . . . , 𝑥 |X| ] A trajectory

ˆX = [𝑥1, 𝑥2, . . . , 𝑥 | ˆX| ] The trajectory released by the differential privacy

mechanism

X∗ = [𝑥∗
1
, 𝑥∗

2
, . . . , 𝑥∗|X∗ | ] The trajectory released by the post-processing

X′𝑗 = [𝑥 ′1𝑗 , 𝑥 ′2𝑗 , . . . , 𝑥 ′|X′ | 𝑗 ] The fingerprinted trajectory of the data analyzer

𝐷𝐴𝑗

Y = [𝑦1, 𝑦2, . . . , 𝑦 |Y| ] The leaked trajectory

G The location alphabet

𝑚 The trajectory length, i.e., |X |
𝑝 The fingerprinting ratio

𝑛 The number of data analyzers

(2) Builds a set Δ𝑉𝑡 by

Δ𝑉𝑡 = ∪v1,v2∈ vertices of 𝐾 ′ (v1 − v2)

(3) Forms a sensitivity hull (a convex hull) 𝐾 from Δ𝑉𝑡 , which
is a stricter sensitivity metric in two dimensions than the 𝑙1
norm [33];

(4) Converts 𝐾 into isotropic position 𝐾𝐼 [33];

(5) Samples a point z′ from𝐾𝐼 using the𝑘-normmechanism [17],

i.e., the probability of each point z is

𝑃𝑟 (z) = 1

Γ(𝑑 + 1)VOL(𝐾𝐼 /𝜖)
𝑒𝑥𝑝 (−𝜖 | |z − x∗ | |𝐾𝐼

)

, where x∗ is the true answer, | | · | |𝐾𝐼
is the Minkowski norm

of 𝐾𝐼 , 𝑑 is the dimension (𝑑 = 2 in the location setting), Γ()
is Gamma function and VOL() is the volume, and 𝜖 is the

privacy budget;

(6) Converts z′ back to the original space as z and releases it as

the final output at timestamp 𝑡 .

By observing the output at each timestamp and knowing the

transition matrix as auxiliary information, the attacker cannot infer

the actual locations since the generation processmodels the attacker

in the exact same way. This mechanism achieves 𝜖-differential

privacy for the trajectories in the location datasets. For further

details, we refer the reader to the original paper [33].

4 PROBLEM STATEMENT
In this section, we describe the system setting, including the data

model, the system model, and the threat model. Table 1 shows the

commonly used notations in the paper.

4.1 Data Model
We introduce the data model for our system, including the format

of trajectories, discretization, and correlations.

4.1.1 Trajectories. A trajectory X = [𝑥1, 𝑥2, . . . , 𝑥 |X |] is an or-

dered sequence of location data points with the same time interval

between any adjacent location points. In our setting, a location

point 𝑥 consists of GPS coordinates only, since we preprocess the

trajectories to have uniform time interval and thus omit the times-

tamps. Although some secondary metadata, such as velocities and

directions, can occur, we leave these to future work.

4.1.2 Map Discretization. In location settings, a map area is often

discretized into cells for simplicity [9, 15, 18, 33]. Following those

works, we divide the continuous two-dimensional space using a

uniform grid of 𝑁 ×𝑁 . Throughout the rest of the paper, we still use

the term "points" to represent a cell of the grid for generalization.

4.1.3 Correlations. We build our correlations using the Markov

chain. For each location 𝑔 ∈ G, the transition probability of the

𝑘-gram model is represented as 𝑃𝑟 [𝑥𝑘 |𝑥𝑘−1, 𝑥𝑘−2, · · · , 𝑥1]. We use

the 2-gram model in our scheme (𝑘 = 1). We provide a discussion

of the correlation model in Section 7.2.

4.2 System Model
The general workflow of the framework is shown in Figure 1. There

are two parties in our setting: a service provider and several data

analyzers. The service provider, e.g., Google Maps or a carpooling

application, collects users’ location trajectories while offering the

corresponding service(s) to the users. The service provider stores

the location dataset on their data server and is willing to share them

with other parties. Meanwhile, researchers and businesses, classi-

fied as data analyzers, want to access such location datasets. As

discussed above, the release of location data may raise privacy con-

cerns. Therefore, the service provider aims to ensure users’ location

privacy before sharing. More specifically, it can apply a privacy-

preserving approach that prevents recipients (data analyzers) from

knowing the users’ exact locations. This process inevitably per-

turbs the data and influences data utility, which is not desired by

the analyzers, especially when strong protection is applied. To best

serve the analyzers and keep the user privacy intact simultaneously,

we propose a utility-focused postprocessing scheme at the service

provider to partially regain data utility.

Figure 1: The system model.

As also discussed, a misbehaving data analyzer may distribute

(leak) a copy of the received location dataset to other unauthorized

parties without permission. Therefore, we propose a novel fin-

gerprinting scheme for location trajectories, which embeds unique

fingerprint patterns into each shared location dataset. The proposed

scheme is robust in case the attacker tries to distort the fingerprint

by exploiting the correlations among the location data from public

sources or by colluding with other misbehaving data analyzers

who also receive the same location dataset (with different unique

fingerprint patterns). Furthermore, we convert the utility-focused

post-processing method into a sampling strategy and integrate it

into the fingerprinting scheme. In this way, we manage to mitigate

utility degradation if differentially private mechanisms are applied

in the shared dataset.

The fingerprint detectionworkflow (for the source of an unautho-

rized redistribution) is shown in Figure 2. Once a location dataset is

found publicly or from unauthorized sources, the service provider

performs an aggregate detection scheme to identify the source of

the leakage. More specifically, it runs the detection scheme for each

trajectory in the leaked dataset. The service provider aggregates

the detection results (a set of accused analyzers), and finally accuses

8
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Figure 2: Detecting the source of the unauthorized redistri-
bution.

an analyzer of leaking the dataset by majority voting. The details

are given in Section 5.4.

4.3 Threat Model
In this section, we introduce the threat model considering the par-

ties in our system. The service provider is the only entity that has

access to the unperturbed data of the users. We assume that the ser-

vice provider is trusted (i.e., it does not distribute user data to other

unauthorized parties). The proposed scheme can be easily extended

to provide privacy of users’ data during the sharing process with

the service provider (we discuss the practicality of a decentralized

setting in Appendix C).

The analyzers can be malicious. An honest analyzer never shares

the fingerprinted copy that is protected under a privacy-enhancing

mechanismwith unauthorized parties, and it does not want to know

about the original dataset. An attacker, i.e., a malicious analyzer,

is curious about the original (non-perturbed) data values in the

received dataset and wants to break the location privacy guarantee.

For this, they can utilize auxiliary information from public sources,

e.g., correlations in the map area of interest. With the help of that

information, they analyze the received trajectories and try to infer

the original location points.

On the other hand, from the perspective of fingerprinting, the

attacker may want to redistribute only one trajectory or a subset of

the location dataset (i.e., multiple trajectories) to other parties, e.g.,

motivated by profit. To avoid tracking, the attacker tries to distort

the fingerprint signature. They can exploit public correlations, col-

lude with other analyzers, or even use both to hide their identities.

In the rest of the section, we discuss all the attacks the analyzers

can perform against the proposed fingerprinting scheme.

4.3.1 Random Flipping Attack. Random flip attacks are the baseline

attack in which the attacker distorts the location points in the

trajectory to distort the fingerprint. For each location point in the

trajectory, the attacker chooses to report another point from the

neighbors of the actual point with probability 𝑝𝑟 . Otherwise, the

attacker does not change the point and reports the actual point.

4.3.2 Correlation-Based Flipping Attack. The attacker can utilize

public correlations to improve baseline distortion. This attack was

first introduced in [34]. In this attack, the attacker analyzes the

correlations between contiguous points along the trajectory from

start to end. It checks the 2-gram transition from the previous

point to the current one, i.e., 𝑃𝑟 (𝑥1 = 𝑥 𝑗 |𝑥0 = 𝑥 𝑗−1) at position
𝑗 in the trajectory. If the transition probability is lower than a

threshold 𝜏 , the attacker considers that the point is fingerprinted

with a high probability. The attacker decides to distort the point

with probability 𝑝𝑐 . The attacker first constructs a set that contains

all highly probable locations, i.e., the transition probability from

the previous point 𝑥 𝑗−1 to each point in the set is at least 𝜏 . The

attacker samples an output based on the transition probability from

the last true point 𝑥 𝑗−1 to each point in the set. By doing so, the

attacker distorts the suspicious positions and avoids being detected.

If multiple parties collude by sharing their copies with each other,

they can perform more powerful attacks. We consider two types of

collusion attacks in our setting, differing in whether the attackers

take auxiliary information into account.

4.3.3 Majority Collusion Attack [5]. In the majority collusion at-

tack, the attackers collude and analyze the merged dataset point by

point. At each position, the attackers always choose the most fre-

quent value as the output. The majority voting causes the trajectory

to lose some fingerprint bits, which may mislead the fingerprint

detection mechanism and result in accusing an innocent party.

4.3.4 Probabilistic Collusion Attack [34]. Similar to correlation-

based flipping attacks, probabilistic collusion attacks [34] exploit

the auxiliary information. The attackers share the datasets and

analyze them using correlations, i.e., transition probabilities. They

also set a probability 𝑝𝑒 to approximate the actual fingerprinting

probability 𝑝 . Suppose that the attackers are deciding the output

for the 𝑗-th position in a trajectory. The attackers collect all the

location at position 𝑗 to form an alphabet 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝐾 }
at this position, where 𝐾 is the number of distinct locations, and

count the occurrence as 𝑐 𝑗,𝑘 for each location 𝑔𝑘 , 𝑘 ∈ [1, 𝐾]. The
attackers filter those with low transition probabilities from the

last released point 𝑦 𝑗−1. Among the remaining set, they perform

probabilistic sampling, where the probability is proportional to

(1−𝑝𝑒 )𝑐 𝑗,𝑘 · ( 𝑝𝑒
|𝐺 𝑗 |−1 )

𝑛−𝑐 𝑗,𝑘 ·𝑃 (𝑥 𝑗 = 𝑔𝑘 |𝑥 𝑗−1 = 𝑦′𝑗−1), where𝐺 𝑗 refers
to the alphabet at position 𝑗 . The first part (1−𝑝𝑒 )𝑐 𝑗,𝑘 ·( 𝑝𝑒

|𝐺 𝑗 |−1 )
𝑛−𝑐 𝑗,𝑘

is the probability of𝑔𝑘 being the original location at position 𝑗 based

on the assumed probability 𝑝𝑒 , and the second part is the transition

probability from the previous location. By combining the two parts,

the attackers are able to calibrate such probability that a location

with a very low probability is barely the true location even if it

occurs multiple times, and a location with a high probability in

the correlation model is more likely to be the true value although

it occurs rarely. The attackers finally sample a location based on

the weighted probability distribution and report that location at

position 𝑗 .

4.3.5 Re-Fingerprinting Attack. The attacker can execute the pro-

posed fingerprinting scheme on the fingerprinted copy in order

to perturb some embedded fingerprint points. We name this the

re-fingerprinting attack. We consider that the attacker applies the

fingerprinting scheme on the received dataset using a different

fingerprinting ratio 𝑝𝑎 .
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5 METHODOLOGY
We follow the following steps for each trajectory in the dataset.

First, we protect location datasets using a differentially private

mechanism, i.e., the planar isotropic mechanism (PIM) [33]. After

generating the differentially private dataset, we maximize the data

utility of the shared dataset by applying a post-processing strat-

egy and further integrate it into our probabilistic fingerprinting

scheme. In the rest of this section, we provide the technical de-

tails of these mechanisms. In Section 5.1, we briefly explain the

reason for choosing PIM as the building block and also compare

it with other existing approaches. In Section 5.2, we introduce the

post-processing scheme that regains pairwise correlations in the

differentially private dataset. In Section 5.3, we propose our finger-

printing scheme and show how we integrate the post-processing

scheme into our sampling process. In Section 5.4, we show how we

detect an attacker. In addition, we prove that our scheme does not

violate the privacy guarantee provided by the differentially private

mechanism in Appendix A.

5.1 Privacy-Preserving Trajectory Data Sharing
We choose the planar isotropic mechanism [33] (PIM) as the build-

ing block to ensure trajectory privacy considering its three main

advantages. First, PIM publishes trajectories with timestamps, while

other approaches (e.g., [16]) do not. By preserving timestamps, PIM

is able to provide more meaningful location trajectories, enhancing

their overall value. Second, PIM and our proposed scheme share

the same public information model, i.e., a correlation model gener-

ated from public sources. Third, as a perturbation-based method,

PIM provides greater flexibility in selecting an appropriate noise

level to balance privacy and utility. For instance, a user can either

generate a noisy output with low data utility to services that have

low utility requirements or release a less noisy one with high data

utility to utility-sensitive services. Synthetic methods, in contrast,

only preserve statistical features and omit other essential aspects

(e.g., user-specific details), which leads to a significant loss of data

utility even if a high privacy budget is allocated. Note that PIM

ensures differential privacy in an area by eliminating low probable

points (5% in total) at each timestamp, thus achieving a relaxation

of differential privacy. We use this mechanism as our building block

because other mechanisms suffer from significant limitations, e.g.,

lack of temporal information or trajectory-length restrictions, and

thus are unable to be used for actual trajectory sharing in real-

world scenarios. In addition, we show that our scheme is robust

to a differentially private method (i.e., AdaTrace [16] after simple

preprocessing) in Section 6.4.2.

Note that we do not generate a differentially private copy for

each data analyzer. In our scheme, we apply the planar isotropic

mechanism (PIM) only once for each trajectory in the dataset. After

that, the same noisy dataset generated from the differentially private

mechanism is used throughout the entire fingerprinting process.

This is because sharing multiple outputs on the same input under

differential privacy results in cumulative privacy loss [13], and this

may be exploited if the attackers collude and perform averaging

attacks to recover the original dataset. As a result, we choose to

apply PIM once for each trajectory and then use the same noisy

copy in our proposed fingerprinting scheme.

Similar to other perturbation-based approaches that ensure event-

level differential privacy, PIM generates a large amount of noise

for each location point under high privacy protection. This leads to

significant utility loss in the shared location dataset, and the pair-

wise correlations inside are mostly very low for common 𝜖 values.

Influenced by the two aforementioned factors, the data utility of

the entire trajectory decreases significantly. In other words, the tra-

jectories before and after perturbations differ considerably in terms

of shape and point-wise relations. As a result, the dataset is almost

unusable for the data analyzers as they can hardly infer meaningful

pieces of information, e.g., moving trends and statistics, from the

trajectories. To solve this problem, we propose our post-processing

scheme, called utility-focused post-processing.

5.2 Utility-Focused Post-Processing
The utility-focused post-processing scheme utilizes the auxiliary

information that is also used in PIM and from public sources to

boost the data utility of the released trajectory data. We start with

the definition of the 𝜏-probable set in Definition 5.1.

Definition 5.1 (𝜏-Probable Set). Let 𝜏 ∈ [0, 1] and G be the set

of discrete map areas.M is the 2-gram Markov model. Given a

location point 𝑔∗ ∈ G, the 𝜏-probable set of 𝑔∗ is defined as

𝑝𝑟𝑜𝑏𝜏 (𝑔∗) ← {𝑔|𝑃𝑟 [𝑥1 = 𝑔|𝑥0 = 𝑔∗] ≥ 𝜏}, 𝑔 ∈ G (1)

, where 𝑃𝑟 [𝑥1 = 𝑔 |𝑥0 = 𝑔∗] is the transition probability obtained

from the correlation modelM.

The idea of 𝜏-probable set origins from [34], where the authors

only consider pairwise data points with a transition probability

larger than or equal to 𝜏 . We build the correlations using the 2-

gram Markov chain (following [34]) and consider the transitions

based on the previous locations in the trajectory.

In the post-processing scheme, we iterate the location points in

the trajectory in sequential order. While post-processing the 𝑗-th

location point of a differentially private trajectory, named 𝑥 𝑗 , we

first obtain the ( 𝑗−1)-th output 𝑥∗
𝑗−1 that is generated from the post-

processing scheme and calculate its 𝜏-probable set 𝑝𝑟𝑜𝑏𝜏 (𝑥∗𝑗−1). If
𝑥 𝑗 is in 𝑝𝑟𝑜𝑏𝜏 (𝑥∗𝑗−1), the correlations are preserved between the

two points, and thus we do not modify the points. Otherwise, the

correlations do not exist. In this case, we choose the closest one

to 𝑥 𝑗 within the 𝜏-probable set as the output. The new point 𝑥∗
𝑗
is

treated as the original value of the corresponding data point during

the fingerprinting process.

Note that selecting the points in the 𝜏-probable set depends on

the transition probability from the correlation model. Thus, it is not

guaranteed that the 𝜏-probable set is a circle-like shape that covers

all the directions of the previous location 𝑥 . Due to the insufficiency

of the correlations generated from publicly available datasets, in

some extreme cases, there exist no suitable location points in the

set that are closer to 𝑥 𝑗 compared with the previous location 𝑥∗
𝑗−1.

If this happens and the trajectory trend continues, i.e., no turning

back, the following outputs will fall into a pit. Figure 3 is an example

of pit falling. 𝑥∗
𝑗−1 is the post-processed output at position 𝑗 −1, and

the 𝜏 probable set is marked using a dashed square. When deciding

𝑥∗
𝑗
, the scheme finds that 𝑥 𝑗 is outside of the 𝜏-probable set, and thus

it should choose the closest point to report. As the closest location

is identical to the previous release 𝑥∗
𝑗−1, the algorithm still reports
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𝑥∗
𝑗
= 𝑥∗

𝑗−1. 𝑥
∗
𝑗
and the remaining points 𝑥∗

𝑗+1, 𝑥
∗
𝑗+2, · · · remain in the

same position following the same process, causing the trajectory to

fall into a pit. Our solution is to let 𝑥∗
𝑗
= 𝑥 𝑗 in this case. By doing so,

we force the scheme to jump out of the pit so that the generation

still follows the temporary trend of the trajectory. The complete

algorithm of the post-processing scheme is shown in Algorithm 2

in Appendix D.

Figure 3: Pit falling. 𝑥∗
𝑗−1 is the last smoothed point. The

following outputs 𝑥∗
𝑗
, 𝑥 𝑗+1∗ , · · · will stay at the same position

as 𝑥∗
𝑗−1, forming a pit.

5.3 Robust Fingerprinting
Traditional fingerprinting approaches [5, 31] do not consider spa-

tial/temporal correlations and treat each point independently. How-

ever, the location points in a trajectory are highly correlated, es-

pecially the neighboring ones. Thus, modifying a location point

without following the correlation model will make a point far away

from its neighboring points such that the attacker can easily identify

most of the fingerprint bits by checking pairwise correlations. The

probabilistic fingerprinting scheme (PFS) [34] is the only existing

approach that takes correlations into account during fingerprinting.

However, the scheme in [34] requires that the states of the data

be limited and intertransitable. If the number of states is large and

they have sparse correlations, i.e., transitions only exist between a

small portion of the state pairs, [34] starts having limitations. Addi-

tionally, PFS does not consider the privacy of shared data streams.

In the following, we first briefly introduce PFS.

5.3.1 The Probabilistic Fingerprinting Scheme (PFS). PFS embeds

fingerprint codes from the start to the end of a data stream, i.e., 𝑥0
to 𝑥 |X |−1. Suppose that we are generating the 𝑗-th position in a data
stream X, and the fingerprinting ratio, i.e., probability of a point

being fingerprinted (perturbed), is 𝑝 . While determining the output

𝑥 ′
𝑗
, PFS checks the transition probability 𝑃𝑟 [𝑥 𝑗 = 𝑔|𝑥 𝑗−1 = 𝑥 ′𝑗−1] for

each𝑔 in the alphabet and filters those with low probability (i.e., less

than a threshold𝜎). PFS then forms a probability distribution among

the remaining values. If the original value is not eliminated, 𝑃𝑟 [𝑥 𝑗 ]
is set to 1−𝑝 with the remaining 𝑝 proportionally assigned to the rest

according to their transition probabilities. If the original value of

the corresponding data point at position 𝑗 is eliminated, the scheme

only generates the output proportionally from the remaining values.

However, PFS cannot be applied to location datasets evenwithout

privacy protection. The most critical problem is forced deviation.

PFS process normally works in location fingerprinting, but when

the correlations are low between the data points, it starts to show

limitations. According to PFS, the scheme eliminates the original

value of the corresponding data point if the correlations do not

Figure 4: Forced deviation. The generated point 𝑥 ′
𝑗
at times-

tamp 𝑗 is sampled inside the 𝜏-probable set of the previous
release 𝑥 ′

𝑗−1. However, the next original value of the corre-
sponding data point 𝑥∗

𝑗+1 is outside its 𝜏-probable set. Follow-
ing FPS, the next points will be sampled among 𝑝𝑟𝑜𝑏𝜏 (𝑥 ′𝑗 )
only.

Figure 5: Visualization of two fingerprinting schemes, i.e.,
(i) PFS [34] and (ii) our scheme, on two trajectory samples.
Forced deviation is clearly shown in the copies using PFS.
hold. Then, the scheme proportionally samples a point from the

remaining 𝜏-probable set consisting of highly probable points and

reports that one. In trajectory fingerprinting, once the sampled

output appears outside of the next point’s 𝜏-probable set, the rest

of the points will wander around the 𝜏-probable set forever. We

show this in Figure 4 as an example. Here, PFS fingerprints the

𝑗-th position in the trajectory, while 𝑥 ′
𝑗−1 is the last fingerprinted

location and the dashed circular area in black is the 𝜏-probable

set of 𝑥 ′
𝑗−1. 𝑥

∗
𝑗
is the actual location at position 𝑗 , and it is in the

𝜏-probable set of 𝑥 ′
𝑗−1. PFS wants to sample a point among the 𝜏-

probable set and releases that point. If the sampled point is located

as 𝑥 ′
𝑗
in Figure 4, we realize that the next original value of the

corresponding data point 𝑥∗
𝑗+1 is not in the 𝜏-probable set of 𝑥 ′

𝑗
.

In this case, the scheme will sample a location only among the

set, regardless of the distance from the original value. The next

original value 𝑥∗
𝑗+2 will be more likely to occur outside of the 𝜏-

probable set (marked by a red dashed circle) as well since the actual

trajectory moves forward and the sampled output sticks to the area

close to the first separation, i.e., 𝑥 ′
𝑗
. If the generation continues, the

fingerprinted locations will be sampled around the first deviated

location𝑥 ′
𝑗
, and this will finally result in a forced deviation.We show

some examples for this scenario for better clarification by applying

PFS and our proposed scheme on two trajectory samples in Figure 5.

As shown, PFS falls into forced deviation at the very beginning for

each sample, while our approach generates fingerprints along the

trajectory (i.e., the right figures).
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5.3.2 Direction-Sensitive Fingerprinting Scheme For Location Tra-
jectories. To solve the aforementioned challenges, we propose a

new sampling scheme, called the direction-sensitive fingerprint-

ing scheme (see Algorithm 1 for details). For a released point 𝑥 ′
𝑗−1,

we first form a set containing all locations closer to or equal to

𝑥∗
𝑗
than 𝑥 ′

𝑗−1 in the 𝜏-probable set, called the 𝜏-closer set, which
can be expressed as 𝑝𝑟𝑜𝑏𝑐𝜏 (𝑥 ′𝑗−1) ← {𝑔

��∥𝑔, 𝑥∗
𝑗
∥2 ≤ ∥𝑥 ′𝑗−1, 𝑥

∗
𝑗
∥2, 𝑔 ∈

𝑝𝑟𝑜𝑏𝜏 (𝑥 ′𝑗−1)}. Normally, if the original value of the correspond-

ing data point 𝑥∗
𝑗
is in the 𝜏-closer set, we sample the output

among it by setting the probability of choosing the original value

as 1 − 𝑝 and the rest are assigned proportionally based on the

transition probability to the destination. We improve the sampling

process to avoid forced deviation during generation. There are

four cases in which the original value is selected at the 𝑗-th po-

sition. If the original value 𝑥∗
𝑗
is in the 𝜏-closer set of the previ-

ously released location 𝑥 ′
𝑗−1, there is no difference between ours

and in PFS. If 𝑥∗
𝑗
is not in the 𝜏-closer set, we check its member-

ship in the 𝜏-probable set and sample from the same distribution

as above, but among the 𝜏-probable set instead. If not, we check

the closest point 𝑥 to the original value 𝑥∗
𝑗
in 𝑝𝑟𝑜𝑏𝜏 (𝑥 ′𝑗−1). If 𝑥

is the same as 𝑥 ′
𝑗−1, which means that there is no such location

closer to 𝑥∗
𝑗
, we let the true temporary value be 𝑥∗

𝑗
. Otherwise, we

choose 𝑥 as the temporary original value at this timestamp and

perform the proportional sampling scheme. For the first location

𝑥∗
0
in the trajectory, we do not have conditional probabilities. In-

stead, we use the emission probability of 𝑥∗
0
’s neighboring locations,

i.e., 𝑃𝑟 (𝑔) = (# of points at 𝑔)∑
𝑔′ (# of points at 𝑔′),𝑔′∈𝑛𝑒𝑖𝑔ℎ (𝑥∗0 )

, 𝑔 ∈ 𝑛𝑒𝑖𝑔ℎ(𝑥∗
0
), where

𝑛𝑒𝑖𝑔ℎ(𝑥) denotes a set of all neighbors of 𝑥∗
0
(including 𝑥∗

0
itself),

in the sampling process.

In order to offer fingerprint robustness and data usability at the

same time, we integrate the proposed post-processing scheme in

Section 5.2 into our fingerprinting. In particular, if the next original

value 𝑥∗
𝑗
is not in the 𝜏-probable set, we follow the post-processing

scheme to choose the closest point as the surrogate, and assume

it to be the original value. This post-processing integration does

not take effect if we work on not differentially private trajectories,

as pairwise correlations are preserved along those trajectories. If

dealing with noisy trajectories, i.e., protected under differential

privacy, the post-processing step will regain pairwise correlations

and thus improve data utility for location datasets.

In addition, we follow [34] and use the balancing strategy. During

the fingerprint generation, some positions are perturbed, while

some remain the same as the original values.We use 𝐹𝑃s and𝑁𝑜𝐹𝑃s

to represent them, respectively. PFS balances the distribution of

the 𝐹𝑃s by using the balancing factor 𝜃 . The scheme checks the

𝐹𝑃 count every ⌈ 1𝑝 ⌉ points. If the actual 𝐹𝑃 count is larger than

expected, then the temporary fingerprint ratio is changed to 𝑝 ∗ (1−
𝜃 ). If the number of 𝐹𝑃 is not enough, the ratio becomes 𝑝 ∗ (1 + 𝜃 ).
The complete algorithm is shown in Algorithm 1.

5.4 Detecting the Source of the Unauthorized
Redistribution

We use similarity-based detection [34] with our improvement. Dur-

ing traditional similarity-based detection, data points in leaked

Algorithm 1: Direction-Sensitive Fingerprinting Scheme

input :Trajectory X∗ = [𝑥∗
1
, 𝑥∗

2
, . . . , 𝑥∗𝑚 ], location alphabet G,

emission probability 𝑃𝑟 [𝑔𝑝 ] and transition probability

𝑃𝑟 [𝑔𝑞 |𝑔𝑟 ] for any locations 𝑔𝑝 , 𝑔𝑞, 𝑔𝑟 ∈ G, probability
threshold 𝜏 , fingerprinting ratio 𝑝 , ratio balancing factor 𝜃 ,

the first fingerprinted trajectory X≀ = [𝑥𝑜
1
, 𝑥𝑜

2
, . . . , 𝑥𝑜𝑚 ]

output :Fingerprinted trajectory X′ = [𝑥′
1
, 𝑥′

2
, . . . , 𝑥′𝑚 ]

1 𝑃𝐷 ←
𝑃𝑟 [𝑥′

1
= 𝑥∗

1
] = 1−𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑃𝑟 [𝑥′

1
= 𝑔] = 𝑃𝑟 [𝑔]∑

𝑔′∈G\𝑥∗
1

𝑃𝑟 [𝑔′ ] , 𝑔 ∈ G;

2 𝑥′
1
← sample from 𝑃𝐷 ;

3 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑝 ;

4 forall 𝑗 ∈ 2, 3, . . . ,𝑚 do
5 𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1) ← 𝜏-probable set of 𝑥′

𝑗−1;

6 𝑝𝑟𝑜𝑏𝑐𝜏 (𝑥′𝑗−1) ← {𝑔 | ∥𝑔, 𝑥∗𝑗 ∥2 ≤ ∥𝑥′𝑗−1, 𝑥∗𝑗 ∥2, 𝑔 ∈
𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1) };

7 if 𝑥∗
𝑗
∈ 𝑝𝑟𝑜𝑏𝑐𝜏 (𝑥′𝑗−1) and |𝑝𝑟𝑜𝑏𝑐𝜏 (𝑥′𝑗−1) | > 1 then

8 𝑃𝐷 ← 𝑃𝑟 [𝑥′
𝑗
= 𝑥∗

𝑗
] = 1 − 𝑝, 𝑃𝑟 [𝑥′

𝑗
= 𝑔] =

𝑃𝑟 [𝑥′
𝑗
=𝑔 |𝑥′

𝑗−1 ]∑
𝑔′∈𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1 )\𝑥

∗
𝑗
𝑃𝑟 [𝑥′

𝑗
=𝑔′ |𝑥′

𝑗−1 ]
∗ 𝑝,𝑔 ∈ 𝑝𝑟𝑜𝑏𝑐𝜏 (𝑥′𝑗−1) ;

9 𝑥′
𝑗
← sample from 𝑃𝐷 ;

10 else if 𝑥∗
𝑗
∈ 𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1) and |𝑝𝑟𝑜𝑏𝑐𝜏 (𝑥′𝑗−1) | == 1 then

11 𝑃𝐷 ← 𝑃𝑟 [𝑥′
𝑗
= 𝑥∗

𝑗
] = 1 − 𝑝, 𝑃𝑟 [𝑥′

𝑗
= 𝑔] =

𝑃𝑟 [𝑥′
𝑗
=𝑔 |𝑥′

𝑗−1 ]∑
𝑔′∈𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1 )\𝑥

∗
𝑗
𝑃𝑟 [𝑥′

𝑗
=𝑔′ |𝑥′

𝑗−1 ]
∗ 𝑝,𝑔 ∈ 𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1) ;

12 𝑥′
𝑗
← sample from 𝑃𝐷 ;

13 else
14 𝑥𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ← closet point to 𝑥∗

𝑗
in 𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1) ;

15 if |𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1) | <= 1 then
16 𝑥′

𝑗
← 𝑥∗

𝑗
;

17 else
18 𝑃𝐷 ← 𝑃𝑟 [𝑥′

𝑗
= 𝑥𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ] = 1 − 𝑝, 𝑃𝑟 [𝑥′

𝑗
= 𝑔] =

𝑃𝑟 [𝑥′
𝑗
=𝑔 |𝑥′

𝑗−1 ]∑
𝑔′∈𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1 )\𝑥𝑐𝑙𝑜𝑠𝑒𝑠𝑡

𝑃𝑟 [𝑥′
𝑗
=𝑔′ |𝑥′

𝑗−1 ]
∗ 𝑝,𝑔 ∈

𝑝𝑟𝑜𝑏𝜏 (𝑥′𝑗−1) ;
19 𝑥′

𝑗
← sample from 𝑃𝐷 ;

20 if 𝑗 mod ⌈ 1
𝑝
⌉ == 0 then

21 𝑐𝑜𝑢𝑛𝑡 ← # of fingerprinted positions;

22 if 𝑐𝑜𝑢𝑛𝑡 > 𝑝 ∗ 𝑗 then
23 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑝 ∗ (1 − 𝜃 ) ;
24 else if 𝑐𝑜𝑢𝑛𝑡 < 𝑝 ∗ 𝑗 then
25 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑝 ∗ (1 + 𝜃 ) ;
26 else
27 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑝 ;

28 end

data are compared with distributed copies. At each position, if the

leaked data point matches some data analyzers, each of them will

be assigned a score
1

|𝑋 | , where |𝑋 | is the length of the data. After

inspecting all data points, the analyzer with the highest cumulative

score is considered malicious. In location data, slight perturbation is

enough to invalidate those exact matches and thus influence the de-

tecting accuracy. Thus, we replace it with a distance-based match in

similarity-based detection. For each location point in the trajectory,

we assign
1

|𝑋 | to all points that have the shortest distance from the
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leaked location point instead of exact matches, which significantly

improves our detection.

The described detection works on a single trajectory leakage

from a shared trajectory dataset. For a multi-trajectory leakage, we

implement an aggregate detection scheme to identify the source

of the unauthorized redistribution. We first use distance-based

detection to analyze leaked trajectories one by one in the leaked

dataset and accuse one of being malicious for each leaked trajectory.

Among all the accused data analyzers, we do majority voting on

them and choose the most frequent one as the final malicious data

analyzers. The evaluation results of multi-trajectory leakage are in

Appendix E.2.

6 EVALUATION
We implemented the proposed fingerprinting scheme and provide

the experimental results. We first evaluate the fingerprint robust-

ness of our scheme against multiple attacks. After that, we evaluate

it on the datasets protected by an alternative privacy-preserving

method (i.e., AdaTrace [16]) and show that we still achieve simi-

lar performance against the considered attacks. In terms of data

utility, we evaluate fingerprinted datasets using five utility metrics

mentioned in Section 6.3.2. Furthermore, we performed parametric

experiments on trajectory length (in Section 6.4.4) and time com-

plexity (in Section 6.5.1). For the experiments, we used a rack server

with 64GB memory (DDR4, 2666Mhz) and an Intel Xeon E5-2650

@ 2.20GHz with 40 cores. We run all experiments more than 1, 000

times with 20 dataset shuffles and take the average, and the 95%

confidence intervals represented as shaded areas in the figures.

6.1 Datasets
We used 4 datasets during evaluation: 1) the GeoLife dataset (Ver-

sion 1.3) [37], 2) the Taxi dataset [25], 3) the Oldenburg dataset [7],

and 4) the San Joaquin dataset [7]. The GeoLife and Taxi datasets

are real-life ones, and the Oldenburg and San Joaquin datasets are

synthetic ones from the Brinkhoff generator. The GeoLife dataset

contains 17, 621 trajectories generated by 182 users using different

GPS devices over five years (April 2007-August 2012), including

1, 292, 951 kilometers in distance and 50, 176 hours in time, where

most of the locations are in Beijing, China. The Taxi dataset is used

in the Taxi Service Prediction Challenge at ECML-PKDD 2015 [25],

including 1, 710, 670 taxi trajectories in Porto, Portugal. The re-

maining two datasets are synthesized from the Brinkhoff generator

for moving objects [7] in the cities of Oldenburg and San Joaquin,

respectively. We generate 5, 000 trajectories for each dataset.

6.1.1 Data Pre-Processing. We preprocessed the trajectories to

avoid various data intervals. We smoothed the trajectories to have

similar time intervals, i.e., around 60 seconds. For each dataset, we

defined an area of interest that covers most of the trajectories and

cut and filtered out the trajectory fragments outside the area. We

picked 1, 000 trajectories as our fingerprinting targets and used the

remaining ones to build public correlations.

6.2 Experimental Settings
We compare our fingerprinting scheme with two traditional ones,

i.e., the Boneh-Shaw codes and the Tardos codes. We evaluate de-

tection accuracy of the three schemes on both non-differentially

private and differentially private datasets. The Boneh-Shaw codes

and the Tardos codes do not support detection of multiple trajec-

tories, so we use the same detection logic as ours, i.e., working

on trajectories one by one and then majority voting, to fit our

experiments.

The following experiments assume that the attacker(s) will only

leak one trajectory from the entire dataset. As we mentioned in

Section 5.4, we perform detection one by one on each leaked trajec-

tory and do majority voting for the final accusation. The detection

processes of leaked trajectories are independent from each other,

which makes the problem become a combination problem (i.e.,

given detection accuracy for a single trajectory equal to 𝑝 , what is

the detection accuracy of 𝑘 trajectories using majority voting?). As

we will show in the following sections, our approach significantly

outperforms existing schemes and maintains 90% detection accu-

racy in most cases. If multiple trajectories are leaked, the overall

detection accuracy increases and reaches 99.99%. We show this in

Appendix E.2. For simplicity, we consider only the leakage of one

trajectory in the following.

6.2.1 Parameter Settings. If not specified, we use the following

parameter setting throughout the experiments. An original dataset

contains 100 randomly selected trajectories, and each has 100 lo-

cations. We assume that 100 SPs get the copies by default. We set

𝜏 = 0.005 as the correlation threshold concluded from our exper-

iments and the fingerprint balancing factor 𝜃 = 0.5. The Tardos

codes use 𝜔 = 0.01 as the error probability. The Boneh-Shaw code-

word consists of |𝑋 | blocks and 1 location points in each block. For

PIM, we follow [33] and set 𝛿 = 0.01 for the 𝛿-location set. The

fingerprint ratio is set to 0.4. We assume that the attacker(s) uses

𝑝𝑐 = 0.8 and 𝑝𝑟 = 0.8 in random and correlation-based flipping

attacks, respectively, and 3 service providers collude by default.

6.3 Evaluation Metrics
6.3.1 Fingerprint Robustness Metric. We define a successful accu-

sation as correctly identifying the attacker who leaks the data. Our

evaluation metric of fingerprint robustness is then represented as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(# of successful accusation)

(# of trials)
. If multiple attackers collude,

we consider catching one of the colluding attackers. Since the Tar-

dos codes focus on catching all those who leak the data, we adjust

the accusation process for alignment. More specifically, we only

consider the one with the highest scores in the Tardos detection

instead of using the threshold 20𝑐𝑘 (in Appendix B.2).

6.3.2 Utility Metrics. Following the existing work [16, 18, 33], we

introduce our utility metrics as follows.

Query Answering of Location Points. The count query is one of

the most frequent usages for location datasets.

Let 𝑄𝑡 (𝐷,𝑔) denote the query “how many trajectories pass a

circular area represented by a center 𝑐 and a radius 𝑟 in the dataset

𝐷”. Then, we define the relative error as

𝐴𝑣𝑅𝐸 =
|𝑄𝑡 (𝐷,𝑔) −𝑄𝑡 (𝐷 ′, 𝑔) |
𝑚𝑎𝑥 (𝑄𝑡 (𝐷,𝑔), 𝑏)

, where 𝐷 is the original dataset and 𝐷 ′ is the output of our scheme.

We set 𝑏 = 0.01 × |𝐷 | according to [9, 16, 26, 36].
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Query Answering of Patterns. We also implement another query

answering metric for patterns. As discussed in Section 4.1.3, we

only focus on the 2-gram patterns. Given a 2-gram pattern 𝑃 , the

count query on 𝑃 is 𝑄𝑝 (𝑃, 𝐷) that counts 𝑃 in the dataset 𝐷 . We

also evaluate the utility using relative error.

Area Popularity. We follow [16] and evaluate the divergence of

the popularity rankings by area. Based on the number of location

points within each area, we generate the popularity ranking for each

fingerprinting scheme. We compare the ranking with that of the

original data set and calculate the Kendall-tau coefficient, which

is defined as 𝐾𝑇 =
(# of concordant pairs)−(# of discordant pairs)

(# of pairs) . The

Kendall-Tau coefficient measures the ordinal association between

sequences. A higher coefficient represents a better utility.

Trip Error. Trip error [16] measures trip length. We calculate

the lengths of all the trajectories in the dataset and put them into

11 bins, i.e., [0, 𝐿
10
), [ 𝐿

10
, 2𝐿
10
), · · · , [ 9𝐿

10
, 𝐿), and [𝐿,∞), where 𝐿 is

the maximum trip length in the original dataset. We calculate the

Jensen-Shannon divergence (JSD) between the fingerprinted dataset

and the original dataset.

Diameter Error. Diameter error [16] is similar to the trip error,

but considers the distances between contiguous location points

along the trajectories. We use the 11 bins and then evaluate the

Jensen-Shannon divergence.

Trajectory Similarity. In services like carpooling, the shape of the
trajectory is an important feature that can be used by the service

to design an optimal strategy. We use 2-dimensional dynamic time

wrapping (DTW) [27] to evaluate the similarity between the original

and fingerprinted datasets.

6.4 Fingerprint Robustness
We show the experiment results of fingerprint robustness against

five attacks in Section 4.3, i.e., random flipping attacks, correlation-

based flipping attacks, majority collusion attacks, probabilistic col-

lusion attacks, and re-fingerprinting attacks. Here, we represent

four of the attacks using abbreviations for simplicity. In partic-

ular, "RF" denotes random flipping attacks, and "CF" represents

correlation-based flipping attacks. "MJR" and "PROB" are majority

collusion attacks and probabilistic collusion attacks, respectively.

Due to page limitation, we defer several experiments, i.e., 1) finger-

print robustness on three datasets (i.e., Taxi [25], OldenBurg [7],

and San Joaquin [7]), 2) fingerprint robustness when an alternative

differentially private method (i.e., AdaTrace ][16]) is used, and 3)

parameterized experiments regarding the number of leaked trajec-

tories to the appendix E.

6.4.1 Fingerprint Robustness on Datasets Protected by PIM. Our
scheme performs significantly better (shown in Figure 6) compared

with the existing methods. The proposed scheme achieves around

99.9% detection accuracy against random flipping attacks, majority

collusion attacks (with a slight drop for a larger collusion count),

and probabilistic collusion attacks. In terms of correlation-based

flipping attacks, our scheme achieves 99.9% accuracy when 𝑝𝑐 < 0.8,

and it achieves 98% accuracy if 𝑝𝑐 = 0.8. Note that a large finger-

print ratio does not mean high detection accuracy for our scheme.

This is because we leverage pairwise correlations. If we choose

to embed a fingerprint digit at a position, we distort the original

point. However, the new point has lower pairwise correlations in

most cases, which eventually influences the internal correlations

among the trajectory and thus decreases the detection accuracy.

Based on our experiments, a fingerprint ratio around 0.4 is optimal.

Meanwhile, Boneh-Shaw codes and Tardos codes are not as robust

as our proposed scheme. In conclusion, our scheme outperform

those methods.

6.4.2 Fingerprint Robustness on Datasets Protected by an Alternative
Method. In order to show that our framework works with different

differentially private mechanisms on location datasets, we imple-

ment an alternative DP mechanism, i.e., AdaTrace [16]. However,

AdaTrace is a synthetic mechanism that does not preserve any tem-

poral information in the released dataset. Thus, we post-process the

output dataset from AdaTrace using the Bresenham’s algorithm, a

line drawing algorithm, to traverse all passed points between two

points and add time-sequenced indexes to each point. By using the

Bresenham’s algorithm and then assigning timestamps manually,

we generated a synthetic dataset with high pairwise correlations

but a fake version. As shown in Figure 8, we achieve similar results

compared to those in the original datasets (i.e., in Figure 13) in gen-

eral, which proves that our scheme can work on other differentially

private mechanisms.

6.4.3 Fingerprint robustness against re-fingerprinting attack. The
attacker can distort the embedded fingerprint by applying the pro-

posed fingerprinting scheme on the received dataset, namely re-

fingerprinting attacks. To evaluate our scheme against such attacks,

we design the experiment as follows. We build small data sets of

different sizes for evaluation. We assume that the attacker, based

on the experiment results in Sections 6.4.1, and 6.4.2, chooses the

optimal parameters, i.e., 𝜏 = 0.005, 𝜃 = 0.5, and applies the pro-

posed fingerprinting scheme to the received dataset (which is also

fingerprinted by the data owner). The attack ratio in this attack

refers to the fingerprint ratio that the attacker uses. As shown in

Figure 7, our scheme offers high fingerprint robustness against

re-fingerprinting attacks regardless of the number of trajectories

in the dataset, while larger datasets (with more trajectories) lead to

higher detection accuracy. When the trajectory count exceeds 10,

the detection accuracy reaches 98% for any fingerprint ratio that is

not greater than 0.8 and remains above 60% even if the attack ratio

reaches 0.9. For higher attack ratios, similar to correlation-based

attacks discussed in Section 6.4.1, the resulting low data utility

limits the attacker from executing such attacks.

6.4.4 Fingerprinting Robustness on Differentially Private Datasets
for Trajectories with Different Lengths. We evaluate the performance

of fingerprint robustness on trajectories of different lengths and

show the results in Figure 9. Our scheme significantly outperforms

existing methods in all aspects, except for a high fingerprint ratio

𝑝 = 0.7.

6.5 Utility Evaluation
Table 2 shows the data utility of the proposed scheme and compares

it with the original dataset. For 𝜖 = 0.9, 1.7, and 2.5, our proposed

method is better than Boneh-Shaw codes and Tardos codes in most

cases. Meanwhile, our scheme is not the best for query answering

(when 𝜖 = 2.5) on the Taxi and San Joaquin datasets and for popu-

larity analysis (when 𝜖 = 0.9) on the Oldenburg dataset. On the Taxi
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(a) vs. RF (b) vs. CF (c) vs. MJR (d) vs. PROB

Figure 6: Fingerprint robustness of the proposed scheme on the differentially private GeoLife [37] dataset by PIM [33]
compared with two existing methods, i.e., the Boneh-Shaw codes [5] and the Tardos codes [31], under different fingerprint

ratio 𝑝.

Table 2: Utility Evaluation. "DSFS" is the proposed scheme in this paper, "BS" denotes the Boneh-Shaw codes, and "Tardos"
refers to the Tardos codes. Better results are marked in bold. For Popularity KT coefficient, higher values are better. For the rest
of the metrics, lower is better. We show 95% confidence intervals for all results.

𝜖 = 0.9 𝜖 = 1.7 𝜖 = 2.5

DSFS BS [5] Tardos [31] DSFS BS [5] Tardos [31] DSFS BS [5] Tardos [31]

GeoLife [37]

QA Area AvRE 9.6 ± 3.6 12.2 ± 3.3 18.7 ± 5.3 2.8 ± 0.9 3.9 ± 1.6 3.3 ± 1.4 0.9 ± 0.4 1.6 ± 0.7 1.3 ± 0.3

QA Pattern AvRE 2.5 ± 0.4 4.3 ± 0.5 4.8 ± 0.5 1.0 ± 0.2 2.0 ± 0.3 1.8 ± 0.4 0.5 ± 0.1 1.0 ± 0.2 0.9 ± 0.2

Popularity KT [16] 0.62 ± 0.01 0.56 ± 0.01 0.57 ± 0.02 0.74 ± 0.01 0.68 ± 0.02 0.69 ± 0.01 0.83 ± 0.02 0.79 ± 0.02 0.78 ± 0.01

Trip Error [16] 0.75 ± 0.01 0.81 ± 0.01 0.81 ± 0.01 0.66 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.54 ± 0.02 0.71 ± 0.01 0.69 ± 0.01

Diameter Error [16] 0.14 ± 0.00 0.31 ± 0.00 0.31 ± 0.00 0.12 ± 0.00 0.24 ± 0.00 0.24 ± 0.00 0.11 ± 0.00 0.21 ± 0.00 0.20 ± 0.00

DTW Distance 308 ± 10 409 ± 9 400 ± 11 146 ± 5 182 ± 6 180 ± 7 78 ± 3 101 ± 3 101 ± 4

Taxi [25]

QA Area AvRE 8.4 ± 3.5 9.6 ± 4.0 13.7 ± 5.1 0.7 ± 0.4 2.1 ± 1.4 1.8 ± 1.3 0.34 ± 0.25 0.33 ± 0.23 0.53 ± 0.29

QA Pattern AvRE 7.5 ± 2.0 9.3 ± 1.7 9.2 ± 1.4 0.85 ± 0.44 1.83 ± 0.69 2.99 ± 1.39 0.25 ± 0.07 0.74 ± 0.22 0.66 ± 0.20

Popularity KT [16] 0.54 ± 0.03 0.53 ± 0.02 0.51 ± 0.03 0.69 ± 0.04 0.68 ± 0.03 0.68 ± 0.02 0.83 ± 0.05 0.80 ± 0.03 0.77 ± 0.04

Trip Error [16] 0.69 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 0.45 ± 0.02 0.77 ± 0.01 0.77 ± 0.01 0.36 ± 0.02 0.64 ± 0.01 0.63 ± 0.02

Diameter Error [16] 0.11 ± 0.00 0.30 ± 0.00 0.29 ± 0.00 0.07 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.06 ± 0.00 0.17 ± 0.00 0.17 ± 0.00

DTW Distance 196 ± 4 257 ± 6 249 ± 5 75 ± 3 98 ± 2 100 ± 3 42 ± 1 54 ± 2 56 ± 2

Oldenburg [7]

QA Area AvRE 1.4 ± 0.3 2.0 ± 0.6 2.7 ± 0.6 0.34 ± 0.13 0.37 ± 0.10 0.41 ± 0.11 0.13 ± 0.04 0.18 ± 0.07 0.16 ± 0.07

QA Pattern AvRE 3.4 ± 0.5 6.3 ± 0.3 6.5 ± 0.5 1.6 ± 0.2 3.3 ± 0.2 3.0 ± 0.2 0.8 ± 0.1 2.0 ± 0.2 1.9 ± 0.1

Popularity KT [16] 0.69 ± 0.01 0.70 ± 0.01 0.70 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.90 ± 0.01 0.89 ± 0.01 0.89 ± 0.01

Trip Error [16] 0.70 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 0.53 ± 0.02 0.76 ± 0.01 0.76 ± 0.01 0.44 ± 0.02 0.67 ± 0.02 0.66 ± 0.01

Diameter Error [16] 0.11 ± 0.00 0.28 ± 0.00 0.28 ± 0.00 0.08 ± 0.00 0.19 ± 0.00 0.19 ± 0.00 0.07 ± 0.00 0.15 ± 0.00 0.14 ± 0.00

DTW Distance 234 ± 6 264 ± 7 265 ± 6 86 ± 3 97 ± 1 96 ± 2 48 ± 1 55 ± 1 56 ± 1

San Joaquin [7]

QA Area AvRE 2.0 ± 0.6 2.3 ± 0.6 2.12 ± 0.60 0.4 ± 0.1 0.5 ± 0.2 0.6 ± 0.2 0.17 ± 0.07 0.14 ± 0.04 0.21 ± 0.06

QA Pattern AvRE 3.4 ± 0.5 6.6 ± 0.5 6.2 ± 0.3 1.1 ± 0.2 3.1 ± 0.3 2.8 ± 0.4 0.7 ± 0.1 1.7 ± 0.2 1.5 ± 0.1

Popularity KT [16] 0.68 ± 0.01 0.65 ± 0.02 0.65 ± 0.02 0.81 ± 0.01 0.80 ± 0.01 0.79 ± 0.01 0.89 ± 0.01 0.87 ± 0.01 0.87 ± 0.01

Trip Error [16] 0.65 ± 0.02 0.81 ± 0.01 0.81 ± 0.01 0.47 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.39 ± 0.02 0.66 ± 0.01 0.65 ± 0.01

Diameter Error [16] 0.09 ± 0.00 0.28 ± 0.00 0.28 ± 0.00 0.07 ± 0.00 0.18 ± 0.00 0.18 ± 0.00 0.05 ± 0.00 0.14 ± 0.00 0.14 ± 0.00

DTW Distance 238 ± 8 277 ± 6 271 ± 5 97 ± 2 107 ± 3 110 ± 4 53 ± 2 60 ± 1 59 ± 2

Figure 7: Fingerprint robustness against re-fingerprinting
attacks on differentially private datasets of different sizes.
The attack ratio denotes thefingerprint ratio that the attacker
uses during the attack.

dataset when 𝜖 = 2.5, the error for query answering on location

points is 0.34, which is slightly higher than 0.33 for the Boneh-Shaw

codes. Similarly, the performance of our scheme when 𝜖 = 0.9 is

Table 3: Execution time of generating a fingerprinted dataset
(𝑛 = 100)

𝑙 100 200 300 400 500

time(𝑠) 0.5177 1.0229 1.5268 2.0407 2.5779

0.01 worse than the two existing methods for popularity analysis

on the Oldenburg dataset. On the San Joaquin dataset, the query

answering error on location points of our scheme is 0.17, while the

error is 0.14 if the Boneh-Shaw codes are used. For the majority of

the metrics, our scheme outperforms the Boneh-Shaw codes and

the Tardos’ code. For a few metrics, our scheme is slightly worse

but still comparable with the existing methods.

6.5.1 Computation Time. We present the computation time of the

proposed scheme in Table 3. For a dataset of 100 trajectories with a

length equal to 500, the proposed scheme only takes 2.5779 seconds

to generate one fingerprinted copy. We observe that the computa-

tion time increases linearly with increasing trajectory length. In

conclusion, our scheme shows practical time efficiency for finger-

print generation and scales well for large datasets.
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(a) vs. RF (b) vs. CF (c) vs. MJR (d) vs. PROB

Figure 8: Fingerprint robustness on the differentially private Geolife [37] dataset protected by an alternative method
(AdaTrace [16]) compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31] with different

fingerprint ratio 𝑝.

(a) vs. RF (b) vs. CF (c) vs. MJR (d) vs. PROB

Figure 9: Fingerprint robustness on the differentially private Geolife [37] dataset protected by PIM [33] with different lengths
of leaked trajectories compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31] with different

fingerprint ratio 𝑝.

7 DISCUSSION
Here, we compare PIMwith other differentially private mechanisms

and discuss the correlation model.

7.1 Comparison Between PIM and Other
Differentially Private Mechanisms

Compared with PIM, other existing works have more or less their

limitations for realistic location dataset sharing. Jiang et al.’s ap-

proach [20] requires that the starting and finishing points of all

the trajectories should be fixed, making it only work on specific

types such as ship or flight trajectories. [16] and [18] need accu-

rate statistical features of the input datasets. Thus, the size of the

dataset should be comparably large. In other words, they cannot

handle datasets with only a few trajectories. In addition, adding

and removing trajectory is one of the most common requests from

users as they become more concerned with their data privacy [6].

Synthetic methods [16, 18] cannot perform such operations simply

by working on the protected dataset and they have to regenerate

the entire dataset. Meanwhile, PIM is executed on each trajectory

instead of on the whole data set. It can easily achieve this by adding

or removing generated copies of a specific trajectory to/from the

shared dataset.

7.2 Correlation Model
In this work, we use 2-gram Markov chain to model correlations.

If we use a higher-order model, each pattern 𝑋 ’s occurrence will

decrease significantly since longer prefixes are harder to find intu-

itively. Therefore, we cannot collect enough patterns 𝑋𝑔 to form

a reliable transition distribution for a prefix 𝑋 , which results in

an inaccurate transition matrix. For instance, GeoLife dataset [37]

consists of 17, 621 trajectories in Beijing. However, we can hardly

construct a reliable 3-gram model out of it, especially if we use a

dense grid for services like Google Maps that collects location data

frequently. Some approaches use a sparse grid to overcome this

problem [9, 33] (around 400 ∗ 400𝑚2
), but the location points are

too general for analytical purposes. On the other hand, our target

applications, e.g., Google Maps and outdoor exercises, cannot bear

such general locations. As a result, we compromise with the 2-gram

Markov chain.

8 CONCLUSION AND FUTUREWORK
In this paper, we design a system that achieves both privacy preser-

vation and robust fingerprinting for location datasets. We first apply

a differentially private mechanism to the dataset and then imple-

ment a fingerprinting scheme that considers pairwise correlations

in the location data and prevents the attackers from unauthorized

leakage of the dataset. With the integration of a utility-boosting

post-processing, our proposed direction-sensitive fingerprinting

scheme provides high data utility for data analyzers.

There are several directions for further research. First, we plan to

improve our correlation model to a higher-order model (e.g., using

road structures) and analyze the performance of the scheme. In addi-

tion, a non-uniform grid in discretization can be used and different

types of collusion attacks can be defined and studied. Moreover, our

approach provides differential privacy and fingerprint robustness in

two separate steps. Combining those two steps is another potential

future work.
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Appendices

A PROOF OF IMMUNITY TO
POST-PROCESSING OF OUR SCHEME

Claim. The utility-focused post-processing scheme and the direction-
sensitive fingerprinting scheme do not violate differential privacy.

Proof. First, we assume that the input data are released un-

der an arbitrary privacy-preserving mechanism that satisfies 𝜖-

differential privacy. According to Proposition 3.2, any mapping

function does not violate the guarantee of a differentially private

method if the function does not utilize the values of the original

dataset. During utility-focused post-processing in Section 5.2 and

direction-sensitive fingerprinting in Section 5.3.2, we only use pub-

lic correlations instead of any information from the original dataset,

which satisfies the conditions of immunity to post-processing. Thus,

post-processing and fingerprinting do not violate 𝜖-differential pri-

vacy that is provided by the privacy-preserving mechanism.

□

B EXISTING FINGERPRINTING SCHEMES
In this section, we introduce the two existing fingerprinting schemes

that we use for comparison.

B.1 The Boneh-Shaw Codes
The Boneh-Shaw codes [5] are collusion-resistant fingerprinting

codes. It captures one of the colluding parties with only a probability

𝜔 of incorrect accusation with 𝑐 service providers colluding (𝜔-

secure) under the marking assumption [5]. Γ(𝑛,𝑑)-codes serve 𝑛
users and consist of 𝑛 ∗ 𝑑 digits. Each user 𝑖 ∈ [1, 𝑛] gets the first
(𝑖 − 1) ∗ 𝑑 bits as 1’s and the rest (𝑛 − 𝑖) ∗ 𝑑 as 0’s. An example of

the Γ(4, 3) code is: {111-111-111, 000-111-111, 000-000-111, 000-000-
000}, and each user receives one of the codewords. By identifying

the first block with a majority of 1’s in the leaked data, e.g., the

𝑖-th block, the algorithm considers the user 𝑖 guilty. In the above
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example, if 001-011-111 is leaked, the 2nd user who owns 000-111-

111 will be accused of leaking the data since the 2nd block is the

first block with a majority of 1’s.

B.2 The Tardos Codes
The Tardos codes [31] are another binary fingerprinting technique

under the marking assumption. The codes utilize randomization in

construction and provide similar security against majority collusion

attacks while requiring a shorter code length than the Boneh-Shaw

codes. The construction of Tardos codes requires the number of

sharings 𝑛, the number of colluding units 𝑐 , and the expected secu-

rity 𝜔 . The minimum length of binary code to ensure 𝜔-security

is 𝑚 = 100𝑐2𝑘 , where 𝑘 = ⌈log(1/𝜔)⌉. Let 𝑡 = 1/(300𝑐) and
𝑠𝑖𝑛2𝑡 ′ = 𝑡, 0 < 𝑡 ′ < 𝜋/4. 𝑝𝑖 denotes the probability of 1 at position

𝑖 , i.e., 𝑃𝑟 (𝑋𝑖 = 1) = 𝑝𝑖 , and is calculated independently. To select

the probability for each position 𝑖 , we sample 𝑟𝑖 ∈ [𝑡 ′, 𝜋/2 − 𝑡 ′]
uniformly and then acquire 𝑝𝑖 = 𝑠𝑖𝑛2𝑟𝑖 . Let 𝑋 𝑗𝑖 denote the 𝑖-th

digit of the user 𝑗 and Y = {𝑦1, 𝑦2, . . . , 𝑦𝑚} denote the leaked data.

While accusing the colluders, the codes use a scoring function as

𝑈 𝑗𝑖 =


√︃

1−𝑝𝑖
𝑝𝑖

if 𝑋 𝑗𝑖 = 1

−
√︃

𝑝𝑖
1−𝑝𝑖 if 𝑋 𝑗𝑖 = 0

(2)

and accuse the user 𝑗 if

𝑚∑︁
𝑖=1

𝑦𝑖𝑈 𝑗𝑖 ≥ 20𝑐𝑘

.

C DECENTRALIZED SETTING
We build our system in the centralized setting, i.e., users’ location

points are collected by a centralized data server (service provider)

and then processed by our scheme. This relies on an honest party

involved in the system, since the centralized data server (i.e., the

service provider) has direct access to the collected dataset. If no

such party exists, we can alternatively set up a decentralized system,

where the privacy is protected before sending location data to the

centralized server. In such a decentralized setting, users can apply

DP protection locally on their devices by setting the desired privacy

level they want to achieve. The protected data are then transmitted

to the centralized server. Every time the service provider collects

real-time location information from the users, users immediately

protect their locations under differential privacy (e.g., using PIM)

and send the noisy locations to the centralized server. The server

collects these locations sequentially and applies our proposed fin-

gerprinting scheme to the location data. In this case, real locations

are not exposed to any party, including the centralized server, thus

protecting users’ location privacy in a better way. However, this set-

ting sacrifices users’ experience while using location-based servers,

and thus some service providers may offer poor services due to the

inaccuracy of the location information. While using Google Maps

for navigation, one does not want to report incorrect locations.

But if one uses Google Maps to find nearby restaurants, they often

accept a vague or slightly deviated localization. Service providers

can choose either setting based on the services they provide.

D TRAJECTORY POST-PROCESSING SCHEME
Algorithm 2 shows the steps of the post-processing scheme de-

scribed in Section 5.2, where ∥·∥2 denotes the 𝑙2-norm.

Algorithm 2: Trajectory Post-Processing Scheme

input :Noisy trajectory
ˆX = [𝑥1, 𝑥2, . . . , 𝑥𝑚 ], location alphabet

G, conditional probability in the correlations 𝑃𝑟 (𝑥 𝑗 |𝑥 𝑗−1)
for any 𝑗 ∈ [1,𝑚], probability threshold 𝜏

output :Smoothed trajectory X∗ = [𝑥∗
1
, 𝑥∗

2
, . . . , 𝑥∗𝑚 ]

1 𝑥∗
1
← 𝑥1

2 forall 𝑗 ∈ {2, 3, . . . ,𝑚} do
3 𝑝𝑟𝑜𝑏𝜏 (𝑥∗𝑗−1) ← 𝜏-probable set of 𝑥∗

𝑗−1;

4 𝑥𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ← closet point to 𝑥 𝑗 in 𝑝𝑟𝑜𝑏𝜏 (𝑥∗𝑗−1) ;
5 if 𝑥 𝑗 ∉ 𝑝𝑟𝑜𝑏𝜏 (𝑥∗𝑗−1) then
6 if ∥𝑥∗

𝑗−1, 𝑥 𝑗 ∥2 ≤ ∥𝑥∗𝑗−1, 𝑥𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ∥2 then
7 𝑥∗

𝑗
← 𝑥 𝑗

8 else
9 𝑥∗

𝑗
← 𝑥𝑐𝑙𝑜𝑠𝑒𝑠𝑡

10 else
11 𝑥∗

𝑗
← 𝑥 𝑗

12 end

E ADDITIONAL EXPERIMENTAL RESULTS
In this section, we show additional experimental results. First, we

evaluate fingerprint robustness on other datasets apart from Ge-

oLife [37]. Then we show how length impacts fingerprinting per-

formance. Also, we extend Section 6.4.1 and evaluate our scheme’s

performance when multiple trajectories are leaked.

E.1 Fingerprinting Robustness on Other
Datasets Under Differential Privacy

As is shown in Figure 10, 11, and 12, the results are almost identical

to GeoLife [37]’s (in Section 6.4.1. It proves that our fingerprinting

scheme is robust and consistent for all location datasets.

E.1.1 Fingerprint Robustness on Datasets Without Differential Pri-
vacy. Weevaluate the fingerprint robustness of our proposed scheme

without privacy-preserving mechanisms. Figure 13 shows the per-

formance of the proposed scheme against multiple attacks. For

random flipping attacks, our scheme achieves almost 100% accu-

racy if the attacker does not perturb more than 60% of the location

points, and it decreases to 90% if the attacker distorts 80% of the

location points. In terms of correlation-based flipping attacks, the

scheme has high accuracy when the flipping ratio 𝑝𝑐 is less than

or equal to 0.6, and the accuracy drops significantly for larger 𝑝𝑐 .

The reason is almost the same as why the probabilistic fingerprint-

ing scheme (PFS) [34] does not work on location datasets, i.e., the

forced deviation (shown in Figure 4). For an acceptable data utility,

the attacker does not prefer a large 𝑝𝑐 in practice. For majority

collusion attacks, the detection accuracy of our scheme is greater

than 80%. In terms of probabilistic collusion attacks, our scheme

achieves 99% detection accuracy if 𝑐 = 3 and still gets around 60%

if 𝑐 increases to 12.

Note that the scheme does not benefit from higher fingerprint

ratio against two correlation-based attacks (i.e., correlation-based
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(a) vs. RF (b) vs. CF (c) vs. MJR (d) vs. PROB

Figure 10: Fingerprint robustness of the proposed scheme on the differentially private Taxi [25] dataset by PIM [33] compared
with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31], with different fingerprint ratio 𝑝.

(a) vs. RF (b) vs. CF (c) vs. MJR (d) vs. PROB

Figure 11: Fingerprint robustness of the proposed scheme on the differentially private OldenBurg [7] dataset by PIM [33]
compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31], with different fingerprint ratio 𝑝.

(a) vs. RF (b) vs. CF (c) vs. MJR (d) vs. PROB

Figure 12: Fingerprint robustness of the proposed scheme on the differentially private Joaquin [37] dataset by PIM [33]
compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31], with different fingerprint ratio 𝑝.

(a) vs. RF (b) vs. CF (c) vs. MJR (d) vs. PROB

Figure 13: Fingerprint robustness of the proposed scheme on the non-differentially private dataset (the GeoLife dataset [37])
compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31], with different fingerprint ratio 𝑝.

flipping attacks and probabilistic collusion attacks) for non-noisy

datasets, and the accuracy becomes even worse for probabilistic

collusion attacks, which can be explained as follows. In a non-noisy

trajectory, pairwise correlations mostly hold, i.e., the transition

probability from the previous point to the current point remains

high. In that case, if we fingerprint (modify) two consecutive points,

the pairwise correlation between the modified values mostly de-

creases. When fingerprint ratio, i.e., probability of a point being

fingerprinted (perturbed), is high (i.e., 𝑝 > 0.5), such scenarios oc-

cur more commonly and can be exploited by the attacker, resulting
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(a) vs. RF (b) vs. CF (c) vs. MJR (d) vs. PROB

Figure 14: Fingerprint robustness on the differentially private Geolife [37] dataset protected by PIM [33] with different number
of trajectories in the leaked dataset compared with two existing methods, i.e., Boneh-Shaw codes [5] and Tardos codes [31],

with different fingerprint ratio 𝑝.

in a decrease in detection accuracy. On the other hand, when the

fingerprint ratio is low, e.g., 𝑝 = 0.1, our scheme does not have too

few fingerprinted points to provide fingerprint robustness against

collusion attacks, resulting in a degradation in accuracy. This en-

sures high data utility and high fingerprint robustness in the shared

dataset simultaneously.

Compared to our scheme, the two existing methods are not

equally robust. Boneh-Shaw codes achieve around 50% detection

accuracy in majority collusion attacks and have at most 20% chance

to identify the attacker against other attacks, where the wavy style

in Figure 13c results from its own design. The detection accuracy

of the Tardos codes is 100% against the two flipping attacks if the

flipping ratio is 0.1, but it quickly drops to below 40% and 20%

for random flipping attacks and correlation-based flipping attacks,

respectively. For collusion attacks, their detection accuracy is at

most 70% if 3 attackers collude and 40% when 12 are involved.

Overall, our scheme achieves better performance against all the

attacks considered.

E.2 Fingerprinting Robustness on Differentially
Private Datasets While Multiple
Trajectories are Leaked

Figure 14 shows the fingerprint robustness on differentially private

datasets while multiple trajectories are leaked.

20


	Abstract
	Acknowledgments
	1 Introduction
	2 Related Work
	2.1 Trajectory Privacy
	2.2 Digital Fingerprinting

	3 Preliminaries
	3.1 Differential Privacy
	3.2 Planar Isotropic Mechanism

	4 Problem Statement
	4.1 Data Model
	4.2 System Model
	4.3 Threat Model

	5 Methodology
	5.1 Privacy-Preserving Trajectory Data Sharing
	5.2 Utility-Focused Post-Processing
	5.3 Robust Fingerprinting
	5.4 Detecting the Source of the Unauthorized Redistribution

	6 Evaluation
	6.1 Datasets
	6.2 Experimental Settings
	6.3 Evaluation Metrics
	6.4 Fingerprint Robustness
	6.5 Utility Evaluation

	7 Discussion
	7.1 Comparison Between PIM and Other Differentially Private Mechanisms
	7.2 Correlation Model

	8 Conclusion and Future Work
	References
	A Proof of immunity to Post-Processing of Our Scheme
	B Existing Fingerprinting Schemes
	B.1 The Boneh-Shaw Codes
	B.2 The Tardos Codes

	C Decentralized Setting
	D Trajectory Post-Processing Scheme
	E Additional Experimental results
	E.1 Fingerprinting Robustness on Other Datasets Under Differential Privacy
	E.2 Fingerprinting Robustness on Differentially Private Datasets While Multiple Trajectories are Leaked


