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ABSTRACT
Website fingerprinting (WF) is a well-known threat to users’ web
privacy. New Internet standards, such as QUIC, include padding
to support defenses against WF. Previous work on QUIC WF only
analyzes the effectiveness of defenses when users are behind a VPN.
Yet, this is not how most users browse the Internet. In this paper,
we provide a comprehensive evaluation of QUIC-padding-based
defenses againstWFwhen users directly browse the web, i.e., without
VPNs, HTTPS proxies, or other tunneling protocols. We confirm
previous claims that network-layer padding cannot provide effective
protection against powerful adversaries capable of observing all
traffic traces. We show that the claims hold even against adversaries
with constraints on traffic visibility and processing power. We then
show that the current approach to web development, in which the
use of third-party resources is the norm, impedes the effective use
of padding-based defenses as it requires first and third parties to
coordinate in order to thwart traffic analysis. We show that even
when coordination is possible, in most cases, protection comes at a
high cost.
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1 INTRODUCTION
New standardization efforts have greatly increased the privacy of
web traffic: e.g., TLS Encrypted Client Hello (ECH) [11] to encrypt
Server Name Indication (SNI) in connection handshakes, or (Obliv-
ious) DNS-over-HTTPS [6, 64] and DNS-over-TLS [9] to encrypt
DNS queries. Yet, encryption alone cannot protect users’ browsing
history from traffic analysis. Traffic-analysis attacks, such as website
fingerprinting (WF), enable adversaries to infer which websites a
user visits from the communications’ traffic patterns (e.g., volume of
packets exchanged or packets’ sizes) [25, 37, 38, 50, 62, 67].

QUIC is the next transport layer standard for the web, and it is
being rapidly adopted [17]. In order to combat traffic analysis, the
working group behind QUIC introduced a PADDING frame in the
specification [8]. Recently, Smith et al. [66] developed a client-side
∗
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framework that can implement existing website fingerprinting de-
fenses such as Tamaraw [22] and FRONT [33] using the PADDING
frame. While they showed that it is possible to deploy website finger-
printing defenses solely from the client, their approach is restricted
to users in a VPN scenario where IP addresses cannot be used as a
signal to reduce the anonymity set of websites [39]. While a non-
negligible amount of users browse the web through VPNs, this is not
the case for the majority [14] who unfortunately can not benefit from
Smith et al.’s tools. In this work, we investigate whether defenses
built using the PADDING frame can be effective outside of the VPN
setting, i.e., for the masses.

Existing padding-based website-fingerprinting defenses differ in
the layer they target and the information they use to inform the
defense. There exist application-agnostic techniques at the trans-
port and network layers that work independently of the website
they are protecting [21, 22, 30, 33, 43]. On the other hand, there are
application-aware techniques. These can be network- and transport-
layer techniques that require prior knowledge (e.g., resource size,
resource order, or total size) of the website trace they aim to protect
to tailor the defense [58, 60], or application-layer techniques that
propose modifications directly on the resources [26, 47, 49]. We pro-
vide a comprehensive evaluation of both application-agnostic and
application-aware defenses for QUIC traffic, to answer the question:
can efficient website-fingerprinting defenses be implemented solely
at the network/transport layers or does there need to be involvement
of the application layer? This is motivated by the fact that QUIC is
built in the user-space, thus allowing it to be more tightly-coupled
with applications and making it a good candidate for application-
layer-informed defenses. In contrast to prior work, we emphasize
practicality, i.e., we focus on the feasibility of deploying defenses
widely so that the average user can be protected.

Outside of the VPN setting, the IP address can be a unique iden-
tifier for many websites [57]. However, users frequently encounter
content delivery networks (CDN)-served resources while browsing –
as of November 2022, ≈ 44% of the top million sites use CDNs [12].
In fact, there is an increased consolidation on the web due CDN pen-
etration [29], with a consequent increase in size of clusters due to
domains co-hosted behind the same IP [40, 61]. When using privacy-
preserving protocols such as TLS ECH, this co-hosting provides a
natural anonymity set for the websites hosted behind a CDN server’s
IP address. In such a scenario, website fingerprinting becomes the
only way to identify websites hosted by CDNs.
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We focus on this scenario, where the only available information to
the adversary is the CDN server’s IP address, IP addresses of a web-
site’s secondary resources hosted on non-CDN servers, and metadata
such as the size of encrypted data, its timing, and its direction (sent
by/to the server).

We answer two questions:

Q1: Canwe build effective application-agnostic traffic-analysis
defenses using the PADDING frame at the transport layer as
envisioned by the standard?
✓ Transport-layer application-agnostic defenses which build

on the QUIC PADDING frame to hide packets’ sizes or inject
dummy packets are not sufficient. Unless one accepts very
large overhead, the adversary can use global trace information
(e.g., the total number of packets, or the total incoming size)
to recognize websites (> 92% F1-score). Despite the use of
padding, websites can be identified from their landing pages or
from subpage visits, even if the adversary has not previously
visited a specific subpage.

✓ The centralization of web resources on the Internet, in par-
ticular in the hands of Google, creates a favorable setting for
the adversary. Traffic analysis solely on the timing of Google
resources fetched by a web page achieves > 77% F1-score, re-
quiring four orders of magnitude less data than using full traces.
This increases the surface of attack from only vantage points
in the ASes between the client and the first-party domain host
to vantage points in any AS between the client and Google.

✓ We show that our findings above not only hold against power-
ful adversaries that can observe all communications between
clients and servers, as those typically considered in the liter-
ature [25, 37, 38, 50, 62, 67], but also against weaker, more
realistic, adversaries that can only observe partial traces and
are restricted in their storage, computation, or bandwidth, e.g.,
by using limited information from typical network statistics
(e.g., NetFlow) the F1-score is 66% at 10% sampling rate. Per-
formance only decreases to close to random guessing when
the adversary’s vantage position in the network only enables
them to observe a very small percentage of the page.

Q2: Can application-aware defenses effectively thwart traffic
analysis?
✓ Websites can be fingerprinted by either solely their first party

or their third party resources (33% of resources in our dataset).
When users are not behind a VPN, if all parties do not partic-
ipate in the padding strategy, an adversary can successfully
identify pages (> 91% F1-score), leaving users vulnerable.

✓ Application-aware defenses can offer better trade-offs in terms
of efficiency than application-agnostic defenses, but their de-
ployment is hindered by the current reliance on third parties
in web development practices. Unless those practices change,
protecting users would require significant bandwidth over-
head and coordination among many parties under very dy-
namic conditions. We provide recommendations to modify
these practices in such a way that it would be easier to support
effective defenses against website fingerprinting attacks.

Takeaways. Our results show that PADDING-based defenses are not
sufficient to thwart traffic analysis. One of the main reasons they

fall short stems from the fact that their proposal, rooted in previous
website-fingerprinting defenses, is disconnected from the evolution
of web practices.

On the one hand, the increased reliance on third parties by web
developers implies that no effective defense can be deployed without
the coordination of parties who may have different objectives and in-
centives to protect users. Furthermore, the popularity of a small set of
resources used by many websites concentrates subrequests to a small
number of service providers (such as Google). This increases the at-
tack surface and eases the task of website-fingerprinting adversaries
by decreasing the amount of traffic required to identify websites. On
the other hand, the consolidation of services behind CDNs creates a
natural reduced anonymity set for websites, which makes website
fingerprinting a closed-world classification problem that is much
harder to defend against than the open-world counterpart.

These two aspects need to be accounted for before the community
can produce website-fingerprinting defenses that will work for the
masses. In the last section of the paper, we identify some challenges
to deploy effective defenses derived from these issues and provide
recommendations to address them.
Ethical considerations:We conduct traffic-analysis attacks against
a deployed technology (QUIC). We do not perform any collection
or analysis of real users’ traffic. We only collect our own traffic,
generated by an automated browser. We uncover vulnerabilities in
the proposed defenses, which would put at risk, network users, if
deployed. We believe that the benefits of our research, which can
guide current and future standardization efforts, outweigh these
risks, by avoiding deployments that could give users a false sense of
security. We have performed responsible disclosure of our findings
to QUIC’s IETF WG.

2 BACKGROUND & RELATEDWORK
QUIC. QUIC is a connection-oriented protocol built on top of UDP
that aims to provide low-latency, multiplexed, secure communication
with less head-of-line blocking and faster connection migration [7].
QUIC was standardized in May 2021 by the IETF. QUIC is the trans-
port protocol for HTTP/3. Adoption of QUIC and HTTP/3 has been
rising (as of June 2023, they are used by 26% of the top 10 million
websites [17]). Of particular relevance for our work is the QUIC
PADDING Frame. The IETF QUIC standard describes it as a frame
with no semantic value, that can be used to increase packets size and
to provide protection against traffic analysis [8].
Website fingerprinting attacks. In website fingerprinting, an ad-
versary analyzes network traffic to infer the website visited by a user.
The adversary builds a classifier trained on features obtained from
website network traces. These features can be selected manually or
via automatic extraction.

The most relevant attacks relying on manual features are Wang et
al.’s k-Nearest Neighbors (k-NN) classifier based on 4226 manually-
selected features [71]; Panchenko et al.’s Support Vector Machines
(SVMs)-based classifier using cumulative sums of packet lengths [56];
and Hayes and Danezis [35] k-fingerprinting method (k-FP), which
models web fingerprints as the leaves of a random forest built on
150 manually-selected features.

On the automatic extraction side, Rimmer et al. [59] use deep
learning neural networks (DNNs) to produce attacks that perform
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as well as manual approaches. Sirinam et al. [65] build on Rimmer
et al. to develop an attack that achieves high accuracy, even in the
presence of defended traces. Last, Bhat et al. [20] propose Var-CNN,
a hybrid strategy that achieves high accuracy with deep learning
even in the presence of limited data. It does so by relying on ResNets
trained on packet directions, packet times, and manually extracted
summary statistics.

Website fingerprinting on QUIC traffic. Smith et al. [67] study the
impact of co-existence of TCP and QUIC on the performance of
website fingerprinting using k-FP and Var-CNN. They conclude that,
while QUIC traffic is not difficult to fingerprint, classifiers trained
on TCP traffic do not perform well on QUIC traffic, and that jointly
classifying both protocols is hard. To enable comparison with the
state-of-the-art, we also use k-FP and Var-CNN in our evaluation.

Website fingerprinting defenses. Dyer et al. [30] show that net-
work layer padding- and morphing-based countermeasures are inef-
fective in thwarting traffic analysis because they fail to hide coarse
packet features. They propose Buffered Fixed-Length Obfuscation
(BuFLO), which pads packets to a fixed size and sends them at in-
tervals of time. BuFLO results in a huge overhead. CS-BuFLO [21]
and Tamaraw [22] are more efficient, but still impractical. Works
such as WTF-PAD [43] and FRONT [33] provide a better trade-off by
injecting dummies at appropriate positions in a trace. WTF-PAD in-
jects dummy packets using pre-defined distributions of inter-arrival
times to detect gaps, and FRONT injects dummy packets in the front
portion of traces, which is known to contain the most information
for fingerprinting. Both approaches achieve low protection against
deep-learning-based attacks [20, 60, 65].

Other defenses employ adversarial perturbations to cause deep-
learning classifiers to misclassify traces. These defenses incur lower
overhead than prior work. Mockingbird [58] applies perturbations to
convert traces into a target trace. It converts traces into sequences of
bursts (where a burst is a set of contiguous packets in one direction),
and perturbs these burst sequences rather than the raw trace. To
compute the perturbation, Mockingbird requires the defender to
know the entire trace in advance, which is infeasible in practice. Nasr
et al. [52] tackle this issue with Blind, a defense that pre-computes
blind perturbations that can be applied to live network traffic. Shan
et al. [60] show that Blind [52] offers lower protection when the
adversary trains on perturbed traces. They propose Dolos, which
applies adversarial patches or pre-computed sequences of dummy
packets to protect network traces. Dolos utilizes a user-side secret
to generate patches, making it hard for an adversary to generate the
same patch, thereby reducing the risk of adversarial training.

Mockingbird, Dolos, and Blind provide protection to Tor traffic.
Tor cells have constant size, as opposed to QUIC packets. These
defenses do not account for packet sizes, hindering their adoption to
protect QUIC traffic. Mockingbird [58] only considers packet direc-
tionality when building dummy bursts. It is unclear how to adapt
it to QUIC traffic; a burst can correspond to many QUIC packet se-
quences. Blind [52] does not use packet size information in their
website fingerprinting evaluation. The paper contains a size perturba-
tion technique (tailored to Tor) and uses it for their flow correlation
experiments. However, even after communicating with the authors,
we were unable to find where in their implementation [4] one can

configure this technique, nor are there details about how to config-
ure it for non-Tor traffic. Dolos [60] uses solely direction features
to compute patches. Adapting it to QUIC would require integrating
size information, for which there is no place in their implementa-
tion, with no guarantee that the patches would still be effective.
Moreover, Dolos requires a prior connection to the website in order
to pre-compute patches which can be used in future connections.
Hence, it is predicated on information from the application layer,
i.e., which website is being visited. This is in line with our findings
on the importance of having the application layer informing any
network layer defense (Section 5). Due to the challenges associated
with adapting these Tor-tailored systems to our QUIC scenario, in
our work, we compare to FRONT [33], which Smith et al. show can
be implemented for QUIC [66].

Finally, there are defenses at the application layer. Luo et al. [47]
propose HTTP Obfuscation (HTTPOS), a client-side defense that
modifies features on the TCP and HTTP layers and uses HTTP
pipelining to obfuscateHTTP outgoing requests. Randomized Pipelin-
ing [49] improves this defense by randomizing the order of the HTTP
requests queued in the pipeline. Subsequent works have shown
HTTPOS and Randomized Pipelining to be ineffective against traf-
fic analysis attacks [23, 71]. Cherubin et al. [26] developed client-
and server-side defenses, LLaMA and ALPaCA respectively, tailored
towards Tor onion services. These defenses only work well in scenar-
ios with low third party content prevalence, lack of dynamic page
content, and JavaScript disabled. In our work, we propose defenses
inspired by ALPaCA, and study their performance in dynamic web
scenarios where there are a large amount of third party resources
(see Section 5).

3 ADVERSARIAL MODEL AND DATASETS
We assume a local passive eavesdropper 𝐴 located at some vantage
point between an honest client and an honest Web host. 𝐴 observes
all network traffic passing through this vantage point and records
some portion of it. The goal of the adversary is to infer the domain
visited by the user.

The adversary 𝐴 observes IP packets. We assume applications
and websites hosted behind content delivery networks (CDNs) that
use QUIC, and protocols to protect sensitive information, e.g., TLS
ECH. The adversary does not possess any decryption keys, and relies
only on the size and timing of the observed packets. We assume that
DNS queries are done in a private manner (e.g., via DoH [6] with
appropriate padding [62]) and reveal no information to 𝐴. 𝐴 focuses
on Web traffic, and filters out packets that are not TLS or QUIC
packets. Using the appropriate fields in the headers (IP addresses,
ports, QUIC connection IDs),𝐴 is able to identify packets that belong
to the same connection.

We call 𝐴’s observation a collection of flows corresponding to the
network connections generated when the user browses a single web-
site. Each flow contains [IPsource, IPdest, 𝑝1, 𝑝2, . . . ], where packets
𝑝𝑖 are (time, size)-tuples (𝑡𝑖 ,±𝑠𝑖 ). Negative sizes indicate packets
from the server to the client, and positive sizes indicate packets in
the opposite direction.

Vantage Points. Following prior work [32, 42, 51], we consider
each AS (autonomous system) on the path of the client traffic as a
realistic adversary. Each AS’ middlebox, router, or switch that routes
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Figure 1: An adversary can be on any AS (X, Y, Z, or W) with
vantage points on the client’s traffic path (solid red arrows).
The vantage points transmit recorded data to a location that
can perform traffic-analysis at scale (dotted purple arrows). If
the adversary is ASX, vantage points 2 and 3 transmit recorded
traffic to location 4.

traffic from a client is a potential vantage point for the adversary
to collect this client’s traffic. In Figure 1, we depict a client located
in AS 𝑋 accessing two webpages hosted on an IP in AS𝑊 . The
client traffic is represented by red lines. If the adversary controls
AS 𝑋 , they observe all the traffic related to the page visits. This
is the adversary typically considered in the website fingerprinting
literature [20, 25, 35, 37, 38, 50, 56, 59, 65, 67, 71]. If the adversary
controls AS 𝑌 or AS 𝑍 , however, they would have limited visibility
on the traffic, i.e., they might not observe traffic from all clients’
visited webpages, or for each observed web page, they might only
observe a portion of the traffic (e.g., the loading of some resources).
We note that it is possible for an adversary to control multiple ASes
or an IXP (where traffic from multiple ASes can traverse) [42, 51].

3.1 Website fingerprinting
As in prior work, we implement website fingerprinting attacks as a
supervised learning problem. The adversary identifies the CDN IP
containing the domains that they want to target. Then, the adversary
enumerates all the domains on that IP, and collects web traffic traces
from these domains. The adversary extracts features from these
traces, and uses the feature vectors to train a classifier. Given a new
trace, this classifier predicts which domain it belongs to.

We implement the attack using a random forest classifier, a simple
and effective model frequently used in website fingerprinting; and
Var-CNN [20] to validate our results against the state of the art [67].
We use the comprehensive set of features proposed by Hayes et
al. [35] for performing website fingerprinting on Tor. To adapt them
to the QUIC case, we add features about packet size frequencies. Since
QUIC’s maximum payload size (1400 B) is smaller than that of TLS (16
kB), we compute frequencies of packet sizes up to 16 kB to encompass
both QUIC and TLS traffic. We use 10-fold cross validation, and
provide the average and standard deviation of the classifier’s F1-
score for all our results. We use the mean decrease in impurity to

Table 1: Overview of datasets. All datasets except CHROMIUM are
collected using Firefox.

Experiment Identifier # webpages # samples

Landing pages main set (Mar’21) MAIN 150 40
Landing pages large set (Nov’22) LARGE 350 40
Influence of time (Sept’21) TIME 145 40
Influence of client (May’22) FIREFOX 131 40
Influence of client (May’22) CHROMIUM 131 40
Domains (Nov’22) HET 60 35

measure the feature importance when evaluating the random forest
classifier [15].

3.2 Adversarial Capabilities and Goals
We assume applications and websites hosted behind CDNs that use
QUIC, and protocols to protect sensitive information, e.g., TLS ECH.
The information available to the adversary comprises the server’s
IP address, which is determined by the content delivery network,
and any application-specific metadata such as the size of encrypted
data, which is determined by the application. As the IP is known,
an adversary can enumerate the domains this IP hosts (e.g., through
DNS reverse lookups or from DNS scans using public name sources,
including Certificate Transparency logs), collect pages associated
with the domain, and train a classifier on these samples. This is a
more tractable scenario than that of the open-world Internet where
the assumption is that the user may visit websites outside of those
monitored by the adversary. As tools such as ZDNS can enumerate
all the domains in the IPv4 space in ≈ 12 hours [41], enumerating
only the domains on the target IP can be done in a few hours and thus
adversaries can easily incorporate this step in their attack pipelines.

We study two adversarial models: unconstrained and constrained,
depending on the adversary’s visibility on traffic and the resources
they can dedicate to fingerprinting. We also study different adversar-
ial goals and client setups that may impact the adversary’s success.
We summarize details of the datasets we collect in Table 1.

3.2.1 Unconstrained adversary. An unconstrained adversary can ob-
serve and process all the traffic associated with a web page visit. We
assume this adversary can have one of two goals:

Fingerprinting landing pages (Homogeneous Closed World).
In this scenario, the most common in the literature, we assume
that users only visit landing pages [20, 35, 37, 59, 65]. Thus, the
adversary only needs to collect landing pages to train their model.
The training and testing sets contain the same web pages, for which
the traces vary due to the page content changing when traces are
collected at different points in time. As QUIC leaves IPs unprotected,
the adversary can limit the anonymity set of a web page, and this
corresponds to a classic closed world classification.

Dataset creation. Prior works rely on lists of most visited sites (Alexa,
Umbrella, etc.) to build datasets. These domains are typically hosted
on different IPs, and thus would not be in the same anonymity set in
our adversarial model. This would only happen if the client uses a
VPN, which is out of the scope of this work. We work with a CDN
provider to identify realistic anonymity sets that could be targeted
by the adversary. We identify 13, 744, 979 unique domain names on
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the CDN in Mar 2021, and use zdns [41] to find that these domains
are hosted on 593, 338 IPs or anonymity sets for the adversary.

The anonymity set sizes follow the same distribution as that found
by Patil et al. [57] (see Figure 12 in Appendix). We find that 60% of
these domains (≈ 8 million) are hosted on a unique IP address: when
observing one of these IPs, the adversary is certain of which domain
is being visited. Therefore, these domains are out of scope for our
study. Only 50𝑘 IPs (8.5% of the dataset) host more than 150 domains,
with one hosting as many as 56, 319 domains. We choose a cluster of
150websites for our experiments: which is a harder scenario to attack
than the 91.5% of the IPs served by the CDN provider. We collect all
the traffic generated when a client visits the websites on the cluster –
this traffic consists of both connections to the CDN and to other hosts
to fetch secondary resources on the websites. We observe that this
cluster has a high percentage of TLS traffic: only 4% (std 1.7%) of the
traffic is transmitted over QUIC. This results in the classifier focusing
on TLS-specific features, preventing us from drawing meaningful
conclusions about QUIC traffic’s vulnerability or QUIC-oriented
defenses (results in Appendix C). We also run experiments with
other clusters of similar size and obtain comparable results.

To address this problem, following the example of Smith et al. [67],
we crawl Alexa 1M [3], Umbrella 1M [5], and Majestic 1M [10]. We
perform HAR captures1 and we identify the protocols used by those
websites. Unlike Smith et al. [67], we consider only domains that
primarily use QUIC. We select 150 of these domains, and collect a
dataset of traces: MAIN (collected in March 2021). MAIN has 70% of
all traffic over QUIC (std 3%). We also collect a larger dataset of 350
domains, LARGE (collected in November 2022, with 50% QUIC traffic),
to evaluate whether fingerprinting performance changes with an
increase in the dataset size. We note that given our measurements, a
larger dataset would be rare in a CDN scenario– only 2.2% of the IPs
in our CDN dataset host more than 350 domains.
Fingerprinting domains (Heterogeneous Closed World). The
previous scenario is somehow artificial because real-world users
visit more than the landing pages of domains. Thus, only training
on landing pages would not work well for an adversary in a realistic
deployment. To model a domain, the adversary needs to train on
both landing and subpages. Yet, due to the visited IPs being visible,
the classification problem is still a closed world: the adversary has
a finite set of domains to associate traffic traces to. We collect a
dataset to evaluate how the adversary performs when also training
on heterogeneous subpages of a domain.
Dataset creation. We collect HET, a dataset consisting of subpages for
each domain hosted by the IP, instead of multiple samples of the
landing page. We enumerate all pages that can be visited from the
landing page (sharing the same domain as the landing page), and
the pages that can further be visited from those subpages. Since the
classifiers require a reasonable number of training samples, we limit
our study to a set of 60 domains hosted by the target IP which have
at least 35 subpages.
Website-fingerprinting robustness We collect data to study addi-
tional factors that may influence the performance of the adversary.
To study the stability of website fingerprinting attacks over time,
we collect a QUIC-dominated set of traces from the same domains
as in MAIN 6 months later, in September 2021 (TIME). In order to
1A copy of the “Network” tab of the Firefox Developer Tools console.

evaluate the influence of the client’s browser, we collect FIREFOX
and CHROMIUM– two datasets collected during the same time period,
with the Firefox and Chromium browsers.
Data collection. To build the datasets, we collect PCAP network
traces from visits to each landing page of the domains in our list. We
use Firefox isolated in its own network namespace (using netns),
enabling HTTP3, and disabling telemetry and auto-update settings to
minimize extraneous traffic. We record 40 samples for each website.
For each sample, we clean the caches by creating a fresh Firefox
profile. We extract well-formed TLS and QUIC packets from the
traces. To avoid relying on plaintext markers, we follow the approach
of Smith et al. [67], and only extract the time and size of the sent
and received packets. We use Firefox 88.0 for MAIN and TIME, Firefox
98.0 for LARGE, FIREFOX and HET, Chromium 101.0 for CHROMIUM.

3.2.2 Constrained adversary. We assume that vantage points do not
have the capability to run machine-learning tasks [18, 19]. They
must mirror (part of) the traffic to a suitable location for analysis
(purple dotted arrows in Figure 1). This location processes the traffic:
it extracts features and performs classification to identify the page
visited by the client. In practice, mirroring all traffic is prohibitively
expensive [53]. Thus, we also study a constrained adversary that only
transmits summaries of locally computed statistics from sampled
data [24, 68].

We measure the adversary’s cost to perform the attack in terms of
the bandwidth they require to collect and process the traffic traces.
Bandwidth is a proxy for the required storage, as the adversary
needs to store the transmitted information to query the machine
learning model and possibly to retrain it. The computational cost
is also proportional to the bandwidth, as the number and cost of
operations needed to extract features depend on the length of the
traces transmitted. We evaluate the adversary’s success using filtered
versions of the datasets described above.

We follow some simplifying assumptions similar to prior work in
website fingerprinting [20, 59, 67]: we assume that the adversary can
identify the start and end of a trace, and that users visit webpages
sequentially without background traffic.

4 APPLICATION-AGNOSTIC PADDING-BASED
DEFENSES

In this section, we study whether PADDING-based transport-layer de-
fenses, without the use of application-layer information, can thwart
website fingerprinting.

4.1 Unconstrained Adversary
First, we evaluate the effectiveness of defenses against a powerful
adversary that can observe all the traffic associated with a site visit,
and can store and process all the traffic that it observes. Such an
adversary could be AS 𝑋 in Figure 1, if this AS would not have
bandwidth or storage constraints.

4.1.1 Unprotected Traces. First, we determine the performance of
the adversary on unprotected QUIC traces on which no PADDING
frames are used. We study different scenarios according to the goals
defined in Sect. 3.
Fingerprinting landing pages (Homogeneous closed world). A
random forest classifier obtains a F1-score of 95.8% when users only
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Table 2: Performance of website and IP fingerprinting on the
LARGE and MAIN datasets (10 experiments).

Method F1-score

Website fingerprinting (MAIN) 95.8 (std. dev. 0.4)
Website fingerprinting (LARGE) 93.7 (std. dev. 0.2)
IP fingerprinting with primary IP (LARGE) 70.6 (std. dev. 0.1)
IP fingerprinting without primary IP (LARGE) 37.5 (std. dev. 0.1)

browse landing pages (MAIN, Table 2, first row). The results are orders
of magnitude better than random guessing (0.67%). We repeated this
experiment with ten different 150-sites sets and obtained similar
results.

These results hold when considering a large anonymity set for
the CDN scenario (LARGE, second row). We also try Var-CNN [20]
on MAIN and we obtain an F1-score of 92.28%. As the performance of
random forest is better, and it gives us the advantage of interpretabil-
ity, we use random forest for all our experiments. As we do not
observe a large difference between MAIN and LARGE, we pick MAIN
(which shows a greater advantage for the adversary) and datasets of
equivalent sizes for our remaining experiments.

Unlike in prior work [67] which considered a VPN scenario, in
our threat model, the adversary can observe the IP addresses of the
communication end-points. Hoang et al. [39] showed that destina-
tion IPs can be used to identify the websites visited by a user. To
understand whether the adversary can take advantage of the IPs, we
conduct the IP fingerprinting process described in [39]. We perform
repeated DNS resolutions of the resources loaded by each website
in LARGE to build a database of IP fingerprints. For each website, we
perform 20 resolutions per day over a period of 10 days. We perform
these resolutions right after the trace collection of LARGE, so that
IP-domain mappings are as close as possible to our traces.

We use the basic-IP fingerprinting methodology described in [39]
to find the best match between our LARGE traces and the fingerprints.
A domain fingerprint of a website consists of two parts: the primary
domain which is the domain of the URL in the address bar (the do-
main of the first connection), and secondary domains which can be
different from the primary domain and host other resources on the
website. In this method, first the adversary matches the IPs of the pri-
mary domain to the fingerprints to get a set of candidate sites. Then,
they match the IPs of secondary domains against the candidates’
fingerprints to obtain a final match. We perform two experiments:
in the first, we perform the IP fingerprinting as described. In the
second, to match our threat model in which all sites are hosted on a
single IP by a CDN, we perform the matching solely on secondary
IPs. The results for the two experiments are shown in the third and
fourth rows of Table 2.

The IP-fingerprinting performance we observe is worse than in
Hoang et al.’s work. This difference could arise due to differences in
crawling periods – Hoang et al. crawled 200k sites 24 times over 2
months, whereas we crawl 250 sites 200 times over 10 days. Longer
crawls may have larger variation in fingerprints, leading to better
performance. The websites themselves may lead to differences –
sites sharing resources may have fewer variations in IP fingerprints,
yielding worse performance.

Table 3: Fingerprinting Landing webpages vs. Website.

Scenario Dataset F1-score

Landing webpage (baseline) FIREFOX 97.8 (std. dev. 0.4)
Website (all subpages known) HET 96.4 (std. dev. 0.9)
Website (unknown subpages) HET 94.1 (std. dev. 1.1)

We see that IP fingerprinting is less accurate than website finger-
printing, especially when the primary IP is not available. When the
primary IP is used, IP fingerprinting presents a somewhat bi-modal
behavior. It is very reliable on 32% of the sites for which it correctly
classifies all the traces (vs. 18% fully correct classification by website
fingerprinting). But, it performs very poorly on the remaining 68%.
Website fingerprinting is not perfectly reliable for more websites,
but overall performs better.

The advantage of website fingerprinting grows when the primary
IP is unavailable. Then, website fingerprinting correctly predicts all
samples for ≈ 35% of the sites as compared to ≈14% for IP fingerprint-
ing. In other words, IP fingerprinting is useful when there is a stable
primary IP to provide a strong signal. Given our threat model where
the primary IP is not a distinguishing signal (since all domains are
hosted on the same CDN), in the remaining sections, we will only
use website fingerprinting as we are studying the effect of website
fingerprinting defenses.

We note that an adversary could potentially combine the two
attacks to improve their performance. For example, an adversary
could use IP fingerprinting with the secondary IPs to further reduce
the size of the closed world, and then perform website fingerprinting
on the domains in the smaller world.
Fingerprinting domains (Heterogeneous closed world). Next,
we study the case in which users visit any website within a domain.
We use the FIREFOX (as the fingerprinting landing webpage baseline)
and HET datasets. These datasets use the same browser and are col-
lected during the same time period. We use only the domains found
in HET when attacking the FIREFOX dataset (results in Table 3).

For HET, we evaluate two cases. In the first case (second row), the
adversary has trained on all the subpages of a site, i.e., the training
set has the same distribution as the test set. In the second case (third
row), the adversary has trained on a subset of subpages and has to
classify unseen subpages, i.e., there is a shift between the training
and testing sets distribution. We use 30 subpage samples per domain
to train the classifier, and 5 subpage samples to test (with different
train and test samples per fold). We use one sample per subpage,
i.e., every subpage sample is different. We conclude that, even when
the adversary has to classify unknown subpages, there is a small
performance drop, maximum ≈ 3%. The adversary’s success is most
likely caused by subpages of the same site sharing many resources,
leading to very similar traces.

4.1.2 Robustness. Next, we study factors that can influence the
adversary’s fingerprinting performance.
Influence of time. The results in Table 2 assume that the adversary
collected the training set for their classifier close in time to their
attack. We study the performance of the attack when trained on
traces collected at a different time than testing in Table 4. We use the
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Table 4: Influence of time. F1-score when training on the row
dataset and testing on the column dataset.

F1-score MAIN TIME

MAIN 95.8 (std. dev. 0.4) 35.2 (std. dev. 1.2)
TIME 17.5 (std. dev. 2.1) 96.4 (std. dev. 0.2)

Table 5: Influence of client. F1-score when training on the row
dataset and testing on the column dataset.

F1-score FIREFOX CHROMIUM

FIREFOX 95.6 (std. dev. 0.3) 35.6 (std. dev. 2.4)
CHROMIUM 22.9 (std. dev. 1.6) 92.9 (std. dev. 0.3)

MAIN and TIME datasets, collected 6 months apart. We note that TIME
has 145 domains instead of 150, due to failures in data collection
(unreachable sites and repeated timeouts), hence we consider only
these 145 domains. For both datasets, the classifier performance
remains consistent when it is trained on data collected close to the
attack. However, the performance drops significantly when used on
data collected at a different point in time. This indicates that for an
adversary to be successful, they would need to update their training
data with more recent samples to keep up with constantly evolving
web pages.

Influence of client.We consider the influence of the client setup on
the adversary’s performance. We use two datasets, FIREFOX (Firefox
98.0) and CHROMIUM (Chromium 101.0), collected at the same time.
Both datasets consist of 131 domains after accounting for collection
failures. Table 5 shows that the classifier performs as expected when
trained and tested on the same client setup. Similar to previous
work [62], we see that when the setup changes, performance drops,
indicating that an adversary would need a classifier tailored to the
client setup. This is due to differences in traces caused by differences
in parsing HTML and fetching resources – e.g., Firefox traces are
generally longer (due to activities such as contacting OCSP servers).

4.1.3 PADDING-based defenses. To study the effectiveness of de-
fenses based on the QUIC PADDING frame, we focus on the worst
case for the defender: fingerprinting undefended landing pages vis-
ited with the same client using fresh training datasets. We run our
experiments on the MAIN dataset.

We explore defense strategies that hide local and global features,
assuming the presence of an implementation that perfectly protects
these features. Table 6 reports the results against different defenses
(first row are undefended traces).

Hiding local features. The top predictive features for MAIN are all size-
based (Figure 2). We first hide local features, i.e., individual packet
sizes and timings.When the defense hides individual packet sizes, the
attacker performance slightly decreases with respect to undefended
traces. Padding individual packets poorly hides the total transmitted
volumes, which becomes the top feature once individual sizes are
removed. Hiding timings also has minimal impact on the adversary’s
performance.
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Feature importance
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incoming # (pkts)
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total # of bytes
outgoing # of bytes

count 1337B
count 1003B

Figure 2: Feature importance for MAIN

Table 6: MAIN dataset:Mean classifier performance on defended
traces.

Variant F1-Score Std. dev.

undefended 95.8 0.4
hiding individual sizes 93.9 0.4
hiding all timings 95.5 0.3
+ hiding total transmitted sizes 84.6 0.5

Hiding global features. To hide global features, i.e., the total transmit-
ted volume, we increase the size of all packets such that the total
transmitted size is padded to the next megabyte. This yields another
small drop in performance. The attacker simply starts using packets
orderings as main feature (Figure 3), which are almost as informative
as sizes.

Injecting dummies.We then include dummy packets (padded to the
maximum size) to hide individual packet orderings. Since we cannot
use existing defenses based on adversarial perturbation to find the
optimal placement of dummies (see Section 2), we inject dummy pack-
ets based on FRONT [33], which [66] showed can be implemented
as a client-side-only QUIC defense. FRONT has four parameters that
can be adjusted: 𝑁𝑠 and 𝑁𝑐 , which are the maximum number of
dummies that can be sent by the server and client respectively, and
𝑊𝑚𝑖𝑛 and𝑊𝑚𝑎𝑥 , which indicate the time window within which the
dummies must be sent.

We inject dummies using the FRONT parameters suggested by
Smith et al. [66]: 𝑁𝑠 = 𝑁𝑐 = 1300,𝑊𝑚𝑖𝑛 = 0.2𝑠 ,𝑊𝑚𝑎𝑥 = 3𝑠 . We
calculate the bandwidth overhead using the same definitions as in
[66], i.e., the increase relative to the transmitted data. We find that
FRONT achieves a significant reduction only at a sharp increase in
cost: to obtain ≈ 70% F1-score drop for the adversary requires an
overhead of 2.31. This is in addition to the already large overhead in
terms of padding used to hide local and global features (mean cost
of 612 kB per trace, with a large standard deviation: 440 kB). We also
experiment with different FRONT parameters (as shown in Table 7),
and find that reducing the overhead comes at the cost of defense
effectiveness. (We note that we cannot have a direct comparison
with Smith et al. [66] since their evaluation is in an open-world VPN
scenario.)
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Table 7: F1-score and bandwidth overhead when injecting
dummies using FRONT. We vary the FRONT parameters 𝑁𝑠 ,
𝑁𝑐 , and𝑊𝑚𝑎𝑥 .

F1-Score/Overhead 𝑁𝑐 = 𝑁𝑠

325 650 1300

𝑊𝑚𝑎𝑥

0.5 64.9/0.55 60.6/1.15 58.3/2.24
1 60.4/0.55 53.8/1.12 48.1/2.26
2 53.3/0.56 43.3/1.12 34.9/2.22
3 51.4/0.56 41.0/1.12 31.4/2.31
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Figure 3: Feature importance when hiding global features (last
row of Table 6).

4.2 Constrained Adversary
As described in Section 3, there are on-path adversaries who might
not observe all traffic from a particular client, nor all traffic to a
particular server of interest; or that may not have the capability to
process this traffic or to transmit it to a location suitable for analysis.
We now study the performance of these adversaries, and whether
PADDING-based defenses could protect against them. We run our
experiments on the MAIN dataset.

4.2.1 Limited traffic visibility. To understand the impact of limited
visibility on the adversary’s performance, we simulate an AS adver-
sary with partial view of the client’s traffic. We determine which
parts of the traffic an AS would see using HAR captures to identify
resources requested during page loads. Then, as in prior work [44],
we use traceroutes to record the ASes in the path taken by the re-
source requests. We set traIXroute [54] to use scamper (configured
with the Paris traceroute technique). As Juen et al. [44], we discard
route hops that do not have IP or AS information (asterisks in the
traceroute). To avoid inaccuracy in our analysis, we do not attempt
to fill these gaps in routes via stitching. Thus, our results provide a
lower bound on the amount of traffic that an AS adversary sees.

We then simulate the partial view of the adversary by filtering
out TLS/QUIC connections that do not correspond to the resources
visible to the adversary. This filtering is based on the destination IP
address, and the SNI when it exists. We observe a total of 974 routes
in the MAIN dataset. These results are from traceroutes collected from
the same location as the MAIN dataset (in France). We ran traceroutes
from other vantage points (Germany, UK, and Singapore), and ob-
served the same trends. We report on these additional experiments
in Appendix A.
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Figure 4: Distribution of web pages seen by each AS. Only
three ASes (client’s AS, Google, Cloudflare) can observe traffic
from all the pages. Most ASes observe less than 10% of pages.
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Figure 5: Distribution of routes per web page seen by each AS.
Only three ASes (client’s AS, OVHcloud, Google) observe more
than 50% of the traffic per site.

Figure 4 shows how many webpages are seen by each AS. We
consider the web page is seen if the AS sees any traffic associated
with this web page visit (including its subresources). There are three
ASes that observe traffic from more than 80% of webpages: one from
Google, one from Cloudflare, and the AS where our client is located.
The majority of the ASes, however, see only a small proportion of
the sites (less than 10%). If these ASes were to be the adversary, they
would not be able to fingerprint traffic from most websites hosted
by the IP that our attacks target.

We show the classifier performance for some ASes in Table 8. The
few ASes that have a substantial view of the client connections, e.g.,
Google or Cloudflare, obtain high F1-score. Most other ASes observe
traffic from very few pages, e.g., LEVEL3, Facebook, or VNPT-AS-
VN observe less than 5% of the pages in the dataset, meaning that
they cannot fingerprint the remaining 95%. For the pages that they
observe, they obtain high F1-scores. VNPT-AS-VN observes traffic
for just one page and, thus, always identifies it.

We conclude that, in order to successfully fingerprint, an AS
adversary needs to observe a large proportion of the traffic, either
by being the client’s AS or by providing sub-resources on websites.
For every web page an AS sees, we study what portion of this page
they can observe (see Figure 5). Our source AS, naturally, sees 100%
of the traffic of all pages in our dataset. Another AS, 4367 (belonging
to OVHcloud), sees 100% of page traffic for a very limited number
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Table 8: Mean classifier performance on different AS views.

AS Name # Pages F1-Score

15169 Google, LLC 118 89.5
13335 Cloudflare, Inc 115 92.9
3356 LEVEL3 7 81.7
32934 Facebook, Inc 5 92.3
45899 VNPT-AS-VN 1 100.0

of pages. The Google AS is the second highest, seeing ≈ 70% of the
routes for 80% of the pages in the dataset. All other ASes see less
than 50% of the routes associated with the pages for which they can
observe traffic, and therefore are not much of a threat.

Given these results, we expect the effectiveness of PADDING-based
defenses in this scenario to be similar to the unconstrained adversary.
If the AS has high visibility on the traces, they are essentially uncon-
strained and defenses cannot significantly reduce the performance.
If the AS observes little traffic, their performance will be already low
and the gain provided by defenses can only be marginal, while still
imposing high bandwidth overhead.

4.2.2 Limited processing power. To perform website fingerprint-
ing, adversaries must have storage and computation capabilities,
which middleboxes typically do not have. In fact, typical network
monitoring solutions only record aggregate statistics over sampled
traffic [63]. Common tools for network sampling include NetFlow
and sFlow [51]. More efficient techniques have been proposed in
academic papers (e.g., sketching [45, 46] or skampling [69]), but to
the best of our knowledge, they are not widely used.

We focus on NetFlow, which is widely deployed on the Internet.
We simulate Sampled NetFlow, a variation of NetFlow used in high-
speed links where packets are first sampled in a deterministic fashion
(1 out of every N packets) and flow statistics are computed on the
sampled packets. We down-sample the PCAPs uniformly to the de-
sired sampling rate, and create NetFlow summaries from the PCAPs
using nfpcapd and nfdump. We experiment with various sampling
rates: 100%, 10%, 1% or 0.1% (common sampling rates in the wild
range from 50% to 0.1% [24]). Then, we adapt the features used by
our classifier to NetFlow summaries. These summaries record the
number of packets but not their sizes, timings, or directions. For
classification, we consider a flow as a single packet whose size is
the sum of all packets in a flow, and inter-packet timings become
inter-flow timings. We acknowledge there could be better features
and that our evaluation only provides a lower-bound on the attacker
performance.

We show the adversary’s success on the NetFlow summaries in
Table 9. Moving from full packet data to flow summaries leads to a
significant reduction in the adversary’s performance: 29 percentage
points lost when 10% of packets are sampled. Yet, the F1-score for any
sampling rate is much higher than random guessing (F1-score=0.6%).
Defending NetFlow traces Regardless of the sampling rate, the most
important features when using NetFlow are the total number of bytes
and packets (Figure 6). We explore a defense that hides both per-flow
metrics and overall statistics about the number of bytes and packets
exchanged. For full traces, we hide global statistics by padding the

Table 9: Mean classifier performance and median storage cost
per sample for Sampled NetFlow, MAIN.

Sampling F1-Score Size [kB]

Full traces 95.8 312.4
NetFlow 100% 90.5 25.9
NetFlow 10% 66.4 3.0
NetFlow 1% 41.7 0.9
NetFlow 0.1% 16.8 0.4
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Figure 6: Feature importance for classifying NetFlow with 1%
packet sampling rate.

Table 10: Mean attacker performance on defended NetFlow,
MAIN.

Sampling F1-Score

NetFlow 100% 53.1
NetFlow 10% 33.1
NetFlow 1% 21.6
NetFlow 0.1% 8.6

total transmitted bytes to 22MB and the number of packets to 25K
(the maximum transmitted size and number of packets we observe
in our dataset). This padding is added uniformly to all the flows of
one sample. For sampled traces, we reduce the padding with the
sampling rate.

The defense reduces the attacker performance ( Table 10), intro-
ducing prohibitive cost (≈ 39 MB per trace in median). We also
observe that most of the gain in privacy compared to the standard
setting (95.8%) comes from the sampling rather than the padding
(e.g., for NetFlow 1%, −54.1% via sampling vs. −20.1 % via padding).

4.2.3 Inexpensive fingerprinting due to resource centralization. We
show how the common use of Google resources by web developers
can be used by constrained adversaries to bypass these limitations.

From the (incomplete) AS information on the network level, we
found that at least 118 out of the 150 websites in our dataset were
seen by Google, i.e., the traffic traverses Google’s AS. From the HAR
captures, we observe that most websites request resources from a
Google-owned domain (125 websites in MAIN (83% of the dataset)).
We confirm this result in Section 5.1. While studying the traces, we
also observe that the order in which these resources are loaded is
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Table 11: Mean classifier performance and median storage re-
quired per sample on traces filtered by connections to Google
services, MAIN. The last two rows use 125 samples.

Variant F1-score (Std dev) Size [kB]

Baseline (Full Traffic) 95.8 (0.4) 312.4
Full traffic to Google 78.4 (0.7) 112.1
ClientHello’s to Google 66.1 (0.4) 0.1

website-particular, i.e., even when two sites load the same set of
resources, these resources are loaded at different times –with respect
to the time of query of the home page– and in different orders. Such
website-dependent behavior results in a fingerprint. This fingerprint,
caused by the centralization of web resources at Google, can be used
by an adversary to perform traffic analysis at a fraction of the typical
cost: instead of recording all traffic, an adversary can use the timings
of ClientHello’s to Google IPs.

To validate this, we study the performance of an adversary that
only records the traffic towards Google services. We filter the net-
work traces for which the destination IP (or the SNI) belongs to
Google. If this field is not present in the packet, we perform a reverse-
mapping with the destination IP to confirm the destination. To list
domains belonging to Google, we check the ownership of the re-
quested URLs in our HAR capture using Tracker Radar [2]. We use
the following Google-owned domains: google.com, gstatic.com,
youtube.com, doubleclick.com, ggpht.com. We extract the send-
ing times of the packets containing a ClientHello to these Google
IPs and domains. For MAIN, this represents 7.6 floating-point values
on average per loading of a website, with a maximum of 27 values.
The size of the fingerprint is between 61B and 216B per loading of
a website; in contrast, the mean PCAP size is 112 kB for the traffic
towards Google, and 312 kB for all traffic.

We show in Table 11 that even when using only the timing of
requests to Google, the adversary achieves a F1-score of 77.9% for the
125 websites that use some Google resource. To obtain this result, the
adversary needs only ≈ 61 B per connection, a saving of four to five
orders of magnitude compared to recording full network traces. The
feature analysis confirms that the timings between sub-resources is
what helps the attacker in this case (Figure 13 in Appendix).

4.3 Takeaways
The results in the previous section confirm that website fingerprint-
ing is a threat for QUIC traffic [67] and that application-agnostic
defenses are ineffective unless they incur an unreasonable over-
head [30]. Additionally, we show that the threat persists even when
the adversary has limited visibility or storage capabilities; that do-
mains can be identified even when users browse subpages. While
factors such as time and user client can influence the adversary’s
performance, these can be overcome by retraining the classifier with
newer data, and by using classifiers tailored to specific client setups.

More interestingly, we find that the fact that resources are cen-
tralized in a few CDNs raises the threat in two ways: it enables ASes
in the path to Google to attack a client even if they are not between
the client and the server, and they can do so at a fraction of the usual

cost: e.g., an ISP can use the Google-filter to save bandwidth by 3 to
4 orders of magnitude (compared to running the attack on all traffic).

The failure of transport-layer PADDING-based defenses is because
the anonymity sets behind IPs are usually small, and the classifier
is able to pick even small differences between global statistics of
the traces, e.g., total transmitted size or the total number of packets.
The defenses we study cannot hide these differences because, at the
transport layer, they lack information on these global statistics. We
note that these defenses are even less effective against more recent
deep-learning attacks and incur high overheads [48, 65]. This further
undermines their potential as defenses in a QUIC scenario.

5 DESIGNING APPLICATION-AWARE
PADDING-BASED DEFENSES

In this section, we explore whether application-aware defenses can
be effective against website fingerprinting. We consider any defense
that requires knowledge of a page’s resources to be an application-
aware defense. For instance, knowledge of the number of resources,
their size, and their order; or knowledge about the total (incom-
ing or outgoing) size. This information can only be obtained from
the application layer, e.g., Smith et al.’s [66] practical implemen-
tation of FRONT [33] and Tamaraw [22]. While this work demon-
strates that QUIC can be used to implement existing network- or
transport-layer defenses using a user-space library, it does not ex-
plore whether application-layer information could be used to ad-
just the defense configuration. In contrast, we aim to understand
whether using application-aware defenses fare better than their un-
informed network-layer counterparts. We study application-aware
defenses assuming they are implemented at the application layer, i.e.,
padding resources directly. Our results hold if the defenses were to
be implemented at the transport-layer by passing application-layer
information to the middleware that would configure the PADDING
frames (see Section 5.2.2).

5.1 Understanding web page composition
We first study different dimensions related to the structure and com-
position of websites that are relevant for configuring application-
aware defenses. We collect page structures by crawling the pages
in MAIN with OpenWPM (v0.17.0) [1] using Firefox five consecutive
times. OpenWPM logs the HTTP requests that occur during the page
load. It also records the originator of requests.

Resource dynamism. Dynamism influences the ease of protecting
a page. Less dynamic pages are easier to protect, as one can select
defense parameters tailored to the static resources. If pages vary
overnight, defenses can only be configured to fit the average case.

Out of the 150 websites in MAIN, 149 were successfully visited
across all crawls. For these pages, we calculate the proportion of
resources that remain static across the runs. Sometimes, even if the
resources fetched are the same, the URL parameters may vary. We
strip the URL parameters, and plot the distribution of static resources
in Figure 7a. The mean proportion of static resources is 88.25% (Std:
22.46%) and the median is 100%. This indicates that pages in our
dataset mostly contain static content. Our measurements, however,
are taken over a short period of time and dynamism could be more
prevalent when web pages are observed over a longer time period.
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Figure 7: Resource dynamism and ownership for pages in the MAIN dataset. (a) Proportion of resources that remain static across
5 runs. The majority of resources remain constant across runs, indicating low page dynamism. (b) Proportion of first party
resources. 18% of the pages have less than 20% of first-party resources. (c) Proportion of Google third party resources. 24% of the
pages have more than half their resources served by Google.

Resource ownership. Resource owners can provide information
about resources and modify them. Understanding ownership is im-
portant to get an idea of howmuch coordination is required to protect
a page. We study whether resources belong to the first party (same
eTLD+1 as the page) or to a third party (different eTLD+1 from the
page). For example, on the page www.example.com, img.example.com
would be first-party and external.com would be third-party. Using
domains as a proxy for ownership is not perfectly accurate: content
for facebook.com can be served from fbcdn.net. While both do-
mains come under Facebook’s control, the latter would be identified
as a third party. Unfortunately, we need to rely on domains as exist-
ing services that provide entity-domain mappings [2] do not have
relevant ownership information for almost half of our dataset.

Figure 7b shows the proportion of first-party resources for our
dataset. The majority of the pages have a large proportion of first-
party resources (Mean 61.18%, Std 31.61%, Median 66.67%), though
some pages have as few as 3.92%. On average, there are 5.95 third
party domains per page (Std: 7.64, Median: 3), with the number of
domains going up to 44 for one of the pages. Visual inspection of the
third-party domains shows several domains commonly associated
with Google. We map the domains to their owning entities [2] to
measure Google’s prevalence ([2] contains mappings for Google’s
domains). Figure 7c shows the proportion of Google resources per
page. 24% of the pages have more than half their resources served
by Google.

5.2 Application-aware defense strategies
5.2.1 Party-based resource protection. The adversary filter resources
from different origins (e.g., only on Google resources as in Sec-
tion 4.2.3). We assess whether third parties need to be involved
to protect a page or it suffices with protecting first-party resources.

We build traces with only first- or third-party resources, and
protect those using padding. First-party protection represents a sce-
nario where web pages protect their content using some defense,
but third-parties do not cooperate. Third-party protection represents
a scenario where third parties such as CDNs, which host a large
number of resources, decide to implement a defense, but smaller
first-parties do not. We assume the adversary attacks the remaining
undefended traffic. In order to keep the same set of websites across
the experiments, we discard websites that do not contain third-party
or Google resources. This leaves us with 100 websites. As shown in

Table 12: Mean classifier performance on traces filtered by 1st

/ 3rd party and Google CDN, MAIN.

Variant F1-Score Std. dev

All traffic 96.9 0.6
Only traffic to/from 1st parties 98.2 0.5
Only traffic to/from 3rd parties 96.8 0.8
Only traffic to/from Google CDN 96.9 0.6

Table 12, the adversary can achieve a high performance by just ana-
lyzing partial, undefended traces, regardless of the origin. Thus, for
any defense to be effective, all parties serving content for a page must
coordinate and actively participate in the protection of resources.
In particular, due to its prevalence, Google must collaborate for any
PADDING-based defenses to be efficient.

5.2.2 Evaluating application-aware defense strategies. We directly
evaluate perturbed application-layer traces as this gives an upper
bound on the performance of a transport-layer adversary with re-
spect to a set of features [36]. The reason is that transport-layer fea-
tures are effectively a noisy version of application layer resources [36]
(e.g., the number or total size of incoming QUIC packets are a noisy
version of the actual size of the downloaded resources, and the total
duration of the connection is a noisy version of the total amount
of bytes downloaded). We study three scenarios: undefended traces
with all features, undefended traces without timings, and defended
traces without timings. The latter is a good estimate of the attacker
performance (even with timings), as our baseline analysis shows (see
Section 5.2.3).
Metrics. We use two metrics to evaluate the defenses’ success: the
performance of the classifier and the overhead imposed in terms of
kilobytes of data added per subrequest.
Dataset and features. For the undefended baseline, we use the HAR
captures of MAIN to derive k-Fingerprinting features.

In practice, our padding and dummy-injection defenses would
affect the timing of packets. However, without deploying the de-
fenses, we cannot predict these changes would reflect on our traffic
captures. Deployment is not a possibility, as even if we would copy
all websites of MAIN on a server we control, we would not be able
to simulate actions from third parties. Fortunately, timings are less
stable (and hence, less useful) than sizes, and therefore, they are
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Figure 8: Number of sizes, 𝑁 , in padresourcesversus attacker
performance and median bandwidth cost per subrequest.

not among the most important features ( Figure 15 in Appendix C).
When attacking full HARs, the adversary obtains very good perfor-
mance (93% F1-score) both with and without timing information. The
most important features are size-related, being bytes_outgoing the
most important feature by a slight margin over bytes_incoming
(bytes_total is the sum of the two). This corroborates the findings
by Hentgen: even without timings, evaluating at the application layer
yields an upper bound over what happens over the network [36]. In
the remaining experiments, we discard timings.

5.2.3 Defense strategies. We now evaluate possible strategies that
use application-layer information.
Protecting local features with padding. We design a padding function
padresources to hide individual queries and resources sizes. Such a
defense must be implemented both on the client and the server. To
configure the function, we use (1) the distribution of resource sizes in
the set of websites and (2) a parameter 𝑁 , which defines how many
different sizes the defense allows for. The padding function splits
the resources sizes into 𝑁 groups of equal density. For instance, if
𝑁 = 1, all resources are padded to the max resource size in MAIN;
and if 𝑁 = 2, half of the resources are padded to the median size,
half to the max size. Choosing a small 𝑁 increases privacy: more
resources will be padded to the same size and be indistinguishable;
but also increases bandwidth usage.

We run this defense varying 𝑁 , and plot the median cost and the
attacker F1-score in Figure 8. Only large amounts of padding (small
𝑁 ) have an effect on the attacker accuracy. Padding with large sizes
has little effect. For instance,𝑁 = 3, which results in resources of 5.58
kB, 21 kB, 3.6MB, decreases the accuracy of the adversary by 6% and
incurs a median overhead of 9 kB per resource. This ineffectiveness
stems from the fact that the adversary still has access to the number
of requests and overall volume (see Figure 16 in Appendix C), which
are sufficient for the attack. The traces’ total size are too different to
be efficiently hidden through the padding of individual resources.
Protecting global features with padding. Padding only individual re-
source sizes cannot protect the overall transmitted volume.We design
a padding function padtotal size to pad the total incoming and out-
going sizes. To evaluate the best case defense, we assume the ideal
scenario in which the padding effort is split evenly across all the
parties queried on one web page. This way, the adversary does not
gain an advantage by filtering the traces from one party in particular.
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Figure 9: Number of sizes 𝑁 in padtotal sizeversus attacker per-
formance and median bandwidth cost per subrequest.

This strategy assumes the existence of a mechanism by which clients
can ask third parties for a particular amount of padding per resource
e.g., using the method by Smith et al. [66].

The defense has one parameter, 𝑁 , which defines the total incom-
ing and outgoing traffic sizes that are allowed. We first compute the
maximum total incoming and outgoing traffic in our target dataset,
MAIN. The maximum total size of queries per website is 102 kB and
the median is 14.4 kB; and the maximum total size of all downloaded
resources is 8.19 MB, with median 750 kB. To apply the defense, we
split the total incoming/outgoing sizes into 𝑁 groups of traces with
equal density. For instance, when 𝑁 = 1, there is only one group of
maximum size: all websites’ outgoing traffic would be padded to 102
kB, and the incoming traffic to 8.19MB. For 𝑁 = 2, the groups would
correspond to the median and to the maximum total incoming and
outgoing traffic. For 𝑁 = 3, the groups would correspond to tertiles
of the distribution, and so forth. We allocate every website to the
group that is closest to its original total incoming and outgoing size,
and we spread the padding evenly across all queries and resources
of that website.

We run this defense varying 𝑁 , and plot the median cost and
the attacker F1-score in Figure 9. As in the transport layer, padding
the total size does not mitigate the attack. For instance, to drop the
adversary’s accuracy by 10 percentage points, the defense incurs a
median cost of 5.7 kB per request (outgoing traffic) and 300 kB per
resource (incoming traffic). In the best case, it reduces the attacker’s
accuracy by 16 percentage point, with a median cost of 109 kB per
request and 8.16 MB per resource.

Protecting global features with dummies. Injecting dummy traffic can
also hide the total size [43]. Unlike in Tor, care must be taken that
dummies’ sizes cannot be easily identified and filtered. For simplicity,
we assume dummies are sampled from a dataset that contains the
most popular queries and resources across all pages to be defended.

In our experiments, we select popular resources from Google
(fonts, analytics, static assets). When a web page is loaded, we choose
a number of resources to inject (𝑀). These resources can themselves
trigger additional queries. We flip a coin and, with probability 𝑝 , we
inject a dummy resource. We inject these resources at random times
over the duration of the connection, such that the adversary cannot
use timing to identify and filter out dummies.

We plot in Figure 10 the attacker F1-score for a varying number of
dummies. This defense is more effective than the previous ones. For
instance, with (𝑝 = 0.5, 𝑀 = 10), which injects on average 5 dummy
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Figure 10: Attacker performance and cost when varying the
number of dummies.

requests, the attacker’s F1-score decreases from 93% to 54%, at a me-
dian cost of 137 kB per loading of a web page. In general, increasing
𝑝 has better impact on the attacker’s performance than increasing
the quantity of dummies (𝑀): on average, the two parametrizations
(𝑝 = 0.5, 𝑀 = 10) and (𝑝 = 1, 𝑀 = 5) inject 5 sequence of queries to
a CDN; but the former reduces the attacker’s F1-score to 0.54, and
the latter to 0.43.

5.3 Takeaways
Application-aware defenses, while showing better trade-offs than
application-agnostic ones, suffer from deployment challenges due
to the current state of the web. The presence of a large number of
third-party resources onwebsitesmeans that, contrary to application-
agnostic defenses, first and third party need to coordinate to deploy
effective defenses. Application-aware defenses need a-priori knowl-
edge of the resources sizes and ordering. This may be hard to ob-
tain when browser & website optimizations (e.g., client caching or
pipelining of resources) are in place. Similarly to application-agnostic
defenses (see Section 4), it is likely that deep-learning attacks are
also more effective than our attacks against application-aware de-
fenses. Our k-fingerprinting features-based evaluation, thus, presents
a lower bound for the adversary’s success. To understand the extent
to which an adversary could undermine PADDING-based defense fu-
ture work is needed to adapt current attacks [26], primarily designed
for application-agnostic defenses, to an application-aware scenario.

6 DISCUSSION AND RECOMMENDATIONS
We conducted a comprehensive study of website-fingerprinting
defenses of an ecosystem where the majority user does not use
Tor/VPNs. We provided evidence of fundamental incompatibilities
between today’s Web practices and the deployment of effective de-
fenses.
Challenges in application-agnostic transport-layer defenses.
First, we confirm that transport-layer defenses, which do not use
information from the application layer, are not effective against
website fingerprinting [30]. We show that this also applies when the
transport protocol changes from TCP to QUIC. The main problem
stems notably from the differences in the total sizes of websites,
which result in identifying features [35, 55]. Hiding the total size is
hard at the transport layer, where the size of objects is not known in
advance. Without coordination with the application layer, using the
QUIC’s PADDING frame is unlikely to result in effective defenses.

Application-aware defenses challenges & Next steps. Effective
mitigations require application involvement, either in the application
code or as part of the browser’s functionalities [27]. While defenses
with application-layer involvement can obtain better protection at a
smaller cost, our investigation shows that current use of third par-
ties hinder the effective deployment of any defense as effectiveness
requires all resources to be padded (see subsection 5.2). Achieving
full coverage requires coordination among many different entities,
which seems unlikely to happen organically.

To improve the situation without the need for coordination be-
tween first and third parties, Web-oriented standard bodies (e.g.,
W3C) and browser vendors could develop mechanisms to standard-
ize how third-party resources are requested and served. For instance,
defining standard sizes for third-party served resources, and meth-
ods to request these resources such that all websites use the same
order. Another option would be to rethink the trend of creating web
development resources as a service, and go back to having first par-
ties hosting and serving the resources. Alternatively, CDNs could
proxy the traffic to third parties, such that all traffic is served from
a single IP. A factor to keep in mind is that unlike defenses for Tor,
incentivizing the involved parties to contribute towards defenses for
the majority user is a big challenge. Another promising avenue is
to explore how client-side measures such as caching or the use of
ad-blockers [62] could be used in conjunction with padding-based
measures to avoid the need for coordination by eliminating the need
to contact third parties.
IPs & Anonymity set sizes. In the QUIC setting, the adversary is
largely helped by the IPs addresses; they can be used to turn the
website fingerprinting problem into a closed-world classification
problem, to dissect traffic based on first and third parties, and to link
together a client’s packets.

To address the easy linking of packets, clients could use techniques
such as MIMIQ [34] to leverage QUIC’s connection migration feature
to change their IP address; or privacy proxy [13] or MASQUE [16] to
completely hide their IPs; or CoMPS [70] to hide IPs and split traffic
across multiple paths. This would force the adversary to probabilisti-
cally stitch packets together to form traces. If the source/destination
IP/port are not identifying one client, simply rotating QUIC’s connec-
tion ID might also prevent the adversary from linking together one
client’s packets. Instead of focusing on a single defense technique,
layering defenses (e.g., combining padding and traffic splitting tech-
niques) have shown promising results for Tor traffic and warrants
further exploration [48].

Finally, the closed-world size could be increased by co-hosting
multiple websites on one server, making a larger number of websites
available behind load balancers, or even decoupling the bindings
between IP addresses and hostnames [31]; or even moved to open
world if all web traffic would be downloaded via anonymous com-
munication networks (e.g., Tor [28]) or VPNs.
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A TRACEROUTE EXPERIMENTS AT
ADDITIONAL VANTAGE POINTS

The client location impacts the resources that might be fetched dur-
ing a page load, and the paths taken by the network traffic to the
destination servers. This, in turn, impacts the ASes that can view the
traffic. In order to confirm that the trends we observe in our traffic
visibility experiment (Section 4.2.1 ) hold at different locations, we
collect additional traceroutes from three additional vantage points
located in Germany, UK, and Singapore.

Figure 11 shows the distribution of webpages seen by different
ASes, for our three vantage points. The number of total ASes we
encounter on the traceroute are 36, 35, and 23. Out of these 13 ASes
are common across all the vantage points. While the ASes that ob-
serve the traffic vary across locations, similar to Section 4.2.1 , only
a small proportion of ASes that observe a large proportion of the
traffic. Three ASes see more than 25% of the traffic for each vantage
point: the client’s AS, Google, and Cloudflare.

B PRECISION AND RECALL FOR THE
EXPERIMENTS

We provide the precision and recall numbers for our experiments in
the tables below. Tables 13 to 6 shows the results of the experiments
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Figure 11: Distribution of webpages seen by each AS, at three
vantage points. Only the client’s AS, Google, and Cloudflare
observe >25% of the traffic.

in Section 4. Table 13 shows the results for the website fingerprinting
and IP fingerprinting experiments. Table 14 shows the comparison
between the homogeneous and the heterogeneous closed-world ex-
periments. Tables 15 and 16 shows the robustness experiments to
evaluate the effects of time and client respectively. Table 17 shows
the effect of various defenses on full traces.

Table 13: Performance of website and IP fingerprinting on the
LARGE and MAIN datasets (10 experiments).

Method Precision/Recall

Website fingerprinting (MAIN) 95.8/95.7
Website fingerprinting (LARGE) 93.7/93.9
IP fingerprinting with primary IP (LARGE) 71.7/71.5
IP fingerprinting without primary IP (LARGE) 40.3/40.3
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Table 14: Fingerprinting Landing webpages vs. Website.

Scenario Dataset Precision/Recall

Landing webpage (baseline) FIREFOX 98.0/97.8
Website (all subpages known) HET 97.0/96.3
Website (unknown subpages) HET 95.1/94.1

Table 15: Influence of time. Precision/Recall when training
on the row dataset and testing on the column dataset.

Precision/Recall MAIN TIME

MAIN 95.8/95.7 35.6/35.2
TIME 21.6/17.5 96.5/96.4

Table 16: Influence of client. Precision/Recall when training
on the row dataset and testing on the column dataset.

Precision/Recall FIREFOX CHROMIUM

FIREFOX 95.8/95.7 35.6/35.7
CHROMIUM 26.0/22.9 93.2/92.9

Table 17: MAIN dataset: Mean classifier performance on de-
fended traces.

Variant Precision/Recall

undefended 95.8/95.7
hiding individual sizes 94.1/93.8
hiding all timings 95.7/95.5
+ hiding total transmitted sizes 85.6/84.9

Tables 18 to 21 shows the results of the experiments in Sec-
tion 4.1.3. Table 18 shows the classifier’s performance when con-
sidering different AS views. Tables 19 and 20 shows the classifier’s
performance on undefended and defended NetFlows respectively.
Table 21 shows the classifier’s performance when filtering traces for
connections only to Google.

Table 18: Mean classifier performance on different AS views.

AS Name # Pages Precision/Recall

15169 Google, LLC 118 89.6/89.4
13335 Cloudflare, Inc 115 93.7/92.9
3356 LEVEL3 7 82.4/81.7
32934 Facebook, Inc 5 93.7/92.3
45899 VNPT-AS-VN 1 100.0/100.0

Table 22 shows the results of the experiment in Section 5. Table 22
shows the classifier’s performance when filtering website traffic by
first party, third party, and Google services.

Table 19: Mean classifier performance andmedian storage cost
per sample for Sampled NetFlow, MAIN.

Sampling Precision/Recall Size [kB]

Full traces 95.8/95.7 312.4
NetFlow 100% 90.8/90.4 25.9
NetFlow 10% 66.5/67.4 3.0
NetFlow 1% 42.2/41.7 0.9
NetFlow 0.1% 18.8/16.8 0.4

Table 20: Mean attacker performance on defended NetFlow,
MAIN.

Sampling Precision/Recall

NetFlow 100% 54.1/53.0
NetFlow 10% 33.6/33.1
NetFlow 1% 21.6/21.6
NetFlow 0.1% 8.3/8.6

Table 21: Mean classifier performance and median storage re-
quired per sample on traces filtered by connections to Google
services, MAIN. The last two rows use 125 samples.

Variant Precision/Recall Size [kB]

Baseline (Full Traffic) 95.8/95.7 312.4
Full traffic to Google 78.9/78.3 112.1
ClientHello’s to Google 66.9/67.1 0.1

Table 22: Mean classifier performance on traces filtered by 1st

/ 3rd party and Google CDN, MAIN.

Variant Precision/Recall

All traffic 97.4/96.9
Only traffic to/from 1st parties 98.4/98.5
Only traffic to/from 3rd parties 97.3/96.8
Only traffic to/from Google CDN 97.4/97.0

C ADDITIONAL GRAPHICS
Figure 12 shows the distribution of clusters for the 1.3M domains we
obtained from our CDN partner. We find that 60% of the clusters have
an anonymity set of one, i.e., the domains are hosted on a unique
IP. These domains can be identified without conducting website
fingerprinting. Only 8.5% of the IPs host more than 150 domains.

Figure 14 shows the feature importance when the classifier is run
on the dataset from the cluster. We get an F1-score of 66.6% (std. dev.
0.5). On running a feature analysis, we find that the most important
features are TLS-specific. Since these features cannot be protected
with a QUIC PADDING frame, we discard this dataset in favor of
QUIC-dominated datasets created from website lists.

Figure 13 shows the feature importance when using ClientHello
timings to Google services as a feature. The most important features
are timings between sub-resources
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Figure 12: Distribution of the cluster sizes of 1.3M domains.
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Figure 13: Feature importance for classifying websites based
on the timings of their requests to Google services.
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Figure 15 shows the feature importance of MAIN when using ap-
plication layer features from HAR captures. We find that size based
features are the most important, and time-based features do not play
a large role.

Figure 16 shows the feature importance when we protect local
features at the application layer with a padding function. The func-
tion uses a parameter, 𝑁 , that indicates the number of sizes to which
resources can be padded. We experiment with various values of 𝑁 ,
and find that only large amounts of padding (small 𝑁 ) have an effect
on the adversary’s performance. This is because the adversary still
has access to the global features such as number of requests and
overall volume (as shown by Figure 16 for an example of 𝑁 = 3.
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Figure 15: Feature importance for MAIN when using
application-layer features (based on HAR captures).
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Figure 16: Feature importance with 3 padding sizes: 5.58 kB,
21 kB, 3.6 MB.
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