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ABSTRACT
Today, targeted online advertising relies on unique identifiers as-
signed to users through third-party cookies–a practice at odds with
user privacy. While the web and advertising communities have pro-
posed solutions that we refer to as interest-disclosing mechanisms,
includingGoogle’sTopicsAPI, an independent analysis of thesepro-
posals in realistic scenarios has yet to be performed. In this paper, we
attempt to validate the privacy (i.e., preventingunique identification)
and utility (i.e., enabling ad targeting) claims of Google’s Topics
proposal in the context of realistic user behavior. Through new sta-
tistical models of the distribution of user behaviors and resulting
targeting topics, we analyze the capabilities of malicious advertisers
observing users over time and colludingwith other third parties. Our
analysis shows that even in the best case, individual users’ identifica-
tion across sites is possible, as 0.4% of the 250k users we simulate are
re-identified. These guarantees weaken further over time and when
advertisers collude: 57% of users with stable interests are uniquely
re-identified when their browsing activity has been observed for
15 epochs, increasing to 75% after 30 epochs. While measuring that
the TopicsAPI provides moderate utility, we also find that adver-
tisers and publishers can abuse the TopicsAPI to potentially assign
unique identifiers to users, defeating the desired privacy guarantees.
As a result, the inherent diversity of users’ interests on the web is
directly at odds with the privacy objectives of interest-disclosing
mechanisms;we discuss howany replacement of third-party cookies
may have to seek other avenues to achieve privacy for the web.

KEYWORDS
Targeted advertising, interest-disclosing mechanisms, Privacy Sand-
box, Topics API, cross-site tracking, third-party cookies

1 INTRODUCTION
Third-party cookies (TPCs), the historical interest-disclosing mecha-
nism for online advertising, have been repeatedly shown to come at
the expense of user privacy with invasive tracking across websites.
Deprecated or soon-to-be by variousweb actors [7, 59, 65, 70, 71, 81],
different organizations have been proposing privacy-preserving
alternatives that could ultimately contribute to building a more
private web for all. We refer to the majority of these proposals as
interest-disclosing mechanisms that assign categories to users and
disclose them to advertisers (e.g., Google with FLoC [21, 31, 33] and
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Topics [23, 36]) or to other third parties considered trusted (e.g.,
SPARROW from Criteo [16] or PARAKEET fromMicrosoft [54]).

However,proposals that relyon interest-disclosuremaybeprivacy-
incompatible with the natural diversity of user web behaviors that
they relay.As a result, user privacy provided by this type of proposals
in the context of realistic user behavior distributions remains un-
clear. We seek to evaluate the privacy and utility guarantees of these
proposals using as exemplar the TopicsAPI fromGoogle–currently
one of the most mature alternative interest-disclosing mechanism
to TPCs that Google plans to gradually deploy to users starting July
2023 with Chrome 115 [53]. In Topics, the web browser collects and
classifies the websites visited by users into topics of interest. The
top visited topics are updated regularly and observed by advertisers
to select which ad to display. A central privacy claim of Topics is:
“the specific sites you’ve visited are no longer shared across the web, like
they might have been with third-party cookies” [35].

In this paper, we show that the privacy and utility claims of an
interest-disclosingmechanism(e.g.,Topics) aredirectlyatoddswith
the same properties of users’ browsing interests that make them
unique.We demonstrate through the TopicsAPI how the disclosure
of user interests can be leveraged to re-identify users acrosswebsites,
effectively violating one of Topics’s guarantees. On the other hand,
for any proposal to see market adoption, user information returned
to advertisers must be sufficiently accurate to yield profitable ad
targeting. Often called utility within the privacy community, we
measure how accurately Topicsmaps user interests to their visited
websites and show how the TopicsAPI can be abused to alter this
mapping. As the Topics API is still in a development phase, our
evaluation is based on the latest version (at time of submission) from
May 30, 20231 of the proposal [35].

Through an analytical and empirical evaluation of the Topics
proposal, we develop statistical models based on realistic user web
behaviors and corresponding topics of interest. We show that ad-
vertisers and publishers can observe users who have stable interests
and leverage the results returned by the API for re-identification.
Indeed, we observe a highly skewed distribution of topics among
the top 1M most visited websites from CrUX top list [18]: 1 topic
appears on more than 18% of the websites, only 196 topics out of the
349 from the taxonomy appear on more than 100 websites, and 42
topics are never observed at all. Using this prior, we propose a way
to identify noisy topics (i.e., those returned randomly by the API to
provide plausible deniability and k-anonymity), remove them, and
use the genuine ones to track users across websites. We evaluate
this phenomenon from the points of view of a single and different

1Commit hash: 24c8789
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Table 1: Overview of the risks of Topics’s information disclo-
sure for different scenarios and cases of collusion (Section 4).

Collusion
Scenario

One-shot Multi-shot
(15-30 epochs)

None
Noise removal

25% of noisy
topics removed

49-94% of noisy
topics removed

Across 2 websites
Cross-site
tracking

0.4% of users
re-identified

17% better than
just randomly

57-75% of users
re-identified

38-25% better than
just randomly

websites that observeAPI results for users across a single and several
epochs2 (see Table 1 for an overview of our results).

In our evaluation, we show that an adversary can identify (1)
about 25% of the noisy topics on single websites in one-shot sce-
narios (wherein only one result from the API is observed). As user
behaviors are stable across epochs and advertisers record the results
returned by the API, we find that (2) the noise removal increases
to 49% for 15 epochs and to 94% when 30 epochs are observed in
multi-shot scenarios. The identification of the genuine topics of each
user lays the foundations for re-identification of cross-site visits. We
find that, contrary to the goal of preventing re-identification, (3) 0.4%
of the 250kuserswe simulate are re-identified by 2 advertisers collud-
ing across websites in one-shot scenarios, and that 17% of them can
be re-identified with higher likelihood than just randomly. In multi-
shot scenarios, (4) 57% of the users are uniquely re-identified and an
additional 38% are matched better than just randomly in 15 epochs,
while for 30 epochs 75% are uniquely re-identified and the rest (25%)
with a higher likelihood. This appears to directly violate the privacy
goals proposed by Google with Topics over TPCs. On the utility
perspective, we see that (5) Topics is quite useful to advertisers. On
average, the Topics API returns at least 1 true topic aligned with
user interests in about 60% of cases–assuming the API is used faith-
fully. We further demonstrate (6) how carefully crafted subdomains
can alter this accuracy and be abused to potentially assign unique
identifiers to users. This paper shows that the privacy-preserving
claims of Topics are directly at odds with user behaviors on the
Internet. Other approaches may need to be explored to develop a
truly privacy-preserving alternative to TPCs.

Wemake the following key contributions:
• We show how natural properties about user interests can
breakTopics’s privacy claims of non re-identification. Specif-
ically, users with stable interests are as uniquely cross-site
trackable with Topics as with TPCs.
• We find that Topics does not meaningfully lower the utility
provided to advertisers from TPCs. We also identify ways to
impact Topics’s privacy and utility if not used faithfully.
• We discuss how somemitigations to the TopicsAPI can only
be partial, and we point as well to other approaches than
interest-disclosing mechanisms that may have to be sought
for privacy-preserving online advertising.

2The Topics API currently processes browsing histories once per epoch of size 1 week.
See Section 3 for more details.

2 BACKGROUND&RELATEDWORK
Third-PartyCookies&Cross-site Tracking.Web cookies, which
offer websites the ability to record site-specific data in a user’s
browser, are routinely abused to track users online. With TPCs,
advertisers can assign unique identifiers to web users, track them
across different websites, and obtain users’ browsing histories. This
is used to infer user interests for targeted advertising [6, 15, 42, 63].
As a result, TPCs have been deprecated by different web actors (the
Tor Browser [65], Safari WebKit [81], Brave Browser [7], or Mozilla
Firefox [59]) while others such as Google Chrome have announced
their intention to do so in the near future [70, 71].
Alternatives for Privacy-Preserving Advertising.Deprecating
TPCs altogether without offering any replacement would disrupt
how the ad-funded web presently operates. As a result, different or-
ganizations are developing privacy-preserving alternatives for per-
sonalized advertising. The focus of this paper as well as the majority
of these proposals are based on interest-disclosing mechanisms. Gen-
erally, these solutions compute user categories or assign each user to
their interests.Whenadvertisers andpublisherswant todisplayanad
to users, that information is used to determinewhich ad to show. The
FLoC proposal [21, 31, 33] and later the TopicsAPI [23, 36], made by
Google as part of The Privacy Sandbox [10, 29, 37], assignusers to a
groupof interests or classify userwebhistories into topics categories,
and then release those categories to advertisers through a web API
call. Two other proposals, SPARROW from Criteo [16] and PARAKEET
from Microsoft [54], introduce a trusted third party–respectively,
a gatekeeper and an anonymization service–to which user data is
disclosed to perform the ad selection process. On the other hand, a
different type of proposals for online advertising, like the FLEDGE
API [22] from Google, assumes that user data should not leave the
browser and so executes the ad auction directly on users’ devices.
Federated Learning of Cohorts (FLoC).With FLoC, an alternative
to TPCs developed by Google, participating web browsers weekly
compute the interest group (or cohort) their users belong to, based
on their browsing histories. Through a reporting mechanism to a
central server, Google ensures that the computed cohorts are either
composed of enough users or merged with other cohorts in order
to provide some 𝑘-anonymity. Advertisers embedded on visited
webpages can observe user cohort IDs [21, 31, 33]. Analysis of FLoC
revealed a variety of privacy concerns: (1) requirement in trusting
a single actor to maintain adequate 𝑘-anonymity, (2) concern that
cohort IDs could create or be linked tofingerprinting techniques, and
(3) risk of re-identifying users by tracking their cohort IDs over time
and by isolating them into specific cohorts through Sybil attacks [4,
66, 78].While some parameters and details of FLoCwere still unclear,
advertisers also had concerns about how to interpret the cohort ID
for utility. Google eventually dropped FLoC for the TopicsAPI.
TopicsAPI. Topics aims to replace TPCs for personalized advertis-
ing.With this API, the web browser classifies the websites visited by
users into topics of interest. The top visited topics are updated once
per epoch and are observed by advertisers embedded on websites to
select which ad to display [23, 35, 36]. See Section 3 for more details.
TopicsAnalyses [25, 41, 77].Along with its proposal, Google re-
leased awhite paper analyzing the risk of third parties re-identifying
users across websites [25]. First, an analytical evaluation is carried
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out to compute the aggregate information leakage of Topics for two
scenarios (per single and longitudinal leakage) followedbyanempiri-
cal experiment onaprivate dataset of syncedChromeusers browsing
histories. The reported results showthat the information learnedbya
third party is somewhat limited compared to the worst case scenario
identified. This analysis is important for the discussion around The
Privacy Sandbox proposals, but it also has limitations (some explic-
itly mentioned by the authors): for instance, (1) it assumes that no
actor is colluding with each other when in practice advertisers could
easily have such incentive, (2) some uniform assumptions about the
distribution and observations of topics are made, (3) results are re-
ported in aggregate potentially hiding risks for specific users, (4) the
noise in themechanismisverybrieflydiscussed, and (5)only2epochs
were considered in the empirical evaluation. Our analysis of Topics
explicitly addresses these limitations througha realistic threatmodel,
a more thorough analysis over time (30 epochs), and a focus on the
privacy consequences of the diverse nature of user interests.

Following an inquiry from Google on their position about the
adoption of the Topics API [43], Mozilla has released a privacy
analysis [77] that points at shortcomings of Topics and of the re-
identification evaluation of Google’s white paper. Thomson, the
author of this analysis, crafts a specific example of one user exhibit-
ing a unique interest among a population, to show the risk of being
re-identified through the TopicsAPI. As proposed, a population as
small as 70 userswould readily leakmore information than the upper
bound computed by Google. Thomson additionally critiques the use
of aggregate statistics, highlighting that privacy guaranteesmust not
only be assumed on average acrossweb users but also for individuals.
In this paper, we analytically and empirically demonstrate the actual
consequences on the TopicsAPI of the diverse nature of user inter-
ests. We find that the distribution of topics among the top 1Mmost
visited websites is highly skewed, and use this information to iden-
tify some of the noisy topics returned by Topics. By simulating 250k
users across 30 epochs, we demonstrate and quantify the risks identi-
fied in our analysis. Finally, wemeasure the utility of the proposal for
advertisers, a missing aspect from all previous analyses on Topics.

In concurrent work, Jha et al., studied the privacy risk of re-
identifying users across websites through the Topics API for a sub-
stantially smaller simulated population in a limited analysis [41];
while we perform a broader, complete, and systematic analysis of
both the privacy and utility goals stated by Google on the proposal.
Jha et al., collect data on a few real users (268 in total) to simulate for
themajorityof their analysis apopulationof1000 users;weproposea
newmethodology that directly uses results frommeasurement stud-
ies on “several hundredmillion users” and representative of “over 95%
of page loads on the Internet” [6, 18, 63, 68, 69] to simulate apopulation
of 250 k users. As a result, Jha et al., only classify about 51k unique
websites and observe a total of 250 topics;we classify 1Mwebsites for
each CrUX and Tranco top-list observing 307 and 311 topics, respec-
tively. Additionally, we systematically craft 3.5M adversarial subdo-
mains to study the potential for API abuse. Finally, if Jha et al., con-
clude that the attack seems impractical because it would require sev-
eral weeks; we argue that a possible re-identification attack appears
atdirectoddswithGoogle’s statedgoals.Weshowthat someusersare

re-identified without having to wait several epochs, not to mention
that the size of an epoch could change andbe shortened in the future3.
AWorld Wide View of Browsing the World WideWeb [68].
Ruth et al., collaboratedwithGoogle to access a private dataset about
real browsing histories of Chrome users worldwide [68]. They were
able to extract interesting statistics and details about user browsing
behaviors (some previously conjectured by the community) that we
directly use in our empirical analysis. Their results show that web
users always visit the same small number of websites (25% of page
loads in their dataset come from only six websites with 17% from
one website only) and spend most of their time on very few of them
(10 websites capture half of users’ time spent online). They find that
the top 10k and top 1Mmost visited websites capture respectively
from 70% to 95% of user traffic, which justify using these rankings as
a proxy to study users web browsing, even though a lot of websites
are visited relatively little which skews the analysis towards the tail.
Their results show that browsing behaviors tend to be similar across
regions for top use cases: users visit websites of similar categories
(search engine, video platforms, social networks, pornography, etc.),
they also explain that smaller populations and individuals exhibit
different and sometimes unique behaviors. Indeed, geographic, cul-
tural, and linguistic differences are observed, and sonot everyunique
user web behavior may be represented through global ranking lists.
UsersHave Stable (andUnique)WebBehaviors [3, 6, 26, 47, 52,
57, 61, 63, 75, 79].Multiple studies have been carried out since the
early Internet area to measure and evaluate user web behaviors. In
the early 2000s, analyses identify how users revisit websites [75] and
what browsing trends and patterns they exhibit [57]. These early
studies already find that user browsing behaviors and interests are
stable over time, subsequent studies come to the same observation.
For instance, Yahoo! shows that webpages of certain types and cat-
egories are revisited by the same user over time [26, 47]. Studying
search logs from Bing, Microsoft finds that users exhibit consistent
and stable domain preferences over time, even during periods that
would disrupt users’ daily life (like vacations), and that third parties
have the ability to observe these preferences [79]. Diary studies such
as Google’s on the use of tablet and smartphone devices also high-
light that users have a diverse and yet fixed set of activities they tend
to perform repeatedly [61]. On top of being stable, user browsing
behaviors have also beendemonstrated to be unique: communities of
interests are used to re-identify users [3, 52], and browsing histories
are shown to be unique by Olejnik et al. [63] and in the replication
study performed byMozilla a few years after [6].

3 EXPLORING TOPICS
In this paper, we use Topics as a canonical example of an interest-
disclosing mechanism, as it is currently the most mature proposal to
replace TPCs. Our goal is to analyze its privacy protections for users
and its utility for ad-funded websites. See Appendix E for notations.

3.1 Topics in Detail
With Topics, at the end of an epoch 𝑒0 (of size 1 week in the cur-
rent proposal) the browser–which globally tracks user’s history–
classifies visited hostnames in order to compute the top𝑇 =5most

3As discussed here: https://github.com/patcg-individual-drafts/topics/issues/119
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Figure 1: Overview of Topics.

visited topics, which represents user interests. The initial taxonomy is
composed ofΩ=349 different topics. To compute topics, the browser
first checks if the hostname is present in a static mapping of ∼10𝑘
most visited websites manually assigned to topics (if any). If not,
amachine learning classifier is used (see Figure 1). Hostnames are
assigned fromzero4 to several topics (onemost of the time).Addition-
ally, not all visited websites are taken into account when computing
a user’s topics of interests in a given epoch 𝑒0: only the hostnames of
the web pages that opted in to Topics andmade a call to the API are.

API Call.During epoch 𝑒0, when publishers or advertisers em-
bedded on a web page call the TopicsAPI, the browser will return
them an array of maximum 𝜏 = 3 topics: one per epoch before the
current epoch. For each epoch, the topic that is returned is either,
with probability 𝑝 =0.05, a noisy topic picked uniformly randomly
from the taxonomy or, with probability 1−𝑝 , a genuine topic picked
randomly from the user’s top𝑇 most visited topics for that epoch.
These noisy topics are intended to provide plausible deniability to
users and ensure that a minimum number of users is assigned to
each topic (k-anonymity) [36]. We study in Section 4 if these noisy
topics can be identified by advertisers. Topics also has a witness
requirement that ensures according to Google that the TopicsAPI
does not disclose more information than advertisers are already able
to obtain with TPCs. With this witness requirement, for advertisers
to observe a genuine topic, advertisers must have already seen that
same topic on another website visited by the user in the previous
𝜏 epochs. If not, advertisers may be able to receive the parent topic
of the genuine one in the taxonomy, but only if they witnessed that
parent topic in the past as well. Additionally, if a topic is returned for
a given epoch on a website, any other subsequent call to the Topics
API on that same website by any caller will return the same topic
for that epoch. Finally, advertisers may not receive any topic; a user
could have opted out of Topics, their web browser does not support
the API, they are in incognito mode, etc.

4For some hostnames, no topic is returned because the classification is unknown or
the website corresponds to sensitive categories (ethnicity, sexual orientation, etc.).

Table 2: Number of topics per individual domain in the static
mapping of ∼10𝑘 domain names annotated by Google.

Topic(s)
per domain

Domains
count

0 1344
1 4135
2 2350
3 1073

Topic(s)
per domain

Domains
count

4 270
5 59
6 20
7 3

Initial Taxonomy.Google has released Topicswith an initial
taxonomy of Ω=349 topics [45], seemingly curated from the taxon-
omy of Content Categories of the Google Natural Language Process-
ing API [34]. These topics are alphabetically ordered and divided
under 24 parent categories, e.g., the /Business & Industrial topic is
a parent of /Advertising &Marketing, that is itself a parent of /Sales
(see Appendix A). Additionally, Google removed topics that could
be deemed sensitive (ethnicity, sexual orientation, etc.).

StaticMapping.Google has released a list ofmanually annotated
topics for ∼10𝑘 domains [23] that we refer to as the static mapping.
Consisting of exactly 9254 domains, Table 2 shows the distribution
of topics per individual domain on this static mapping. The majority
of these domains are assigned very few topics (the median is 1 topic)
and 1344 of them do not get assigned any topic from the taxonomy
at all, but instead the Unknown topic (likely of sensitive content).

ModelClassifier.Hostnames that donot appear in the staticmap-
ping are classified through the use of a model that has been trained
by Google. The machine learning model of this classifier (weights,
architecture,metadata, etc.) is released publicly in the beta version of
Google Chrome: Google uses a Bert classifier [17] that accepts as in-
put a string of maximum 128 characters that has been tokenized and
padded with spaces if necessary. The output of the classifier is a vec-
tor of 350 confidence scores: one for eachof the 349 topics ofGoogle’s
taxonomy to which an additionalUnknown topic has been added. Al-
though themodel classifier used byGoogle is public, its performance
metrics suchasaccuracyandrecall arenot,wefill thatgap inSection5
by evaluating the model classifier performance. In order to exactly
replicate the TopicsAPI implementation from Google Chrome, we
identify thefiltering applied to the output of themodel byGoogle:we
detail this algorithm inAppendixC.As a result,we candirectly repro-
duce the TopicsAPI classification performed byGoogle and classify
any hostname we want: whether it is a real and registered one like
in Section 4 whenwe classify the top 1Mwebsites from different top-
lists, or a hostname that does not exist such aswhenweevaluate if op-
erators can influence the classificationof theirwebsites in Section 5.3.

Proposal Versions. In this paper, we use the latest version of the
individual draft proposal of Topics fromMay 30, 2023 available on
GitHub of short sha commit 24c8789, the taxonomy v1 of 349 topics,
and the model classifier of version 1 (used to be labeled 2206021246).
This corresponds to Topics version chrome.1:1:2 being tested in
Google Chrome beta at the time of submission of this paper (May
2023). Google plans to start deploying theTopicsAPI graduallywith
Chrome 115 expected for July 2023 [53].
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Figure 2: The different actors for Topics on a website’s visit.

3.2 Topics’s Threat Model
Here, we present a realistic threat model for the Topics API (see
Figure 2). This model assumes users accessing the content of a pub-
lisher’s website through their web browser. On the website along
with the publisher’s content, advertisers embed scripts to display ads
to users after an ad auction was run on an adtech platform.

Under the Topics approach, advertisers can no longer use third-
party cookies, but they can call the TopicsAPI to obtain user topics
of interest (recall, users are opted-in by default). While users and
web browsers can be trusted in that they faithfully follow the Topics
protocol, a fundamental risk with third parties is that they attempt
to re-identify users across websites. The threats are as follows: (1)
advertisers will collude–there are strong incentives for them to do
so: better targeting users, improving their ad selection, etc.–and (2)
third parties (advertisers and publishers) will also try to abuse the
API–they can trick users into revealing certain topics by clicking on
specific URLs. Finally, even though we do not consider extensions in
this paper (their current role and access to theTopicsAPI is unclear),
we acknowledge that they may have to be part of the threat model
to assume by future work once Topics is deployed.

3.3 Topics’s Privacy and Utility Goals
The Topics proposal describes four goals across privacy, utility, and
usability. We next briefly discuss these goals and our evaluation.

(G1) “It must be difficult to reidentify significant numbers
of users across sites using just the API.”

This is a privacy goal; with Topics it should not be possible for
websites to identify that the same user visited them, as this would
enable cross-site tracking [6, 15, 42, 63]. The phrasing used here is
ambiguous; it is not clear what “difficult” and “significant” precisely
mean in thatcontextas theyarenot fullydefined.Toperformouranal-
ysis,wedefine thedifficulty inbreakinguserprivacy tobe thenumber
ofwebsites that theAPI caller needs to be present on, or colludewith,
the number of topics that they need to observe, and the needed num-
ber of observed epochs. For significance, we measure the proportion
of 𝑛 users that can be re-identified, ideally and to be truly private

the TopicsAPI should make this impossible for any single user, we
quantify the re-identification risk of the TopicsAPI in Section 4.5.

(G2) “The API should provide a subset of the capabilities of
third-party cookies.”

This is the utility goal of Topics: the API should allow publishers
and advertisers to display targeted ads to the right users based on
the returned users’ topic of interests. We evaluate how accurately
browsing histories map onto topics of interest in Section 5.

(G3) “The topics revealed by the API should be less personally
sensitive about a user than what could be derived using
today’s tracking methods.”

This other privacy goalmentions thatTopics’s privacy disclosure
should leak less information about users thanwhat could be inferred
from TPCs today. We analyze in Section 4 if advertisers can denoise
the output of the API and re-identify users across websites.

(G4) “Users should be able to understand the API, recognize
what is being communicated about them, and have clear
controls. This is largely a UX responsibility but it does require
that the API be designed in away such that the UX is feasible.”

The last goal mentioned by Google is about usability; although it
is very important and should be taken into accountwhen developing
such anAPI–especially if itwere to be deployed to billions of internet
users–we do not consider this aspect in the rest of this paper. The
reason is that a totally different set of tools and expertise (e.g., user
studies, surveys, and interviews) would be required than the ones
we focus on to evaluate the privacy and utility goals. We defer this
usability evaluation to future work. The rest of the paper evaluates
Topics according to its privacy and utility goals.

3.4 Information Disclosure
By returning user top interests, Topics discloses user information to
advertisers and alike. We now analyze the risks associated with this
information disclosure (see Table 1) for different cases of collusion
between thirdparties (noneandbetweenadvertisers acrosswebsites)
and scenarios within which the API was called: one-shot (wherein
only one epoch is observed per user) and multi-shot (several epochs
observed per user). Recall (Section 3.1) that the disclosure of user
interests by the TopicsAPI is limited, noisy, and its content differs
across websites. However, users have stable web behaviors and in-
terests over time (see Section 2), further amplified for their top𝑇 =5
topics collected by their browser in the TopicsAPI. As a result, we
must study the consequences of the stability of user interests on
Topics’s privacy claims.
No Collusion - Noise Removal. Consider the no collusion case:
an advertiser is embedded on a website and receives the topics of
interest of the users visiting it. A maximum of 𝜏 = 3 topics are ob-
served per call. With a probability 𝑝 = 0.05, each topic may be a
noisy one picked from the taxonomy, composed of Ω=349 topics,
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instead of being one of the user’s genuine interests. This mechanism
guarantees that for𝑛 users visiting a website once, an advertiser can
expect to observe each topic in the taxonomy a minimum of 𝑛𝑝𝜏

Ω
times. Now, assume 𝑁 and𝐺 the random variables that count the
number of noisy and genuine topics in an array of 𝜏 topics, they have
the following binomial distributions: 𝑁 ∼B(𝜏,𝑝),𝐺 ∼B(𝜏,𝑞=1−𝑝).
With the values from the current proposal, advertisers can expect to
get at least 2 genuine topics in 99.275%of the results that theyobserve
in one-shot scenarios (where only one epoch is observed per user).
However, from just the outcome of this probabilistic experiment,
advertisers can not determine exactly which topics may be genuine
or noisy. Yet, they have a direct incentive to do so, for instance, to
better select which ad to display to user. This raises the question, can
third parties remove the noisy topics returned by the API?

First, noisy topics are returnedwhether advertisers have observed
them or not for that user in the past epochs, i.e., the witness require-
ment does not apply. Advertisers who track the topics assigned to
websites they are embedded on can therefore easily flag noisy topics
they do not have third-party coverage of. Although, we can expect in
practice that advertisers will be embedded on a large set of websites
as demonstrated by pastmeasurement studies [1, 2, 24, 46, 49, 51, 67],
thedistributionof topicsonthemostvisitedwebsitescould informad-
vertisers aboutwhich topicswill appearmore because they are noisy
than genuine. Indeed, we show in Section 4.4 that not all the topics
from the initial taxonomy are observed on the most visited websites,
and build a classifier to identify the noisy or genuine nature of topics.

Second, if a topic is repeated in the array of𝜏 =3 topics, advertisers
can distinguish between noisy and genuine topics. A topic that
repeats 𝑥 times, with 2≤𝑥 ≤𝜏 , would be noisy all these times with a
probability of ( 𝑝Ω )

𝑥 . By the opposite event rule, we have: a topic that
appears𝑥 times is genuine at least oncewithprobability 1−( 𝑝Ω )

𝑥 , i.e.,
more than 99.99% for 𝑥 ≥2. Users who have stable interests across
epochs have a higher chance of returning repeated topics during a
one-shot scenario (i.e., a single call to the API). Similarly, advertisers
in amulti-shot scenario (i.e., several calls to the API are observed),
have an incentive to collect user’s interests across time. Doing so,
advertisers amass more information than through a single API call,
and can identify for instance a user’s genuine topics when these
repeat over non-contiguous epochs or epochs separated by at least 𝜏
other epochs.Asusers have stable topics (see Section 2), theirTopics
API’s results across epochsonawebsite canbe seenas avariant of the
Coupon Collector’s Problem [58], and 11 epochs would be necessary
in expectation to see each one of the user’s genuine topics once (see
Appendix D for proof and Figure 4c for empirical results from our
simulation). So, themore an advertiser observes a user across epochs,
the more confident it becomes in which topics are truly genuine or
noisy; we further study and quantify these risks in Section 4.4.
Collusion - Cross-site Tracking.Advertisers may be able to re-
move the noise added by the TopicsAPI, especially for users with
stable interests. Can Topics be used to cross-site track users?

During a given epoch, the TopicsAPI returns a maximum of the
same𝜏 =3 topics to any caller embedded on a givenwebsite. For each
consecutive epoch, third parties that regularly call the TopicsAPI
are returned at most 1 new topic per epoch. This effectively limits
Topics’s privacy disclosure; specifically, if user interests and their
nature were uniform enough. However, if we assume that the set of

top𝑇 =5 topics for some user is stable, i.e., remains the same across
epochs, a third party could potentially observe all top𝑇 =5 topics of
these users in as little as𝑇 −𝜏+1=3 epochs. Third parties on other
websites can do the same, and collude to re-identify users. The initial
taxonomy is composed ofΩ=349 topics, which leaves uswith a total
of

(Ω
⊤
)
≈42 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 combinations of unique top𝑇 =5 topics. Thus, if

some users also exhibit unique interests, they risk being re-identified
across websites in both one-shot andmulti-shot scenarios. Also, even
if users are sharing common interests with others, there exists an
arbitrary number of techniques out of scope of our threat model in
this paper that can be used on top of Topics to further discriminate
users into smaller and distinct populations [3, 52, 77], making the
risk of being re-identified real for everyone (see Section 6.1).

For a given epoch and user, calls to the TopicsAPI that originate
from different websites do not return the same results every time.
This is an attempt at making it harder for advertisers that are collud-
ing to re-identify users across websites through one-shot scenarios.
However, in multi-shot scenarios where advertisers record topics re-
turned for eachuser across epochs,more information is accumulated.
This directly paves the way for re-identification attacks grouping
users by their top𝑇 topics as demonstrated in Section 4.5. Thenatural
diversity and stability of users interests here again conflicts with the
privacy guarantees that Topics intends to provide.

4 PRIVACY EVALUATION
In Section 3.4,wefind that advertisers can remove the noisy topics re-
turned by Topics in one-shot and multi-shot scenarios, and discuss
that if third parties are colluding, users risk being tracked acrossweb-
sites. We seek to empirically demonstrate and evaluate these risks:

Q1: To what extent can third parties identify noisy topics?
Q2: To what degree can users be tracked across websites?

4.1 Challenge
To answer these questions through an empirical evaluation, it would
be ideal to have access to a recent and representative dataset of real
browsing histories on which the Topics API could be simulated.
Unfortunately, no such dataset is publicly available to researchers.
Web actors, like Google, who collect this browsing data at a large
and systematic scale through opt-in telemetry and reporting pro-
grams, keep it private [6, 28]. Some online data brokers do offer
to sell some browsing histories datasets, but, for privacy, ethical,
and representativeness reasons about the unclear and vague col-
lection methodology of these datasets we immediately discard this
possibility (see also our ethics statement in Section 6.4).

As a result, researchers have historically taken a survey approach
to directly ask users about their browsing habits and collect their
histories [26, 47, 57, 61, 75].However,weobserve that such collection
process is cumbersome and very often results in limited size of
collected samples forwhich ethical and representativeness questions
still arise. Not to mention that these researchers usually can not
publicly release their sensitivedatasetof collectedbrowsinghistories,
preventing others from reproducing their results or methodologies
without going through the same collection process. Recognizing this
challenge and aware of recent and representative results published
in the measurement community about online users behaviors, we
propose anewapproach to solve this dataset problem for ouruse case.
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(b) CrUX.
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(c) Tranco.

Figure 3: Distribution of the observations of each individual topics on the domains for each corresponding top list.

4.2 Drawing fromRepresentative Distributions
First, we observe that to analyze the TopicsAPI, we do not specifi-
callyneeddetailedand timestampedbrowsinghistory tracesbutonly
the distribution of the most visited domains for each user. Indeed,
as explained in Section 3.1, the Topics API classifies the websites
visited by each user during an epoch into topics and keeps only the
top 5most visited topics. Thus, we propose an alternative that lets us
generate synthetic datasets of any arbitrarily size. These are drawn
directly from representative distributions of online browsing behav-
iors aggregated on the large private datasets of browsing histories
that Cloudflare, Google, and Mozilla have collected. Contrary to the
datasets, these distributions are publicly available: they have been
published in measurement works performed in collaboration with
these organizations (see Section 2) [6, 18, 68, 69].

Specifically, Mozilla reported the distribution of the number of
unique domains visited by 52k real users in a week in a replication
study about the uniqueness of browsing histories [6]. Ruth et al.,
partnered with Google and Cloudflare to perform a large-scale mea-
surement of real users browsing patterns of “several hundred million
users globally” [18, 68, 69]. They disclosed the shape of the global
distribution of web traffic that we use on the top 1M most visited
websites from the CrUX top-list, as it is representative of “over 95%
of page loads on the Internet” [68]. Note how the CrUX top-list is
generated by the same research group [18].

Wewill nowwalk through the generation of a synthetic dataset of
a specified size, beforediscussingdifferentproperties andadvantages
of our approach. We sample a population with the same distribution
of unique domains visited each week by user as the one reported
byMozilla. Then, to determine which domains are visited by each
synthetic user, we use the global distribution of web traffic reported
by Ruth et al. This requires to first set a total order among the top
1M websites of the CrUX top-list, which are binned by top rank
(top 1k, 5k, 10k, 50k, 100k, 500k, and 1M). Fortunately, Ruth et al.,
report that they see “Google, Youtube, Facebook, WhatsApp, Roblox,
and Amazon within the top six sites for at least ten countries” [68],
so, we use the main FQDN of these organizations (e.g., [www sub-
domain].[organization’s name]. [com global top level domain]) for
the top 6 websites. For the rest, we set a relative order within each
bin by using the Tranco rank [48] of the eTLD+1 of each website in
CrUX. Similarly, we also use the ordered list of the top 100 eTLD+1

globally returned by Cloudflare Radar’s Domain Ranking API [12].
This total ordering allows us to directly sample browsing histories
for each user according to their number of unique visited domains.

Our approach has several advantages: (1) it does not require the
collection or use of any sensitive data by researchers, (2) the gener-
ated histories have the same desired properties of representativeness
as the global distributions see on the web by Cloudflare, Google, and
Mozilla because they are directly drawn from their reported results,
and (3) it allows the generation of any arbitrarily large synthetic
dataset than can (4) be publicly shared to (5) enable reproducible
methodologies.As such,we release as an open-source artifact 5 the en-
tirety of our generation code and of our privacy and utility analyses
of the TopicsAPI performed for this paper [5].

4.3 Topics Simulator
For thepurposeofouranalysis,we implementa simulator to replicate
what the TopicsAPI would output to different advertisers embed-
ded on several websites when the simulated population of users
visit them. This simulator follows the exact steps specified in the
proposal of the TopicsAPI [23, 35, 36], with the exception that we
assume that advertisers have a large third-party coverage of the web,
thus, they can observe any topic from the taxonomy for every user.
This effectively removes the witness requirement of the TopicsAPI
and assumes a worse case threat model that tends to be also more
realistic: some advertisers already have such important coverage as
demonstrated by several past studies. [1, 2, 24, 46, 49, 51, 67].

For the rest of this section, we generate two synthetic datasets
following the procedure explained in Section 4.2. These histories are
classified into the topics that would be returned by the Topics clas-
sifier. As we are missing frequency information about the number of
visits to each unique website, we sample up to 10 sets of possible top
𝑇 =5 topics of interests among the topics observed, in case less than
𝑇 topics were observed for a user, we draw the remaining ones uni-
formly from the taxonomy like the TopicsAPI does.We also assume
that users have stable interests across time (see related work cited in
Section 2 and our discussion in Section 6). Finally, we present in Ta-
ble 3 some statistics about the two generated synthetic datasets used
in the rest of this section: (1) 52k users used to fine-tune our binary

5Available at https://github.com/yohhaan/topics_analysis
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Table 3: Statistics of generated datasets for one epochper user.

Metric 52k users 250k users

Number of users 51977 249997
Unique observed domains 91144 248201
Unique observed topics 342 349
Unique top𝑇 =5 profiles 47928 209745

classifier in Section 4.4, and (2) 250k users on which we simulate the
TopicsAPI for 30 epochs for 2 different advertisers to evaluate the re-
identification risk associated with Topics. Note that the generated
datasets have the same desired properties of representativeness

4.4 No Collusion and Noise Removal
In this section, we analyze the possibility for advertisers to identify
and remove the noisy topics returned by theAPI. Recall that advertis-
ers have an incentive in doing so to improve, for instance, the selec-
tion of relevant ads to display to users. As discussed in Section 3.4, if
the distributionof topics on themost visitedwebsites is non-uniform,
advertisers can use it as prior information to discriminate topics on
their genuine or noisy nature. So,we ask here:what is the distribution
of topics on the most visited websites on the Internet? and how can we
leverage that information in the context of the TopicsAPI?

Topics Distribution as a Prior. In Figure 3, we plot the histogram
and the empirical cumulative distribution of how many individ-
ual topics are observed per number of classified domains for (a)
the static mapping, (b) the top 1M most visited websites6 from
CrUX [18, 68, 69], and (c) the top 1M most visited eTLD+1 from
Tranco [48] classified with the TopicsAPI.

The results show that the distributions of observations of each
topic is very non-uniform. First, the number of unique domains on
which each topic is observed tends to be rather small: the median
is of only 3, 66, and 189 unique domains per topic respectively for
the classifications of the static mapping, CrUX, and Tranco. Then,
we observe that a moderate number of topics from the initial tax-
onomy are never observed at all: 95, 42, and 38 topics respectively.
Finally, a few topics are seen on a significant number of domains: 3
topics are seen onmore than 10% of the static mapping, when 1 topic
in particular (Arts & Entertainment) is seen in the classification of
187278 domains on CrUX (18.8%) and of 176204 domains on Tranco
(17.6%). Given that the list of top 1Mmost visitedwebsites represents
“95% of all page loads on the internet” [68, 69], the distribution of
topics among users is highly skewed as well.

Using this distribution as a prior, third parties can build a binary
classifier to distinguish between the noisy and genuine nature of
topics. The first approach is to set a global minimum number of
websites among the top most visited websites on which topics must
appear to be considered genuine. Other more advanced options that
we do not explore here could see advertisers adapting their strategies
to the website they are embedded on, to the population observed, or
to other biases and signals, etc. To determine the minimal number of
websites a topicmust appear on to be considered as genuine, we fine-
tune our simple binary classifier on the simulation of the TopicsAPI
6CrUX provides a list of the top 1M most visited origins which represents 991 656
unique domains in practice (some appear twice depending on the http(s) protocol used)

Table 4: Results of our classifier for different thresholds.
Highlighted row is the threshold used in the rest of the paper.

Threshold Accuracy Precision TPR FPR

0 0.956 0.130 0.938 0.044
1 0.957 0.144 0.915 0.043
2 0.959 0.173 0.905 0.041
5 0.959 0.207 0.894 0.040
10 0.961 0.246 0.900 0.038
20 0.956 0.284 0.681 0.038
50 0.958 0.364 0.658 0.033
100 0.959 0.442 0.619 0.028
500 0.912 0.644 0.315 0.020
1000 0.872 0.752 0.246 0.015

for 1 epochon the small dataset of 52kusers exclusively generated for
that purpose.Wepresent inTable 4 the raw results of the classifier for
the following thresholds: 0, 1, 2, 5, 10, 20, 50, 100, 500, and 1kwebsites,
the positive class of our classifier corresponds to the noisy nature of
the topic observed,while thenegative one to genuine. For a threshold
of 10websites, we observe that our classifier has still a very high true
positive rate (TPR) for a better false positive rate (FPR) than smaller
thresholds. As a result, for the rest of our analysis, we set the global
minimum threshold for the classifier to 10 websites, we also now
exclusively simulate the Topics API on the larger dataset of 250k
users for all the others denoising and re-identification experiments.
One-shot Scenario. In the one-shot scenario, advertisers only ob-
serve 1 result returned by the API in a given epoch, i.e., 𝜏 =3 topics
per user. Even though this information disclosure is very limited, a
topic that repeats in the returned array of a user is way more likely
to be genuine than noisy as explained in Section 3.4. We use this fact
and our binary classifier tomeasure howmany of the noisy topics ob-
served through theAPI canbeflaggedas suchbyadvertisers. For that,
we simulate an advertiser that observes the results returned by only
onecall to theTopicsAPI forourpopulationof250kusers, e.g., a total
of 750k topics observed, fromwhich 37.5k are expected to be noisy.

For each user, the simulation returns 𝜏 =3 topics only. Our clas-
sifier determines which ones from these topics are likely genuine or
noisy. First, if a topic repeats among the topics of a user, it is flagged
as genuine (recall that in Section 3.4we showed that it is very rare for
a topic to repeat if it is noisy). In the case of no repetition, we check if
each topic from the 𝜏 =3 that have been observed is present on more
than 10 websites on the classification of the top 1Mwebsites from
the CrUX top-list,if so, it is classified as genuine, if not noisy. This
one-shot procedure is individually performedon-the-fly for eachone
of the 250k users. The results of our noise removal mechanism are as
follows: an accuracy of 96.1%, with a precision of 24.7%–higher than
the 95% and 0% a naive classifier always outputting genuine would
have achieved–, a true positive rate (TPR) of 93.9%, and a false pos-
itive rate (FPR) of 3.8%. Thus, we find that our classifier successfully
identifies about 25% of the noisy topics in one shot-scenarios.
Multi-shot Scenario. Here, we are interested in the multi-shot
scenario wherein advertisers record across epochs the topics they
observe for every user.We simulate a call to the TopicsAPI at every
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Figure 4: Multi-shot noise removal results for 250k stable users simulated across 30 epochs.

epoch for 30 epochs for every one of the 250k users. Similarly to be-
fore, advertisers wanting to distinguish between noisy and genuine
topics should save the results returned for each user across time in
a first-party context. Then, they will check for repetitions within
epochs and across non-consecutive epochs, as observed earlier in
Section 3.4; if topics repeat over non-consecutive epochs or epochs
separated by at least𝜏 other epochs,we consider themgenuine. So, in
the multi-shot scenario, we first attempt to identify genuine topics;
if we are able to recover top 𝑇 = 5 stable topics for each user, we
then mark all other topics as noisy. In the case where not enough
repetitions have been observed, we use the same binary classifier as
in the one-shot scenario7. This procedure is performed individually
for each user and on-the-fly, i.e., only with all the topics observed
during the epochs up to the one being simulated.

In Figure 4, we respectively plot the evolution across 30 epochs
of the accuracy, precision, TPR, and FPR of our multi-shot noise
classifier as well as the minimum, median, and maximum size of
top 𝑇 = 5 genuine topics that are retrieved across the 250k users.
As expected; the more epochs an advertiser observes results from
the Topics API, the more confident it becomes in which topics
correspond to genuine or noisy ones as shown by the evolution of
the different metrics of our classifier across time. For instance, if
93.9% of the noisy topics are correctly identified for the first epoch,
this bumps to more than 99% after 10 epochs, and almost reaches
100% for 30 epochs. Notice the change of trends observed around
10 and 11 epochs for different metrics as we reach in expectation
the number of necessary epochs to recover the top topics of users as
demonstrated in Appendix D. Ultimately, we are recovering almost
all the top𝑇 =5 genuine topics of stable users. Note that advertisers
being able todo so, preventsusers fromclaimingplausible deniability
of being interested in some topics, which was what Google expected
to provide by adding these noisy topics as per their privacy goal (G3).

4.5 Collusion and Cross-site Tracking
One of Topics’s privacy goals is to prevent third parties from being
able to re-identify users acrosswebsites (G1). Here, we assume that 2
advertisers𝐴 and𝐵 are colluding and sharing the topics they observe

7Note that when only 1 epoch is observed this multi-shot noise removal is equivalent
to the one-shot noise removal presented before.

on 2websites𝑤𝐴 and𝑤𝐵 they are respectively embedded on.𝑛 users
visit these 2 websites at every epoch and the advertisers are trying
to re-identify a portion of or all users across these two websites. We
ask: howmany users are they able to re-identify?

Weempiricallymeasure this cross-site tracking risk by simulating
the views across 30 epochs that these 2 advertisers calling theTopics
API would observe for our 250k users. Note that this is the same
setting assumed by Google in their white paper released along with
Topics [25]: advertiser𝐴 gets access to all the topics observed for
each user {𝑢𝑖,𝐵 | 1≤ 𝑖 ≤𝑛} by advertiser 𝐵 and advertiser𝐴 attempts
to match the user𝑢 𝑗,𝐴 for some given 𝑗 , with 1≤ 𝑗 ≤𝑛, they have ob-
served onwebsite𝑤𝐴 with the correct𝑢 𝑗,𝐵 seen on𝑤𝐵 . In practice, if
Topics’s goal (G1) is respected, advertiser𝐴 shouldnot be successful
withaprobabilityhigher than 1

𝑛 foreachuser, i.e., nobetter thanaran-
dom guess. We assume that a given user observed on𝑤𝐴 is uniquely
re-identified when it is exactly matched to its correct identity on the
other website𝑤𝐵 . We say that a user has a higher likelihood of being
re-identified than randomly if advertiser𝐴 identifies a group of users
seen by 𝐵 of size 𝑘 that contains the target user and such that 𝑘 <𝑛.

Applying the techniques presented in the previous section on
noise removal, each advertiser simulated in our evaluation filters
on-the-fly the noise from the observations of topics, keeps only the
observed topics deemed not noisy, and comes upwith the topics that
are the most likely to be in the top𝑇 =5 of each user. For each epoch,
users that visitedwebsite𝑤𝐴 are thenmapped to theuser(s) observed
on website𝑤𝐵 with whom they share the most genuine topics in
common. Note that in this cross-site re-identification experiment,
the roles of advertisers and websites𝐴 and 𝐵 are interchangeable.
One-shot andMulti-shot Results. In the one-shot scenario with
collision,wefind that 0.4%of the 250kuserswe simulate are uniquely
re-identified and that 17% of them can bewith higher likelihood than
just randomly. Note that while the numbers obtained in one-shot
scenario are low, they are not null and some users (a total of 17.4%)
can be re-identified across websites, which violates Topics’s goal
(G1) (modulo the exact definitions of “difficult” and “significant” ).

In multi-shot scenarios, the violation is even larger the more
epochs are observed: 57% of the users are uniquely re-identified and
an additional 38% with a higher likelihood than just randomly when
15 epochs are observed (for a total of 95% of the users), while 75% and
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Figure 5: Distribution of the size 𝑘 of the re-identified groups.

an additional 25% of the users are respectively re-identified uniquely
andwith a higher likelihood for 30 epochs (total of 100% of the users).
These results across epochs are alignedwith the ones obtainedwhen
removing the noisy topics in the previous section; recall that the
more epochs an advertiser observes, themore genuine topics among
users’ stable top𝑇 =5 they retrieved ( Figure 4c), and as a result the
more users are re-identified, defying Topics’s goals (G1) and (G3).

In Figure 5, we now plot the cumulative distribution function for
different epochs of the proportion of users observed by advertiser𝐴
across each group size𝑘 of re-identified users observed by advertiser
𝐵. As shown, the proportion of uniquely re-identified users can be
obtained for 𝑘 =1, but this graph also illustrates the evolution of the
level of 𝑘-anonymity (directly related to the size of the re-identified
group) that a user in our simulated population of size 250k users
can expect across epochs. These results directly inform us on how
“difficult” it is to re-identify “significant numbers of users across sites”
(G1), for instance: for 10 epochs, over 60% of the users can not be
guaranteed strictly more than 10-anonymity in our evaluation.

5 UTILITY EVALUATION
Wenowevaluate theutility claimof Topics.Advertisers andpublish-
ers want to serve ads that correspond to user interests to maximize
the outcome (click, visit, order, etc.). Thus, we ask:

Q3:Howaccurate is themappingof the TopicsAPIbetween
domains visited by users onto topics of interest?

We answer this by comparing the classifier accuracy from differ-
ent approaches: first, we measure the performance of the Topics
model by comparing classification results with the static mapping
published by Google. While not entirely confirmed, this static map-
ping likely constitutes a part of the training or fine-tuning dataset for
theTopicsmodel.We then extend this evaluation to the top 1Mmost
visited websites using publicly available data on site content. Finally,
we lookat theTopicsmodel’s resistance tomanipulation, evaluating
the ability to craft subdomains that are misclassified by the model.

5.1 Static Mapping Reclassification
As explained in Section 4.4, domains to be classified are first checked
against a staticmapping of 9254 domains. If the domain is not present

Table 5: Model performance on static mapping.

Metric Top filtering Chrome filtering

Accuracy 0.55 0.48
Balanced accuracy 0.24 0.23

All topics correct (ratio) 0.46 0.34
Jaccard index (average) 0.53 0.48
Dice coeff. (average) 0.56 0.52

Overlap coeff. (average) 0.56 0.61
At least one correct (ratio) 0.65 0.63

in this static mapping, it is classified by the Topicsmodel. We first
ask:does themodel reflect humandecisions?Weevaluate this question
bymeasuring the accuracy of the classifier on the staticmapping that
was manually annotated by Google and so, can be considered as a
formofground truth.After reclassifying these9254domains,wecom-
pute inferred topics for each site using two different filtering tech-
niques. First,weapply the samefilteringusedby theChromebrowser
(Chromefiltering, seeAppendixC). This filtering outputs amaximum
of 3 topics per domain, but the ground truth dataset has anywhere
between 0 and 7 topics associated with each domain. To allow for a
best-case characterization of Topics’s utility, we introduce a second
filtering step that is more conservative: top filtering retains the same
number of topics as seen in the ground truth, giving Topics the best
chance possible of matching topics in the ground truth dataset.

For each filtering strategy, we obtain two topic sets: a set of
{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑} and {𝑎𝑐𝑡𝑢𝑎𝑙} topics thatwe comparewith differentmet-
rics reported in Table 5 (see Appendix E for formulas). Note here that
the difference we observe between accuracy and balanced accuracy
can be explained by the fact that most frequent classes contribute
more to accuracy than for balanced accuracy where each individual
class’s accuracy has an equal weight computed by their recall [39].

Let’s focus on the proportion of sets where all, some (Jaccard
index, Dice coefficient, and Overlap coefficient averages), or at least
one predicted topic are correct. These metrics show that at its best,
the Topics model outputs at least one topic in common with the
ground truth on 65% of the domains of the static mapping. Note
that Google did not disclose if this static mapping was used to train
or fine-tune Topics’s model classifier, though our results would
be broadly consistent with this. However, to understand how the
Topicsmodel generalizes beyond potential training data, we next
explore the classifier’s performance on a broader set of websites.

5.2 Top 1MMost VisitedWebsites
To evaluate the model classifier of Topicsmore systematically, we
ask what would be the accuracy of the classifier on the most visited
websites? Thus, we classify the top 1Mmost visited websites as re-
ported by the CrUX top list. We first manually verify a subsample
of the classification and then introduce a more systematic way to
perform the comparison using one of Cloudflare’s APIs.
Manual Verification. For this manual verification, we are inter-
ested in estimating the proportion of domains that get assigned to a
valid top topic, i.e., is the topic assigned to the domain with the highest
confidence by themodel related at all to the content of the corresponding
website? For that, we perform a conservative sampling approach [76]
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Table 6: Model performance when using Cloudflare Domain Intelligence API returned categories as ground truth.

Metric Static Mapping Top 1k Top 5k Top 10k Top 50k Top 100k Top 500k Top 1M

Number of websites compared 2500 423 1977 3880 18160 35466 172529 347686
Overlap coefficient (average) 0.88 0.76 0.75 0.72 0.62 0.59 0.55 0.53

At least one topic correct (ratio) 0.94 0.81 0.80 0.76 0.66 0.63 0.59 0.57

and extract a uniform sample of 385 domains along their top topic
from the classification of the CrUX top-list from which we have
excluded the domains from the static mapping (as already evaluated
in Section 5.1). The manual verification is done by extracting the
meta description tag of each website and displaying it along with the
domain and classified topic. If this description can not be obtained
for various reasons (website unreachable, script blocking, etc.), we
manually get it from aGoogle search. Then, 3 persons independently
evaluate if the top topic for each domain is related to the meta de-
scription of the website (translated to English with Google Translate
if necessary). Finally, the results are aggregated by keeping for each
domain the most favorable rating, i.e., a domain is judged to have an
invalid and unrelated top topic only and only if all verifiers judged so.
Through this population proportion estimate [76], we find that the
top label returned by Topics is valid for 56% of the domains.We also
acknowledge that this approach has its limitations: we only keep the
top topic for each domain when the other potential topics returned
for that domainmay bemore accurate, and the aggregation is biased,
giving the benefit of the doubt to the TopicsAPI when one verifier
judges its classification related to the meta description of the web-
site. To overcome these limitations, we next seek to automatically
compare the TopicsAPI classification on the 1M top-list.
CloudflareCategorization.To systematically evaluate the Topics
API on the top 1M domains from the CrUX top-list, we now propose
to compare the Topics classification to the content categories re-
turned by the Cloudflare Domain Intelligence API [11, 14]. These
categories are used in some of Cloudflare products to filter or block
traffic based on certain categories (security risks, adult themes, etc.).

We choose this service of Cloudflare Radar for different reasons:
(1) it has similar categories than Google’s topics (facilitating the
mapping between the two), (2) it is a commercial system used in
deployment by Cloudflare as part of their Domain Intelligence and
Threat APIs, (3) it aggregates different data sources to perform the
classification and only output categories on some domains (more
accurate than being just based on the hostname), (4) it is manually
curated (incorrect categories can be reported alongwith suggestions
for domains not classified yet), and finally (5) the API is accessible
with a free account (for reproducibility of some of our results) [13].

In order to compare Google’s Topics classification to the catego-
rization from Cloudflare, we manually map Topics’s taxonomy to
Cloudflare’s 150 content categories. First, we assign sensitive cat-
egories (Adult Themes, Drugs, Religion, etc.) from the Cloudflare
taxonomy to the Unknown interest from Topics, we then assign
each of the remaining 349 topics to every content category it could
be mapped into. We further refine our assignment by looking at the
domains that do not correctly get their topics mapped to content
categories from the static mapping (which explains the high perfor-
mance results on the staticmapping). Then,we categorize the top 1M

most visitedwebsites from the CrUX top list with the Cloudflare API,
andwe keep only the domains forwhich some content categories are
returned. For each domain, we end up mapping these categories to a
set of topics thatwecancompare to theonespredictedbyTopics.We
release our manual mapping as part of our open-source artifact [5].

Table 6 shows for different ranks of top most visited websites
the overlap coefficient average and the proportion of domains for
which there is at least one topic in common between both classifica-
tions, using the remappedCloudflare’s output as ground truth. These
results show that the Topics’s classification is also quite accurate
beyond the ∼10𝑘 websites from the static mapping; indeed on the
domains from the top 1M that are categorized by the Cloudflare
API, at least 1 topic is output in common by Topics on 57% of the
cases. We conclude that this matching implies moderate utility of
the Topics model for targeted advertising (G2). In practice, user
interests are tagged heuristically based on visits to many sites, and
the aggregation of these visits would reduce classification mistakes
and improve accuracy over these per-site results.

5.3 Crafting Subdomains
Motivated by a discussion on the proposal [44], we study the pri-
vacy and utility trade-off of not allowing advertisers to set their own
topics. At present, the Topicsmodel only uses the hostname of the
websites as input; this is limited information to workwith compared
to potentially having access to some content of the website (such as
the meta description for instance) or having publishers providing
their own topics or classification hints. The purpose of this limitation
is ostensibly to reduce the ability of website operators to influence
their site tagging (and thereby reducing API abuse to assign unique
identifiers to users). However, this also reduces the utility of the
system because many hostnames are incorrectly classified. In this
section, we evaluate if this utility trade-off actually provides de-
fense against manipulation: can publishers influence the classification
through the use of carefully crafted subdomains?

To demonstrate the extent to which this is possible, we carry out
the following experiment where we craft subdomains for each of the
top 10k most visited websites from CrUX. As a preliminary step, we
classify with Topics every individual word from the English dictio-
naryprovided byWordNet [56]. Then, for eachdomain in the top 10k,
wecraft 350 subdomainsbypreprending to it theEnglishwordoutput
with the highest confidence for each topic. To illustrate, we provide
the following example: “batman” and “dance” are the two words
classifiedwith thehighest confidenceacrossWordNet to the “Comics”
and “Dance” topics, respectively. Thus, for the domain “example.org”,
wewould craft the following subdomains: “batman.example.org” and
“dance.example.org”, respectively. We classify with Topics, this to-
tal of 3.5M new subdomains and interpret the results through the
following two types of misclassifications: untargeted elimination
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Figure 6: Cumulative distribution of the number of successful
targeted additions and untargeted eliminations per domain.

and targeted addition. An untargeted elimination would be used to
eliminate an undesirable topic association from a site, whereas a
targeted addition could introduce a new, desirable topic associa-
tion. This could be done to improve the mapping, help publishers or
advertisers observing topics fromwebsites that they would not be
embedded on otherwise, and to some extent alter the topics of some
users (with a potential privacy risk of assigning unique interests).

Figure 6 shows the cumulative distribution for the original do-
mains of the number of crafted subdomains that were respectively
misclassified. For untargeted elimination, we look at if the classifica-
tionof thenewlycrafteddomainchangedat all fromtheclassification
of the initial domain; this happens for almost all the crafted subdo-
mains for any domain in the top 10k. We are also interested in a
specific targeted addition, in this case, we are successful on more
than 114 crafted subdomains for half of the initial 10k domains,
and at most we are able to successfully craft a total of 235 targeted
subdomains. These results show that the model classifier is quite
susceptible to changes to the initial domain as untargeted elimina-
tion is successful in almost all the cases. For targeted addition, while
our approach is quite simple, it is sufficient to target a fair number
of topics. We are only interested in showing that capability here, but
one could improve these results by applying for instances techniques
from adversarial machine learning [9, 27, 50, 64, 72].

Our results demonstrate that publishers can craft specific subdo-
mains to set their own topic(s). They can implement this in practice
by redirecting users to them to influence the Topics computation.
However, this is contradictory to the security goal that domain-
based classification gives up utility to achieve. Using more site data
to determine classification would further exacerbate this issue. As is,
Topics does not achieve an optimal trade-off between security and
utility, where restricting classification further (such as basing only
on eTLD+1) would provide more security with minimal utility trade-
off. As the current system effectively allows sites to set their own
topic, we argue that such a feature should either be made openly
available to publishers in an accessible and easy-to-audit way to
incentivize honest participation or further restricted.

6 DISCUSSION
The privacy risks we observe with Topics arise from the API relay-
ing the underlying distribution of user interests. Users have diverse
web behaviors that are unlikely to change and so natural properties
of their interests, such asheterogeneity, stability, anduniqueness, are
reflected through the API results. These can be exploited as shown
in Section 4, but parts of the system can also be modified to try
to make the Topics observations less skewed and more uniform.
We next present some partial mitigations and explain why they do
not fix the problem, we then discuss the different assumptions of
our analysis, and discuss future work and other directions such as
other types of approaches that may have to be considered to enable
privacy-preserving online advertising.

6.1 Partial Mitigations
Recall that in Section 4, we observe that the distribution of topics is
highly skewed on the top 1Mmost visited websites. A direct conse-
quence is that some topics aremore likely to be noisywhen observed
by advertisers than genuine. To attempt to fix this distribution, a
new taxonomy and classifier could be designed so that all the topics
appear more uniformly than they currently do on the top 1Mweb-
sites. In this regard, several modifications are possible: (1) a larger
training datasetwith observations of all the classes, (2) extending the
static mappingwith observations for every topic, (3) providingmore
information to the classifier than just the hostname of thewebsite (al-
though this also introduces accuracy and privacy issues as we saw in
Section 5.3), (4) ensuring that every topic from the taxonomyappears
genuinely on the most visited websites, (5) removing altogether top-
ics that appear very little in practice (although this impacts accuracy
for users and specific websites from these categories), or (6) split-
ting topics that appear a lot and merging the ones that appear less.
However, for these mitigations, a crucial assumption is made about
which domain the observations are made on. For instance, fixing the
classifier and the taxonomy so that every topic on the top 1Mmost
visited websites appears a minimum of times, does not imply that
this would also be the case on the top 10k, top 100k, for the visitors
of a website about some given subject, or for the users of a smaller
group than the larger population created by advertisers based on ad-
ditional fingerprinting vectors (location, language, etc.). As a result,
these would only be partial mitigations, as they do not address the
underlying diverse nature of all user interests. Not to mention that
they can directly impact the accuracy and level of utility of the API.

6.2 Assumptions of our Analysis & FutureWork
In order to perform our analysis, several assumptions were made. In
this section, we list them and discuss their foreseen implications.
Population Size. The results presented in this paper are based on
the simulation of a population of 250k synthetic users, but our sim-
ulator can very well generate a population of any size. Thus, we can
evaluate the impact of the population size on the re-identification
results of our analysis. Table 7 presents for different population sizes
the proportion of users that are uniquely re-identified across time.As
expected, we can see that for a given epoch the re-identification rate
is higher the smaller the population is, indeed, we simulate advertis-
ers that are trying to recover the genuine top𝑇 =5 topics of interests
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Table 7: Proportion of users uniquely re-identified for
different population sizes.

Epoch 1k 5k 10k 50k 100k 250k 500k

1 0.115 0.045 0.032 0.012 0.008 0.004 0.004
2 0.192 0.101 0.076 0.037 0.026 0.015 0.011
5 0.509 0.362 0.312 0.199 0.160 0.116 0.095
10 0.792 0.709 0.674 0.530 0.467 0.382 0.337
15 0.874 0.847 0.831 0.726 0.676 0.567 0.536
20 0.900 0.899 0.896 0.822 0.784 0.670 0.654
25 0.912 0.919 0.917 0.861 0.831 0.722 0.711
30 0.916 0.927 0.924 0.878 0.851 0.745 0.737

for each user and the smaller the population is, the smaller the prob-
ability is that other users have the same top interests. As a result, this
experiment also shows that themore unique the top interests of each
userareamongagivenpopulation, thehigher the risk that theyare re-
identified acrosswebsites. Finally, if we assume that third parties can
link the results of the TopicsAPI with other fingerprinting signals
(outside the scope of our analysis), such as location, language, etc.,
they can easily discriminate a large population of users into smaller
groups within which re-identification becomes easier. Further work
in that space is needed to evaluate the consequences of such scenario.
StabilityofUsers Interests. In thispaper,weassumeusers interests
to be stable across time, while related work have shown that users
havestableanduniquewebbehaviors [3, 6, 26, 47, 52, 57, 61, 63, 75, 79]
(see Section 2), we also have to acknowledge that not every user
would exhibit such stability in practice. Our analysis can be seen as a
worst-case analysis regarding this point: userswho do have stable in-
terests across timehave thus ahigher riskof being re-identified.Addi-
tionally, if stability makes users more re-identifiable, another impor-
tant factors, as described in thepreviousparagraph, is theuniqueness
of the top interests of eachuser among thegivenpopulation.Wedefer
to future work the evaluation of different stability scenarios of users
interests, but our denoising and re-identification results (Figure 4,
Figure5, andTable7)whenonlya fewepochshavebeenobservedand
just someof each user’s interests retrieved can already informus that
advertisers would still be able to re-identify a portion of the users.
Third-Party Coverage. For our analysis, we disregard the wit-
ness requirement of the Topics API by assuming that advertisers
have a large enough third-party coverage of the top 1M websites.
This can be considered as a worst-case scenario, in practice, not all
advertisers are embedded on all websites. However, past measure-
ment studies have shown that some advertisers already have a very
large third-party coverage of the web [1, 2, 24, 46, 49, 51, 67], and
as such other analyses of the TopicsAPI take the same assumption
as well [25, 41, 77]. We leave to future work the measurement and
evaluation of more realistic coverage scenarios.

6.3 Other Avenues
Bydesign, interest-disclosingmechanismsreportuser information to
third parties, other avenues or ideas to replace TPCs with a truly pri-
vate solutionmaybe found in additional proposals of differentnature.
Other alternatives, such as the FLEDGE [22] and TURTLEDOVE [30]

proposals, assume a different setting wherein ad selection is done
locally in web browsers without user data ever leaving their devices.
However, more work remains to be done to evaluate these proposals.
Additionally, building a more private web goes beyond the replace-
ment of just TPCs. Other open challenges include how to perform,
record, and communicate conversion and impression metrics in a
private way that still lets advertisers get the utility they would like.
Google is for instance leading the development of The Privacy
Sandbox initiative that, “aims to create technologies that both protect
people’s privacy online and give companies and developers tools to
build thriving digital businesses” [32].

For theWeb, Google’s proposals also aim at preventing fraud and
spam(PrivateStakesTokensAPI [20]),measuringadsconversion (At-
tribution reporting API [62]), and reducing cross-site privacy expo-
sure (First Party Sets [19], Shared Storage API [80], CHIPS [55], etc.).
For theAndroidmobileOS, the goals are similar: reducing user track-
ing bydeprecating access to cross-app identifiers such asAdvertising
ID, and limiting the scope that thirdparty libraries in applications can
access [10, 37, 38]. Other organizations contribute to The Privacy
Sandbox or to their own projects, for instance: Apple with Private
Click Measurement [40], Brave with Brave Private Search Ads [8],
or Meta and Mozilla with Interoperable Private Attribution [60, 74].
Work remains to be done to seek and evaluate these other avenues.

6.4 Ethics Statement
In this paper, we chose for ethical reasons, privacy concerns, and
representativeness issues not to collect or acquire any dataset of
real user browsing histories. Instead, we use publicly available ag-
gregated ranked lists of top visited websites [18, 28, 48, 69] and rely
on recently published results frommeasurements works about web
user browsing behaviors [6, 68, 69] to generate synthetic browsing
histories. We find it to be the only way to pursue and evaluate these
proposals’ claims without having access to representative browsing
history datasets (i.e., without being one of the large web actors) and
without sustaining the businessmodel of data brokers (see Section 4).
We hope that by releasing our code as an open-source artifact, we
inspire others to adopt a similar methodology.

7 CONCLUSION
Several privacy-preserving alternatives like The Privacy Sandbox
are being developed at the moment by web and online advertising
actors. With the deployment of these alternatives, the modifications
being introduced could impact billions of users and lead to a better
web ecosystem–some proposals even aim at improving user pri-
vacy beyond the web. However, this could also very well be for the
worst, if we replicate similar errors to the ones that weremade in the
past with the same technologies that we are trying to replace today.
As a result, it is of the upmost importance to pay attention to the
changes being proposed, analyze and evaluate them, and attempt to
foresee their potential consequences in the context of realistic user
behaviors. In this paper, we have taken on this endeavor for interest-
disclosing alternative mechanisms for online advertising, such as
Google’s TopicsAPI–currently aimed to be gradually deployed to
Chrome users starting July 2023 with Chrome 115–, and we have
quantified how their privacy objectives and design are directly at
odds with the natural diversity of user behaviors.
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A TAXONOMY

Table 8: Distribution of topics in initial taxonomy; number
of topics (including parent topic) per parent category.

Parent category Number of topics

/Arts & Entertainment 56
/Autos & Vehicles 29
/Beauty & Fitness 14
/Books & Literature 3
/Business & Industrial 23
/Computers & Electronics 23
/Finance 23
/Food & Drink 8
/Games 16
/Hobbies & Leisure 11
/Home & Garden 8
/Internet & Telecom 11
/Jobs & Education 13
/Law &Government 4
/News 7
/Online Communities 4
/People & Society 9
/Pets & Animals 9
/Real Estate 3
/Reference 4
/Science 10
/Shopping 10
/Sports 33
/Travel & Transportation 18

B COMPARISONMETRICS
USED INMODEL PERFORMANCEANALYSIS

When comparing the {𝑎𝑐𝑡𝑢𝑎𝑙} and {𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑} sets of topics, we
report the average across the domains considered for the following:

Jaccard_index=
|{𝑎𝑐𝑡𝑢𝑎𝑙}∩{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑}|
|{𝑎𝑐𝑡𝑢𝑎𝑙}∪{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑}| =

Dice_coefficient
2−Dice_coefficient
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Dice_coefficient=
2|{𝑎𝑐𝑡𝑢𝑎𝑙}∩{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑}|
|{𝑎𝑐𝑡𝑢𝑎𝑙}|+|{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑}| =

2 Jaccard_index
1+Jaccard_index

Overlap_coefficient=
|{𝑎𝑐𝑡𝑢𝑎𝑙}∩{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑}|

min( |{𝑎𝑐𝑡𝑢𝑎𝑙}|,|{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑}|)
Note that always Jaccard_index≤Dice_coefficient.

C CHROME FILTERING STRATEGY
Googledoesnot explain in theTopicsproposalhowtheoutputof the
model classifier is filtered. We identify in the chromium source code
the component8 that handles this filtering. As different set of param-
eters are used in the corresponding chromium’s unit tests, we verify
that we have the correct combination by validating that our classi-
fication of 1000 words chosen randomly from the English dictionary
matches (except for a negligible number of floating point arithmetic
issues) the one from Google –accessible from the chrome://topics-
internalspage inGoogleChromebeta.Next,weexplain thealgorithm
that Google uses (also provided in natural language in Algorithm 1);
first the top 5 topics ordered by their confidence score are kept, the
sumof these 5 scores is computed, and any topicwhose score is lower
than 0.01 is discarded. Then, if the Unknown topic is still present and
if its score contributes to more than 80% to the previous sum, the
domain is considered as sensitive; none of the 349 topics is returned,
andUnknown is output. If the proportion is lower, theUnknown topic
gets dropped from the top topics considered for the domain. In this
case, the scores of the remaining topics are normalized by the total
sum computed previously and if the result is bigger than 0.25, only
then the topic is kept. If after all of these steps, none of the 349 topics
remain, then Unknown is returned.

D TOPICS&COUPONCOLLECTOR’S PROBLEM
In this section, we make the connection between the TopicsAPI in
the case of users with stable interests across epochs and the Coupon
Collector’s Problemof probability theory [58].We showhowTopics
is a modified version of the classical Coupon Collector’s Problem.
In this problem, a person collects coupons, cards, tokens, or other
items obtained through a probabilistic experiment such as a random
drawing (buying gum packages, cereal boxes, etc.). The collector
seeks to get all the items at least once, or several sets of each item, etc.

A user with stable interests across epochs has a top 𝑇 = 5 top-
ics of interests that is fixed. They are genuine and one of them is
output with probability 𝑞=1−𝑝 =0.95 for each individual epoch in-
stead of a noisy random one. Advertisers are interested in obtaining
only the genuine topics to improve their ad selection. As a result,
in Topics, advertisers and alike would be the collectors, and the
topics observed the coupons (one newone per corresponding epoch).
As we assume users with stable interests here, this places us in the
Coupon Collector’s Problem settings of a drawingwith replacement.

Let’s denote by 𝐸 the time (number of individual epochs) when
all genuine𝑇 topics have been collected (i.e., observed at least once)
by advertisers. If we denote by 𝑒𝑖 the time at which the genuine topic
𝑖 was collected after having collected 𝑖 − 1 other topics, we have;
𝐸=𝑒1+𝑒2+ ...+𝑒𝑇
8src/components/optimization_guide/core/page_topics_model_executor.cc

Algorithm 1: Chrome filtering strategy
Input: topics_classified i.e., the 350 topics and their score
Output: predicted topics as Topics output in Chrome
/* Chrome filtering parameters */

1 𝑚𝑎𝑥_𝑡𝑜𝑝𝑖𝑐𝑠←5
2 𝑚𝑖𝑛_𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑐𝑜𝑟𝑒←0.8
3 𝑚𝑖𝑛_𝑡𝑜𝑝𝑖𝑐_𝑠𝑐𝑜𝑟𝑒←0.01
4 𝑚𝑖𝑛_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑠𝑐𝑜𝑟𝑒_𝑤𝑖𝑡ℎ𝑖𝑛_𝑡𝑜𝑝_𝑛←0.25
/* Initialization of variables */

5 𝑡𝑜𝑝_𝑠𝑢𝑚←0
6 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑐𝑜𝑟𝑒←0
/* Return highest 𝑚𝑎𝑥_𝑡𝑜𝑝𝑖𝑐𝑠 top scores */

7 𝑡𝑜𝑝𝑖𝑐𝑠←𝑠𝑜𝑟𝑡_𝑟𝑒𝑡𝑢𝑟𝑛_𝑡𝑜𝑝 (𝑡𝑜𝑝𝑖𝑐𝑠_𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑑,𝑚𝑎𝑥_𝑡𝑜𝑝𝑖𝑐𝑠)
8 for 𝑡𝑜𝑝𝑖𝑐 in 𝑡𝑜𝑝𝑖𝑐𝑠 do
9 𝑡𝑜𝑝_𝑠𝑢𝑚←𝑡𝑜𝑝_𝑠𝑢𝑚+𝑡𝑜𝑝𝑖𝑐.𝑠𝑐𝑜𝑟𝑒

10 if 𝑡𝑜𝑝𝑖𝑐.𝑖𝑑 is Unknown then
11 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑐𝑜𝑟𝑒←𝑡𝑜𝑝𝑖𝑐.𝑠𝑐𝑜𝑟𝑒

/* Unknown’s score is considered too strong */

12 if 𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑐𝑜𝑟𝑒/𝑡𝑜𝑝_𝑠𝑢𝑚>𝑚𝑖𝑛_𝑢𝑛𝑘𝑛𝑜𝑤𝑛_𝑠𝑐𝑜𝑟𝑒 then
13 return Unknown

14 𝑡𝑜𝑝𝑖𝑐𝑠_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑←𝑁𝑜𝑛𝑒

15 for 𝑡𝑜𝑝𝑖𝑐 in 𝑡𝑜𝑝𝑖𝑐𝑠 do
/* Check minimal and normalized scores */

16 if 𝑡𝑜𝑝𝑖𝑐.𝑖𝑑 is not Unknown and 𝑡𝑜𝑝𝑖𝑐.𝑠𝑐𝑜𝑟𝑒 ≥
𝑚𝑖𝑛_𝑡𝑜𝑝𝑖𝑐_𝑠𝑐𝑜𝑟𝑒 and 𝑡𝑜𝑝𝑖𝑐.𝑠𝑐𝑜𝑟𝑒/𝑡𝑜𝑝_𝑠𝑢𝑚≥
𝑚𝑖𝑛_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑠𝑐𝑜𝑟𝑒_𝑤𝑖𝑡ℎ𝑖𝑛_𝑡𝑜𝑝_𝑛 then

17 𝑡𝑜𝑝𝑖𝑐𝑠_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑.𝑎𝑑𝑑 (𝑡𝑜𝑝𝑖𝑐.𝑖𝑑)

18 if 𝑡𝑜𝑝𝑖𝑐𝑠_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is 𝑁𝑜𝑛𝑒 then
19 return Unknown

20 else
21 return topics_predicted

Collecting a new genuine topic 𝑖 after having collected 𝑖−1 other
genuine topics for a user has a probability of 𝑞 (𝑇−𝑖+1)

𝑇
. Thus, 𝑒𝑖

follows a geometric distribution of expectation 𝑇
(𝑞) (𝑇−𝑖+1) . And:

E(𝐸)=E(𝑒1)+E(𝑒2)+ ...+E(𝑒𝑇 )=
𝑇

𝑞

(
1+ 1

2
+ ...+ 1

𝑇

)
=
𝑇

𝑞

𝑇∑︁
𝑖=1

1
𝑖
≈13 for𝑇 =5

On expectation, advertisers must observe the topics for a user
that correspond to 13 individual epochs to say that they collected
all genuine topics of their top𝑇 =5 topics. This means 11 consecu-
tive API calls as a minimum to Topics; as the initial call discloses
a maximum of 3 new topics and the consecutive ones a maximum
of 1 new topic at once.

E NOTATIONS
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Table 9: Notations and symbols used in this paper.

Notation Definition Value

Commit on Topics proposal Commit sha of the Topics proposal studied in this paper 24c8789 (May 30, 2023)
Taxonomy version Version of the taxonomy used in this paper v1
Model version Version of the studied Topics classifier in this paper 1 (used to be labeled 2206021246)
Topics version Latest version of Topics studied in this paper chrome.1:1:2
CrUX version Version of the CrUX top-list used in this paper 202212 (December 2022)
Tranco version Version of the Tranco top-list used in this paper 6JZJX (February 6, 2023)

<browsingTopics()> TopicsAPI call document.browsingTopics()
𝐴,𝐵 Advertisers𝐴 and 𝐵 -
B Binomial distribution -
𝑒𝑖 Epoch 𝑖 Size 𝑒𝑖+1−𝑒𝑖 =1week
𝑖, 𝑗 Generic math variables used for iterations -
𝑛 Number of users -
𝑝 Probability to pick a random topic from taxonomy 0.05

𝑞=1−𝑝 Probability to pick a genuine topic from user’s top𝑇 topics 0.95
𝑇 Number of top topics per epoch 5
𝜏 Number of topics returned by <browsingTopics()> 3 maximum
𝑡 𝑗 Topic 𝑗 -

TPCs Third-party cookies -
𝑢𝑖,𝐴 User of identity 𝑖 observed by advertiser𝐴 -
𝑤𝐵 Website on which advertiser 𝐵 is embedded -
Ω Number of topics in taxonomy 349 topics (+ Unknown topic)
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https://github.com/patcg-individual-drafts/topics/tree/24c87897e32974c1328b74438feb97bf2ec43375
https://github.com/zakird/crux-top-lists/raw/main/data/global/202212.csv.gz
https://tranco-list.eu/download/6JZJX/1000000
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