
Attacks on Encrypted Response-Hiding Range Search Schemes in
Multiple Dimensions

Evangelia Anna

Markatou
∗

Brown University

markatou@brown.edu

Francesca Falzon
∗

Brown University

University of Chicago

francesca_falzon@brown.edu

Zachary Espiritu

Brown University

zesp@brown.edu

Roberto Tamassia

Brown University

roberto@tamassia.net

ABSTRACT

In this work, we present the first database reconstruction attacks

against response-hiding private range search schemes on encrypted

databases of arbitrary dimensions. Falzon et al. (VLDB 2022) present

a number of range-supporting schemes on arbitrary dimensions

exhibiting different security and efficiency trade-offs. Additionally,

they characterize a form of leakage, structure pattern leakage, also

present in many one-dimensional schemes e.g., Demertzis et al.

(SIGMOD 2016) and Faber et al. (ESORICS 2015). We present the

first systematic study of this leakage and attack a broad collection

of schemes, including schemes that allow the responses to contain

false-positives (often considered the gold standard in security). We

characterize the information theoretic limitations of a passive per-

sistent adversary. Our work shows that for range queries, structure

pattern leakage can be as vulnerable to attacks as access pattern

leakage. We give a comprehensive evaluation of our attacks with a

complexity analysis, a prototype implementation, and an experi-

mental assessment on real-world datasets.

KEYWORDS

leakage-abuse attacks, encrypted databases

1 INTRODUCTION

An encrypted database (EDB) allows a client to outsource sensitive

data to an untrusted cloud server and then privately query this data.

In the last decade, we have seen an increased demand for EDBs that

support expressive queries. For example, MongoDB’s “Queryable

Encryption” enables clients to execute expressive queries over en-

crypted data [9].With the deployment of EDBs in thewild, it is more

important than ever to understand the security of such schemes. In

this work, we study classes of schemes that support private range

queries over multi-attribute (multi-dimensional) data. Concretely, a

range query over two attributes takes the form of:

SELECT * FROM T WHERE (years BETWEEN 2010 AND 2020)
AND (avg_temp BETWEEN 15 AND 18)

where 𝑇 is a table and years and avg_temp are attributes. Range
queries are fundamental and support for such query expressive-

ness is a requisite for practical EDBs. It is thus important that we

understand the security provided by such EDBs e.g. [26].

∗
Both authors contributed equally to this research.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(4), 204–223

© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0106

Figure 1: Reconstruction by our at-

tack on the range tree scheme with

uniform range cover (Section 4) for

the Cali dataset over a domain with

1024 × 1024 points. The bar heights

represent the number of records at

each domain point. The attack suc-

ceeds in 68s.

One common way to construct EDBs that support range queries

is to use searchable symmetric encryption (SSE) (e.g. [11, 31, 46]) to

build an encrypted index that maps ranges to corresponding records.

A number of such schemes have been proposed for both one at-

tribute data (e.g. [19, 24, 41, 68]) and multi-attribute data [26]. These

schemes are efficient in practice which make them a primary can-

didate for real-world applications. This efficiency, however, comes

at the cost of “leaking” a small amount of well-defined information

about the underlying database or queries.

Leakage typically occurring in SSE schemes includes one or more

of the following: search pattern (whether two queries are the same);

volume pattern (the number of records in the query response); and

access pattern (which individually and deterministically encrypted

records are returned with each query). Though this leakage may

seem benign, a number of database reconstruction attacks leverag-

ing the leakage of range queries in one [36, 37, 39, 47, 50–52] and

two [25, 54] dimensions have been described. Existing attacks in

2D are more theoretical and do not attack existing constructions.

Our work goes beyond 2D and is the first to attack concrete range

schemes. Falzon et al. [26] note that “structure pattern leakage is in-

herent in schemes derived from standard multidimensional search

data structures," however the full extent to which this leakage can

be exploited is not explored. We initiate the first cryptanalysis of

structure pattern, present new techniques for exploiting the leakage

and answer the following open question in the affirmative:

Can a passive persistent adversary attack existing mul-

tidimensional range schemes even in the absence of

access pattern leakage?

Our attacks work against non-interactive schemes presented in

multiple works i.e., [19, 20, 24, 26]. These works use SSE and take

a similar approach to scheme design which can be summarized as

follows: Each scheme is associated with an underlying range data

structure that can be represented as a graph; each node of the graph

is associated with a range over the domain. The client then defines

an index that maps each node’s range to the set of matching records,

and encrypts this map using the underlying SSE scheme. To issue

a query, the client computes the set of nodes that cover the range,

204

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0106

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

Attack Assumptions Leakage Attack Rec. Space

Dim Query Data Scheme AP VP EP SP

Queries

for FDR

Runtime Space Size

Kellaris et al. [47] 1 Uniform Quadratic [19] ✓ 𝑚4
log𝑚 2

Lacharité et al. [52] 1 Dense Quadratic [19] ✓ 𝑚 log𝑚 𝑚 log𝑚(𝑚 + 𝑛) 2

Grubbs et al. [36] 1 Uniform Quadratic [19] ✓ 𝑚4
log𝑚 2

Markatou et al. [55] 1 Quadratic [19] ✓ 𝑚2
log𝑚 2

Kornaropoulos et al. [50] 1 Quadratic [19] ✓ ✓ – 2

Kellaris et al. [47] 1 Uniform Quadratic [19] ✓ 𝑚4
log𝑚 2

Grubbs et al. [37] 1 Quadratic [19] ✓ 𝑚2
log𝑚 2

Gui et al. [39] 1 Unknown Dense Quadratic [19] ✓ –

Kornaropoulos et al. [51] 1 Regular [19, 24, 51] ✓ ✓ ✓ –

Falzon et al. [25] 2 Quadratic [25] ✓ ✓ 𝑚2
log𝑚 𝑚(𝑛𝑚2 + 𝑛 log𝑛) 2

𝑛

Markatou et al. [54] 2 Quadratic [25] ✓ ✓ 𝑚2
log𝑚 2

𝑛

Linear Attack 𝑑 Naive [19], Linear [26] ✓ ✓ ✓ 𝑚2− 1

𝑑 log
2𝑚 𝑚5 𝑚3

2
𝑑 (𝑑!)

Token Pair Attack

𝑑 Range-Universal [24], Log-URC [19], Range-URC [26] ✓ ✓ ✓ 𝑚2
log𝑚 𝑚2

log
𝑑𝑚 𝑚2

log
𝑑𝑚 2

𝑑 (𝑑!)
𝑑 Quad-BRC [26] ✓ ✓ ✓ 𝑚2

log𝑚 𝑚2+𝑑−1
𝑑 𝑚2+𝑑−1

𝑑 2
𝑑 (𝑑!)

Range-BRC Attack 𝑑 Range [19], Range-BRC [26] ✓ ✓ ✓ 𝑚2
log𝑚 𝑚4 𝑚2

2
𝑑 (𝑑!)

SRC Attack

𝑑 TDAG [19], QDAG-SRC [26] ✓ ✓ ✓ 𝑚4
log𝑚 – Ω(𝑑𝑚) ≥ 2

2
𝑑−1 (𝑑!)

𝑑 Quadratic [19, 25] ✓ ✓ ✓ 𝑚4
log𝑚 – Ω(𝑑𝑚2) ≥ 2

𝑛

Table 1: Comparison of our work with selected prior attacks on schemes for encrypted range search. AP, VP, EP, and SP refer to access pattern,

volume pattern, equality pattern (also known as search pattern), and structure pattern, respectively. The time and space complexity of an

attack are shown when reported by the authors. We note that previous works have typically focused on query complexity (number of queries

sampled under a uniform query distribution needed to achieve full database reconstruction), often omitting the analysis of time and space

complexity. Reconstruction space sizes are asymptotic lower bounds achieved in the worst case.𝑚 refers to the domain size, 𝑛 is the number of

records and 𝑑 is the number of dimensions. We omit big-𝑂 notation.

generates a search token for each node, and sends these tokens to

the server for look up.

Our attacks demonstrate insecurities of these schemes and high-

light the importance of implementing additional mitigation tech-

niques [35] when using SSE-based schemes. We show that volume

and search pattern—when combinedwith the structural information

of the underlying range search data structure—can be as detrimental

to security as access and search pattern.

Our first attack works against the linear scheme, which boasts

the smallest storage overhead. Our second attack works against a

class of schemes that includes the quad-tree and a variation of the

range-tree previously designed to reduce leakage. Our third attack

works against another variation of the range-tree data structure.

Our fourth attack works against a wide class of range schemes that

achieve efficiency by allowing for false positives in responses and

are regarded as the most secure [19]. We evaluate our attacks using

real-world datasets.

1.1 Related Work

Schemes.We consider range search schemes that are built on search-

able encryption primitives, which relax the security (compared to

strong primitives like ORAM [33] and fully homomorphic encryp-

tion [29]) by leaking some well-defined information and achieve

practical runtimes (see, e.g., [7, 8, 11–14, 16–18, 21, 30, 31, 44–

46, 57, 59, 64]).

Demetrzis et al. [19, 20] present searchable encryption schemes

for 1D databases. They present multiple schemes that trade-off

security and efficiency. Faber et al. [24] also present range search

schemes that support 1D range queries. Wang and Chow [67] sup-

port forward and backward secure range search for 1D databases.

Falzon et al. [26] present the first range search schemes in multiple

dimensions, and offer a variety of security and efficiency trade-

offs. Range search can also be achieved using other primitives. For

example, Shi et al.’s MRQED [63] scheme and Maple [66] support

range queries on databases of arbitrary dimensions using public key

cryptography and leak at least the access pattern. Order-revealing

encryption [1, 5] also supports range queries, however it leaks a

lot more information [3, 22, 38]. In addition to range-reporting

schemes, schemes have been presented on other types of queries,

like aggregate range queries (e.g., Espiritu et al. [23]) and shortest

path queries on graphs (e.g., Ghosh et al. [32]).

Attacks. Leakage analysis of SSE schemes has been studied in

a passive adversarial setting e.g. [4, 10, 42, 58, 61]. Kellaris et al.

[47] showed the first attack that leverages access and volume pat-

tern leakage from 1D range queries to achieve full database recon-

struction. Lacharité et al. [52] improved upon this work achieving

efficient database reconstruction attacks for dense 1D databases.

Grubbs et al. [36] follow up with an optimal approximate database

reconstruction attack for any 1D database. The above works assume

knowledge of the query distribution. Kornaropoulos et al. [50] and

Markatou and Tamassia [55] show one-dimensional database recon-

struction attacks that utilize search pattern leakage while assuming

no knowledge of the query distribution.

Volume pattern leakage has also been shown to be exploitable

in 1D databases [37, 51]. Recent attention has been devoted to

exploiting volume and search pattern e.g. [4, 58]. Kamara et al.[43]

present a framework for evaluating leakage attacks. Kornaropoulos

205

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

et al. [48] quantify the privacy of searchable encryption schemes

using leakage inversion techniques. Two attacks most related to our

Linear attack are the generic 2D database reconstruction attacks

in [25, 54]. Unlike these works, our attacks are on concrete range

schemes and work on databases of two and higher dimensions.

The closest prior attack to our SRC attack is by Kornaropou-

los, Papamanthou, and Tamassia [51], who attack a class of 1D

response hiding schemes, called regular schemes, including [20, 24].

Demertzis et al. [20] note their schemes are susceptible to attacks

but do not give a full description or analysis. Demertzis et al. [18]

propose a potential attack on the Logarithmic-SRC scheme [20] but

also do not give a full description or analysis.

In addition to range-reporting schemes, prior attacks have tar-

geted other types of rich queries, like the attack by Kornaropoulos

et al. [49] against 𝑘-nearest neighbor queries and the attack by

Falzon and Paterson [27] against shortest path queries.

1.2 Contributions

Our contributions are summarized as follows:

• We present the first attacks against the response-hiding non-

interactive 1D range search schemes in [19, 24] and the response-

hiding non-interactive multi-dimensional range search schemes

in [26]. Previous attacks were limited to schemes supporting 1D

or 2D queries.

• We leverage structure pattern to carry out database reconstruc-

tion in arbitrary dimensions. Our work shows that structure

pattern can be as exploitable as access pattern. (Sections 3–6)

• We introduce new techniques for reconstruction attacks. We

develop a number theoretic approach to reduce the number

of observed responses needed to attack the linear scheme. We

describe methods that exploit graphs built from search and

structure patterns. We further present a framework based on

integer linear programming to attack a broad class of SRC

schemes, considered the gold standard. (Sections 3–6)

• We describe the information theoretic limitations of a passive-
persistent adversary.

• We implement our attacks and experimentally evaluate them
on real-world datasets. (Section 7)

In Section 8, we describe the techniqueswe develop inmore detail

and explain how they can be extended to new schemes. Table 1

compares our attacks with related work. Our work demonstrates

pitfalls of basing private range search schemes on range-search

data structures and informs future research on expressive queries.

2 PRELIMINARIES

Given integers 𝑎, 𝑏 with 𝑎 ≤ 𝑏, let [𝑎] = {1, 2, . . . , 𝑎} and let [𝑎, 𝑏] =
{𝑎, 𝑎 + 1, . . . , 𝑏}. Let 𝑚1, . . . ,𝑚𝑑 be positive integers and 𝑑 ≥ 1.

A 𝑑-attribute database, or a 𝑑-dimensional database, 𝐷 is an

injective mapping from a domain D = [𝑚1] × · · · × [𝑚𝑑] to a

set of 𝑛 records of 𝑂 (1) size. We denote the set of records with

domain value 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ D as 𝐷 [𝑥]. A 𝑑-dimensional
range query is a hyper-rectangle [𝑎1, 𝑏1] × · · · × [𝑎𝑑 , 𝑏𝑑] where
[𝑎𝑖 , 𝑏𝑖] ⊆ [1,𝑚𝑖] denotes the range in the 𝑖-th dimension.

We say that points 𝑝 and 𝑝 ′ are neighbors if they share every

coordinate but one, and in the remaining coordinate, their values

differ by one. We call a set of contiguous points of 𝐷 that only differ

in the same single coordinate a one-dimensional section.
We say that 𝑎 and 𝑏 are the extreme values of range [𝑎, 𝑏]. We

define the core of the database domain D as the set of points of D
that do not have an extreme value in any dimension. We define the

boundary of a database as the set of points of D with at least one

extreme value in some dimension.

LetS be a set of range queries and let𝐴 and 𝐵 be queries inS. We

say that 𝐴 minimally contains 𝐵 if 𝐴 contains 𝐵 and there is no

other query𝐶 inS distinct from𝐴 and 𝐵 such that𝐴 contains𝐶 and

𝐶 contains 𝐵. We use double-brace notation to denote a multiset,

e.g. {{1,1,4,5,7}}.

2.1 Range Trees and Quadtrees

The schemes we attack build upon the range tree and region quad

tree data structures.

Range Tree [2] A range tree is a data structure that holds points.
It allows for efficient range queries, especially in two and higher

dimensions. In one dimension, a range tree is a binary tree. Each

node corresponds to a range: the left child of the node corresponds

to the first half of the range and the right child corresponds to the

second half of the range. The root node covers the domain, and the

leaf nodes each cover a single domain point.

For example, in Figure 3(a), we can see how the root node covers

range [1,16], and its children cover ranges [1,8] and [9,16]. In two

dimensions, the range tree is no longer a binary tree. Instead, there is

a main tree that orders the points according to their first dimension,

and each node of this main tree has a third child. This third child

leads to its own copy of a binary tree that orders the points in the

range of this node along the second dimension. The range tree is

defined recursively for higher dimensions, having a separate tree

that orders the points across each dimension. See Figure 2 for a 2D

example.

RegionQuad Tree [28]. A region quadtree on a 𝑑-dimensional

square domain D comprises of a 2
𝑑
-ary tree whose nodes are asso-

ciated with a subdomain. The root node is identified with the whole

domainD; The tree recursively sub-divides the square domain into

quadrants (or orthants in dimensions greater than 2). Each internal

node has 2
𝑑
children – each child corresponding to one of the 2

𝑑

quadrants associated with its parent.

Range Covers. There are numerous ways to query a range sup-

porting data structure like a range tree or a quad-tree. In this paper,

we consider three range covering techniques: Best Range Cover
(BRC), Uniform Range Cover (URC), and Single Range Cover
(SRC). BRC selects the smallest number of nodes that perfectly cov-

ers the range. With BRC, ranges of the same size may correspond

to a different number of nodes. For example, in Figure 3, using BRC

to query range [1, 2] (nodes 𝑎 and 𝑏) returns a single node (𝑎𝑏). In

contrast, querying [2, 3] (nodes 𝑏 and 𝑐) returns two nodes (𝑏 and

𝑐). This discrepancy led to the development of URC [19], which

ensures that ranges of the same size correspond to range covers of

the same size. The final range cover we consider is SRC. This range

cover returns a single node corresponding to the smallest range

containing the query; its response may result in false positives.

206

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

2.2 Formalizing Leakage

Structured encryption is parameterized by different leakage func-

tions, which output information about the underlying data struc-

ture and its contents. We define two common leakage functions of

Encrypted MultiMap (EMM) schemes relevant to this work [12].

• The search pattern (also known as equality pattern) reveals
when two queries are equal. Without loss of generality, we can

assume a 1-to-1 correspondence between range queries and

query identifiers. Search pattern is a function EP that takes as

input a multimap MM and a label ℓ ∈ L, and outputs an ID:

EP(MM, ℓ) ↦→ 𝑖 ∈ [|L|].
• The volume pattern of a label ℓ in amultimap reveals the number

of records associated with ℓ . Formally, the volume pattern is a

function Vol that takes as input a label in the label space ℓ and

outputs the number of records associated with the given label:

Vol(MM, ℓ) ↦→ |MM[ℓ] |.

Throughout this paper, we assume that the underlying EMM

scheme is response-hiding, and leaks the multimap size at setup,

and search and volume pattern at query time. The constructions

considered use EMMs to support range queries over range search

data structures. The EMM is used to encrypt a multimap that maps

subqueries, also referred to as canonical ranges, to records associ-

ated with each subquery. The result is an additional form of leakage

called structure pattern that is a function of the data structure, the

range cover, and the leakage of the EMM scheme [19, 26].

• The structure pattern leakage reveals if two queries have a

common subquery. Let query 𝑞 be associated with 𝑘 labels ℓ𝑖 ∈ L,
𝑖 ∈ [1, 𝑘]. Then the structure pattern leakage is

SP(MM, 𝑞) = {(EP(MM, ℓ𝑖),Vol(MM, ℓ𝑖))}𝑖∈[𝑘] .

2.3 Attack Input

The tokenset t of a query 𝑞 is the set of tokens associated with 𝑞.

For each token 𝑡 sent by the client, the server returns the encrypted

set 𝐶 (𝑡) retrieved from an encrypted multimap, from which the

adversary determines the volume, 𝑣𝑜𝑙𝑡 , associated with token 𝑡 . For

each scheme, we present a reconstruction attack that takes as input

a volume map, denoted with VM, that for each tokenset t, maps

VM[t] = ∑
𝑡 ∈t 𝑣𝑜𝑙𝑡 , and for each token 𝑡 ∈ t, maps VM[𝑡] = 𝑣𝑜𝑙𝑡 .

Our attack on the SRC schemes also takes as input a frequency
map FM, which associates each tokenset with the number of times

it has been observed. Maps VM and FM take linear time to build

on the size of the input and require less storage than the input,

since their sizes are independent of 𝑛. We assume the adversary has

knowledge of𝑚, 𝑑 , 𝑛, as well as of the range encrypted multimap

scheme employed. Our attacks take as input VM and (in the SRC
case) FM and return a grid comprising one node for each point

of in domain D, where each node is labeled with the number of

database records at the corresponding point.

We show that VM and FM are an equivalent representation of

the multiset of structure pattern. We assume that the queries are

issued independently; we do not exploit the order of the queries, for

example, by assuming that their order is correlated to their position.

It is thus sufficient to consider a multiset of the structure pattern.

Algorithm 1: LinearReconstruction(VM)
1: // Find tokensets that correspond to one-dimensional queries.

2: Let primeTokensets store the tokensets of unit and prime size in VM.

3: Let 1dSlices be an empty map, mapping tokens (which share the same

coordinates in all but one dimension) to a list of tokensets

4: // Group tokensets by one-dimensional section.

5: for t ∈ primeTokensets do
6: Find all keys, 𝐾 , in 1dSlices that intersect in ≥ 2 elements with t
7: Add t to 𝐾 and let𝑉 be a list of the values of 𝐾 in 1dSlices + t
8: Delete all keys in 𝐾 from 1dSlices and add 𝐾 → 𝑉 to 1dSlices
9: // Order the elements of each one-dimensional section.

10: Create a PQ-tree for each key of 1dSlices with its values.

11: // Make a grid representing the domain value of each token.

12: Let𝐺 be a graph with nodes all the observed search tokens.

13: for each PQ-Tree𝑇 do

14: Pick a frontier (a possible ordering of the search tokens) of𝑇 .

15: Add an edge to𝐺 for every pair of neighbors in this frontier.

16: // Reconstruct the database.

17: Label the nodes of𝐺 with their volume in VM.

18: return𝐺

Theorem 1. Let Σ be an EMM scheme leaking search and volume

pattern. Let 𝐷 be a 𝑑-dimensional database over domain D, MM the

resulting multimap when encrypting with Σ, and 𝑞 (1) , . . . , 𝑞 (𝑘) be
range queries over D. Then, there exists an invertible transforma-

tion between the multiset of leakage {{SP(MM, 𝑞 (𝑖))}}𝑖∈[𝑘] and the
corresponding volume map VM and frequency map FM.

The proof of Theorem 1 (along with all our other proofs) can be

found in the Appendix. Building FM requires observing each query

once, which is a strong assumption. In Appendix B, we prove that

these maps can be built after observing 𝑚4
log𝑚 queries issued

uniformly at random.

2.4 Equivalent Databases.

We generalize the notion of equivalent databases from [25, 54]

below. Intuitively, two databases are L-equivalent if they are indis-

tinguishable from their leakage.

Definition 1. Let 𝐷 and 𝐷 ′ be databases with domainD and the

same record IDs. Let L = (LS,LQ) be a leakage function and Q be

the set of range queries onD. Databases 𝐷 and 𝐷 ′ are L-equivalent
if {L(𝐷,𝑞)}𝑞∈Q = {L(𝐷 ′, 𝑞)}𝑞∈Q . The set of equivalent databases
is called the reconstruction space.

2.5 Threat Model and Assumptions

Throughout this paper, we consider a passive, persistent, honest-

but-curious adversary that has compromised either the commu-

nication channel or server. This adversary is able to observe the

tokensets issued by the client and the number of records associ-

ated with each token the tokensets. The linear attack (Section 3)

assumes that any non-empty subset of prime-sized range queries

are issued. Our other attacks assume that all possible range queries

are issued. For all attacks, we assume that the adversary is able to

build the volume map VM from the observed queries. In Section 6,

we make the additional assumption that the adversary can build

the frequency map FM.

207

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

3 THE LINEAR ATTACK

The linear scheme comprises of 𝑛 = |D| canonical ranges, which
are one-to-one with the points in the domain. To query for a range

𝑞 ⊆ D, the client computes a token for each point in the range and

sends the resulting tokenset to the server. The server can then use

this tokenset to retrieve the matching records. To query for range

[1, 4], the client sends four tokens corresponding to four canonical

ranges: [1, 1], [2, 2], [3, 3] and [4.4]. Variants of this scheme have

been proposed in both one [19] and multiple [26] dimensions.

3.1 Reconstruction Attack

Each domain point is associated with a single unique token. The

linear scheme thus leaks both the size of the query range and infor-

mation about the points in the range. For example, when querying

a range of size 4, the adversary observes 4 tokens. The adversary

can also infer information about the shape of the range e.g., if the

database is two-dimensional, then a query of size 4 must corre-

spond to a square range (2 × 2) or a one-dimensional slice (1 × 4).
In particular, if the adversary observes a tokenset of prime size, 𝑝 ,

then they can infer that the range has size 𝑝 in one dimension and

size 1 in the other dimensions. This leakage allows the adversary

to extract useful 1D information. Our attack can thus leverage 1D

techniques to reconstruct a multidimensional database. Our attack

builds from the leakage a labeled graph whose vertices correspond

to domain points and whose edges denote adjacent points. This

resulting graph provides a reconstruction of the database up to

symmetries and forms the basis of our attack.

Reconstruction Attack. Our attack finds queries of prime size,

groups the search tokens into one-dimensional segments, and then

orders them. Our attack (Algorithm 1) follows in five steps:

(1) Find all tokensets (queries) of prime size.

(2) Group one-dimensional sections. If the intersection of two

tokensets of prime size has at least two search tokens, then

these queries must be from the same 1D section (e.g., same row

or column). We create map 1dSlices mapping search tokens to

sets of tokensets, where all search tokens in a key of 1dSlices
correspond to the same one-dimensional section.

(3) Order one-dimensional sections. Use PQ-trees [6] to get the

partial order of the search tokens in each key of 1dSlices.
(4) Order Reconstruction. Construct a graph 𝐺 whose nodes are

the observed tokens. For each PQ-tree, find a frontier and add

edges in 𝐺 between neighboring tokens in each frontier.

Theorem 2. Let 𝐷 be a database over a 𝑑-dimensional domain

D = [𝑚1] × · · · × [𝑚𝑑] of size𝑚 and let 𝐷 be encrypted with the

linear scheme. Given the volume map for a set of range queries on 𝐷

comprising all queries of unit and prime size, Algorithm 1 achieves full

database reconstruction of 𝐷 by building in 𝑂 (𝑚5) time and 𝑂 (𝑚3)
space an 𝑂 (𝑚)-size representation of the reconstruction space of 𝐷 .

The input to the algorithm is available with probability greater than

1 − 1

𝑚2
after observing

𝑂

(
𝑑∑︁
𝑖=1

𝑚2

𝑚𝑖
log𝑚𝑖 · log

(
𝑚2

𝑚𝑖
log𝑚𝑖

))
(1)

uniformly distributed queries, which is𝑂 (𝑚2− 1

𝑑 log
2𝑚) queries when

𝑚𝑖 =𝑚1/𝑑
for 𝑖 = 1, · · · , 𝑑 .

3.2 Reconstruction Space

The reconstruction space of the linear scheme comprises of the

symmetries of a 𝑑-dimensional cube. In 2D, this means that we can

reconstruct up to rotation and reflection of the rectangular domain.

This is because each query contains one (deterministic) token for

each point in the queried range. As a result, the server learns a

map between search tokens and their corresponding records, a

partition on the records with respect to their domain values, and

which records belong to contiguous regions of the domain. If the

server sees a sufficient number of queries it can piece the search

tokens together into a 𝑑-dimensional grid.

Theorem 3. Let 𝐷 be a database on a 𝑑-dimensional domain

and let L be the leakage of the linear scheme. The set of databases

L-equivalent to 𝐷 , or reconstruction space of 𝐷 , corresponds to the

symmetries of a 𝑑-cube. (i.e. rotation/reflection across each axis).

4 TOKEN PAIR ATTACK

Our next attack applies to a number of schemes, including the

1D Rangetree scheme with universal range cover [24] and the

Logarithmic-URC scheme [19], as well as the Range-URC [26] and

Quad-BRC [26] schemes in arbitrary dimensions. Range-URC can be

viewed as a generalization of the Rangetree scheme with universal

range cover and the Logarithmic-URC scheme.

Range-URC. This scheme uses a range-tree for the underlying

range-supporting data structure and URC for computing the to-

kensets. Demertzis et al. [19, 20] and Falzon et al. [26] both construct

schemes using a range tree with URC. This attack applies to both

these constructions, and any constructions that use range trees

with URC and leak volume and search pattern.

Quad-BRC. This scheme was first introduced by Falzon et al. [26]

and uses a region quad-tree for the underlying range-supporting

data structure and BRC for computing the tokensets. Recall that the

abcdefgh
ijklmnop

abcd efgh

ijkl
mnop

ab
cd

cdab

dcba

ef
gh

ghef

hgfe

ij
kl

klij

lkji

mn
op

opmn

ponm

ijkl mnop

abcd
efgh

4 d h l p
c g3

2
1

4321

k o
b f
a e

j n
i m

(a)
dcba

hgfe

lkji

ponm

(b)

Figure 2: (a) A range tree scheme in 2D and (d) the graph constructed

by Algorithm 2. The nodes in the green rectangles correspond to

queries with one token under URC.

Algorithm 2: TokenPairAttack(VM)
1: Let𝑄1 be the keys of VM of size 1.

2: Let𝑄2 be the keys of VM of size 2 with only members of𝑄1.

3: Construct graph𝐺 with nodes the elements of𝑄1

4: for t = {𝑡0, 𝑡1 } ∈ 𝑄2 do

5: Add an edge between 𝑡0 and 𝑡1 in𝐺 .

6: Label the nodes of𝐺 with their volume in VM.

7: return the connected component of𝐺 of size𝑚 with the smallest total

volume.

208

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

op

cd

d

4 d

h

c

g

3
2
1

b

f

a

e

8
7
6
5

12 l

p

k

o

11
10
9

j

n

i

m

16
15
14
13

abcdefghijklmnop
(a) (b) a

p

abcb

abcd

a b

ab

abcdefgh

c d e f

gh

g h

ef

efgh

m n

op

o p

mn

ijklmnop

mnop

i j

kl

k l

ij

ijkl

cd

abcdefgh

e

f
gh

g

h

ef

efgh

abcd

d

i

j
kl

k

l

ij

ijkl

ijklmnop

m

n
mn

mnop

o

1 11 1 1 111 13 2 2 5 9 2 2 9 5 2 2 13 1
(c) bab c e fg hicd ef gh n opojk lij kl mnm

(d) db c e f g h i n oj k l m

3

8

6

11

4

2

3

5

3

10

2

4

9

6

4

8

(e) 34 6 5 2 11 8 4 6 49 2 3 8

ab op

103

op

o

opab

b

Figure 3: Attack on the range tree BRC scheme for a 1D domain (Algorithms 3 and 4). (a) Domain with volume of each point and range tree. We

find the inner nodes of the range tree (rectangular) by relying on the property that tokensets form a continuous range (Algorithm 3, Line 15).

E.g, tokensets (𝑑, {𝑒 𝑓 }) , ({𝑒 𝑓 }, 𝑔) and (𝑑, {𝑒 𝑓 }, 𝑔) , and the absence of tokenset (𝑑,𝑔) imply that {𝑒 𝑓 } is an inner node. Thick dotted lines show

the triangular structures identifying leaf nodes. (b) Co-occurrence graph𝐺 , whose edges (in green) join nodes of the range tree that form a

tokenset, e.g., (𝑏, 𝑐) , (Algorithm 3, Line 4). (c) Construction of graph𝐺trim. We remove from𝐺 edges between inner nodes (Algorithm 3, Line 16).

We use the times two tokens appear in a tokenset together (edgecounts) (Algorithm 3, Line 19) to remove edges with edgecount > 2. We identify

most leaf nodes using 𝐺 , but some nodes like {𝑎𝑏𝑐𝑑 } and 𝑑 appear identical in 𝐺 after we trim. We distinguish them using graph 𝐺 , e.g.,

{𝑎𝑏𝑐𝑑 } has fewer edges than 𝑑 (Algorithm 3, Line 27). Graph𝐺trim now contains all inner nodes from𝐺 with edgecount 2, and some non-inner

neighbors. (d) We extract the inner nodes from the new graph, and swap every other pair of nodes (Algorithm 3, Line 43). (e) We assign volumes

to all core domain points (Algorithm 3, line 45). Then, we find the volumes on the boundary domain points (𝑎,𝑝) by replacing the two nodes

with only one edge ({𝑎𝑏 },{𝑜𝑝 }) with their volume minus the volume of their neighbor (Algorithm 4, line 2).

canonical ranges of a quadtree correspond to hypercubes whose

side lengths are powers of two.

4.1 Reconstruction Attack

We leverage the fact that these schemes leak neighboring point

search tokens. For example, in Figure 3, if a client queries for the

range [1, 2] using Range-URC, then she must compute search to-

kens corresponding to the canonical ranges [1, 1] (token 𝑎) and

[2, 2] (token 𝑏). Our goal is to thus infer which search tokens corre-

spond to neighboring domain points.

In order to build intuition, we make the following observations

regarding the Range-URC scheme. Recall that in each dimension,

the URC algorithm first computes the BRC and then recursively

breaks each node into its children until there is at least one node

at each level [19]. Thus, if a client queries a range 𝑞 using a single

token, then the range must be of size 1.

We now sketch the Token Pair attack (Algorithm 2).

(1) Let 𝑄1 be the set of tokensets of size 1. In Figure 2, these are

the nodes in a box or highlighted.

(2) Let𝑄2 be the set of tokensets of size 2, {𝑡, 𝑡 ′} such that {𝑡}, {𝑡 ′} ∈
𝑄1.

(3) Initialize a graph 𝐺 whose vertex set comprises of the tokens

appearing in 𝑄1. For each {𝑡, 𝑡 ′} ∈ 𝑄2, add the edge (𝑡, 𝑡 ′) to 𝐺 .

(4) We complete the graph by mapping each search token of 𝐺 to

its corresponding volume. The connected component of size𝑚

in 𝐺 corresponds to the ordered search tokens of the database.

Figure 2 depicts a 2D range tree and the resulting graph 𝐺 from

our attack. We now state a theorem summarizing the database

reconstruction from the leakage of Range-URC and Quad-BRC.

Theorem 4. Let 𝐷 be a database over a 𝑑-dimensional domain

of size 𝑚 and let 𝐷 be encrypted with the range tree scheme and

uniform range cover (URC) (respectively, the quadtree and best range

cover (BRC)). Given the volume map for all range queries on 𝐷 , Al-

gorithm 2 achieves full database reconstruction of 𝐷 by building in

𝑂 (𝑚2
log

𝑑𝑚) (respectively, 𝑂 (𝑚2+𝑑−1
𝑑)) time and space an 𝑂 (𝑚)-

size representation of the reconstruction space of 𝐷 . The input to the

algorithm is available with probability greater than 1 − 1

𝑚2
after

observing 𝑂 (𝑚2
log𝑚) uniformly distributed queries.

4.2 Reconstruction Space

Theorem 5. Let𝐷 be a database with domainD = [𝑚1] ...×[𝑚𝑑]
and L be the leakage of the range tree scheme with URC (respectively,

the quadtree scheme with BRC). The set of databases L-equivalent to
𝐷 corresponds to the symmetries of a 𝑑-cube.

5 THE RANGE-BRC ATTACK

The canonical ranges of the Range-BRC scheme correspond to

ranges in a range tree i.e., dyadic ranges. The client uses BRC

to compute the tokensets. Demertzis et al [19, 20] and Falzon et

al. [26] both describe schemes utilizing range trees with BRC in

one and multiple dimensions, respectively. This attack applies to

both constructions, in addition to any EMM constructions that use

range trees with BRC and leak volume and search pattern leakage.

209

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

abcde
fghijkl
mnop

abcdefgh
ijklmnop

abcd efgh

ijkl
mnop

ab
cd

cdab

dcba

ef
gh

ghef

hgfe

ij
kl

klij

lkji

mn
op

opmn

ponm

ijkl mnop imjn
kolp

im
jn

lpkojnim

ko
lp

abcd
efgh ae

im

cgko
dhlp

aeim
bfjn

dh
lp

bf
jn

cg
ko

4 d h l p
c g3

2
1

4321

k o
b f
a e

j n
i m

abcd
efgh

ae
bf

dhcgbfae

cg
dh

d

cba

h

g

l

k

j

i

p

on

m

cd

f

ab

eim

jn

ef

ko cg

ij
dh

op mn

lp

ae

bf

cg
dhgh

im
jn

ko
lp

ae
bf

kl

ef
gh

ij
kl

imjn
kolp

abcd
efgh

bf
jn

cg
ko

aeim
bfjn

cgko
dhlp

abcde
fghijkl
mnop

g k

jfjn

ef

ko cg

ij

bf

gh kl

g k

jfbf

gh

cg ko

kl

jn

ef ij

4 1 4 2 9
2 33

2
1

4321

3 2
3 5
7 9

5 1
8 6

3 3

553

4

2 2

2

1

9 8

(a)

(b)

(c)

ae
im

dh
lp

ab
cd

mn
op

c g k
b f
a e

j
i

kcg ijae
bf

Find the smallest
response with

kij cg

7ae
bf

(d)

-
3

f
9

=
e

b
a

…

7a
6m
1d
9p

3 3

553

4

2 2

2

1

9 8

91

7 6

G

Gtrim

g k

jf3

4

2 2

2

1

9 8?

(e)

Figure 4: Attack on Range-BRC for a 2D domain (Algorithms 3 and 4). (a) Domain with volume of each point and range tree. (b) Similar to the

1D case, we create the co-occurrence graph𝐺 (Algorithm 3, Line 4). (c) We also create𝐺trim (Algorithm 3, Line 28). (d) Algorithm 4 extrapolates

the volume at the boundary domain points. We can find the volumes of domain points that are extreme only in one dimension by replacing

each such non-leaf node in𝐺′ with its volume minus the volume of its neighbor (Algorithm 4, Line 2). For example, we find the volume at 𝑒 by

subtracting the volume of 𝑓 from 𝑒 𝑓 . For each missing volume (domain values extreme in more than one dimensions), say the volume at 𝑎, we

find node 𝑘 , diagonal to 𝑎 and 2 away in each dimension that 𝑎 is extreme in. We then identify two neighbors of 𝑘 in𝐺trim, {𝑖 𝑗 }, {𝑐𝑔}, such that

the smallest tokenset (Algorithm 4, Line 13) containing 𝑘 , {𝑖 𝑗 } and {𝑐𝑔} contains {𝑎𝑒𝑏𝑓 } (which is the token corresponding to a 2x2 square that

contains 𝑎). Since we know all the volumes but for 𝑎’s, we can extrapolate the volume of 𝑎 (Algorithm 4, Line 14). (e) We similarly identify

corner node volumes (𝑎, 𝑑 , 𝑝,𝑚), combine them with the augmented grid, and reconstruct the database.

5.1 Reconstruction Attack

We present an attack against Range-BRC that achieves polynomial

run-time. This attack is more complex than the ones presented so far,

as these previous attacks exploited co-occurrences of neighboring

domain point tokens. However, these co-occurrences do not exist in

Range-BRC, and instead, we exploit knowledge of the structure of

the tree. For example, leaf node tokens appear in different patterns

than non-leaf nodes. Our algorithm extracts the leaf nodes of each

single-dimensional tree in the range tree, and then orders them to

reconstruct the database.

Our attack is presented in Algorithms 3 and 4. Recall the defi-

nitions of core and boundary of the domain from Section 2. Algo-

rithm 3 reconstructs the database records in the core of the domain.

Notably, the reconstruction is based primarily on structure and

search pattern leakage. For the core of the database, we are able

to identify exactly which tokens correspond to each domain point.

The volume pattern leakage is used only in the final step, to assign

the number of records on each point of the core.

Reconstructing the records on the boundary of the domain re-

quires different techniques. Algorithm 4 utilizes both volume leak-

age and structure pattern to determine the number of records on

the boundary. This complication is due to information theoretic

limitations specific to nodes with extreme values. For example, the

tokens corresponding to the corners of the database never appear

in a tokenset with other tokens. If they are requested by the client,

they are always alone. Thus, there are no co-occurrences to exploit.

Instead we use the volumes of parent nodes (in the range tree) of

the corner nodes, along with their neighbors to infer the volumes

in the corner nodes. However, if two corners of the database have

the same volume, we cannot determine which token corresponds

to which node. This is an interesting case, where we can fully re-

construct the database, but we cannot fully reconstruct the client

queries i.e., determine which range corresponds to which token.

We define the following. A leaf node is a node that has no

children. A boundary node corresponds to a query that covers at

least one extreme domain value (nodes 𝑎 and 𝑝 are boundary nodes

in Figure 3(a)). A node that is not a leaf or boundary node is a core
node (rectangular in Figure 3(a)). The attack proceeds as follows:

(1) Create the co-occurrence graph. We find all distinct queries

that are mapped to a tokenset of size 2 and compute a co-

occurrence graph 𝐺 = (𝑉 , 𝐸) whose nodes 𝑉 correspond to

tree nodes and edges 𝐸 to pairs of tokens that form a tokenset

(Figure 3(b)).

(2) Infer the core nodes. We identify the core nodes in the

range tree (rectangular) in Figure 3(a)). Given query tokensets

(𝑠1, 𝑠2, 𝑠3), (𝑠1, 𝑠2) and (𝑠2, 𝑠3), and no query (𝑠1, 𝑠3), 𝑠2 is a core
node. Identifying the core nodes helps us identify the leaf nodes,

which are the nodes of the database grid.

(3) Trim the co-occurrence graph. Now, we want to distinguish

between the boundary and leaf nodes. Observe that leaf nodes

form triangular structures in𝐺 with their parent nodes (e.g. 𝑐-𝑎𝑏,

𝑏-𝑐 and 𝑏-𝑐𝑑 in Figure 3(a)). We remove any edges between core

nodes in𝐺 . Additionally, we use the number of times two tokens

appear in a tokenset together i.e. the edgecounts, to remove any

edges with edgecount more than two. This is because parents of

leaf nodes have an edgecount of two with one of their children,

but ancestors further up the tree have a higher edgecount. To

distinguish between leaf and non-leaf nodes that look identical

210

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

in 𝐺 , we use the original co-occurrence graph. After this step,

we have identified all the leaf nodes, each of which correspond

to a token of a single domain point. Next, we will order these

leaf nodes in a grid structure corresponding to the core of the

domain of the database.

(4) Core Grid Reconstruction. There is a component in 𝐺 that

contains a 𝑑-dimensional grid (Figure 3(d)) with nodes forming

the dotted triangular structures. Since we know the relationship

of the nodes in these structures, we can remove the core nodes

(Figure 3(c)), re-order, and reconstruct the core of the database.

(5) Inferring the extreme nodes’ volumes.We now extrapolate

the volumes of the boundary domain points. In our grid struc-

ture above (Figure 3(d)), we see that there are some nodes that

are core nodes. Replacing the core nodes with the core node’s

volume minus the volume of its neighbor, we can reconstruct

the volume of these domain points. If the core nodes replace

neighbors in the original co-occurrence graph 𝐺𝑜 , then we add

an edge between two such nodes. For each dimension 𝑖 ∈ [2, 𝑑]
in increasing order, we identify all missing volumes on the grid

that are on extreme domain values in 𝑖 dimensions. For each

such volume 𝑣 (e.g. the corner represented by 𝑎 in Fig. 4(c)), we

identify the tokens that surround the 𝑖-cube of size 2𝑖 whose

corner is 𝑣 . Then, we find the smallest tokenset that contains

these tokens. It contains one more token corresponding to the

𝑖-cube. Since we know the volumes of all the points but 𝑣 ’s, we

can extrapolate 𝑣 ’s volume. Once we identify all volumes of

nodes on extreme domain values in 𝑖 dimensions, we add the

relevant grid edges, based on the new nodes’ locations on the

grid (if necessary).

Theorem 6. Let 𝐷 be a database over a 𝑑-dimensional domain

of size𝑚 and 𝐷 be encrypted with the range tree scheme and best

range cover (BRC). Given the volume map for all range queries on 𝐷 ,

Algorithm 3 achieves full database reconstruction of 𝐷 by building in

𝑂 (𝑚4) time and 𝑂 (𝑚2
log

𝑑𝑚) space an 𝑂 (𝑚)-size representation of

the reconstruction space of 𝐷 . The input is available with probability

greater than 1− 1

𝑚2
after observing𝑂 (𝑚2

log𝑚) uniformly distributed

queries.

5.2 Reconstruction Space

Theorem 7. Let 𝐷 be a database with domain D = [𝑚1] × · · · ×
[𝑚𝑑] and let L be the leakage of the range tree scheme with range

covering algorithm BRC. The set of databases L-equivalent to 𝐷 cor-

responds to the symmetries of a 𝑑-cube.

The proof for Theorem 7 is similar to the proofs of Theorems 3

and 5. The leakage can be used to determine all neighboring rela-

tionships between ranges corresponding to points of the domain,

constructing a dense grid that covers the entire domain. The only

possible transformations for the database correspond to the sym-

metries of a 𝑑-cube.

6 SRC SCHEMES ATTACK

Our SRC attack applies to a broad range of schemes that can be in-

stantiated with the SRC algorithm – including the quadratic scheme,

the TDAG-SRC scheme, and the QDAG-SRC scheme. We describe

the QDAG-SRC and the quadratic scheme at the end.

Algorithm 3: RangeTreeReconstructionBRC (VM)
1: Let 𝐸,𝑄 be the keys (tokensets) of VM of size 2 and ≥ 2, respectively.

2:

3: (1) Create the co-occurrence graph.

4: Construct undirected graph𝐺 , whose nodes are the tokens observed,

and there is an edge between any two tokens that appear as a pair in 𝐸.

5: Let𝐺𝑜 = 𝐺

6:

7: (2) Infer the core nodes.

8: Initialize set core← ∅.
9: Initialize table edgecounts with edgecounts[𝑒] = 0, ∀𝑒 ∈ 𝐸.
10: for each tokenset 𝑆 ∈ 𝑄 do

11: Construct subgraph𝐺𝑆 of𝐺 induced by the nodes of 𝑆 .

12: // Graph𝐺𝑆 is an 𝑖-dimensional grid (1 ≤ 𝑖 ≤ 𝑑) (Lemma 3)

13: Let𝐶 be the subset of nodes of𝐺𝑆 with the smallest degree in𝐺𝑆 .

14: Let 𝐼 ← 𝑆 −𝐶 // 𝐼 is a subset of core nodes of 𝑆

15: Add 𝐼 to set core.
16: Remove any edges ∈ 𝐺𝑆 from𝐺 not connected to a node in𝐶 .

17: if |𝐶 | = 2 // We may be in a one dimensional slice. then

18: for each edge 𝑒 ∈ 𝐺𝑆 do

19: edgecounts[𝑒] ← edgecounts[𝑒] + 1
20:

21: (3) Trim the co-occurrence graph.

22: // Disambiguate identical components of the graph

23: for all node 𝑣 ∈ core do
24: if there is no edge 𝑒 incident on 𝑣 where edgecounts[𝑒] = 2 then

25: Remove node 𝑣 from𝐺

26: else

27: Find all neighbors of 𝑣 in𝐺 with edgecounts[(𝑣,𝑢)] = 2 and

remove them from𝐺 , but for one with the most edges in𝐺𝑜 .

28: Let𝐺trim be the largest component of𝐺 .

29:

30: (4) Core Grid Reconstruction.

31: // Contract edges between remaining core nodes

32: for each vertex 𝑢 ∈ 𝐺 , where 𝑢 ∈ core do

33: Let 𝑣, 𝑤 be the neighbors of 𝑢 in𝐺 .

34: Add edge (𝑣, 𝑤) to𝐺 , and remove node 𝑢 from𝐺 .

35: // Re-order the nodes in𝐺

36: for each connected subgraph 𝐻 of𝐺 do

37: // Ignore boundary nodes and make 𝐻 a grid.

38: Ignore any nodes with fewer than 2
𝑑
neighbors in 𝐻 .

39: Assign coordinates in [2,𝑚1 − 1] × · · · × [2,𝑚𝑑 − 1] to each vertex

of 𝐻 according to its position on the grid (e.g. one of the corners is

assigned value [2, . . . , 2] and each remaining node is assigned the

value [𝑎1, 𝑎2, . . . , 𝑎𝑑] such that the node is at distance 𝑎𝑖 − 2 from 2

in the 𝑖-th dimension.)

40: for each dimension 𝑖 of grid 𝐻 do

41: for one-dimensional section 𝑆 of 𝐻 along coordinate 𝑖 do

42: Construct subgraph𝐺𝑆 of 𝐻 induced by the nodes of 𝑆

43: Swap every other pair of nodes of𝐺𝑆

44: Apply any changes to𝐺𝑆 in𝐺

45: Label the nodes of𝐺 with their volume in VM.

46: // We have reconstructed the core of the database

47:

48: (5) Inferring the extreme nodes’ volumes.

49: 𝐺 = FindExtremeVolumes (VM,𝐺𝑜 ,𝐺) (Algorithm 4)

50: return𝐺

To generalize the attack, we leverage the notion of a range-

supporting data structure from [26]. A range-supporting data
structure for a domainD is a DAG𝐺 with a single source together

211

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

with a range covering algorithm RC. Each node of 𝐺 is associated

with a canonical range; we denote the canonical range of node 𝑣

in𝐺 with 𝑣 .𝑟𝑎𝑛𝑔𝑒 . The root node corresponds to the entire domain

and the edges of𝐺 denote containment i.e. an edge from vertex𝑢 to

𝑣 implies that 𝑢.𝑟𝑎𝑛𝑔𝑒 contains 𝑣 .𝑟𝑎𝑛𝑔𝑒 . For this attack, we require

two additional assumptions on the scheme: (1) that the canonical

ranges of the children partition the canonical range of the parent,

and (2) that the leaves are one-to-one with the domain points.

6.1 Reconstruction Attack

SRC schemes aremore difficult to attack thanURC and BRC schemes,

since SRC queries contain only a single (encrypted) range. This

prevents us from making the same spatial connections between

queries that enabled the prior attacks. In fact, Demetrzis et al. [20]

conjecture that even novel attacks could not achieve full database

reconstruction against their one-dimensional SRC schemes. Never-

theless, we show that we can indeed attack SRC schemes.

Let (𝐺, SRC) be a range-supporting data structure satisfying the

following two properties: (1) Every non-sink node 𝑣 in 𝐺 has a

subset of children 𝐶 , such that {𝑐.𝑟𝑎𝑛𝑔𝑒 : 𝑐 ∈ 𝐶} partition 𝑣 .𝑟𝑎𝑛𝑔𝑒 ,

and (2) sinks of 𝐺 are 1-1 with the domain point values. Our SRC

attack works on all schemes built with such a (𝐺, RC) pair.
We construct and solve an integer linear program (ILP) whose

constraints are based on the underlying DAG; The ILP is satisfied by

any database in the reconstruction space, given that every possible

range query has been issued exactly once. For every node 𝑣 in the

DAG (e.g. the QDAG) we associate a variable 𝑥𝑣 that corresponds to

the volume of 𝑣 .𝑟𝑎𝑛𝑔𝑒 . We first write a constraint relating the vol-

ume of each non-leaf node to its children. For example, in a QDAG,

the volume of a parent node 𝑣 must sum to the volumes associated

with the four children whose canonical ranges form quadrants of

𝑣 .𝑟𝑎𝑛𝑔𝑒 . For each non-sink 𝑣 in𝐺 wewrite the following constraint:

𝑥𝑣 =
∑︁
𝑐∈𝐶

𝑥𝑐 (2)

where𝐶 is the set of 𝑣 ’s children whose canonical ranges partition

𝑣 .𝑟𝑎𝑛𝑔𝑒 . Now suppose that every domain query has been issued

exactly once. We can determine exactly how many unique queries

correspond to each SRC node in𝐺 . We refer to this as the frequency

of the node. Let 𝐹 be the set of all frequencies. For a frequency 𝑓 ∈ 𝐹 ,
let𝑋𝑓 be the set of variables corresponding to nodes with frequency

𝑓 ,𝑛𝑓 = |𝑋𝑓 |, and𝑉𝑓 be the set of volumes with frequency 𝑓 . For 𝑓 ∈
𝐹 , we restrict the variables in 𝑋𝑓 to values in𝑉𝑓 , since there should

be a 1-1 correspondence between variables in𝑋𝑓 and volumes in𝑉𝑓 .

We implement the correspondence as follows. For each 𝑓 ∈ 𝐹 we

define a 𝑛𝑓 × 𝑛𝑓 matrix of Boolean variables 𝑏1,1, 𝑏1,2, . . . , 𝑏𝑛𝑓 ,𝑛𝑓

such that each row corresponds to a variable in𝑋𝑓 and each column

corresponds to a volume in 𝑉𝑓 . For each 𝑓 ∈ 𝐹 , we then write the

following constraints, where 𝑥𝑠 ∈ 𝑋𝑓 and 𝑣𝑡 ∈ 𝑉𝑓 .

𝑥𝑠 −
𝑛𝑓∑︁
𝑡=1

𝑣𝑡𝑏𝑠,𝑡 = 0;

𝑛𝑓∑︁
𝑠=1

𝑏𝑠,𝑡 = 1;

𝑛𝑓∑︁
𝑡=1

𝑏𝑠,𝑡 = 1 (3)

Our attack either needs to observe every range query exactly

once or needs knowledge of the query distribution. Given the distri-

bution, after observing enough queries, the adversary can deduce

Algorithm 4: FindExtremeVolumes(VM,𝐺𝑜 ,𝐺
′)

1: // Find volumes of extreme domain points

2: Replace any node with one neighbor in𝐺′ with its volume minus its

neighbors’ volume.

3: Add an edge between two new volume nodes, if the nodes they

replaced were connected in𝐺𝑜 .

4: Let𝐺′ consist only of its largest component, a 𝑑-dimensional grid

missing some nodes.

5: // We reconstruct the 𝑖-dimensional boundary sections in order

6: for 𝑖 ∈ [2, 𝑑] do
7: for nodes 𝑣 in𝐺′ missing a volume, extreme in any 𝑖 dimensions do

8: Let 𝑁𝑣 be the potential neighbors of 𝑣 in𝐺′.
9: Let 𝑐 be the common neighbor of 𝑁𝑣 in𝐺′ (not 𝑣).
10: Create 𝑁 ′𝑣 by finding the other (leaf) neighbors of 𝑐 in𝐺′ in the

same dimension as each node in 𝑁𝑣 .

11: Find the other common neighbor of 𝑁 ′𝑣 in𝐺′ that is not 𝑐 , 𝑐′

12: Create 𝑁 ′′𝑣 by finding the other (non-leaf) neighbors of 𝑐′ in𝐺trim

in the same dimension as each node in 𝑁 ′𝑣 .
13: Find the smallest key, 𝑘 , in VM that contains 𝑐′ and 𝑁 ′′𝑣 .
14: Let 𝑣’s volume be the sum of the volumes of all nodes in 𝑘 minus

the volumes of 𝑁𝑣, 𝑁
′′
𝑣 , 𝑐 and 𝑐

′
.

15: Add relevant edges for the new volume nodes based on their location

on the grid in𝐺′.
16: return𝐺′.

how many unique queries correspond to each tokenset. In the Ap-

pendix, we explain how an adversary can estimate the frequencies

given a dictionary mapping each search token to the number of

times it was observed and assuming that queries are issued uni-

formly at random. The adversary can then create constraints using

Equations 2 and 3 and use a generic ILP solver to reconstruct the

database.

Algorithm 5 takes as input VM and FM and returns grid graph

𝐺 whose nodes are labeled with volumes.

Theorem 8. Let (𝐺, SRC) be a range-supporting data structure for
a 𝑑-dimensional domain D such that:

(1) each non-sink 𝑣 in 𝐺 has a subset of children 𝐶 such that their

canonical ranges, {𝑐.𝑟𝑎𝑛𝑔𝑒 : 𝑐 ∈ 𝐶}, are a partition of 𝑣 .𝑟𝑎𝑛𝑔𝑒 ;

(2) the sinks of 𝐺 are one-to-one with the points in D.

Let 𝐷 be a database over D encrypted using the GenericRS scheme

from [26] with (𝐺, SRC) and 𝐷 as input and instantiated with an

EMM scheme that leaks volume and search pattern. Given the volume

map and frequency map for all range queries on 𝐷 , where each query

is issued exactly once, Algorithm 5 achieves full database reconstruc-

tion of 𝐷 . The input to the algorithm is available with probability

greater than 1− 1

𝑚2
after observing𝑂 (𝑚4

log𝑚) uniformly distributed

queries.

The effectiveness of Algorithm 5 depends on the size of the

reconstruction space, which is determined by the underlying data

structure (𝐺, SRC) and the database 𝐷 .

Our attack on SRC schemes is related to the attack byKornaropou-

los, Papamanthou, and Tamassia (KPT) [51], which approximately

reconstructs a database from one-dimensional range queries. The

KPT attack utilizes counting functions to determine the number of

canonical ranges that return a given (encrypted) response. This

information is used to build a system of equations that captures

212

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

the distance between consecutive records. In contrast, we build

a system of equations representing how the volume of canonical

ranges is distributed to its subranges, as given by the DAG. Our

attack assumes a uniform query distribution to observe all possible

queries with the same frequency and aims at full database recon-

struction. The KPT attack does not assume knowledge of the query

distribution and uses nonparametric estimators over a subset of the

possible queries to achieve an approximate reconstruction.

6.2 QDAG-SRC
Unlike previous schemes, theQDAG-SRC andQuadratic-SRC schemes

display symmetries other than those of the 𝑑-cube. We present a

database that demonstrates these additional symmetries, which

yields the following lower bound. The data structure underlying

the QDAG-SRC scheme is a modified region quadtree called a

quadtree-like DAG (QDAG). The QDAG was introduced by Falzon

et al. [26] to minimize false positives when using SRC.

To build a quadtree over a square 2D domain D, we start with a

standard quadtree over D. For any four canonical ranges R of the

same size that form a square, we add an additional five canonical

ranges of the same size: one between any two neighboring ranges

in R and one centered at the point where the four ranges in R meet.

In Figure 9 (a) we see an example of a set of canonical ranges R
and in (b) we see the additional five ranges overlapping them.

Theorem 9. Let 𝐷 be a dense database with domain D = [𝑚1] ×
· · · × [𝑚𝑑] and let L be the leakage of QDAG-SRC. Let 𝑆L be the set

of databases L-equivalent to 𝐷 . We have |𝑆L | ≥ 2
𝑑+2(𝑑−1) (𝑑) (𝑑!).

Before demonstrating a lower bound for the size of the recon-

struction space of the QDAG-SRC scheme, we first build intuition

with an example of aQuadtree-SRC scheme, i.e., a scheme whose

underlying data structure is a quadtree and whose range cover algo-

rithm is SRC. Recall that a region quadtree is a tree that recursively

partitions a square domain into 2
2
quadrants. Each non-leaf node 𝑣

has four children; each child of 𝑣 is associated with a quadrant of

𝑣 .𝑟𝑎𝑛𝑔𝑒 . Using SRC for a quadtree results in a false positive rate of

𝑂 (𝑚). As we will see, theQuadtree-SRC scheme – in contrast to the

QDAG-SRC scheme – is more secure at the expense of significantly

more false positives. We now state a lemma about the complexity

of the ILP needed to attack the QDAG-SRC scheme.

Lemma 1. Let 𝐷 be a database over domain D and EDB be the

encrypted database resulting from encrypting𝐷 with theQDAG-SRC
scheme. Let VM and FM be the volume map and frequency map

constructed from the query leakage of EDB. On input of VM and FM,

Algorithm 5 builds and solves an ILP of size 𝑂 (Ω(𝑑𝑚)).

6.3 Quadratic-SRC Scheme

One notable SRC scheme is the quadratic scheme [19, 25], or the

Quadratic-SRC scheme. This scheme stores a key-value pair for ev-

ery possible range query. A quadratic scheme over a 𝑑-dimensional

domain D can be represented as an range-supporting data struc-

ture, (𝐺, SRC), where 𝐺 is a DAG described as follows. Let Q be

the set of all possible 𝑑-dimensional range queries over D and as-

sociated with each range a node of 𝐺 ; the nodes are one-to-one

with the ranges in Q. For each pair of nodes 𝑢, 𝑣 add an edge from

𝑢 to 𝑣 if and only if 𝑢.𝑟𝑎𝑛𝑔𝑒 minimally contains 𝑣 .𝑟𝑎𝑛𝑔𝑒 . Since Q

Algorithm 5: GenericReconstructionSRC (VM, FM)
1: Let max be the maximum volume in FM.

2: Let 𝐹 be the set of frequencies in FM.

3: Let𝐺 be the underlying DAG and for each node 𝑣 ∈ 𝐺 , create integer

ILP variable 𝑥𝑣 with bounds [0,max].
4: for non-leaf node 𝑣 ∈ 𝐺 do add Equation 2 to the ILP.

5: for 𝑓 ∈ 𝐹 do add Equations 3 to the ILP.

6: Run the ILP solver to retrieve assignment 𝐴.

7: Let 𝐻 be a grid corresponding to the tokens forming leaves of the tree.

8: Label the nodes of 𝐻 with their volume in VM.

9: return 𝐻

contains all the single point ranges and no other range is minimally

contained by the single point ranges it is straightforward to see

that the leaves are indeed one-to-one with the domain points.

We further claim that 𝐺 is a unique DAG. To see that it is a

DAG, suppose for a contradiction that𝐺 is not a DAG. Then it must

contain a cycle 𝑣1, 𝑣2, . . . , 𝑣𝑘 , 𝑣1. But this means that 𝑣 .𝑟𝑎𝑛𝑔𝑒 mini-

mally contains 𝑣2 .𝑟𝑎𝑛𝑔𝑒 and 𝑣2 .𝑟𝑎𝑛𝑔𝑒 minimally contains 𝑣3 .𝑟𝑎𝑛𝑔𝑒 .

Extending this logic, we see that 𝑣1 .𝑟𝑎𝑛𝑔𝑒 must minimally contain

𝑣1 .𝑟𝑎𝑛𝑔𝑒 , which is a contradiction. To prove uniqueness, suppose

that construction of the DAG for a domain D resulted in two dis-

tinct graphs 𝐺 and 𝐺 ′. These graphs must differ in the existence of

at least one edge; WLOG suppose that the edge (𝑢, 𝑣) exists in 𝐺

and not in 𝐺 ′. By construction, the fact that (𝑢, 𝑣) is an edge in 𝐺

implies that 𝑢.𝑟𝑎𝑛𝑔𝑒 minimally contains 𝑣 .𝑟𝑎𝑛𝑔𝑒 . But since an edge

(𝑢, 𝑣) exists if and only if 𝑢.𝑟𝑎𝑛𝑔𝑒 minimally contains 𝑣 .𝑟𝑎𝑛𝑔𝑒 this

means that we would have also added this edge in the construction

of 𝐺 ′, hence a contradiction.
Since 𝐺 is a DAG satisfying all the conditions described in The-

orem 8, it follows that a database encrypted with the quadratic

scheme can be reconstructed with our SRC attack. This scheme

has been attacked using access and search pattern leakage in one-

dimensions [36, 47, 52] and in two-dimensions [25, 54]. Additionally,

the quadratic scheme has been attacked using volume pattern in

one-dimensions [37, 39, 47]. However, volume-based attacks in the

multi-dimensional setting remain an open problem.

Our SRC attack can utilize volume and search pattern leakage to

perform a database reconstruction attack on the quadratic scheme

on databases of arbitrary dimensions. However, we note that to

launch the attack, one would require computational resources that

we do not have. Since our attack is based on solving an ILP, it can

be fully parallelized; there are many tools available that solve ILPs

and exploit parallelization [40, 60]. Thus, we conjecture that even

the quadratic scheme in multiple dimensions is vulnerable to a

powerful adversary. We now state the following lower bound about

the reconstruction space of the quadratic-SRC scheme.

Theorem 10 ([25, 54]). Let 𝐷 be a database with domain D =

[𝑚1] × · · · × [𝑚𝑑] containing 𝑛 points and let L be the leakage of

the quadratic-SRC scheme with range covering algorithm SRC. Let 𝑆L
be the set of databases L-equivalent to 𝐷 . We have |𝑆L | ≥ 2

𝑛
, for

𝑑 > 1 and |𝑆L | = 2 for 𝑑 = 1.

Theorem 10 follows from the reconstruction space presented in

[25, 54] on two-dimensional databases. We conclude this section

213

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

(a) (b) (c) (d)

Figure 5: (a) Accuracy, (b) memory, and (c) runtime of our linear attack for 2D databases of different domain sizes, after observing different

percentages of prime-size queries. (d) Runtime of the attack on Gowalla, varying the number of records (in millions) and percent of prime-size

queries (25% (lightgray circle •), 50% (gray diamond ♦) , 75% (darkgray star★), plus sign 100% (black +)).

Cali Spitz

Figure 6:Median runtime in seconds (top) andmedianmemory usage

(GB) (bottom) of our attacks on the range-URC (blue circle •), range-
BRC (orange diamond ♦), and QDAG-SRC (green star★) schemes for

Cali and Spitz on different domain sizes.

by stating a lemma about the size of the ILP needed to attack the

Quadratic-SRC scheme.

Lemma 2. Let 𝐷 be a database over domainD and EDB be the en-

crypted database resulting from encrypting𝐷 with theQuadratic-SRC
scheme. Let VM and FM be the volume map and frequency map con-

structed from the query leakage of EDB. On input of VM and FM,

Algorithm 5 builds and solves an ILP of size 𝑂 (Ω(𝑑𝑚2)).

7 EXPERIMENTS

We experimentally evaluate the performance of our attacks using

the following real-world datasets:

Cali [53]: 21,047 lat-long points of California road intersections.

It was used in a prior attack [54].

Spitz [65] 28,837 latitude-longitude points of phone location

data of politician Malte Spitz between August 2009 and February

2010. It was used in several previous attacks [25, 50, 54].

Gowalla[15]: 6,442,892 latitude-longitude points from users

Figure 7: Runtime (left) in seconds and memory requirement (right)

in GB of our attacks on the range-URC (blue circle •), range-BRC (or-
ange diamond ♦), and QDAG-SRC (green star ★) schemes for the

Gowalla [25] × [25] dataset varying the number of records (in mil-

lions).

of the Gowalla social networking website between 2009 and 2010, a

dataset used in the experiments by Demertzis et al. [19]. We further

replicate Demertzis et al.’s Gowalla experiments by randomly

partitioning the dataset into 10 sets, each consisting of 500,000

records. We measure the indexing time and cost of our schemes by

increasing the domain size by a new set of 500,000 tuples.

7.1 Results

Weperformed experiments on our attacks on the Linear,Range-URC,
Range-BRC, andQDAG-SRC schemes. Our attacks always returned

the original database up to the symmetries of a 𝑑-cube, when given

the complete leakage as input including our reconstructions of

databases encrypted with the QDAG-SRC. For simplicity, we con-

sidered domains with all dimensions of the same size (i.e., 2D square

grids and 3D cube grids).

Figure 5 displays our results for the linear attack. In Figure 5(a)

we show the median accuracy of our attack against 2D databases

of different domain sizes, after observing different percentages

of prime queries. We measure the accuracy of our attack as the

percent of correctly reconstructed domain point volumes. This

attack achieves great accuracy with a relatively small percent of

prime queries. The attack requires little storage space (Figure 5(b)),

but as the domain size increases so does the runtime (Figure 5(c)).

We also ran our attack against a [25] × [25] Gowalla dataset,

varying the number of records from 1 million to 6 million. The

runtime is only affected by the domain size. For 2D ranges, we

214

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

could transform the leakage into access and search pattern leakage

and input it to the approximate database reconstruction attack on

2D databases from [54]. However, this results in loss of information,

making the reconstruction space potentially exponentially larger.

We also ran our attacks on the Range-URC, Range-BRC and

QDAG-SRC schemes. We used Spitz and Cali normalized at dif-

ferent domain sizes to demonstrate our attacks in Figure 6. We

observe elbows in our plots as we increase the domain size. We

believe this is caused by variance in the speed of our computing

grid between machines with higher versus lower memory. The

QDAG-SRC attack took the longest time and generally required

more memory, since it involved solving an ILP. The Range-URC
attack was the most efficient. We also ran these attacks against the

Gowalla dataset to observe how the number of records affects the

runtime and memory (Figure 7). We observed that the attacks are

generally not affected. TheQDAG-SRC attack against theGowalla

dataset (Figure 7) shows some random variance in the runtime and

memory needed. We believe this is due to randomness in the solver

that causes it to take different search paths on each execution.

Our attacks, with the exception of the linear attack, require the

adversary to observe all queries at least once. In Figure 8, we exper-

imentally show how many queries the adversary needed to sample

under the Uniform, Gaussian(1/2,1/5), and Beta(1,1.2) distributions

over different database domain sizes until they observed each query

at least once. We also plot the Baseline, which depicts the number

of possible queries per domain size. The number of queries needed

to perform each attack scales with the size of the domain. We note

that even as the domain size increases, the adversary needs a similar

number of queries across all distributions.

Implementation Details. We implemented our URC, BRC, and

SRC attacks in Python 3.9.2; we implemented the linear attack in

C++ using a library for PQ-trees [34]. We ran all of our experiments

on a compute cluster. For simplicity, we used the same compute

node for the client and the server; our results do not include any

network transmission latency.

For cryptographic primitives, we used the Python cryptography
library version 3.4.7 [62]. To match the evaluation of Demertzis

et al. [19], we used SHA-512 for PRFs and AES-CBC (with 128-bit

block size) for encryption. For our underlying EMM scheme, we

implemented Π
bas

from Cash et al. [11]. We used the CP-SAT solver

from Google’s ortools package [60] as our ILP solver.

8 TAKEAWAYS

8.1 General Techniques

We describe a number of new combinatorial and linear program-

ming techniques that apply to the non-interactive 1D range search

schemes in [19, 24] and the non-interactivemulti-dimensional range

search schemes in [26]. One key property that we leverage in the

Linear, URC, and BRC attacks is token co-occurrences. Our general

approach to capturing token co-occurrences is to encode the rela-

tionships using graphs; in these graphs, nodes correspond to tokens,

and edges correspond to pairs of tokens that appear together in

(certain) tokensets. These graphs capture important information

about the underlying data structure, from which we can reconstruct

the data. One important piece of information we are able to extract

from such graphs is linear substructures, the one-dimensional

Domain Size

Domain Size

Q

ue
rie

s

Q
ue

rie
s

Figure 8: (Left) 2D and (Right) 3D number of queries sampled under

the Uniform (blue diamond ♦), Beta(1,1.2) (turquoise square ■), and
Gaussian(1/2,1/5) (skyblue circle •) distributions until all unique

queries are observed vs. domain size. Also shown is the Baseline

(navy star★), i.e., the total number of possible queries.

substructures of the underlying data structure. Once the linear

substructures have been extracted, we can piece them together to

re-create the multi-dimensional database. In our Linear attack, this

corresponds to constructing the one-dimensional sections (lines

1-10 of Algorithm 1). In our Range-BRC attack, this corresponds to

identifying potential one-dimensional slices (lines 14-16 of Algo-

rithm 3). SRC schemes, on the other hand, do not leak co-occurrence

information and we thus describe a different approach for attacking

SRC schemes. Our ILP attack is SRC scheme agnostic; it works

effectively against all SRC schemes satisfying two very standard

characteristics: (1) for each node 𝑣 , the canonical ranges of (poten-

tially a subset of) the children of 𝑣 partition 𝑣 .𝑟𝑎𝑛𝑔𝑒; and (2) the

sinks are one-to-one with the domain points.

8.2 Comparing our Attacks to Prior Work

Prior attacks (e.g., [25, 47, 52, 54]) consider a “generic” leakage

that is implementation-independent. This leakage is a common-

denominator leakage found in most efficient schemes and can con-

cretely be attributed to the quadratic scheme – a theoretical scheme

that stores one key-value pair for each range and which requires

too much storage for most practical scenarios. Our attacks lever-

age implementation-specific leakage of concrete response-hiding

schemes presented in the literature.

8.3 Extending our Attacks

The generality of our techniques enables us to apply our attacks

to multiple schemes. All the schemes described by Demertzis et

al. [19], Faber et al. [24] and Falzon et al. [26] leak either token

co-occurrences or use SRC as a range cover; in fact, we are able

to attack all six schemes in [26]. Our attack against Range-URC
is applicable to schemes that leak information about neighboring

215

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

points, e.g.,Quad-BRC. Similarly, our SRC attack is applicable to

schemes that return a single range cover and satisfy two standard

characteristics, such asQDAG-SRC andQuadratic-SRC. One could
describe other schemes, such as the quadratic scheme with BRC.

Since every possible range in the domain is itself a canonical range,

then the best range cover always results in a single token. General-

izing the BRC attack to other data structures beyond range trees

remains an open question. We conjecture that the techniques we

developed, such as identification of the inner nodes of the tree,

could be extended to other data structures.

8.4 Structure vs. Access Pattern

Access pattern is considered to leak more information than search

or volume pattern, as it reveals co-occurrences in the responses,

allowing an adversary to determine which (encrypted) records

appear in a range together. In this paper, we show that structure

pattern, alongwith volume pattern can be as (if notmore) dangerous

as access pattern. Consider a database that supports two-attribute

range queries. If the database leaks access and search pattern, then

the reconstruction space is exponential to the number of records

𝑂 (2𝑛) [25, 54]. We show that all concrete schemes from Falzon et al.

[26] that do not have false positives have a reconstruction space of

size at most 8 in two dimensions. Structure pattern can be thought

of as access pattern for the nodes of the underlying data structure.

8.5 Mitigations

There are many techniques that could mitigate these attacks at

the expense of some performance. The main technique used in

these attacks (besides the SRC attack) is the exploitation of token

co-occurrences. To reduce the effectiveness of this technique, the

client could batch their queries, sending two or more queries at a

time. This way, the adversary cannot be certain of which tokens

correspond to the same query (unless more queries are observed).

Note, if we know that records 𝑎 and 𝑏 are neighbors and that

records 𝑏 and 𝑐 are neighbors, we can infer that 𝑎 and 𝑐 are also

close. The client could disallow such neighboring queries, thus

restricting the adversary’s ability to reconstruct local information.

Our linear attack specifically uses prime queries to extract one-

dimensional information. To prevent this, the client could round up

prime-sized queries. Generally, our attacks, with the exception of

the SRC attack, depend on the existence of linear substructures (1D

ranges) in the multi-dimensional space. Our linear attack finds all

prime-sized queries because they all correspond to 1D sections of

the database. The URC attack identifies 1D sections of size 2. The

BRC attack also depends on utilizing 1D sections. A general mitiga-

tion technique would be to only return 𝑑-dimensional range queries

i.e., ranges with at least two domain points in each dimension.

Toward mitigating the SRC attack, the client could take advan-

tage of the large amount of queries required by the attack and

periodically rebuild the EDB. This would hinder the adversary’s

progress, but not defend against the attack completely since the

adversary may be able to store and reuse previously inferred infor-

mation. This attack could also be mitigated by adding false records

to the responses. Other mitigation techniques include frequency

smoothing [35, 56] and oblivious data structures (e.g. [18]). We

leave studying the effectiveness of these mitigations to future work.

9 CONCLUSION

We are the first to systematically explore structure pattern leak-

age from range queries, which is inherent to any efficient range

search scheme for an encrypted database. We show that along with

search and volume pattern leakage, structure pattern leakage can

be as dangerous as access pattern leakage, as demonstrated by the

relative sizes of the reconstruction spaces. We present the first

attacks on range search schemes for databases with arbitrary di-

mensions. Our attacks achieve full database reconstruction even on

SRC schemes, which were previously considered very secure. Our

attacks prompt the exploration of mitigation techniques such as

frequency smoothing [35], rounding the ranges to a specified inte-

ger multiple [56], batching queries, periodic rebuilding, avoiding

one-dimensional queries, oblivious data-structures and alternate

range decomposition approaches.

ACKNOWLEDGMENTS

Work supported in part by the National Science Foundation, the

Kanellakis Fellowship at Brown University, and a gift from the

NetApp University Research Fund, a corporate advised fund of

Silicon Valley Community Foundation. The authors would also like

to thank William Schor for his preliminary contributions to the

implementation of the schemes. Part of this research was conducted

using computational resources of the Center for Computation and

Visualization at Brown University.

REFERENCES

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. 2004. Order Preserving Encryption

for Numeric Data. In Proc. ACM SIGMOD International Conference on Management

of Data (Paris, France) (SIGMOD). 12 pages.

[2] J. L. Bentley and J. H. Friedman. 1979. Data Structures for Range Searching. ACM

Comput. Surv. 11, 4 (Dec. 1979), 13 pages.

[3] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shmatikov. 2018. The

Tao of Inference in Privacy-Protected Databases. Proc. VLDB Endow. 11, 11 (July

2018), 14 pages.

[4] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage

Abuse Attacks. In 27th Annual Network and Distributed System Security Sympo-

sium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet

Society.

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. 2009. Order-Preserving Symmet-

ric Encryption. In Advances in Cryptology - EUROCRYPT 2009. Berlin, Heidelberg.

[6] K.S. Booth and G. S. Lueker. 1976. Testing for the consecutive ones property, in-

terval graphs, and graph planarity using PQ-tree algorithms. Journal of computer

and system sciences 13, 3 (1976).

[7] Raphael Bost. 2016. Sophos: Forward Secure Searchable Encryption. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New

York, NY, USA, 1143–1154. https://doi.org/10.1145/2976749.2978303

[8] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and Backward

Private Searchable Encryption from Constrained Cryptographic Primitives. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,

New York, NY, USA, 1465–1482. https://doi.org/10.1145/3133956.3133980

[9] Cynthia Braund and Pramod Borkar. 2022. MongoDB Releases Queryable En-

cryption Preview. https://www.mongodb.com/blog/post/mongodb-releases-

queryable-encryption-preview.

[10] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

Abuse Attacks Against Searchable Encryption. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security (Denver, Colorado,

USA) (CCS ’15). Association for Computing Machinery, New York, NY, USA,

668–679. https://doi.org/10.1145/2810103.2813700

[11] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable En-

cryption in Very-Large Databases: Data Structures and Implementation. In

21st Annual Network and Distributed System Security Symposium, NDSS 2014,

San Diego, California, USA, February 23-26, 2014. The Internet Society, Reston,

216

https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/3133956.3133980
https://www.mongodb.com/blog/post/mongodb-releases-queryable-encryption-preview
https://www.mongodb.com/blog/post/mongodb-releases-queryable-encryption-preview
https://doi.org/10.1145/2810103.2813700

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

VA, USA. https://www.ndss-symposium.org/ndss2014/dynamic-searchable-

encryption-very-large-databases-data-structures-and-implementation

[12] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.C. Roşu, and M. Steiner. 2013. Highly-

Scalable Searchable Symmetric Encryption with Support for Boolean Queries. In

Advances in Cryptology – CRYPTO 2013. Berlin, Heidelberg.

[13] Javad Ghareh Chamani, Dimitrios Papadopoulos, Mohammadamin Karbas-

forushan, and Ioannis Demertzis. 2022. Dynamic Searchable Encryption with

Optimal Search in the Presence of Deletions. In 31st USENIX Security Symposium,

USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, Kevin R. B. Butler

and Kurt Thomas (Eds.). USENIX Association, 2425–2442.

[14] M. Chase and S. Kamara. 2010. Structured Encryption and Controlled Disclosure.

In Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on

the Theory and Application of Cryptology and Information Security, Singapore,

December 5-9, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6477).

Springer International Publishing, Cham.

[15] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and Mobility:

User Movement in Location-Based Social Networks. In Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(San Diego, California, USA) (KDD ’11). Association for Computing Machinery,

New York, NY, USA, 1082–1090. https://doi.org/10.1145/2020408.2020579

[16] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable

Symmetric Encryption: Improved Definitions and Efficient Constructions. In

Proceedings of the 13th ACMConference on Computer and Communications Security

(Alexandria, Virginia, USA) (CCS ’06). Association for Computing Machinery,

New York, NY, USA, 79–88. https://doi.org/10.1145/1180405.1180417

[17] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. 2020. Dynamic Searchable Encryption with Small Client

Storage. In 27th Annual Network and Distributed System Security Symposium,

NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet Society.

[18] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and

Saurabh Shintre. 2020. SEAL: Attack Mitigation for Encrypted Databases via

Adjustable Leakage. In USENIX Security Symposium. 2433–2450.

[19] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-

giannakis, and Minos Garofalakis. 2016. Practical Private Range Search Revisited.

In Proceedings of the 2016 International Conference on Management of Data (San

Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,

New York, NY, USA, 185–198. https://doi.org/10.1145/2882903.2882911

[20] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-

giannakis, Minos Garofalakis, and Charalampos Papamanthou. 2018. Practical

Private Range Search in Depth. ACM Trans. Database Syst. 43, 1, Article 2 (2018),

52 pages. https://doi.org/10.1145/3167971

[21] Ioannis Demertzis, Charalampos Papamanthou, and Rajdeep Talapatra. 2018.

Efficient Searchable Encryption Through Compression. Proc. VLDB Endow. 11,

11 (2018), 1729–1741. https://doi.org/10.14778/3236187.3236218

[22] F. Betül Durak, Thomas M. DuBuisson, and David Cash. 2016. What Else is

Revealed by Order-Revealing Encryption?. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security (Vienna, Austria) (CCS

’16). Association for Computing Machinery, New York, NY, USA, 1155–1166.

https://doi.org/10.1145/2976749.2978379

[23] Zachary Espiritu, Evangelia Anna Markatou, and Roberto Tamassia. 2022. Time-

and Space-Efficient Aggregate Range Queries over Encrypted Databases. Proc.

Priv. Enhancing Technol. 2022, 4 (2022), 684–704. https://doi.org/10.56553/popets-

2022-0128

[24] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and

Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact Matches.

In Computer Security – ESORICS 2015, Günther Pernul, Peter Y A Ryan, and Edgar

Weippl (Eds.). Springer International Publishing, Cham, 123–145.

[25] Francesca Falzon, Evangelia AnnaMarkatou, Akshima, David Cash, Adam Rivkin,

Jesse Stern, and Roberto Tamassia. 2020. Full Database Reconstruction in Two

Dimensions. In Proceedings of the 2020 ACM SIGSAC Conference on Computer

and Communications Security (Virtual Event, USA) (CCS ’20). Association for

Computing Machinery, New York, NY, USA, 443–460. https://doi.org/10.1145/

3372297.3417275

[26] Francesca Falzon, Evangelia Anna Markatou, Zachary Espiritu, and Roberto

Tamassia. 2022. Range Search over Encrypted Multi-Attribute Data. Proc. VLDB

Endow. 16, 4, 587–600.

[27] Francesca Falzon and Kenneth G. Paterson. 2022. An Efficient Query Recovery

Attack Against a Graph Encryption Scheme. In Computer Security – ESORICS

2022, Vijayalakshmi Atluri, Roberto Di Pietro, Christian D. Jensen, and Weizhi

Meng (Eds.). Springer International Publishing, Cham, 325–345.

[28] R. A. Finkel and J. L. Bentley. 1974. Quad Trees a Data Structure for Retrieval on

Composite Keys. Acta Informatica 4, 1 (mar 1974), 1–9.

[29] C. Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation.

Stanford University, Stanford, CA, USA. Advisor(s) Boneh, D.

[30] Marilyn George, Seny Kamara, and Tarik Moataz. 2021. Structured Encryption

and Dynamic Leakage Suppression. In Advances in Cryptology – EUROCRYPT

2021, Anne Canteaut and François-Xavier Standaert (Eds.).

[31] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili. 2018. New

Constructions for Forward and Backward Private Symmetric Searchable Encryp-

tion. In Proc. ACM Conf. on Computer and Communications Security (Toronto,

Canada) (CCS ’18). New York, NY, USA, 18 pages.

[32] Esha Ghosh, Seny Kamara, and Roberto Tamassia. 2021. Efficient Graph En-

cryption Scheme for Shortest Path Queries. In Proceedings of the 2021 ACM

Asia Conference on Computer and Communications Security (Virtual Event, Hong

Kong) (ASIA CCS ’21). Association for Computing Machinery, New York, NY,

USA, 516–525. https://doi.org/10.1145/3433210.3453099

[33] O. Goldreich and R. Ostrovsky. 1996. Software Protection and Simulation on

Oblivious RAMs. J. ACM 43, 3 (May 1996), 43 pages.

[34] Greg Grothaus. 2011. PQTrees. https://github.com/Gregable/pq-trees. Accessed:

2022-01-12.

[35] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,

Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency Smoothing

for Encrypted Data Stores. In 29th USENIX Security Symposium (USENIX Security

20). USENIX Association, Berkeley, CA, USA, 2451–2468. https://www.usenix.

org/conference/usenixsecurity20/presentation/grubbs

[36] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson. 2019. Learning to

Reconstruct: Statistical Learning Theory and Encrypted Database Attacks. In

Proc. IEEE Symp. on Security and Privacy (S&P). New York, NY, USA.

[37] Paul Grubbs, Marie-Sarah Lacharite, Brice Minaud, and Kenneth G. Paterson.

2018. Pump up the Volume: Practical Database Reconstruction from Volume

Leakage on Range Queries. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security (Toronto, Canada) (CCS ’18). Association

for Computing Machinery, New York, NY, USA, 315–331. https://doi.org/10.

1145/3243734.3243864

[38] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. 2017.

Leakage-Abuse Attacks against Order-Revealing Encryption. In Proc. IEEE Symp.

on Security and Privacy (SP). New York, NY, USA.

[39] Z. Gui, O. Johnson, and B.Warinschi. 2019. Encrypted Databases: New Volume At-

tacks against Range Queries. In Proc ACMConf. on Computer and Communications

Security (CCS).

[40] Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:

//www.gurobi.com

[41] F. Hahn and F. Kerschbaum. 2016. Poly-Logarithmic Range Queries on Encrypted

Data with Small Leakage. In Proc. ACM Cloud Computing Security Workshop

(Vienna, Austria) (CCSW). 12 pages.

[42] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.

In Proc. Annual Network and Distributed System Security Symposium (NDSS). The

Internet Society.

[43] Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos Treiber,

and Michael Yonli. 2022. SoK: Cryptanalysis of Encrypted Search with LEAKER

– A framework for LEakage AttacK Evaluation on Real-world data. In 2022 IEEE

7th European Symposium on Security and Privacy (EuroS&P). 90–108. https:

//doi.org/10.1109/EuroSP53844.2022.00014

[44] Seny Kamara and Tarik Moataz. 2019. Computationally Volume-Hiding Struc-

tured Encryption. In Advances in Cryptology - EUROCRYPT - Part II (Lecture Notes

in Computer Science, Vol. 11477). Springer, 183–213.

[45] S. Kamara and C. Papamanthou. 2013. Parallel and Dynamic Searchable Symmet-

ric Encryption. In Financial Cryptography and Data Security. Berlin, Heidelberg.

[46] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

Searchable Symmetric Encryption. In Proceedings of the 2012 ACM Conference

on Computer and Communications Security (Raleigh, North Carolina, USA) (CCS

’12). Association for Computing Machinery, New York, NY, USA, 965–976. https:

//doi.org/10.1145/2382196.2382298

[47] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security (Vienna, Austria) (CCS

’16). Association for Computing Machinery, New York, NY, USA, 1329–1340.

https://doi.org/10.1145/2976749.2978386

[48] Evgenios M. Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou, and

Alexandros Psomas. 2022. Leakage Inversion: Towards Quantifying Privacy

in Searchable Encryption. In Proceedings of the 2022 ACM SIGSAC Conference

on Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22).

Association for Computing Machinery, New York, NY, USA, 1829–1842. https:

//doi.org/10.1145/3548606.3560593

[49] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia. 2019. Data Recovery

on Encrypted Databases with 𝑘-Nearest Neighbor Query Leakage. In Proc. IEEE

Symp. on Security and Privacy (S&P).

[50] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia. 2020. The State of the

Uniform: Attacks on Encrypted Databases Beyond the Uniform Query Distribu-

tion. In Proc. IEEE Symp.on Security and Privacy (S&P).

[51] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2021. Response-Hiding Encrypted Ranges: Revisiting Security via Parametrized

Leakage-Abuse Attacks. In Proc. IEEE Symp. on Security and Privacy (S&P).

217

https://www.ndss-symposium.org/ndss2014/dynamic-searchable-encryption-very-large-databases-data-structures-and-implementation
https://www.ndss-symposium.org/ndss2014/dynamic-searchable-encryption-very-large-databases-data-structures-and-implementation
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/2882903.2882911
https://doi.org/10.1145/3167971
https://doi.org/10.14778/3236187.3236218
https://doi.org/10.1145/2976749.2978379
https://doi.org/10.56553/popets-2022-0128
https://doi.org/10.56553/popets-2022-0128
https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1145/3433210.3453099
https://github.com/Gregable/pq-trees
https://www.usenix.org/conference/usenixsecurity20/presentation/grubbs
https://www.usenix.org/conference/usenixsecurity20/presentation/grubbs
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1109/EuroSP53844.2022.00014
https://doi.org/10.1109/EuroSP53844.2022.00014
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/3548606.3560593
https://doi.org/10.1145/3548606.3560593

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

[52] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. 2018. Improved

Reconstruction Attacks on Encrypted Data Using Range Query Leakage. In 2018

IEEE Symposium on Security and Privacy (SP). 297–314. https://doi.org/10.1109/

SP.2018.00002

[53] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua

Teng. 2005. On Trip Planning Queries in Spatial Databases. In Advances in Spatial

and Temporal Databases. Berlin, Heidelberg, 273–290.

[54] Evangelia Anna Markatou, Francesca Falzon, Roberto Tamassia, and William

Schor. 2021. Reconstructingwith Less: LeakageAbuseAttacks in TwoDimensions.

In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-

nications Security (Virtual Event, Republic of Korea) (CCS ’21). Association for

Computing Machinery, New York, NY, USA, 2243–2261.

[55] Evangelia Anna Markatou and Roberto Tamassia. 2019. Full Database Reconstruc-

tion with Access and Search Pattern Leakage. In Proc. Int. Conf. on Information

Security (ISC) (Lecture Notes in Computer Science). Springer.

[56] Evangelia Anna Markatou and Roberto Tamassia. 2019. Mitigation Techniques

for Attacks on 1-Dimensional Databases that Support Range Queries. In Proc. Int.

Conf. on Information Security (ISC) (Lecture Notes in Computer Science, Vol. 11723).

Springer.

[57] M. Naveed, M. Prabhakaran, and C. A. Gunter. 2014. Dynamic Searchable En-

cryption via Blind Storage. In 2014 IEEE Symposium on Security and Privacy. New

York, NY, USA.

[58] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not

Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In 30th

USENIX Security Symposium (USENIX Security 21). USENIX Association, 127–142.

https://www.usenix.org/conference/usenixsecurity21/presentation/oya

[59] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating

Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps

via Hashing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security (London, United Kingdom) (CCS ’19). Association for

Computing Machinery, New York, NY, USA, 79–93.

[60] Laurent Perron and Vincent Furnon. 2019. OR-Tools version 7.2. Google. https:

//developers.google.com/optimization/.

[61] David Pouliot and Charles V. Wright. 2016. The Shadow Nemesis: Inference At-

tacks on Efficiently Deployable, Efficiently Searchable Encryption. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security

(Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York,

NY, USA, 1341–1352.

[62] PythonCryptographic Authority. 2018. pyca/cryptography. https://cryptography.

io/ version 3.4.7.

[63] E. Shi, J. Bethencourt, T-H. H. Chan, D. Song, and A. Perrig. 2007. Multi-

Dimensional Range Query over Encrypted Data. In 2007 IEEE Symposium on

Security and Privacy (SP ’07). USA, 15 pages.

[64] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. 2000. Practical

Techniques for Searches on Encrypted Data. In 2000 IEEE Symposium on Security

and Privacy, Berkeley, California, USA, May 14-17, 2000. IEEE Computer Society,

New York, NY, USA, 44–55. https://doi.org/10.1109/SECPRI.2000.848445

[65] Malte Spitz. 2011. CRAWDAD dataset spitz/cellular (v. 2011-05-04). Downloaded

from https://crawdad.org/spitz/cellular/20110504.

[66] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. 2014. Maple:

Scalable Multi-Dimensional Range Search over Encrypted Cloud Data with Tree-

Based Index. In Proceedings of the 9th ACM Symposium on Information, Computer

and Communications Security (Kyoto, Japan) (ASIA CCS ’14). Association for

Computing Machinery, New York, NY, USA, 111–122. https://doi.org/10.1145/

2590296.2590305

[67] Jiafan Wang and Sherman SM Chow. 2022. Forward and Backward-Secure Range-

Searchable Symmetric Encryption. Proceedings on Privacy Enhancing Technologies

1 (2022), 28–48.

[68] Cong Zuo, Shi-Feng Sun, Joseph K Liu, Jun Shao, and Josef Pieprzyk. 2018. Dy-

namic searchable symmetric encryption schemes supporting range queries with

forward (and backward) security. In European Symposium on Research in Computer

Security (ESORICS) (LNCS). Springer, 228–246.

A PROOFS

A.1 Proof of Theorem 1

Proof. It is straightforward to see how one can build VM and

FM from the multiset {{SP(MM, 𝑞 (𝑖)))}}𝑖∈[𝑘] . To show the reverse,

we construct the structure pattern using VM and FM. Initialize an

empty multiset 𝑆 . For each tokenset t(𝑖) ∈ VM:

(1) Initialize an empty dictionary𝑀 .

(2) For each 𝑡 ∈ t(𝑖) set𝑀 [𝑡] ← VM[𝑡].
(3) 𝑓 ← FM[t(𝑖)]

(4) Add 𝑓 copies of𝑀 to the multiset 𝑆 .

Each issued query 𝑞 (𝑖) corresponds to a tokenset t(𝑖) i.e. the search
pattern of the canonical ranges that cover 𝑞. VM associates each

tokenset with the observed volume i.e. the volume pattern of the

response. Since each map𝑀 in 𝑆 is added as many times as the cor-

responding tokenset has been observed, then the structure pattern

multiset is in one-to-one correspondence with the multiset 𝑆 . □

A.2 Proof of Theorem 2

Proof. The first step of Algorithm 1 is to find any queries that

correspond to a set of search tokens of prime size, say set 𝑄 . The

size of the range being queried is leaked, as it is the number of

search tokens the client sends the server. If a range has prime size

𝑝 , then the query covers 𝑝 points in one dimension and one point

in the remaining dimensions. Thus, all queries in 𝑄 query are 1D

sections. The next step is to group queries that come from the same

one-dimensional section. Note that if two queries’ search token

intersection contains two or more elements, then the queries must

correspond to ranges along the same one-dimensional section. We

thus group queries in their corresponding one-dimensional section,

and create a PQ-tree for each one-dimensional section. The attack

then generates a graph 𝐺 that contains an edge between neighbor-

ing search tokens, representing a partial order reconstruction of

the search tokens. Once we map the search tokens to their corre-

sponding volumes, we achieve partial database reconstruction. If

the adversary has observed enough queries for the order of the in-

dividual one-dimensional sections to be fully reconstructed, graph

𝐺 is a 𝑑-dimensional grid fully ordering all search tokens, and thus

achieving full database reconstruction.

To achieve FDR, every PQ-tree must have enough information to

reconstruct the order of each one-dimensional section. Consider a

one-dimensional section, e.g. a row 𝑅. The search tokens in 𝑅 share

all values but one, the one corresponding to the first dimension.

Thus, their values span from 1 to𝑚1. Split the search tokens in two

groups: 𝐴 includes all search tokens with values less than 𝑚1/2
in the first dimension and 𝐵 contains the remaining points in 𝑅.

The PQ-tree can order these search tokens if in its input there

exists a range that starts before and a range that starts after every

search token. Thus, if the PQ-tree observes a range that starts

before every point in 𝐴 or ends before every point in 𝐵 or after

the last point of 𝐵, it can fully order the search tokens in 𝑅. Let’s

count the number of range queries that start at a specific point

in 𝐴, end anywhere in 𝐵 and have prime length. There are more

small prime numbers than larger. Thus, the worst case scenario is

our starting point being in the beginning of 𝐴. Thus, the possible

size of our range is between 𝑚1/2 and 𝑚1. We approximate the

number of prime numbers between 𝑚1/2 and 𝑁1 to be around

𝑚1

log𝑚1

− 𝑚1/2
log𝑚1/2 >

𝑚1/6
log𝑚1/6 , for𝑚1 > 26. Thus, the probability that

a range query satisfies these constraints is
1

𝑚1 log𝑚1𝑚
2

2
...𝑚2

𝑑

. Let 𝑥 =

𝑚1 log𝑚1𝑚
2

2
...𝑚2

𝑑
. After observing 10𝑥 log𝑥 queries, then we will

not have observed even one query satisfying the constraints with

probability (1 − 1/𝑥)10𝑥 log𝑥 ≈ 1

𝑥10
. There are𝑚1/2 such queries

from 𝐴 and 𝑚1/2 similar such queries from 𝐵. By union bound,

the probability that even one of them is missing is approximately

𝑚1

(𝑚1 log𝑚1𝑚
2

2
...𝑚2

𝑑
)10 ≤

1

𝑚5
. There are fewer than𝑚 rows, thus the

218

https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1109/SP.2018.00002
https://www.usenix.org/conference/usenixsecurity21/presentation/oya
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://cryptography.io/
https://cryptography.io/
https://doi.org/10.1109/SECPRI.2000.848445
https://crawdad.org/spitz/cellular/20110504
https://doi.org/10.1145/2590296.2590305
https://doi.org/10.1145/2590296.2590305

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

probability we missed one of them is ≤ 1

𝑚4
. We can make a similar

argument for each PQ tree, concluding that if the adversary observes∑𝑑
𝑖=1 Ω

(
𝑚2

𝑚𝑖
log𝑚𝑖 · log

(
𝑚2

𝑚𝑖
log𝑚𝑖

))
queries, Algorithm 1 achieves

FDR with probability greater than 1 − 1

𝑚2
.

The volumemap contains𝑂 (𝑚2) entries and in theworst case the
entries comprise of 𝑂 (𝑚) tokens and volumes. The algorithm thus

requires 𝑂 (𝑚3) storage. Algorithm 1 first identifies all tokensets of

prime size which takes 𝑂 (𝑚3) time. The Algorithm then identifies

which tokens correspond to the same one-dimensional slice. This

requires a loop over all 𝑂 (𝑚2) tokensets and on each loop doing

a set intersection between sets of size 𝑂 (𝑚), 𝑂 (𝑚2) times. Thus,

it takes 𝑂 (𝑚5) time. We then construct a PQ tree for each one-

dimensional slice and create the augmented graph 𝐺 , which takes

𝑂 (𝑚2) time. Thus, Algorithm 1 takes 𝑂 (𝑚5) time, 𝑂 (𝑚3) space
and succeeds with probability greater than 1 − 1

𝑚2
after observing∑𝑑

𝑖=1 Ω
(
𝑚2

𝑚𝑖
log𝑚𝑖 · log

(
𝑚2

𝑚𝑖
log𝑚𝑖

))
queries uniformly at random.

□

A.3 Proof of Theorem 3

Proof. Consider a token 𝑡 and its neighboring tokens 𝑡0, 𝑡
′
0
, 𝑡1, 𝑡

′
1
,

..., 𝑡𝑑 , 𝑡
′
𝑑
. There exists a range query that issues 𝑡 with each one of

its neighboring search tokens. There exists no query of size two

with 𝑡 that does not contain one of its neighbors as that query

would not correspond to a valid range. Combining all these queries,

we can construct a grid that covers the entire domain. This grid

is dense and does not allow for reflectable components as in [25].

Thus the reconstruction space only includes transformations of 𝐷

corresponding to the symmetries of a 𝑑-cube. □

A.4 Proof of Theorem 4

Proof. Rangetree with URC. Recall that URC “starts with

the set of nodes output by BRC, and keeps on breaking certain

nodes into their two children, until there is at least one node for

each level 0, . . . ,𝑚𝑎𝑥 , where𝑚𝑎𝑥 is the highest level of nodes in

the result” [19]. The attack constructs a graph 𝐺 that orders the

search tokens of ranges of size 1. We now show that (i) the nodes

of 𝐺 are one-to-one with the domain points; (ii) between any two

neighboring points in the domain, there is an edge between their

respective search tokens in𝐺 ; and (iii) no edge exists between search

tokens whose corresponding canonical ranges are not neighbors.

(i) By definition of URC, only range queries of size 1 result in

the client issuing a single token. On line 1 Algorithm 2, the attack

computes the set 𝑄1 of all tokensets of size 1. The algorithm then

defines graph 𝐺 = (𝑉 , 𝐸) on the vertex set 𝑉 = {𝑡 : {𝑡} ∈ 𝑄1},
therefore its nodes correspond to the domain points in D.

(ii) By definition of URC, it also follows that all range queries of

size 2 are covered with two canonical ranges. So to query a range

of size 2, a client must issue two search tokens: one for each of the

two points in the range. One line 2, the algorithm computes the

set 𝑄2 of tokensets of size 2 whose tokens appear in 𝑄1. For each

{𝑡, 𝑡 ′} ∈ 𝑄2, the algorithm adds the edge (𝑡, 𝑡 ′) to 𝐺 . Tokens 𝑡 and
𝑡 ′ must correspond to neighboring points inD and there is an edge

(𝑡, 𝑡 ′) in 𝐺 .

(iii) Let 𝑡 and 𝑡 ′ be tokens of non-neighboring points 𝑝, 𝑝 ′ ∈ D,

respectively. However, 𝑝 ∪ 𝑝 ′ is not a valid range. Thus {𝑡, 𝑡 ′} is
not a valid tokenset and the algorithm never adds edge (𝑡, 𝑡 ′) to 𝐺 .

From these three properties, it follows that 𝐺 contains a compo-

nent of size𝑚 that fully orders the point-value search tokens and

their volumes, thus resulting in full database reconstruction.

Quadtreewith BRC.Recall that the Quad-BRC scheme is a scheme

with exact cover and no false positives. As before, the algorithm

constructs a graph𝐺 that orders the search tokens of range queries

of size 1. We now prove that (i) the vertex set of 𝐺 contains the

search tokens corresponding to the domain points of D (ii) be-

tween any two neighboring points in the domain, there is an edge

between their respective search tokens in𝐺 ; and (iii) no edge exists

between search tokens whose corresponding canonical ranges are

not neighboring ranges of the same size.

(i) The leaves of the quadtree correspond to the individual do-

main points and thus, under BRC, a range of size 1 is covered by a

single canonical range of size 1. Correspondingly, the client issues

a single search token to query for a range of size 1. On line 1 Algo-

rithm 2 the algorithm computes the set 𝑄1 of all tokensets of size 1.

This set thus contains the tokensets of all range queries of size 1.

(ii) In the quadtree, all canonical ranges are hypercubes. Con-

sider a range of size 2; under BRC this range is covered using two

canonical ranges, one for each point . For all ranges of size two, the

client must issue two search tokens {𝑡, 𝑡 ′} such that {𝑡}, {𝑡 ′} ∈ 𝑄2.

Thus {𝑡, 𝑡 ′} ∈ 𝑄2 and the algorithm adds edge (𝑡, 𝑡 ′) to 𝐺 .
(iii) In a quadtree with BRC, a range query corresponds to two

search tokens if and only if the range can be covered by two neigh-

boring canonical ranges of the same dimension. For a contradiction,

suppose that 𝑟 and 𝑟 ′ are canonical ranges of unequal size such that

𝑟 ⊄ 𝑟 ′ and 𝑟 ′ ⊄ 𝑟 , and let 𝑡 and 𝑡 ′ be their corresponding search

tokens. Then 𝑟 ∪ 𝑟 ′ is not a hyper-rectangle and thus is not a valid

range query. This implies that the tokenset {𝑡, 𝑡 ′} cannot exist and
so the edge (𝑡, 𝑡 ′) is not added to 𝐺 .

Now suppose that 𝑟 and 𝑟 ′ are non-neighboring canonical ranges
of the same size, and let 𝑡 and 𝑡 ′ be their corresponding search

tokens. Once again, 𝑟 ∪ 𝑟 ′ is not a valid range, {𝑡, 𝑡 ′} is not a valid
tokenset, and thus (𝑡, 𝑡 ′) is never added to 𝐺 .

As before, full database reconstruction follows.

Complexity Analysis. For both schemes, the graph 𝐺 has size

𝑂 (𝑚). For the range scheme, the volumemap has size𝑂 (𝑚2
log

𝑑𝑚),
and thus it takes 𝑂 (𝑚2

log
𝑑𝑚) time to go through VM and con-

struct 𝐺 . For the quadtree, the volume map has size 𝑂 (𝑚2+𝑑−1/𝑑)
– the total number of queries 𝑂 (𝑚2) multiplied by the worst case

range cover 𝑂 (𝑚𝑑−1/𝑑).
If the adversary has observed all possible queries, which hap-

pens with high probability after Ω(𝑚2
log𝑚) uniformly distributed

queries by the coupon collector principle, graph 𝐺 contains all

search tokens corresponding to domain points and all edges corre-

sponding to range queries of size 2. □

A.5 Proof of Theorem 5

Proof. Rangetree with URC. Under URC, the client sends a

single search token only when it queries a canonical range of size 1,

219

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

i.e. a single point. Thus, all ranges of size 2 must be covered by two

ranges: one range for each of the two domain values in the range.

Let𝑄1 be the set of all tokensets of size one. And let𝑄2 be the set

of tokensets of size two consisting of only tokens appearing in 𝑄1.

Observe that there is a bijection fromD to search tokens appearing

in 𝑄1. This implies that there is a bijection from ranges of size two

to 𝑄2. Given 𝑄2, the client can thus construct a grid spanning the

domain of the database, thereby fully ordering the search tokens

and recovering their corresponding value. The reconstruction space

thus corresponds to the symmetries of a 𝑑-cube.

Quadtree with BRC. Under BRC, the only time that the client

sends a single search token is when it queries a canonical range,

i.e., a quadrant of size 2
𝑖𝑑

where 𝑖 ∈
[
0, 1
𝑑
log

2
𝑚

]
.

Let 𝑄1 and 𝑄2 be defined as before. In a quadtree with BRC, a

range query corresponds to two search tokens if and only if the

range can be covered by two neighboring canonical ranges of equal

size. Thus, for any range of size two, the client must issue a search

token for each point in the range.

Thus, there is an injective mapping from ranges of size two to

tokensets in𝑄2. Thus, given𝑄2, the adversary can construct a multi-

component graph whose components represent a partition of the

canonical ranges of the same size. There thus exists a component of

size𝑚, whose nodes correspond to the𝑚 domain points. From this

component, the adversary can extract a full ordering of the search

tokens and recover their corresponding value. The reconstruction

space is thus the symmetries of a 𝑑-cube. □

A.6 Proof of Theorem 6

Proof. First, we show that we can reconstruct the inner grid

database D and then we show that we can reconstruct the vol-

umes of the extreme points as well (up to the symmetries of the

square). Finally, we show that our algorithm succeeds with prob-

ability greater than 1 − 1

𝑚2
after observing Ω(𝑚2

log𝑚) queries
uniformly random queries in 𝑂 (𝑚4) time.

The first step of the algorithm is to construct a co-occurrence

graph 𝐺 with nodes search tokens (i.e. range tree nodes), and an

edge between two nodes if there is a tokenset consisting of the

two of them. Then, for each tokenset 𝑆 of size greater than two,

we observe a grid (Lemma 3) graph 𝐺𝑆 of 𝐺 induced by the nodes

of 𝑆 . In a one-dimensional query, this is a line graph. 𝐺𝑆 is also

a line graph when the nodes of 𝐺𝑆 cover the same ranges in all

dimensions but one. In case of a line graph, 𝐺𝑆 only has two nodes

that have the smallest degree. In all other cases, there are four or

more nodes that have the smallest degree, as they are the corners

of the grid.

We are able to identify all one-dimensional queries (including

some higher dimensional ones) by noting which tokensets have

only two nodes with the smallest degree in 𝐺𝑆 . The next step is to

identify the inner nodes that cover two domain points. We measure

the 𝑒𝑑𝑔𝑒𝑐𝑜𝑢𝑛𝑡 of each edge 𝑒 = (𝑠1, 𝑠2): the number of times 𝑠1 and

𝑠2 appear in our identified queries together. Note that a token cor-

responding to a query of size 2, 𝑠1, (e.g. 𝑔ℎ in Figure 3) is connected

in 𝐺 with another token 𝑠2, such that their edgecount is exactly

2. There are only two possible tokensets that contain 𝑠1 and 𝑠2 to-

gether, (𝑠1, 𝑠2) and (𝑠1, 𝑠2, 𝑠3), for some token 𝑠3. Extending the range

in either direction will replace either 𝑠1 or 𝑠2 with their ancestors.

For example, there are only 2 tokensets containing𝑔ℎ and 𝑖 together,

(𝑔ℎ, 𝑖) and (𝑔ℎ, 𝑖, 𝑓). Extending the range in one direction replaces

𝑔ℎ with {𝑒 𝑓 𝑔ℎ} and in the other direction replaces 𝑖 with {𝑖 𝑗}. Note
that any other one-dimensional tokens that cover a larger range,

have edges with higher edge counts as there are more possible

tokensets. For example, there are three tokensets containing 𝑒 𝑓 𝑔ℎ

and 𝑖 together,(𝑒 𝑓 𝑔ℎ, 𝑖), (𝑒 𝑓 𝑔ℎ, 𝑖, 𝑑) and (𝑒 𝑓 𝑔ℎ, 𝑖, 𝑐𝑑). Extending the

range in one direction replaces 𝑔ℎ with {𝑒 𝑓 𝑔ℎ} and in the other di-

rection replaces 𝑖 with {𝑖 𝑗}. It is possible that inner nodes that cover
multi-dimensional ranges have 𝑒𝑑𝑔𝑒𝑐𝑜𝑢𝑛𝑡 of 2 with a non-inner

node. However, these tokens cannot be connected to leaf tokens

as they would not form valid ranges, and thus such edges do not

exist in 𝐺 . In the end, we only consider the largest component of

the graph, which contains the leaf tokens, ignoring other smaller

components that may contain these multi-dimensional tokens.

At this point, we have identified the inner nodes that cover

pairs of points and most of the point-query tokens. We still have

to distinguish between certain leaf tokens and certain boundary

tokens. Specifically, some inner tokens have isomorphic edges with

edgecount of two. One edge connects to a boundary node, and the

other edge connects to an inner node. For example, in Figure 3,

nodes 𝑑 and 𝑎𝑏𝑐𝑑 are isomorphic. We are able to extract the correct

token, by picking the one with the most edges in the original co-

occurrence matrix. The leaf node will always have one more edge

than the boundary node, as the leaf node can be in a tokenset with

the boundary node’s sibling.

Now, we have identified all the pair token nodes and the tokens

(or volumes) of all non-extreme leaf nodes. However, due to the

nature of BRC and graph𝐺 , they are not in order. By doing a series

of swaps and contractions, removing the pair-token nodes and

putting the leaf nodes in order, we can reconstruct the inner grid

of the database.

Once we have reconstructed the inner grid of the database, we

can now reconstruct the volumes at the extreme points. Note that

for the inner grid, we were able to identify which search token

corresponds to which domain point. However, we cannot do the

same for the extreme points, we can only extrapolate the volumes.

The reason is that due to BRC, the search tokens for extreme points

of the database often appear alone. For example, in Figures 3 and

4, the corner search tokens appear identical in the co-occurrence

graph (nodes 𝑎, 𝑝 and 𝑎, 𝑑 , 𝑝 ,𝑚 respectively).

In our 𝑑-dimensional grid, in place of each domain point 𝑝 ex-

treme in one dimension is a search token 𝑠 covering 𝑝 and its

neighbor 𝑝𝑛 , where 𝑠 has exactly one neighbor in our graph𝐺 ′, the
search token covering 𝑝𝑛 . We can thus extrapolate the volume of

𝑝 from the volumes of 𝑠 and 𝑝𝑛 . We are unable to generalize this

technique to tokens extreme in multiple dimensions as there is no

such token.

Let’s assume we have extrapolated all volumes of domain points

extreme in up to 𝑖−1 dimensions. For each domain value 𝑣 (extreme

in 𝑖 dimensions) we have yet to extrapolate, we have to find a basic

𝑖-dimensional cube 𝑐 with sides of size 2, that contains 𝑣 . In order

to identify this cube, we leverage the structure of BRC tokensets.

The range query that covers an 𝑖-dimensional cube of side length

3, 𝑐3, which includes 𝑣 , consists of a tokenset of size 𝑖+2. These

tokens correspond to an 𝑖-dimensional cube of side length 2, 𝑐2,

(containing 𝑣), one token corresponding to a point value 𝑡 diagonal

220

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

to 𝑣 right outside 𝑐2, and 𝑖 2 × 1 rectangles, set 𝑅. Essentially, the
rectangles extend 𝑐2 by one value in each dimension. We need one

more point to cover all of 𝑐3, which is 𝑡 . Using the co-occurrence

graph and the inner grid, we are able to identify tokens from 𝑅

and 𝑡 . Then, the smallest response that contains all of them, must

contain 𝑐2, in order to form a valid range. Then, using the volume of

𝑐2, we can extrapolate the volume of 𝑣 . For example in Figure 4, to

extrapolate the volume of 𝑎, the 2-dimensional cube of side length

2 is {𝑎𝑏𝑒 𝑓 }, the 2 2 × 1 rectangles are {𝑖 𝑗} and {𝑐𝑔} and 𝑡 = 𝑘 . This

way, we can extrapolate the volume of domain points extreme in 𝑖

dimensions. Thus, by induction, our algorithm can find the volumes

of all extreme domain points.

The first step of the algorithm is to create dictionaries 𝐸,𝑄 , which

takes 𝑂 (𝑚2
log

𝑑𝑚), as we have to go through all possible queries

and their responses. Then, we go through 𝑂 (𝑚2) tokensets and for

each construct a graph with their tokens and remove relevant edges

from 𝐺 . This takes 𝑂 (𝑚4) time. Then, we disambiguate identical

components of the graph and contract edges of the graph, which

takes at most 𝑂 (𝑚2) time. Then, we swap one-dimensional section

of the graph, which takes 𝑂 (𝑚2) time.

We then have to identify volumes of the extreme points. There

are𝑂 (𝑚) such points, and for each point we find a constant number

of neighbors in two graphs, which takes𝑂 (𝑚2) time. Then, we look

through the tokensets to identify the required tokenset and extract

the extreme point’s volume. Finding the extreme point values takes

𝑂 (𝑚3) time. Thus, in total, our attack takes 𝑂 (𝑚4) time.

Our attack needs to observe all possible queries and their re-

sponses to work. Using a coupon collector argument, we observe

all possible queries after the Ω(𝑚2
log𝑚) queries have been issued

under a uniform distribution with probability greater than 1 − 1

𝑚2
.

The adversary needs 𝑂 (𝑚2
log

𝑑𝑚) space to store the search to-

kens and their responses. Graph𝐺 requires𝑂 (𝑚2) space, with𝑂 (𝑚)
nodes and 𝑂 (𝑚2) edges, similar to the temporary storage required

by the 𝐺𝑆 ’s. Most work on the algorithm is done on these graphs

and there is a constant number of additional data-structures used,

all requiring less than 𝑂 (𝑚2) space. Thus, the algorithm requires

𝑂 (𝑚2
log

𝑑𝑚) space.
□

Lemma 3. Let 𝐷 be a 𝑑-dimensional database, over domain D =

[𝑚1] × . . . × [𝑚𝑑], with𝑚 =𝑚1 · . . . ·𝑚𝑑 , which is encrypted under

the range tree scheme and leaks volume, search and structure pattern

under BRC. Let 𝐺 be the co-occurrence graph with nodes the tokens

of the range tree, and an edge between two nodes if they compose a

tokenset. Graph 𝐺𝑆 induced by the nodes of a tokenset 𝑆 on 𝐺 forms

an 𝑘-dimensional grid, where 1 ≤ 𝑘 ≤ 𝑑 .

Proof. We prove this lemma by induction on the number of

dimensions of the range that corresponds to tokenset 𝑆 . In case of

a 1D range query (on range 𝑟), we show that the corresponding

tokenset 𝑆 forms a line graph𝐺𝑆 of𝐺 induced on the nodes of 𝑆 . A

token 𝑠 ∈ 𝑆 has one or two edges in 𝐺𝑆 (unless |𝑆 | = 1).

Let us say that 𝑠1 covers one of the endpoints of 𝑟 , range 𝑟1. As

𝑆 forms a valid range, some token must cover the domain point

𝑝 ∈ 𝑟 , right next to 𝑟1. Let us say token 𝑠2 covers 𝑟2, with 𝑝 ∈ 𝑟2.
As 𝑟1 + 𝑟2 form a valid range, there is an edge between 𝑠1 and 𝑠2
in 𝐺𝑆 . Notably, 𝑠1 cannot be connected to any other token in 𝑆 ,

0

0

1 0 1 0
0 0 0 0
1 0
0 0

1 0
0 0

1 0 1 0
0 1
1
0 1

0
0 1

1
0
1
0 1 0 1

(a) (b) (c)

 …
…

Figure 9: Here we demonstrate an assignment of volumes that gives

a lower bound on the reconstruction space of (a)Quad-SRC scheme

and (b)-(c) the QDAG-SRC scheme.

as it would not form a valid range. On the other hand, ∃𝑝 ′ ∈ 𝑟

right outside 𝑟2 (if |𝑆 | > 2). Thus, some token 𝑠3 ∈ 𝑆 must cover

it (with range 𝑟3). Since 𝑟2 + 𝑟3 forms a valid range there exists an

edge between 𝑠2 and 𝑠3. Since this is a 1D query, 𝑠2 cannot have

any other connections. Similarly we can show that any token of 𝑆

that does not correspond to range covering an endpoint of 𝑟 has

two edges and the remaining two have one edge. Thus,𝐺𝑆 is a line

graph, which is a one-dimensional grid.

Suppose that any tokenset covering an (𝑖−1)-dimensional range

query forms a grid. Let 𝑆 cover an 𝑖-dimensional range 𝑟 . Let the

last dimension of 𝑟 be of size 𝑘 . There are 𝑘 (𝑖 − 1)-dimensional

ranges 𝑟 𝑗 , 𝑗 ∈ [1, 𝑘] that can be combined to cover 𝑟 . Let 𝑟 𝑗 and 𝑟 𝑗+1
differ by one in the last dimension. Let tokens 𝑠 𝑗 (covering some

part of 𝑟 𝑗) and 𝑠 𝑗+1 (covering some part of 𝑟 𝑗+1) cover the same

ranges in the first 𝑖 − 1 dimensions. The combination of the ranges

they cover is valid. Thus, there either exists an edge between them

in 𝐺 or there exists a token that covers their ranges combined.

Let 𝑇𝑖 be the set of tokensets 𝑆 𝑗 covering each of the 𝑘 (𝑖 − 1)-
dimensional ranges 𝑟 𝑗 . For each neighboring pair of tokensets in

𝑇𝑖 , there either exists a new tokenset 𝑆 ′ that covers their combined

ranges (larger tokens apply) or the tokens are included in the BRC

response (if no possible combination with neighbors exists). Note

that it cannot be the case that only a subset of the neighboring

tokensets can be combined, as the tokens are created in the same

way for the different neighboring ranges. In case they are included

in the BRC response, this pair of tokensets forms a grid (with their

edges from𝐺). Additionally, any new tokenset (replacing a previous

pair) must also form a grid with its neighbors. Since all neighboring

tokensets form grids, all of them together in 𝐺𝑆 form a grid of

dimension up to 𝑖 , (potentially the (𝑖 − 1)-dimensional ranges form

a grid of dimension smaller than 𝑖 − 1).
□

A.7 Proof of Theorem 8

Proof. We show that each solution in A corresponds to a valid

database. Let 𝐺 be the underlying DAG over domain D. For cor-

rectness we require that for all nodes 𝑣 in 𝐺 .

𝑥𝑣 =
∑︁

𝑤 sink of𝐺,
𝑤.𝑟𝑎𝑛𝑔𝑒⊆𝑣.𝑟𝑎𝑛𝑔𝑒

𝑥𝑤 . (4)

That is, for every node 𝑣 in 𝐺 , 𝑣 ’s volume must be the sum of

the volumes assigned to the leaf-nodes that correspond to points

in 𝑣 .𝑟𝑎𝑛𝑔𝑒 . By Property (1), any non-sink node 𝑣 of has a subset

of children 𝐶 such that {𝑐.𝑟𝑎𝑛𝑔𝑒 : 𝑐 ∈ 𝐶} partition 𝑣 .𝑟𝑎𝑛𝑔𝑒 . By

221

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

Equation 2 there exists a constraint of the form 𝑥𝑣 =
∑
𝑐∈𝐶 𝑥𝑐 . Each

𝑐 ∈ 𝐶 , must itself also have a subset of children𝐶 ′ whose canonical
rages partition 𝑐.𝑟𝑎𝑛𝑔𝑒 . By recursively substituting the variables

corresponding to the children that partition the canonical range of

each variable, until we reach the sinks (which are 1-1 with the points

in the domain by Property (2)), we end up with the Equation 4.

Each of the substituted equations are constraints in the ILP that

are satisfied, so Equation 4 must also be satisfied. We conclude that

any solution in A must correspond to a real database.

Let 𝑆L denote the reconstruction space and let 𝑆A be the set

of databases that correspond to solutions in A. We will show that

𝑆A = 𝑆L . It is straightforward to see that 𝑆L ⊆ 𝑆A . In particular,

since Equations 2 and 3 characterize the DAG𝐺 , then any database

𝐷 ∈ 𝑆L must satisfy the ILP.

Next we show that 𝑆A ⊆ 𝑆L . Since the databases in 𝑆L are

leakage-equivalent, then by Theorem 1 they result in the same

volume map VM and frequency map FM, assuming each range

query is issued exactly once. By Theorem 1 it is sufficient to show

that the databases in 𝑆A also result in VM and FM.

Let 𝐷 ∈ 𝑆A and let 𝐺 be its DAG of 𝐷 with volumes assigned

to each node. Let V̂M and F̂M be the volume map and frequency

map of 𝐺 , respectively. From the leakage, we can build a map 𝑀

mapping each observed tokenset t to its volume-frequency pair

(𝑣𝑜𝑙, 𝑓). Equation 3 restricts each observed volume to be assigned to

one node. The constraints impose a 1-to-1 correspondence between

each volume with a given frequency 𝑓 and each node in the DAG

with frequency 𝑓 . Since each observed tokenset has an associated

volume-frequency pair, then the tokensets are 1-to-1 with the nodes

in 𝐺 ; in particular each tokenset t such that𝑀 [t] = (𝑣𝑜𝑙, 𝑓) can be

mapped to a node of 𝐺 with volume-frequency pair (𝑣𝑜𝑙, 𝑓).
Since each volume-frequency pair is 1-to-1 with the nodes in the

𝐺 of the same frequency then 𝑣 must also have the same frequency

and volume. Thus F̂M[t] = FM[t]. Also, we have that V̂M[t] =
(𝑡, 𝑣𝑜𝑙t) = VM[t]. Since this holds true for all tokensets, then V̂M =

VM and F̂M = FM. This proves that Algorithm 5 achieves full

database reconstruction.

The proof demonstrating that the input is available with proba-

bility 1 − 1

𝑚2
after the adversary observes 𝑂 (𝑚4

log𝑚) uniformly

distributed queries follows from Lemma 4. □

A.8 Proof of Theorem 9

Proof. We demonstrate an assignment of volumes to the data-

base resulting in a reconstruction space exponential in𝑚. Each leaf

node has 3 siblings. For each set of 4 sibling leaf nodes assign a

volume of 1 to one leaf and 0 to the other siblings. Each leaf has a

frequency of one and thus any set of volumes corresponding to the

four siblings can be permuted; there are 2
2
unique permutations

per set of 4 siblings, and𝑚/(22) such sets of siblings. More gener-

ally, we see that the reconstruction space of the quadtree is lower

bounded by (2𝑑)𝑚/2𝑑 ≫ 2
𝑑 (𝑑!).

In contrast, the QDAG with the SRC range covering algorithm,

offers a smaller false positive rate at the expense of a significantly

smaller reconstruction space; we note however that the reconstruc-

tion is still 𝑂 (2𝑑−1) greater than the symmetries of the hypercube.

This is because the additional nodes and edges in the QDAG create

a number of additional restrictions that the volume assignments

must satisfy, hence reducing the total number of possible symme-

tries. In order to maintain the same volume assignments to the leaf

nodes’ parents, we cannot independently permute the volumes of

the leaves.

Each QDAG node corresponding to each domain point not at

the edge of the database is covered by an additional three nodes

(compared to the quadtree). Assign each such domain point a unique

value greater than 1. Each QDAG node corresponding to the domain

points at the edge of the database is covered by 0 additional nodes (in

the case of a corner) or 1 additional node otherwise. Assign each of

these external domain points alternating bit volumes (See Figure 9).

Since there is an even number of domain values along each edge

this alternating bit assignment is always possible. Now observe,

for a given edge, we can re-assign the bit-complement volumes to

the domain points along the edge. The volumes associated with

the nodes covering the edge nodes remain the same. In general,

we can re-assign the bit-complement volumes to parallel edges

independently of each other. In two dimensions this results in 2
2+22

additional symmetries. In 𝑑 dimensions this results in 𝑑 · 22(𝑑−1)

additional symmetries. Composing them with the symmetries of

the hypercube yields a lower bound of 2
𝑑+2(𝑑−1) (𝑑) (𝑑!). □

B ESTIMATING FREQUENCIES

In the SRC attack (Algorithm 5) we assume that each query

is issued exactly once. This is a strong assumption, so we now

show how an adversary can correctly estimate the frequencies with

inverse polynomial probability in 𝑂 (𝑚).

Algorithm 6: GetFreqencies(𝐹,𝐺,D)

1: // 𝐹 is a dictionary mapping search tokens to the number of times each

search token was observed,𝐺 is a DAG over domain D.

2: Let 𝑁 be the number of queries observed.

3: Let𝑄 be the number of unique range queries over D.

4: for st in 𝐹 do

5: 𝐹 [st] ← 𝐹 [st]/(𝑁 /𝑄)
6: return 𝐹

Lemma 4. Let 𝐷 be a 𝑑-dimensional database, over domain D =

[𝑚1] × · · · × [𝑚𝑑], which is encrypted under the QDAG SRC scheme.

Let 𝐹 be a dictionary mapping the observed search tokens to the

number of times that search token was observed, 𝐺 be the QDAG

over D. If the adversary observes 𝑁 uniformly distributed queries,

then the frequency of each search token st computed by Algorithm 6

(GetFrequencies) corresponds to the number of unique range queries

that are associated with st happens with probability at least 1 −
2|𝐹 | exp(−2𝑁 /𝑚4), where𝑚 =𝑚1 × · · · ×𝑚𝑑 .

Proof. Suppose that the adversary has observed𝑁 queries being

issued, and has constructed a dictionary 𝐹 . For each search token

st observed define the i.i.d. random variable

𝑋𝑖 =

{
1, if the i𝑡ℎ search token is st

0, otherwise.

222

Attacks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

Let 𝑍st be the number of unique range queries that correspond to

search token st and let 𝑄 is the number of unique range queries

over D. Observe that we have

E[𝑋𝑖] =
𝑍st

𝑄
.

Define variable 𝐴st =
∑𝑁
𝑖 𝑋𝑖 . We thus have that GetFreqencies

succeeds when for all st we have

𝐴st

𝑁
∈

[
𝑍st

𝑄
± Y

]
for Y = 𝑂 (1/𝑄) = 𝑂 (𝑚−2). Applying a Chernoff bound argument

we see that

Pr

[
𝐴st

𝑁
≥ 𝑁

(
𝑍st

𝑄
− Y

)]
≤ exp(−2𝑁Y2) .

A similar argument holds for the upper bound. Taking a union

bound over the |𝐹 | times we must approximate frequencies gives

us a total success probability of 1 − 2|𝐹 | exp(−2𝑁 /𝑚4). □

223

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	2.1 Range Trees and Quadtrees
	2.2 Formalizing Leakage
	2.3 Attack Input
	2.4 Equivalent Databases.
	2.5 Threat Model and Assumptions

	3 The Linear Attack
	3.1 Reconstruction Attack
	3.2 Reconstruction Space

	4 Token Pair Attack
	4.1 Reconstruction Attack
	4.2 Reconstruction Space

	5 The Range-BRC Attack
	5.1 Reconstruction Attack
	5.2 Reconstruction Space

	6 SRC Schemes Attack
	6.1 Reconstruction Attack
	6.2 QDAG-SRC
	6.3 Quadratic-SRC Scheme

	7 Experiments
	7.1 Results

	8 Takeaways
	8.1 General Techniques
	8.2 Comparing our Attacks to Prior Work
	8.3 Extending our Attacks
	8.4 Structure vs. Access Pattern
	8.5 Mitigations

	9 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Theorem 3
	A.4 Proof of Theorem 4
	A.5 Proof of Theorem 5
	A.6 Proof of Theorem 6
	A.7 Proof of Theorem 8
	A.8 Proof of Theorem 9

	B Estimating Frequencies

