
SocIoTy: Practical Cryptography in Smart Home Contexts
Tushar M. Jois

City College of New York

tjois@ccny.cuny.edu

Gabrielle Beck

Johns Hopkins University

becgabri@cs.jhu.edu

Sofia Belikovetsky

Johns Hopkins University

sofia.belikovetsky@gmail.com

Joseph Carrigan

Johns Hopkins University

joseph.carrigan@jhu.edu

Alishah Chator

Boston University

alishahc@bu.edu

Logan Kostick

Johns Hopkins University

lkostic1@jhu.edu

Maximilian Zinkus

Johns Hopkins University

zinkus@cs.jhu.edu

Gabriel Kaptchuk

Boston University

kaptchuk@bu.edu

Aviel D. Rubin

Johns Hopkins University

rubin@cs.jhu.edu

ABSTRACT
Smartphones form an important source of trust in modern com-

puting. But, while their mobility is convenient, smartphones can

be stolen or seized, allowing an adversary to impersonate the user

in their digital life: accessing the user’s services and decrypting

their sensitive files. With this in mind, we build SocIoTy, which
leverages a user’s existing IoT devices to add a context-sensitive

layer of security for non-expert users. Instead of assuming the ex-

istence of dedicated hardware, SocIoTy re-uses the devices of a

user’s smart home to provide cryptographic services, which we

term at-home cryptography. We show that at-home cryptography

can be built from simple cryptographic primitives, and that our

SocIoTy solution is able to provide useful functionalities, like two-

factor authentication (2FA) and secure file storage, while protecting

against powerful adversaries in this setting. We implement and

evaluate SocIoTy in real-world use cases and provide microbench-

marks for individual cryptographic operations on realistic models

of IoT devices. We also provide full benchmarks of an end-to-end

deployment on a simulated smart home, using a smartphone and 9

IoT devices to generate and display 2FA one-time passwords in less

than 200 milliseconds. SocIoTy is able to provide strong, practical

cryptography while binding its execution to the smart home itself,

all without requiring additional hardware.

KEYWORDS
smart home computation, context-based cryptography, two-factor

authentication, systems security, compelled access security

1 INTRODUCTION
Mobile devices have quickly become users’ most important trusted

computing base. Users rely on them to authenticate and interact

with services that perform sensitive tasks, e.g., online banking,

file storage, and telehealth. These tasks are often secured using a

combination of passwords and locally-stored cryptographic secrets,

e.g., one-time passwords (OTPs) generated by a smartphone app.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(1), 447–464
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0026

The convenience afforded by mobile computing is accompanied

by a commensurate increase in risk. Mobile devices are highly

portable, allowing them to be easily lost or stolen. Once a mobile

device is taken, any cryptographic material on the device could

be extracted [73]. This would allow an adversary to impersonate

the user and access their services—a catastrophic breakdown in

online security and privacy. A corporate spy, for instance, could

use extracted 2FA OTPs to connect to a rival company’s internal

VPN. This threat is particularly dire when the user needs to keep

their data private from law enforcement agencies with access to

software that can be used to circumvent on-device security mea-

sures. For example, border police could decrypt files from a user’s

cloud storage, inspecting it for content deemed subversive.

Mitigating risk with at-home cryptography. To mitigate the

risk posed by device loss, users should be able to voluntarily restrict

access to critical key material to times when their device is in

some trustworthy context, e.g., when at home. These users can opt-
in to restricting their usage, possibly because they may consider

a certain subset of actions too sensitive to operate outside of a

secure context, or might consider themselves particularly at-risk.

For instance, users might browse social media wherever they are,

but may already limit their use of online banking or telemedicine to

times when they are at home for privacy reasons. By limiting their

use in this way, these users actively engage in misuse resistance

for their critical services, protecting themselves from risks outside

of the home.

Users may also wish to utilize recently proposed privacy enhanc-

ing systems that assume the existence of a personal, fixed storage

for secrets local to a user. For example, BurnBox [65] provides

self-revocable encryption, which allows users to temporarily delete

keys that could decrypt sensitive cloud data (e.g., before a border
crossing), and recovers these keys after the user is safely home with

key material stored there.

The fundamental building block required to realize these appli-

cations is computation that can only be performed at home, which

can then be leveraged to perform cryptographic operations. We

refer to such a system as one that provides at-home cryptography.
Importantly, mobile devices cannot facilitate at-home cryptogra-

phy alone, as they cannot offer fine-grained context-sensitive access

control mechanisms. Even if the user only uses their material in

the home context, this material is still on device—and therefore

447

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0026

Proceedings on Privacy Enhancing Technologies 2024(1) Jois et al.

exposed—while they are on the go. Similarly, mobile devices cannot

be the fixed store of secrets required for advanced privacy sys-

tems. Thus, mobile devices need assistance from other parts of the

physical environment to enforce context sensitivity.

Prior attempts. At first glance, achieving limited access to keys

might appear trivial; a user can simply store key material for au-

thentication or encryption on a device that stays at home rather

than on their mobile device, e.g., a desktop computer or a dedicated

hardware security module. Because this device is stationary and

only accessible on a local network—or even air-gapped—access to

the key material is inherently limited.

While straightforward, this solution requires the user to (1) own

stationary hardware, and (2) have the technical expertise to manage

their stationary hardware. In the time before widespread smart-

phone use, this solution made sense; personal computers were not

very portable, and required at least some level of technical expertise

to operate. However, this ostensibly simple solution is becoming

unworkable for a rising part of the general population. 15% of adults

in the United States only use smartphones as their primary device,

with an upward trend since 2013; in the youngest generation of

adults, 18-29 years old, this proportion increases to 28% [51].

Past research efforts also focus on the use of dedicated hardware

to build this functionality. While context-sensitive cryptography (of

which at-home cryptography is a subset) has been studied in both

the theoretical [13, 15, 17, 34, 50] and applied [6, 43, 60–62, 66]

literature, no practical constructions have been realized or widely

deployed.
1
As such, we turn to a more pragmatic approach: re-use

the devices users already have to establish a context.

Re-using devices for at-home cryptography. Although users

are unlikely to have access to dedicated hardware for at-home

cryptography, users may have access to Internet-of-Things (IoT)

devices. These devices typically do not leave the home, making

them an attractive prospect for anchoring a trusted computing base

for at-home cryptography.

Re-using these devices raises its own difficulties, however:

• IoT devices are designed to be single-purpose, and, to keep

costs low, have just enough compute capability to provide

their application, unlike the general purpose capabilities of

smartphones and computers. Re-using an IoT device beyond

its intended purpose may induce measurable overhead, so

we must ensure that at-home cryptography operations are

lightweight.

• IoT devices have a history of vulnerabilities [23, 58], so it is

not advisable to use one as a single store of secrets. Instead,

we observe that it is more appropriate to distribute trust

among many IoT devices, such that an attacker would need

to compromise many IoT devices before exposing any of the

user’s secret data. Of course, resource constraints limit the

viable approaches to federating trust.

As such, leveraging IoT devices into a practical at-home cryp-

tography system requires carefully navigating tradeoffs between

functionality, deployability, and security.

SocIoTy. In this work we present SocIoTy, a system design and

protocol for at-home cryptography using a user’s existing IoT de-

vices. SocIoTy is designed for non-expert users who want to protect

1
Indeed, there are impossibility results that might rule out “ideal” solutions [17].

high-value digital resources from powerful, privacy-invading ad-

versaries but do not have the access, expertise, or inclination to use

dedicated hardware. Our system allows these users to set their own

risk tolerances, allowing them to tie whatever secrets they consider

to be most valuable to their smart home. Unlike existing privacy-

enhancing systems, SocIoTy protects against common surveillance

techniques even if the user’s devices are compromised (like during

border searches). While we focus on the smart home in this work,

SocIoTy has applications wherever there are multiple embedded

devices running on the same network, such as small businesses and

hospitals. Our design is summarized in Figure 1.

SocIoTy builds an at-home cryptographic system for a pseu-

dorandom function (PRF) [27], a simple, but powerful, primitive.

From this at-home PRF, we can directly build two-factor authenti-

cation [45, 46] and derive keys for encryption. SocIoTy treats the

smart home as a PRF that users can query to provide at-home cryp-

tographic services. Because the user is physically at home, they

can generate PRF outputs, and use these outputs to address their

real-world needs—like generation of 2FA OTPs for authentication

and of keys for cloud-encrypted content—all without worrying

that their credentials are at risk outside of the home. Moreover,

the interface to users is the same, and service providers would not

have to change their architectures to accommodate SocIoTy; users

perform one setup step on their smart home, and service providers

only need to use a different PRF library in their backends.

To address the problems of IoT devices discussed above, we

build a “dual-layered” PRF where one layer is produced by the

smart home, and the other by the a more powerful device (e.g., a
smartphone). This dual-layered PRF is realized by combining the

output of a threshold, distributed PRF [47] (TDPRF) with that of a

normal PRF. Each IoT device computes a partial evaluation on an

input, and the more powerful device reconstructs the TDPRF result

from the smart home’s multiple partial evaluations and combines

it with a PRF evaluation computed on its own key material. This

federates trust among all of the participants in the smart home:

the individual IoT devices along with the smartphone that controls

them. Any compromising party would be forced to corrupt both

layers to recover the final output. At the same time, the computation

power required by the IoT devices is low, since only one operation

is needed (in implementation, a single elliptic curve multiplication)

per each user request.

We evaluate SocIoTy on a simulated smart home, consisting of

analogs of smart home devices, from high-end, full-size systems

(Raspberry Pis) to tiny, embedded microcontrollers (ESP32s). We

collect microbenchmarks on these devices, as well as benchmarks

on full deployments of the system in realistic configurations. To

highlight the ease of use of our proposed system, we also build a

simple Google Authenticator-style smartphone app that uses Soc-

IoTy to calculate OTPs. We find that our implementation meets the

performance needs of our envisioned applications, while remaining

seamless to the end user—performing OTP generation, for example,

in < 200 milliseconds on average when involving a smartphone

and 9 SocIoTy devices.

Contributions. In this work, we study the problem of giving non-

expert users context-sensitive access control to their cryptographic

material, focusing on the smart home setting. Our goal is to help

448

SocIoTy Proceedings on Privacy Enhancing Technologies 2024(1)

PRF

?
!

Figure 1: An overview of SocIoTy, which uses a PRF built
from IoT devices to provide at-home cryptographic services.

average users mitigate the risk associated with carrying high-value

cryptographic material on their mobile devices, giving users the

peace-of-mind in knowing that their service or files can only be

accessed from home. Specifically,

(1) We discuss at-home cryptography, highlighting relevant use

cases and design considerations for a context-sensitive cryp-

tographic system at home (Section 3).

(2) We present SocIoTy, an at-home cryptography system de-

signed for non-expert users and their smart homes, and show

how it can be used to build relevant constructions such as

time-based one-time passwords [46] and self-revocable en-

cryption [65] that can only be operated in the home context

(Section 4).

(3) We implement and evaluate SocIoTy on realistic hardware,

providing microbenchmarks for individual cryptographic op-

erations on representative IoT devices and full benchmarks

of an end-to-end deployment on a realistic smart home con-

figuration (Section 5).

2 BACKGROUND
Smart homes. SocIoTy relies on a home Internet-of-Things net-

work, or “smart home”, to bootstrap at-home cryptography. IoT

devices and smart home networks are proliferating rapidly [44]. In

2022, 57.5 million Americans lived in a smart home accounting for

45% of US households, and it is estimated that by 2026, more than

25% of homes worldwide will have some degree of IoT capability

[63]. IoT devices range in computational capacity from extremely

lightweight microcontrollers to fully-Linux-capable system boards

with gigabytes of RAM. We rely on IoT devices to perform crypto-

graphic operations and to communicate over the network in order

to manifest a cryptographic scheme from the participation of oth-

erwise logically isolated systems. As in prior work (e.g., [40]), we
assume a network of constrained devices (in terms of computation

and power) participates in the cryptographic protocol, and in our

evaluation (Section 5) model such devices to demonstrate feasibility.

Pseudorandom functions (PRFs). Apseudorandom function [27]

is one which outputs values that, without knowing some key 𝑘 ,

cannot be distinguished from random. PRFs can be used to build

many other primitives in cryptography, including symmetric en-

cryption and authentication schemes. For encryption, there exists a

well-known theoretical construction that randomly chooses input

for the PRF and treats the output as a one-time pad for the message.

It is also possible to treat the output of a PRF as input to a key

derivation function for block ciphers. Authentication is straightfor-

ward, as the input to the PRF can be the message the party would

like to have verified, and the output being the tag for verification.

(Threshold) Distributed PRFs. One useful variant of a pseudo-

random function is the distributed pseudorandom function (DPRF),

which allow a group to jointly evaluate a PRF. Each party uses

shares of the secret key to calculate a partial output that can later

be combined to recover the full PRF output. This can be extended

to the threshold case, where the computation is successful if 𝑡

parties supply honest recovery values, but to any group of 𝑡 − 1

parties the PRF output appears to be uniformly random, creating

a threshold DPRF (TDPRF). While TDPRFs can be constructed us-

ing generic MPC, it would be highly inefficient and take multiple

rounds of communication to produce a result, both non-starters for

IoT devices. We instead utilize a protocol that requires only one

round of communication between evaluators and an aggregator,

with no communication required between evaluators. The protocol,

originally presented by Naor et al. [47], is based on the decisional

Diffie-Hellman assumption and the use of random oracles.

The interface of a TDPRF consists of a tuple of algorithms (Gen,
PartialEval, Recon):
• Gen(1_, 𝑘, 𝑡, 𝑛) produces shares of the PRF key 𝑘 denoted as

𝑘1 . . . 𝑘𝑛 .

• PartialEval(𝑘𝑖 , 𝑥) uses a key share 𝑘𝑖 on an input 𝑥 to pro-

duce a partial evaluation of the PRF, 𝑦𝑖 .

• Recon({𝑦𝑖 }𝑖∈𝑌) takes a subset of partial evaluations by users
𝑌 ⊆ [𝑛] where |𝑌 | ≥ 𝑡 and produces the full PRF output 𝑦.

Finally, we note that a TDPRF may have an additional efficient

algorithm which takes in a fully reconstructed key 𝑘 and an input

𝑥 which we denote by Eval(𝑘, 𝑥), allowing a TDPRF to be used as a

regular PRF.

Two-factor authentication (2FA). To increase user security,

online service providers have started to roll out 2FA, which requires

a second form of authentication to log in to a service. The most

common form of 2FA after email and SMS [19] is the time-based one-

time password (time-based OTP or TOTP) [46]. Every ℎ seconds, a

user’s token (e.g., a smartphone app) generates an OTP. When the

user wishes to authenticate, they input their username, password,

andOTP. Unlike passwords, OTPs are short lived; they are only valid

for the time interval ℎ in which they are generated, and can only be

used once. Users therefore authenticate with either something they
know (a password) or something they are (a fingerprint or retina
scan), alongside something they have (their token, which generates

OTPs). TOTP is supported by major social media platforms [68],

electronic health records systems [24], financial institutions [54],

and corporations [22]

The security of TOTP relies on the underlying HMAC-based OTP

algorithm (HOTP) [45], which generates OTPs using the HMAC

construction [39]. The security of HOTP, in turn, relies on the

assumption that HMAC is a PRF. Since adversaries without𝑘 cannot

449

Proceedings on Privacy Enhancing Technologies 2024(1) Jois et al.

predict PRF outputs, they also cannot predict OTPs. Thus, as long

as we assume that our underlying primitive (HMAC) is a PRF, then

the OTPs generated by HOTP (and TOTP) are secure.

More formally, a TOTP is parameterized by ℎ and defined by

TOTPℎ (𝑘𝑡 , 𝑧) = PRF(𝑘𝑡 , ⌊ 𝑧ℎ ⌋) mod 10
6
, where 𝑧 is the current

timestamp and mod is the modulus operation, which is used

to convert the output of PRF into a 6-digit integer. We omit ℎ in

our notation for TOTP for simplicity, and use the recommended

default ℎ = 30 from the TOTP RFC [46].

Compelled access. Compelled access to a software system or to

data, whether by a malicious attacker or law enforcement agent,

poses a serious risk to privacy and security. Compelled access can

be viewed as exploiting a user’s ability to authenticate, and sim-

ilarly compelled decryption can be viewed as exploiting a user’s

ability to decrypt sensitive data. Recent work has explored the

mechanisms and mitigations of compelled access and decryption in

mobile devices [73], as well as defending cryptographic protocols

from compelled decryption by identifying and reducing long-lived

secret values [56]. BurnBox [65] attempts to address compelled de-

cryption by putting a user’s ability to decrypt their files in escrow

in a safe place—specifically, by allowing for a form of secure dele-

tion (revocation) which is reversible only with a secret key saved

elsewhere, e.g., in a vault at home.

Context-sensitive cryptography is a powerful mechanism when

considering compelled access and decryption. Broadly, context-

sensitive cryptography ties cryptographic operations to some no-

tion of context, usually through some information only available in

a certain place or among certain parties (e.g., [61, 62, 66]). If cryp-
tography is only possible when a secure context is established (e.g.,
in the home), and compelled access or decryption can be expected

to occur elsewhere (e.g., at a border crossing or the proverbial dark

alley), these risks are mitigated. Better yet, the user cannot be di-

rectly coerced (i.e., via “rubber-hose” cryptanalysis) to release a key
which is only accessible under a certain context.

3 DESIGNING AT-HOME CRYPTOGRAPHY
To capture the notion that some cryptographic operations should

only be available within the context of the home, i.e., at-home cryp-

tography, it is necessary to modify the interface to cryptographic

calls with a context input. This modification clearly captures generic

context-sensitive cryptography, a superset of at-home cryptogra-

phy. As we are only interested in this subset, we (informally) modify

a cryptographic function 𝐹 with input 𝑧 to produce the function

𝐹
home

as follows:

𝐹
home
(𝑧, context) =

{
𝐹 (𝑧) if context = home

⊥ otherwise

We emphasize that this notation is informal; by making the

context an input to the function, an adversarial caller could call the

function with a context other than their own. Formally modeling

this transformation would require limiting the caller to use their

true context, perhaps by letting users make queries to a subset

of functionalities, where the subset is determined by their present

context. Indeed, this bettermatches our envisioned system, inwhich

these oracles are realized by distributed computation on hardware

segmented to only a local network (i.e., the home context). In either

sense, providing a formal framework for at-home cryptography is

beyond the scope of this work; we will use the informal notation

described above, as the intuitive meaning is clear.

We focus on at-home cryptography in this work, but this ap-

proach is general, and there is nothing preventing the above def-

inition from being applied to other contexts. For example, one

could envision an “at-work” cryptography system for employees

performing sensitive tasks in an industrial IoT setting.

We note that there are times when context is also (practically

speaking) location-bound. For example, if the devices that define

the home context are difficult or expensive to move (e.g., a smart

ceiling fan, a smart oven, or a smart irrigation system), at-home

cryptography could also realize a limited form of location-sensitive
cryptography. We explore this idea further in Section 4.4. Of course,

if the user desires to change homes, the at-home context should be

able to move with the user; the user has a new definition of “home”,

and at-home cryptography should reflect that. As such, we consider

the at-home context to be semi-permanent.

3.1 Case Studies
To make the envisioned usage of at-home cryptography clear, we

briefly present several concrete use cases. While not true anecdotes,

these motivating examples are rooted in real-world trends and con-

textualize the technical considerations that must go into designing

our at-home cryptography solution, SocIoTy.

Use Case 1: The Remote Worker. Consider a user that recently

accepted a job offer from a prominent law firm as a legal aid, where

they will work as a remote-only employee; this kind of remote-only

work has been on the rise since the COVID-19 pandemic [49], and

some anticipate that many of these jobs will remain fully-remote

permanently [55]. To access the sensitive legal documents required

to do their job, the user connects to the law firm’s network over a

VPN. To authenticate to the VPN, the user enters codes generated

by a 2FA app on their company-managed smartphone. Company

policy requires that the user should only connect to the VPN when

within their home, owing to the sensitive nature of the company’s

documents. However, the user has no way of ensuring that they

meet that policy if their smartphone is lost or stolen.

Use Case 2: The Outpatient. Consider a user who has end-stage

renal disease, and requires active management through dialysis. In-

stead of remaining in the hospital, the user owns a dialysis machine

at home, which are increasingly common [41]. The user regularly

meets with their doctor to discuss their condition. On days they

are not able to visit their doctor for a check-up, they set up a

telemedicine appointment from home. Based on the check-up, the

user’s doctor is able to remotely configure the dialysis machine over

the Internet. The user has an app they use to connect to hospital’s

electronic medical records system, but is nervous about their health

data leaking when they leave the house.

Use Case 3: The Foreign Correspondent. Consider a user who

is an investigative journalist that frequently travels to war-torn,

authoritarian countries as part of their reporting duties. During

such trips, the user keeps detailed notes, initial research, article

drafts, and the identities of sources on their smartphone. To ensure

that this information is not lost if their phone is lost, they back up

these files to cloud storage services; due to the sensitive nature of

these documents, they keep them encrypted while in cloud storage

450

SocIoTy Proceedings on Privacy Enhancing Technologies 2024(1)

and keep decryption keys on their smartphone. While traveling,

the user is often stopped and searched by local law enforcement

(either at border crossings or during routine encounters on the

street); such stops are common in countries with repressive regimes,

and border officers are known to extract data from smartphones

at border crossings [73]. The user has heard of next-generation

cryptographic systems designed to let them temporarily revoke

access to their sensitive documents until they return to a secure

location (e.g., [65]), but they lack the dedicated, stationary hardware
those systems require.

3.2 Design Goals
With these use cases in mind, we now discuss the goals and consid-

erations for a realization of an at-home cryptography system.

Functionality. All of the use cases in Section 3.1 require limiting

execution of cryptographic functions to the home. One way of

implementing this constraint is to only hold the secrets at home, so

the required key material is unavailable under any other context.

This would allow all three of our envisioned users to opt-in to

limiting access; each envisioned user either does not require access

on-the-go, or would like to ensure it is not possible.

We require support for both authentication (use cases 1 and 2)

and encryption (use case 3). An authentication primitive means that

we can use the home as a second factor for 2FA—somewhere you are
in addition to the typical something you know, have, or are triad. An
encryption primitive would allow users to secure files such that they

can only be decrypted when the user is at home, suitable for privacy

systems that require a digital safe [65] to recover files after a threat

has passed and they have returned home. Note that it is possible

to accomplish this task robustly while still storing encrypted files

in the cloud—even if the encrypted files are available globally, the

plaintext documents are context sensitive.

Deployability. Prior work on context sensitivity for crypto-

graphic operations [6, 14, 43, 60–62, 66] has not been deployed in

practice due to its reliance on specific hardware to provide secu-

rity properties or non-standard adversarial models. Therefore, we

aim to use existing devices to build the context: namely, the IoT

devices of the user’s smart home. Since we are re-using devices,

we must ensure that our solution does not require intensive or

long-running computations. Similarly, we also prefer protocols that

have as few rounds of communication as possible (or, ideally, are

non-interactive) and linear in communication complexity.

In essence, the IoT devices should achieve their cryptographic

task quickly and return to their primary functionality in the home.

From the user’s perspective, the only change is that the context

matters for the task at hand; the rest of the interface for cryptogra-

phy should be the same, and be fast enough that the user does not

notice any latency.

We note that this does not preclude a more powerful device

from being involved. The IoT devices can operate a lightweight

part of the computation; then, another device—a smartphone or

tablet—performs the more heavyweight computation. This other

device and its interface can be the same as what would be used in a

more traditional, non-context-sensitive cryptographic solution (e.g.,
a 2FA app on a smartphone), abstracting away the new at-home

cryptography system.

X

✅ X

User can access
services from
secure context

Compelled decryption of
device does not allow access
to services

Local network control does
not allow access to services

Figure 2: An overview of our threat model for SocIoTy.

Security. An at-home cryptography system must be secure in

the context of adversaries that are able to corrupt and control the

smart home’s devices, and those that are able to compel access to

the user’s secrets outside of the home. We more concretely define

our threat model in Section 3.3.

The smart home setting introduces particular challenges not

captured by traditional models. For example, family members and

roommates can also share the space, perhaps with their own IoT

devices. Additionally, each member of the household may have

several different at-home services they wish to use. Any solution

must be therefore secure in the presence of several other users and
multiple different services.

We emphasise that our intention is to allow for users to opt-in
to this extra layer of protection for the selected services that make

sense for them (or the organizations of which they are a part). We

target users who are explicitly concerned with the risks associated

with ubiquitous access to all online services and files, and want to

choose which services they can access on-the-go versus when in the

home context. Critically, these choices are highly specific to each

user. In use case 2, for instance, the user’s fixed medical devices

should only be able to communicate at home; any communication

outside the home would likely be an error. Moreover, the choice

to add context sensitivity to particular services might also change

over time, based on what the user plans to do when they leave

their home and the specific threats that they might expect along

their journey. For example, in use case 3, the user might want to

add an additional layer of security to their sensitive services only

when planning to cross international borders, even if they do not

context-bind access to these services in their daily life.

3.3 Threat Model
Since our system makes use of multiple devices and a variety of

scenarios, it is important that our threat model systematically con-

siders all of these components. We model around a setting where

the user has IoT devices in their smart home, as well as a powerful

mobile device (a smartphone or tablet) that can communicate with

the IoT devices and can be involved in a setup procedure that au-

thorizes it to participate in the protocol. We will refer to this device

as the authorized device. To successfully tie cryptographic services

to the home, the system must be designed in such a way that a

451

Proceedings on Privacy Enhancing Technologies 2024(1) Jois et al.

cryptographic operation cannot succeed if this authorized device is

not also at home and participating in the protocol.

Concretely, we demonstrate this by showing that the protocol

must be secure against the following types of adversaries:

Compelled access adversaries. We consider adversaries that

can obtain access to the authorized device when it is not physically

present in the home [73]. These adversaries can extract all of the

secrets from the authorized device. For example, consider a border

control officer that compels decryption of the user’s authorized

device while the user is crossing the border [65]. While they now

have access to any secrets on the authorized device, they should

not be able to successfully authenticate or decrypt as they are not

physically in the home. We note that this threat model is stronger

than that of many secure protocols, which assume a malicious

network but a trusted, secure end-user device.

Local network adversaries. We consider adversaries present

on the local network. This can occur through compromising any

number of IoT devices on the network. This is a natural assump-

tion as IoT devices have a history of vulnerabilities [23, 58]. The

adversary can be remote, or have physical access to the devices.

The latter models threats from other residents of the smart home,

such as a malicious roommate or house-guest. In either case, the

local network adversary will also be able to see all of the traffic

over the LAN between the devices and the authorized device. They

would also have the ability to use this access to perform denial-

of-service. Despite all this, as long as the user’s authorized device

remains secure, the local network adversary should not be able to

successfully execute the protocol.

These two adversaries represent the primary ways that a ma-

licious party would try to undermine an at-home cryptographic

system. Building a system robust against these two adversaries en-

sures that in-home compromise of the IoT devices or out-of-home

compromise of the user’s authorized device does not violate the

context-sensitive property of the system. We design for this threat

model in a modular way, demonstrating the security of our sys-

tem against each adversary independently. We assume that these

adversaries do not collude, as compelled access adversaries are

not assumed to have the capability to access personal devices be-

sides those physically available to them [56, 65, 73]. However, in

Section 4.3 we describe some extensions that would allow for our

system to handle colluding adversaries as well.

4 SOCIOTY
We are now ready to describe SocIoTy, our at-home cryptographic

solution.

4.1 Preliminaries
We discuss SocIoTy in terms of its components:

• Authorized device/authorized smartphone: This device has

reasonably good computational power and is carried by the

user. We assume the authorized device is honest while within

the home, but might be corrupted (e.g., stolen or forcibly re-

moved from the user) upon leaving the home. We assume the

device supports effaceable storage, i.e., allows for secure dele-
tion of cryptographic secrets. Such functionality is common

on modern smartphones [73].

• Remote service: The remote service is an Internet-accessible

service with which the user wishes to interact through their

at-home cryptography. In the authentication case, this is a

service requiring login with 2FA enabled. In the encryption

case, this is a cloud storage endpoint.

• IoT devices: The user selects the IoT devices from their smart

home with sufficient hardware and network capabilities to

execute the SocIoTy protocol, which may include smaller,

microcontroller-class devices.

Choosing the correct cryptographic primitive. For both at-

home authentication and encryption, we need to tie cryptographic

operations to a particular context. One natural way to do this is

to have IoT devices use a generic MPC protocol to perform both

encryption and authentication, where the respective keys have been

secret shared among all parties and the output is given directly to

the smartphone.

Unfortunately, generic MPC is too inefficient for our setting,

involving multiple rounds of communication and expensive com-

putation operations [36, 37, 67]. Particularly in IoT environments,

where even RAM is significantly constrained, we cannot use many

standard tricks to improve performance and even hundreds of mil-

liseconds per circuit layer may introduce unacceptable latency.

Additionally, the comparatively high resource requirements of an

MPC protocol may interfere with the normal operation of the smart

home. Waiting for the interactive execution of each round could

delay the processing of incoming IoT events, and this delay could be

exacerbated by the limited multitasking capabilities of IoT devices.

We further explore MPC as a primitive for SocIoTy in Appendix

B, where we highlight the slow execution times of an MPC-based

protocol on IoT devices.

We would instead prefer to have the smart home implement

a single cryptographic primitive that is well suited for use in a

wide range of applications. One primitive that could work is a PRF,

which has standard transformations to both symmetric encryption

schemes and MACs. The distributed version of a PRF that is most

applicable in our setting is a TDPRF [47]. As discussed in Section 2, a

TDPRF allows ≥ 𝑡 parties to compute partial evaluations of the PRF

that can later be combined to recover the full PRF output, but to any

group of < 𝑡 parties, the output of the TDPRF is indistinguishable

from random. This helps with both security and availability; not

every IoT device needs to be online to evaluate the TDPRF, but

any adversary that only compromises < 𝑡 devices cannot recover

the correct output of the TDPRF on any point that they have not

already seen.

Layering security. While a TDPRF achieves some security against

an adversary corrupting < 𝑡 parties, wewould also like to handle the

case where an adversary corrupts over this threshold, potentially

even up to all the IoT devices in the home. To protect against such

adversaries, the phone will also contribute to constructing correct

output. In short, we will construct a new PRF 𝑃 ′ from the proposed

TDPRF of the smart home and a PRF 𝑃 , with the same co-domain

as the TDPRF. If the composition of the outputs of the TDPRF and

𝑃 is pseudorandom, even when either of the TDPRF key or the key

for 𝑃 is leaked (and the smartphone is the only party who holds

the key for 𝑃) the output of 𝑃 ′ will appear pseudorandom to all

adversaries covered in our model. This layering will also be more

452

SocIoTy Proceedings on Privacy Enhancing Technologies 2024(1)

1b. Generate PRF key
on device

2. Share key
among IoT

devices

3. Efface key
from device

1a. Load
PRF key

from
server

Figure 3: The setup workflow of SocIoTy.

4. Forward
generated OTP to
server for access

🕑

1. Request OTP
for current
timestamp

PRF

2. Evaluate
PRF using

IoT devices

199620

3. Reconstruct PRF
output to generate

OTP

Figure 4: The authentication workflow of SocIoTy.

4. Send encrypted file
to storage server 1. Request

evaluation of a
filename

PRF

3. Encrypt file with
reconstructed
output as the

encryption key 5. Efface files
from device

2. Evaluate PRF
on a filename
on IoT devices

Figure 5: The encryption workflow of SocIoTy.

practically efficient to compute than any generic solution that only

protects against a limited number of IoT device corruptions.

4.2 Protocol Description
We now briefly describe the normal operation of SocIoTy at a high

level before describing the protocol in depth. When an authorized

smartphone wants to register a new service with the smart home,

it first generates the key material needed for itself and the home

Algorithm 1: SocIoTy authentication

Input: 𝑘𝑝 the key of the smartphone, 𝛿 a counter value

derived from a timestamp

Output: TOTP token

Request smart home devices invoke PartialEval on 𝛿 and
receive {𝑦𝑖 }𝑖∈𝑇 where 𝑇 ⊆ [𝑛], |𝑇 | ≥ 𝑡
𝑦 ← TDPRF.Recon({𝑦𝑖 }𝑖∈𝑇)
𝑧 = 𝑦 + PRF.Eval(𝑘𝑝 , 𝛿)
Output 𝑧 (mod 10

6)

using a setup algorithm (Figure 3). It gives the correct key shares to

all the devices in the smart home and securely deletes them from its

memory. When the smartphone later uses the service, it broadcasts

over the LAN a request for a TDPRF evaluation. The phone waits

until it receives at least 𝑡 evaluation responses from the IoT devices

before attempting reconstruction. Once reconstruction is completed,

depending on whether the application is authentication (Figure 4)

or encryption (Figure 5), the phone takes a series of actions. Any

sensitive information is securely erased from the phone after the

operation completes. What follows is a complete description of the

setup, authentication and encryption algorithms for SocIoTy.

Setup. Let 𝑛 be the number of smart devices a user owns and

let 𝑡 be a fixed number, equal to the number of devices expected

to be online at any given point in time. The setup procedure is

designed to produce two keys: one for the smartphone denoted by

𝑘𝑝 and one split among the networked IoT devices denoted by 𝑘 .

In the case of authentication, the keys 𝑘𝑝 and 𝑘 will be provided by

the remote service the phone is authenticating to. For encryption,

𝑘𝑝 and 𝑘 should be generated by the smartphone. The phone uses

the TDPRF.Gen algorithm to share the key 𝑘 as 𝑘1 . . . 𝑘𝑛 . The key

share 𝑘𝑖 is given to device 𝑖 . The phone then stores 𝑘𝑝 and after

sharing the shares of 𝑘 , securely deletes all key material related to 𝑘 .

When a new IoT device is bought or sold from the smart home, the

phone repeats this procedure, replacing 𝑘𝑝 and 𝑘 with new keys.

Figure 3 illustrates the setup process. We assume that in the case of

authentication, the remote service provides a mechanism by which

the symmetric TOTP key can be updated.

We note that the setup algorithm should be run for each remote

service for authentication, as each remote service would require its

own key. Similarly, we recommend running the setup algorithm

for each set of files that are to be encrypted. This way, all SocIoTy

applications have their own (𝑘𝑝 , 𝑘) pair.
Also, to ensure that all secrets are initialized without adversar-

ial interference, we require the setup process to be over a secure,

authenticated point-to-point channel. This channel can be instanti-

ated over TLS with mutual authentication (bootstrapped via, e.g.,
QR codes). After this setup procedure, however, SocIoTy does not

have this secure channel requirement for communication, as the

dual-layered PRF prevents an adversary from getting total PRF

output even if they obtain 𝑘 . We discuss this further in Section 4.3.

Authentication. For authentication, the smartphone calculates

a counter 𝛿 based on the current timestamp. It then sends an au-

thentication request to all devices within the smart home. Each

device with available bandwidth runs TDPRF.PartialEval(𝑘𝑖 , 𝛿) to
get 𝑦𝑖 and sends the resulting 𝑦𝑖 to the phone. Once the phone

453

Proceedings on Privacy Enhancing Technologies 2024(1) Jois et al.

Algorithm 2: SocIoTy encryption

Input: 𝑘𝑝 the key of the smartphone,𝑚 the name of the file,

𝑓 the content of the file itself

Output: Encrypted file 𝑐

Request smart home devices invoke PartialEval on𝑚 and

receive {𝑦𝑖 }𝑖∈𝑇 where 𝑇 ⊆ [𝑛], |𝑇 | ≥ 𝑡
𝑦 ← TDPRF.Recon({𝑦𝑖 }𝑖∈𝑇)
𝑧 = 𝑦 + PRF.Eval(𝑘𝑝 ,𝑚)
𝐾 ← KDF.Derive(𝑧)
𝑐 ← AE.Encrypt(𝐾, 𝑓)
Securely delete 𝐾

Output 𝑐

has received 𝑡 partial evaluations it recovers the PRF output and

calculates its own PRF value. The two are then combined
2
and the

output is truncated to 6 digits, which are displayed to the smart-

phone user. The remote service can use 𝑘𝑝 and 𝑘 , along with the

PRF.Eval and TDPRF.Eval algorithms, to check for correctness. An

overview diagram is provided in Figure 4, with a more specific

description in Algorithm 1.

Encryption. To encrypt and decrypt sensitive files, the smart-

phone first makes a request for a TDPRF evaluation on a file-

name𝑚. The smart home devices conduct a partial evaluation as

TDPRF.PartialEval(𝑘𝑖 ,𝑚). The output of these evaluations is then
given to the smartphone. The phone can then reconstruct the TD-

PRF output before combining it with the output of its own PRF

evaluation on𝑚 using key 𝑘𝑝 . The resulting output is then used

as an entropy source for a key derivation function, KDF [38]. The

value returned by KDF is a pseudorandom key
3
which can then be

used in an authenticated encryption scheme AE to either encrypt or

decrypt the file while providing strong confidentiality and integrity.

After the operation is completed, the phone securely deletes the

reconstructed key and potentially the plaintext file. This workflow

is depicted in Figure 5 and described in Algorithm 2.

4.3 Security Analysis
We now give a justification of security for our construction against

the relevant adversaries. Recall that we are concerned with two

types of attackers (1) a compelled access adversary who may com-

promise the phone while it is abroad, but does not simultaneously

have access to any device in the smart home and (2) a local network

adversary that has direct physical access to IoT devices and any

traffic over the LAN but cannot compromise the smart phone. We

note that in the multi-user setting, other users are equivalent to

adversary 2. To give a brief summary, security holds because of

how the PRF and TDPRF are composed. Even if an adversary has

access to one of 𝑘𝑝 (adversary 1) or 𝑘 (adversary 2), the total output

retains PRF security and is indistinguishable from uniform. This is

because the evaluations of the smart home TDPRF and smartphone

PRF are additively composed. If one of these keys is unknown and

drawn from a uniform distribution, then the output of the (TD)PRF

2
We combine these two values through addition, which occurs in the codomain of the

underlying PRFs.

3
We assume that KDF acts as a random oracle, which defends our construction from

related-key-style statistical attacks on the encryption key.

evaluation with that key will be unknown. Then, the sum of this

unknown value with the other (known) PRF evaluation is still uni-

form. This means an adversary has no chance better than random

of guessing either the TOTP value or the key used to encrypt files.

Extensions. We now discuss some special considerations for

other types of network attacks and more powerful adversaries.

A local network adversary in practice has some slightly stronger

adversarial capabilities, due to its ability to modify traffic and di-

rectly interact with the smart home. SocIoTy does not necessarily

require authentication and encryption of home requests, as the se-

curity of the system relies on the dual-layered PRF. Thus, even if the

adversary attempts to relay into the smart home and interact with

it remotely, or replay a prior request to the devices, they will not be

able to obtain the the final TOTP as they do not have 𝑘𝑝 (which is

on the user’s smartphone). However, without guaranteeing the au-

thenticity of the requests, we do open up users to denial-of-service

attacks on each of the relevant services, as an adversary could

interfere with partial evaluations
4
. In the case of authentication,

such an attack can only temporarily prevent correct functioning

of the system. Assuming that either the AE is key-robust or the

KDF acts as a random oracle prevents related-key attacks from

enabling plaintext file recovery. When initializing a user account

and encrypting files, denial of service attacks may be conducted

which have irrecoverable effects, leading to a breakdown of system

properties (e.g., encrypting a file with a corrupted key and then

deleting the plaintext).

So, if protection against these attacks is required, we recommend

adding authenticity checks to values sent by IoT devices. The secrets

required for these checks can be generated and shared during setup.

In our implementation, we use the recently standardized Ascon

lightweight AEAD scheme [48] for communication between parties

to maintain security against these types of attacks. We evaluate the

performance of Ascon in Section 5.

Next, we consider a more powerful access adversary who can

gain control of both the phone and even one IoT device on the

home network to be out of scope. We believe, for most use cases,

this is a realistic assumption: even gaining the public-facing IP

address of devices on the network is not something a foreign nation

can do easily, without help from the user’s local ISP. For those

highly-targeted users for whom such an adversary could be realistic,

though, turning off the smart home entirely when they leave the

house will prevent this attack, giving the user the same security

guarantees as an offline solution.

Finally, we consider an adversary that first compels access to the

user device and then later attempts to compromise the rest of the

system to be also out of scope.We note that prior work on compelled

access [65] similarly does not provide security against attacks that

occur after the access ends. To achieve post-compromise security

in this setting, our system could be extended to perform a full key

rotation upon returning home after a compelled access event. This

process would involve regenerating 𝑘𝑝 and 𝑘 for all authentication

services and all encrypted files.

4
We note that, without authentication, a DoS is possible by anyone with at least some

local network access; it does not require the ability to corrupt an IoT device.

454

SocIoTy Proceedings on Privacy Enhancing Technologies 2024(1)

4.4 Deployment Flexibility
SocIoTy’s design allows for significant flexibility when deploying

on a smart home. We discuss these considerations below.

Devices to use. We envision SocIoTy as running on essentially

any IoT device that has some form of networking capability, as the

number and types of device vary from smart home to smart home.

Users should try to use their more powerful devices to increase

performance, but we believe this is not strictly necessary. We eval-

uate these performance claims in Section 5, using a wide range of

devices to benchmark the SocIoTy protocol.

Multi-user smart homes. SocIoTy can support multiple users,

each with their own services. Each device 𝑖 holds a separate key 𝑘𝑖
(for PartialEval) for each pair (𝑢, 𝑠) describing a user 𝑢 and service

𝑠 . The wrong user 𝑢 ′ cannot authenticate to 𝑠 as 𝑢 because they do

not have the key 𝑘𝑝 on 𝑢’s smartphone. Thus, SocIoTy supports

as many users and services as there is space for keys on the IoT

devices. Similarly, SocIoTy also supportsmulti-owner setups, where
the devices are not all owned by a single user. This is common in

smart home settings, as devices can belong to roommates, landlords,

or caretakers, to name a few. If all device owners cooperate, SocIoTy

proceeds as normal. If owners deviate from the protocol, the worst

that can happen is denial-of-service—not a security break.

Network structure. Our design does not require a specific struc-

ture of the smart home network. Traditionally, protocols are de-

signed point-to-point, where each device is able to directly commu-

nicate with each other device. For some smart homes, computation

is handled through a hub, which acts as an intermediary for mes-

sages to and from the smart home devices. Hubs are particularly

used for low-resource devices. SocIoTy is able to handle this case,

which we investigate end-to-end in Section 5.3.

SocIoTy makes no liveness assumptions on the whole network.

Other approaches, like generic multi-party computation [11, 18, 28,

70], would require all of the IoT devices to communicate with each

other during the whole protocol. SocIoTy only needs each node to

be active for one PartialEval. So a device can respond to a request,

and go back to attending to its primary task (or return to sleep),

without waiting for all of the other nodes to respond or for the

final reconstruction to occur. Moreover, because our cryptographic

protocol only requires one round of communication, we can also

tolerate networks with very low available bandwidth.

Server interface. SocIoTy meets our deployment goal of not

requiring changes to the user interface, but we briefly discuss how

SocIoTy impacts the remote service. When applying SocIoTy to

encryption, the cloud server that provides storage does not change

its interface. From its perspective, the user is still uploading a file:

a SocIoTy-encrypted blob rather than a cleartext one. The cloud

service stores it as it would any other file.

For authentication, however, the situation is different. The TOTP

standard [46] recommends HMAC-SHA-1 as the underlying PRF.

Our construction is not backwards-compatible with HMAC-SHA-1

in implementation, but the interface is the same: a call to TOTP
returns a one-time password. Rather than using HMAC-SHA-1, a

call to TOTP(𝑘𝑡 , 𝑡𝑠) in SocIoTy would instead invoke Algorithm 1,

with the server keeping 𝑘𝑡 = (𝑘𝑝 , 𝑘).

We argue that this change is minimal, as the TOTP standard has

a high level of abstraction [46]. Moreover, services are incentivized

to make this change, as the additional security and flexibility of

SocIoTy is a marketable benefit.

From context to location. So far, we have defined SocIoTy in

terms of context, where the context is the home, or more precisely,

the presence of smart home devices with specific cryptographic

material in the home. Some users may wish to go the extra step and

attain true location sensitivity, i.e., binding their computation to their

physical house, rather than just the context of the devices inside

of it. Location sensitivity is a physical attribute, and as such needs

physical-level steps to integrate with SocIoTy’s context sensitivity.

The most straightforward way would be to physically bind devices

to the home, bolting down SocIoTy devices into walls or using de-

vices for SocIoTy that are cumbersome to move (e.g., a smart fridge).

Another option is to enforce location during communication, by

using low-range technologies such as NFC for communication or

by validating certain radio attributes at the PHY layer (e.g., [66]).
Location can also be tied to some sort of user interaction in which

presence is required, such as a button press or voice command.

We leave integration of specific location-based security controls as

future work.

4.5 Instantiating the TDPRF
We must instantiate the TDPRF underlying SocIoTy’s operations to

deploy our solution in practice. We employ the decisional Diffie-

Hellman-based construction first proposed by Naor et al. [47] for

our TDPRF. We choose elliptic curve groups for the underlying

operations because of their efficiency in implementation. As is com-

mon when discussing elliptic curves, we use additive notation for

group operations. Let 𝐺 be a generator of an elliptic curve sub-

group 𝑆 ⊆ 𝐸 (F𝑞) of prime order 𝑝 andH : {0, 1}_ → 𝑆 some hash

function modeled as a random oracle hashing _-bit strings onto 𝑆 .

We describe below the algorithms for our TDPRF Gen, PartialEval,
and Recon, as well as the extra algorithm Eval (useful for a server
implementation):

• Gen(1_, 𝑘, 𝑡, 𝑛): Sample a random polynomial 𝑓 of degree

𝑡 − 1 by uniformly sampling its coefficients from Z𝑝 , subject
to the constraint that 𝑓 (0) = 𝑘 . The output party shares are

the scalars 𝑘1 = 𝑓 (1), 𝑘2 = 𝑓 (2), . . . , 𝑘𝑛 = 𝑓 (𝑛).
• PartialEval(𝑘𝑖 , 𝑥): Hash the input 𝑥 usingH onto a point 𝑃

along the elliptic curve. Then, the output is simply 𝑦𝑖 ← 𝑘𝑖𝑃 :

scalar multiplication of the key share to the input point.

• Recon({𝑦𝑖 }𝑖∈𝑌): Let 𝛼1 . . . 𝛼𝑡 be the identities of the parties

providing points 𝑦1 . . . 𝑦𝑡 to Recon. Consider the following
function, defined ∀𝑖 ∈ [𝑡]:

𝐿𝑖 (𝑥) =
∏

∀𝑗≠𝑖, 𝑗 ∈[𝑡]

𝑥 − 𝛼 𝑗
𝛼𝑖 − 𝛼 𝑗

It is well known that given 𝑡 points along a polynomial 𝑓 ,

evaluation can be done at any point 𝛼 as 𝑓 (𝛼) = ∑𝑡
𝑖=0

𝑓 (𝛼𝑖) ·
𝐿𝑖 (𝛼). Given these points “in the exponent" it is possible to

recover 𝑎 “in the exponent". To be precise, we can recover

455

Proceedings on Privacy Enhancing Technologies 2024(1) Jois et al.

Table 1: Hardware specifications of test devices as well as
examples of comparable IoT devices.

Test Device CPU RAM Comparable IoT Device

RPi 3B+ ARM Cortex-A53 1 GiB Apple TV HD [7]

RPi 2B ARM Cortex-A7 1 GiB Amazon Echo Dot (3rd Gen) [12]

RPi Zero W ARM1176JZF-S 512 MiB Google Nest Thermostat E [42]

ESP32 Xtensa LX6 320 KiB Belkin WeMo Light Switch [64]

the PRF output as:

𝑦 =

𝑡∑︁
𝑖=1

𝐿𝑖 (0) · 𝑦𝑖 =
[𝑡∑︁
𝑖=1

𝐿𝑖 (0) · 𝑓 (𝛼𝑖)
]
𝑃 = 𝑘𝑃

• Eval(𝑘, 𝑥): Hash the input 𝑥 using H onto a point 𝑃 along

the elliptic curve. Then, the output is 𝑦 ← 𝑘𝑃 : scalar multi-

plication of the reconstructed key to the input point.

Note that the hashing of the input 𝑥 is important, as the output

of this TDPRF is uniform only if its input is also uniform. If we

model this hash function as a random oracle, security holds [47].

5 EVALUATION
We now demonstrate the feasibility of our constructions on real

IoT hardware.

Implementation. We implement SocIoTy in Rust due to its mem-

ory safety guarantees as well as its good platform support for IoT

architectures. Additionally, we use the Curve25519 as our elliptic

curve and Ascon, the winner of the NIST lightweight cryptography

competition [48], for authenticated encryption in our implementa-

tion. While the dual-layer PRF allows for security to hold during

evaluation without the need of authenticated encryption, we in-

clude it in our implementation to add security against network

tampering (as discussed in Section 4.3) and evaluate its overhead.

We have open-sourced all of our SocIoTy software and benchmarks

for public use and review
5
.

Devices. We wish to understand how SocIoTy runs on a vari-

ety of devices. To this end, we performed our benchmarks on the

following devices: 6 Raspberry Pi (RPi) Model 3B+ single-board

computers (SBCs), 3 RPi Model 2B SBCs, 3 RPi Zero W SBCs, and 5

ESP32 microcontrollers. Raspberry Pis are increasingly being used

a benchmarking platforms to simulate smart home devices in lieu

of commercial devices; IoT device vendors do not support running

arbitrary software for security reasons, limiting the ability to use

them for development. Recent generations of Raspberry Pis have

been increasing in computing power with specifications of up to

8GB of memory. Thus, we used both lower-end Raspberry Pis and

smaller microcontrollers as representative devices to better simu-

late a network of heterogeneous IoT devices. Table 1 maps our test

bed devices to comparable smart home devices.

5.1 Microbenchmarks
We first begin by presenting microbenchmark results for the algo-

rithms of a TDPRF: (Gen, PartialEval, Recon). All of our selected
devices are capable of computing all three of these algorithms.

A core goal of SocIoTy is to re-use existing smart home hardware

to provide cryptographic services.We primarily study the execution

5
Available at https://github.com/tusharjois/socioty.

Table 2: Average runtimes for an evaluation of PartialEval,
both without and with authenticated encryption (AE). All
times are in milliseconds.

Experiment RPi 3B+ RPi 2B RPi Zero ESP32

PartialEval 1.34 2.19 2.90 43.68

PartialEval (AE) 1.53 2.43 3.28 47.22

(n
=

5,
t =

3)

(n
=

6,
t =

4)

(n
=

7,
t =

5)

(n
=

8,
t =

6)

(n
=

9,
t =

7)

(n
=

10
, t

=
8)

(n
=

11
, t

=
9)

(n
=

12
, t

=
10

)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ex
ec

ut
io

n
ti

m
e

(m
s)

RPi 3B+ RPi 2B RPi Zero

Figure 6: Microbenchmarks for Gen on different test devices
over varying configurations of total number of parties 𝑛 and
reconstruction threshold 𝑡 .

time of SocIoTy primitives in our simulated smart home, identify-

ing if the additional latency of running SocIoTy would hinder the

normal operation of the device. Through these microbenchmarks,

we aim to investigate if adding SocIoTy software would necessitate

hardware changes on the IoT devices.

PartialEval. Because PartialEval will be conducted on resource-

constrained IoT devices, microbenchmarks for it are very infor-

mative. As discussed in Section 4.5, each PartialEval in our im-

plementation is one elliptic curve multiplication. We evaluate the

performance of PartialEval, and of PartialEval followed by an au-

thenticated encryption of the result using Ascon (denoted AE). The
Raspberry Pis performed each task 100,000 times, and the ESP32

performed each 1,000 times, with the results in Table 2. The Rasp-

berry Pis complete the task very quickly—less than 5 milliseconds

on average. The sub-50ms average time on the ESP32s is also very

promising; while an order of magnitude slower than the Raspberry

Pis, this result shows that adding SocIoTy on even highly con-

strained devices will not induce noticeable latency. We also note

that the overhead of authenticated encryption is minimal, even on

the ESP32. As such, for the rest of our benchmarks, we have all

nodes use PartialEval with Ascon.

Gen and Recon. We also perform microbenchmarks on Gen and

Recon, and present our results in Figures 6 and 7. Each Raspberry

Pi once again ran each task 100,000 times, with varying configura-

tions of the total number of parties 𝑛 and the threshold required

to reconstruct 𝑡 . Gen in our implementation only samples random

values for keys. So, while the time to run does scale with each (𝑛, 𝑡)
456

https://github.com/tusharjois/socioty

SocIoTy Proceedings on Privacy Enhancing Technologies 2024(1)

(n
=

5,
t =

3)

(n
=

6,
t =

4)

(n
=

7,
t =

5)

(n
=

8,
t =

6)

(n
=

9,
t =

7)

(n
=

10
, t

=
8)

(n
=

11
, t

=
9)

(n
=

12
, t

=
10

)
0

10

20

30

40

50

60

70

Ex
ec

ut
io

n
ti

m
e

(m
s)

RPi 3B+ RPi 2B RPi Zero

Figure 7:Microbenchmarks forRecon on different test devices
over varying configurations of total number of parties 𝑛 and
reconstruction threshold 𝑡 .

pair, the operation only requires several hundred microseconds (`s)

on average. Recon takes longer, likely owing to the multiple elliptic

curve operations required to interpolate the partial evaluations

and recover the PRF output. It similarly increases as the network

grows, but even in a 12-device network, it takes only around 70

milliseconds on a Raspberry Pi Zero.

We believe that these microbenchmarks represent an upper

bound on the execution time; as discussed in Section 4.1, we expect

users to use their smartphone as the authorized device for Gen and

Recon, and modern smartphones have much better processors than

the ARM1176JZF-S found in the Pi Zero. While we do not envision

users generating and recovering on even smaller, microcontroller-

class devices, for completeness we evaluated how Gen and Recon
fare on the ESP32 for different configurations of (𝑛, 𝑡). These results
can be found in Appendix A.

Resource requirements. IoT devices have limited resources, so

we also evaluate how much storage and compute our implementa-

tion requires. Even in our smallest device class, the ESP32, we only

use 40% of the total flash storage and one core for our binary and

the runtime required on-chip. Many consumer home IoT devices

have specifications that far exceed these requirements. Addition-

ally, our current implementation is unoptimized research code, and

further improvements could reduce the size of the binary further.

This result nonetheless establishes a relative floor on the level of

IoT device that would be necessary for our specific implementation,

as well as shows that hardware modifications are unnecessary to

support SocIoTy software.

5.2 Scalability Benchmarks
Our next set of experiments measures how the execution time of the

evaluation of SocIoTy’s TDPRF scales once communication between

devices is involved.We set up two types of nodes, a request node and

𝑛 evaluation nodes. The evaluation nodes are the Raspberry Pis: 6

RPi 3B+s (used for all benchmarks), 3 RPi 2Bs (used for 𝑛 ≥ 7), and 3

5 10 15 20 25 30
Execution Time (ms)

(n = 5, t = 3)

(n = 6, t = 4)

(n = 7, t = 5)

(n = 8, t = 6)

(n = 9, t = 7)

(n = 10, t = 8)

(n = 11, t = 9)

(n = 12, t = 10)

Figure 8: Protocol execution time over CoAP for varying con-
figurations of total number of parties 𝑛 and reconstruction
threshold 𝑡 .

RPi Zeros (used for 𝑛 ≥ 10). In each run, the request node connects

to all 𝑛 evaluation nodes and makes a request for a timestamp

𝛿 . Each evaluation node then responds with the (authenticated-

encrypted) PartialEval for 𝛿 , and the request node performs Recon
once it has received (and decrypted) 𝑡 responses. All of the nodes

are on the same Wi-Fi network, and communication occurs over

the Constrained Application Protocol (CoAP) [71], a popular point-

to-point protocol in IoT.

We perform 1,000 of these runs for varying configurations of

(𝑛, 𝑡), and plot our results in Figure 8. Benchmark results for addi-

tional variations of (𝑛, 𝑡) can be found in Appendix A.

Clearly, as the required threshold to reconstruct 𝑡 increases, the

execution time increases: more responses need to arrive. Moreover,

we see a relatively large jump in average execution time at 𝑛 = 7

and 𝑛 = 10, likely because of the involvement of the less-powerful

Pi 2Bs and Pi Zeros at each step. We note that waiting for the first

𝑡 responses is biased towards the fastest devices, but this bias does

not impact security. SocIoTy does not require entropy from the

devices during PRF evaluation; rather, all of the entropy required is

provided by the smartphone to generate the keys 𝑘𝑝 and 𝑘 during

setup (see Section 4.2). We could extend the system to wait for a

specific number of responses from different device types, which

would potentially make the system more robust against the com-

promise of a class of devices (like a vulnerability affecting a brand

of light switch). This, in turn, would allow users to weigh trust

more granularly in their smart home.

Regardless, even in a relatively large configuration like (𝑛 =

12, 𝑡 = 10), each full run takes less than 25 milliseconds on average.

Thus, SocIoTy TDPRF evaluations are able to scale well as the smart

home network adds devices.

5.3 End-to-End Deployment
We now perform an end-to-end deployment of SocIoTy. We focus

on the authentication process depicted in Section 4.2. The results for

457

Proceedings on Privacy Enhancing Technologies 2024(1) Jois et al.

200 300 400 500 600 700
Execution Time (ms)

t = 9

t = 10

t = 11

t = 12

t = 13

t = 14

t = 15

t = 16

t = 17

Figure 9: End-to-end OTP generation time using our iOS app
for varying configurations of total number of parties 𝑛 and
reconstruction threshold 𝑡 .

authentication will be applicable to encryption as well, as the core

of the two algorithms is the same. The only difference is the actual

authenticated encryption of a file, which has minimal overhead.

An end-to-end authentication system must support the genera-

tion of 2FA OTPs. So we built a smartphone app, based on an open-

source implementation [9], with the same interface as common 2FA

apps. Our app performs all of the steps in the TDPRF evaluation—

making the PartialEval requests and Reconing the responses—and

takes the additional step of converting the output of Recon into a

six digit OTP and displaying it to the user. A screenshot of our app

can be found in Appendix A.

As discussed in Section 4.4, smaller single purpose devices may

not directly connect to the Internet or other devices found within

the smart home, but rather connect to a central, more-powerful

hub. This hub coordinates the flow of data of each device to and

from parts of the smart home or Internet. A commonly used IoT

protocol for this is MQTT, in which devices subscribe to topics to
receive information and publish to them to send information, while

a central broker sends published data to subscribers.

Keeping this in mind, we construct the following testbed to

perform our end-to-end experiments. Our simulated smart home

consists of the 12 Raspberry Pis from our experiment in Section 5.2,

as well as 5 ESP32 microcontrollers—representing the class of de-

vices that use lightweight IoT protocols like MQTT due to its hub

architecture—for total of 17 evaluation nodes, all connected to the

same Wi-Fi network. A 2018 iPhone X is used to run our smart-

phone app. We use a standard Ubuntu 21.04 server running on the

same LAN as the MQTT broker.

Every ℎ seconds (represented by a full progress circle in Fig-

ure 10), the iOS app generates a new TOTP by doing the following:

(1) The app calculates the TOTP counter value 𝛿 = ⌊ 𝑧
ℎ
⌋ based

on the current timestamp 𝑧.

(2) The app connects to the MQTT broker, subscribes to the

MQTT topic socioty/tdprf/𝛿 , and publishes 𝛿 to the topic
socioty/tdprf to the broker.

(3) Each node 𝑖 is subscribed to socioty/tdprf, and receives 𝛿

from the broker.

(4) Each node 𝑖 then computes 𝑦𝑖 ← PartialEval(𝑘𝑖 , 𝛿), and
publishes it to socioty/tdprf/𝛿 .

(5) Once the app has 𝑡 responses, it performs the remainder of

Algorithm 1, reconstructing the output and displaying the

new TOTP.

We consider the above steps one run, and we perform 100 runs,

varying the threshold 𝑡 while leaving the number of total devices

fixed as 𝑛 = 17. We present our results of our end-to-end deploy-

ment benchmarks in Figure 9. We see that average execution times

range from under 200ms at a majority threshold 𝑡 = 9 to under

500ms when all devices are involved at 𝑡 = 17. Similarly to our

results in Section 5.2, we see a sharp increase in execution times

as we rely more on weaker devices to provide their responses. The

large spread at 𝑡 = 17 is likely due to the app waiting for a straggler

device that receives the request last and computes a response last;

after all, an 𝑛-of-𝑛 system will be as fast as its slowest component.

Our experiments show that we are able to request and recon-

struct the OTP well within the default lifetime of the TOTP, which

is ℎ = 30 seconds [46]. For a threshold set to a simple majority of

devices the response is quick, accounting for less than 1% of the

TOTP lifetime. We find these results demonstrate the practicality

of our system to be used seamlessly as a TOTP generator.

Barriers to widespread deployment. The above result demon-

strates that SocIoTy is practical for real-world smart homes. How-

ever, there are some issues that arise when attempting to deploy

SocIoTy on commercial devices. Chief among them would be man-

ufacturer support for the PartialEval functionality. Manufacturers

would have to commit developer effort to program this functional-

ity and integrate it into the devices, as well as ensure that SocIoTy’s

runtime does not interfere with the normal operation of the IoT

device or artificially increase hardware requirements. The SocIoTy

smartphone app would also require adequate domain separation to

ensure the keys would not leak to other apps on the smartphone.

We believe that these issues are surmountable. Consumer inter-

est in privacy is growing, and the additional guarantees of SocIoTy

would be a marketable benefit for IoT products. Moreover, as our

evaluation shows, SocIoTy induces limited overhead and resource

costs, especially on more performant devices, which means that its

addition will likely not require modifications to the device bill of

materials. Smartphones also have numerous confidentiality mech-

anisms [73], which can be used to enforce domain separation for

the keys. To reduce developer time, manufacturers can use our

open-source implementation as a reference. Some IoT devices are

even specifically designed for third-party functionality (e.g., [12]),
and we aim on porting SocIoTy to these platforms as future work.

This will improve the ecosystem for SocIoTy and hopefully spur

further exploration and adoption.

6 RELATEDWORK
We now compare SocIoTy to other work with similar goals. We

summarize our comparisons in Table 3.

Context-sensitive cryptography. In the literature, context-

sensitive cryptography usually focuses on authentication, typically

using some ambient information to establish a key or authorize an

458

SocIoTy Proceedings on Privacy Enhancing Technologies 2024(1)

Table 3: A comparison of related work with similar goals to those of SocIoTy.

Category Authentication? Encryption? Binding? Uses existing hardware? Suitable for non-experts?

Context-sensitive auth [6, 14, 43, 60–62, 66] ✓ ✗ ✓ ✗ ✓
Proximity measurement [5, 72] ✓ ✗ ✗ ✓ ✗
Wearable devices [16, 21, 59] ✓ ✗ ✗ ✓ ✓
Geo-encryption [1, 25, 53, 57] ✗ ✓ ✓ ✗ ✗
Position-based crypto [13, 15, 17] ✓ ✓ ✓ N/A ✗
Time-specific encryption [34, 50, 52] ✗ ✓ ✓ N/A ✗
HSMs [31, 32, 69] ✓ ✓ ✓ ✗ ✗
SocIoTy (this paper) ✓ ✓ ✓ ✓ ✓

action. Early work by Mayrhofer and Gellersen [43] propose using

mobile device acceleration information for authentication. Sigg [60]

proposes an audio-based system as a case study of context-based

security, and Sigg et al. [61] improve upon this scheme by applying

fuzzy cryptography to handle noise in generated secrets. Wang et

al. [66] use radio characteristics of BLE systems to set up context

information for pairing purposes. Work in the HCI community [14]

shows that users find context-sensitive schemes to be a promising

improvement over traditional mechanisms.

An alternative to using the ambient features of a room is to use

the presence of nearby systems as a context instead. Pico [62] is

portable password storage hardware that pairs with other devices

and applications to exchange keys and enable further seamless

authentication. Such a device can be shaped as a watch, a key fob,

a bracelet or an item of jewellery. Pico establishes a context when

near dedicated Picosiblings devices, which coordinate and allow

password actions on the primary Pico device. Instead of utilizing

ambient features or dedicated hardware, SocIoTy re-uses existing

IoT hardware (with a dedicated, unrelated purpose) to provide extra

cryptographic functionalities.

Some context-sensitive authentication works focus on the IoT

use case. Zhang et al. [72] describe an easier authentication for IoT

devices by gesturing with a smartphone in close proximity to the

devices. Aman et al. [5] used a similar concept for the authentication

of IoT devices by accounting for physical location. These works

do not provide a binding property for user data, however. Certain

works employ IoT-specific characteristics for user authentication;

in particular, [16, 21, 59] use wearable IoT devices as a second-factor

for authentication. Anton et al. [6] propose context authentication

for industrial IoT systems.

Location-sensitive cryptography. Heuristics around applying

location information to cryptography were originally formed in the

networking community, with a set of “geo-encryption” algorithms

[1, 25, 53, 57] that introduce location and time as additional param-

eters to a cryptographic operation by using satellite data. More

formal cryptographic definitions were introduced by Chandran et

al. [17] as “position-based cryptography,” wherein they demonstrate

the impossibility of verifying the physical position (based on radio

wave communications) of a number of colluding provers within

a space in the standard model. Works since have explored the as-

sumptions made by Chandran and their implications in complexity

theory [13] and in the quantum setting [15].

Phuong et al. developed a location-based encryption scheme

in 2019 [52]. However, their scheme requires bilinear maps (as

used in an attribute-based encryption scheme) to achieve constant

ciphertext size decryptable at arbitrary points within 2-D or 3-D

grids. Further, they rely on time-specific encryption [34, 50] to

ensure decryption only at particular points for a given ciphertext.

Hardware security modules (HSMs). Hardware security mod-

ules are separate, dedicated computing devices that protect cryp-

tographic keys by storing them and monitoring their access and

usage. They provide tamper-evidence or even tamper-resistance

through the use of special hardware. Once tampering is detected,

the device may stop functioning properly or delete its secret keys.

HSMs can be used to protect keys used by certificate authorities,

banks, and cryptocurrency wallets. They are present within vehi-

cles [69], operational technology [32], and clouds [31]. HSMs act as

trusted security anchors and gateway to the network. They securely

generate, store, and process security-critical material shielded from

any potentially malicious actor on the network and outside of it.

While providing good security guarantees on paper, historically

HSMs have been too expensive for average consumers at the highest

security levels and therefore have limited usability outside of large

corporations [33, 35].

7 CONCLUSION
We present SocIoTy, an at-home cryptography system designed

with non-technical users in mind. SocIoTy allows users to bind

their secrets to their smart homes, giving them the opportunity

to opt-in to additional protections for sensitive tasks. We protect

against powerful, privacy-invading adversaries that can obtain the

user’s state or compromise their devices, all without requiring extra

hardware. Our system protects against common surveillance tech-

niques in this setting (like border searches), which is beyond what

existing privacy-enhancing systems consider, all while providing

the functionalities users expect, like authentication and encryption.

Our benchmarks show that SocIoTy is practical, efficient, and con-

ducive to deployment on real smart homes. In the future, we plan

on exploring what other at-home services we can provide on top

of IoT devices through systems like SocIoTy.

ACKNOWLEDGMENTS
The authors would like to acknowledge support from the NSF under

awards 1653110, 1801479, 1955172 and 2030859, and from DARPA

under contracts HR00112020021 and HR001120C0084. The views

and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official

policies, either expressed or implied, of the sponsors. Any mention

of specific companies or products does not imply any endorsement

by the authors, by their employers, or by the sponsors.

459

Proceedings on Privacy Enhancing Technologies 2024(1) Jois et al.

REFERENCES
[1] Ala Al-Fuqaha and Omar Al-Ibrahim. 2007. Geo-encryption protocol for mobile

networks. Computer Communications 30, 11-12 (2007), 2510–2517.
[2] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with

Minimal Multiplicative Complexity. In ASIACRYPT 2016, Part I (LNCS, Vol. 10031),
Jung Hee Cheon and Tsuyoshi Takagi (Eds.). Springer, Heidelberg, 191–219.

https://doi.org/10.1007/978-3-662-53887-6_7

[3] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. 2015. Ciphers for MPC and FHE. In EUROCRYPT 2015, Part I
(LNCS, Vol. 9056), Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Heidelberg,

430–454. https://doi.org/10.1007/978-3-662-46800-5_17

[4] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. 2020. Design of Symmetric-Key Primitives for Advanced Crypto-

graphic Protocols. IACR Trans. Symm. Cryptol. 2020, 3 (2020), 1–45. https:

//doi.org/10.13154/tosc.v2020.i3.1-45

[5] Muhammad Naveed Aman, Mohamed Haroon Basheer, and Biplab Sikdar. 2018.

Two-factor authentication for IoT with location information. IEEE Internet of
Things Journal 6, 2 (2018), 3335–3351.

[6] Simon Duque Anton, Daniel Fraunholz, Christoph Lipps, Khurshid Alam, and

Hans Dieter Schotten. 2019. Putting things in context: Securing industrial au-

thentication with context information. arXiv preprint arXiv:1905.12239 (2019).
[7] Apple Inc. 2021. Apple TV HD Technical Specifications. https://support.apple.

com/kb/SP724. Accessed 2/27/2023.

[8] Tomer Ashur and Siemen Dhooghe. 2018. MARVELlous: a STARK-Friendly

Family of Cryptographic Primitives. Cryptology ePrint Archive, Report 2018/1098.

https://eprint.iacr.org/2018/1098.

[9] Bastian Jaansen. 2020. Authenticator. https://github.com/BastiaanJansen/

Authenticator.

[10] M. Bellare and R. Impagliazzo. 1999. A tool for obtaining tighter security analyses

of pseudorandom function based constructions, with applications to PRP to PRF

conversion. Cryptology ePrint Archive, Report 1999/024. https://eprint.iacr.org/

1999/024.

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness The-

orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended

Abstract). In 20th ACM STOC. ACM Press, 1–10. https://doi.org/10.1145/62212.

62213

[12] B&H Photo. 2023. Amazon Echo Dot (3rd Generation, Charcoal).

https://www.bhphotovideo.com/c/product/1437065-REG/amazon_b0792kthkj_

echo_dot_3rd_generation.html/specs. Accessed 2/27/2023.

[13] Joshua Brody, Stefan Dziembowski, Sebastian Faust, and Krzysztof Pietrzak. 2017.

Position-Based Cryptography and Multiparty Communication Complexity. In

TCC 2017, Part I (LNCS, Vol. 10677), Yael Kalai and Leonid Reyzin (Eds.). Springer,

Heidelberg, 56–81. https://doi.org/10.1007/978-3-319-70500-2_3

[14] Matthias Budde, Till Riedel, Marcel Köpke, Matthias Berning, and Michael Beigl.

2014. A Comparative Study to Evaluate the Usability of Context-based Wi-Fi

Access Mechanisms. In Universal Access in Human-Computer Interaction. Aging
and Assistive Environments: 8th International Conference, UAHCI 2014, Held as Part
of HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014, Proceedings,
Part III 8. Springer, 451–462.

[15] Harry Buhrman, Nishanth Chandran, Serge Fehr, Ran Gelles, Vipul Goyal, Rafail

Ostrovsky, and Christian Schaffner. 2011. Position-Based Quantum Cryptogra-

phy: Impossibility and Constructions. In CRYPTO 2011 (LNCS, Vol. 6841), Phillip
Rogaway (Ed.). Springer, Heidelberg, 429–446. https://doi.org/10.1007/978-3-

642-22792-9_24

[16] Yetong Cao, Qian Zhang, Fan Li, Song Yang, and Yu Wang. 2020. PPGPass:

Nonintrusive and secure mobile two-factor authentication via wearables. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 1917–1926.

[17] Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky. 2009.

Position Based Cryptography. In CRYPTO 2009 (LNCS, Vol. 5677), Shai Halevi (Ed.).
Springer, Heidelberg, 391–407. https://doi.org/10.1007/978-3-642-03356-8_23

[18] David Chaum, Claude Crépeau, and Ivan Damgård. 1988. Multiparty Uncon-

ditionally Secure Protocols (Abstract) (Informal Contribution). In CRYPTO’87
(LNCS, Vol. 293), Carl Pomerance (Ed.). Springer, Heidelberg, 462. https:

//doi.org/10.1007/3-540-48184-2_43

[19] Chrysta Cherrie. 2021. The 2021 State of the Auth Report: 2FA Climbs, While

Password Managers and Biometrics Trend. https://duo.com/blog/the-2021-state-

of-the-auth-report-2fa-climbs-password-managers-biometrics-trend. Accessed

2022-07-29.

[20] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel

Kaptchuk. 2021. Fluid MPC: Secure Multiparty Computation with Dynamic

Participants. In CRYPTO 2021, Part II (LNCS, Vol. 12826), Tal Malkin and Chris

Peikert (Eds.). Springer, Heidelberg, Virtual Event, 94–123. https://doi.org/10.

1007/978-3-030-84245-1_4

[21] John Chuang. 2014. One-step two-factor authentication with wearable bio-

sensors. In Symposium on Usable Privacy and Security-SOUPS, Vol. 14.

[22] Cisco. 2020. Configure AnyConnect Secure Mobility Client using

One-Time Password (OTP) for Two-Factor Authentication on an ASA.

https://www.cisco.com/c/en/us/support/docs/security/anyconnect-secure-

mobility-client/213931-configure-anyconnect-secure-mobility-cli.html.

Accessed 2022-07-29.

[23] Jyoti Deogirikar and Amarsinh Vidhate. 2017. Security attacks in IoT: A survey.

In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud)(I-SMAC). IEEE, 32–37.

[24] Duo. 2021. Duo Authentication for Epic. https://duo.com/docs/epic. Accessed

7/29/2022.

[25] Mahdi Daghmechi Firoozjaei and Javad Vahidi. 2012. Implementing geo-

encryption in GSM cellular network. In 2012 9th International Conference on
Communications (COMM). IEEE, 299–302.

[26] Shoni Gilboa, Shay Gueron, and Ben Morris. 2018. How many queries are needed

to distinguish a truncated random permutation from a random function? Journal
of Cryptology 31, 1 (2018), 162–171.

[27] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1984. How to Construct

Random Functions (Extended Abstract). In 25th FOCS. IEEE Computer Society

Press, 464–479. https://doi.org/10.1109/SFCS.1984.715949

[28] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, 218–229. https://doi.org/10.1145/28395.

28420

[29] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge

Proof Systems. In USENIX Security 2021, Michael Bailey and Rachel Greenstadt

(Eds.). USENIX Association, 519–535.

[30] Chris Hall, David Wagner, John Kelsey, and Bruce Schneier. 1998. Building PRFs

from PRPs. In CRYPTO’98 (LNCS, Vol. 1462), Hugo Krawczyk (Ed.). Springer,

Heidelberg, 370–389. https://doi.org/10.1007/BFb0055742

[31] Juhyeng Han, Seongmin Kim, Taesoo Kim, and Dongsu Han. 2019. Toward

scaling hardware security module for emerging cloud services. In Proceedings of
the 4th Workshop on System Software for Trusted Execution. 1–6.

[32] William Hupp, Adarsh Hasandka, Ricardo Siqueira de Carvalho, and Danish

Saleem. 2020. Module-OT: a hardware securitymodule for operational technology.

In 2020 IEEE Texas Power and Energy Conference (TPEC). IEEE, 1–6.
[33] SANS institution. 2002. Global Information Assurance Certification Paper. https://

www.giac.org/paper/gsec/1508/overview-hardware-security-modules/102811.

[34] Kohei Kasamatsu, Takahiro Matsuda, Keita Emura, Nuttapong Attrapadung,

Goichiro Hanaoka, and Hideki Imai. 2012. Time-specific encryption from forward-

secure encryption. In International Conference on Security and Cryptography for
Networks. Springer, 184–204.

[35] Anand Kashyap. 2018. The Next Generation: HSM approach delivers unparalleld

cost/benefit for organizations. https://securitytoday.com/Articles/2018/12/01/

The-Next-Generation.aspx?Page=1.

[36] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Computa-

tion. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni

Vigna (Eds.). ACM Press, 1575–1590. https://doi.org/10.1145/3372297.3417872

[37] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-

Vazquez, and Srinivas Vivek. 2017. Faster Secure Multi-party Computation

of AES and DES Using Lookup Tables. In ACNS 17 (LNCS, Vol. 10355), Dieter
Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi (Eds.). Springer, Heidelberg, 229–

249. https://doi.org/10.1007/978-3-319-61204-1_12

[38] Hugo Krawczyk. 2010. Cryptographic Extraction and Key Derivation: The HKDF

Scheme. In CRYPTO 2010 (LNCS, Vol. 6223), Tal Rabin (Ed.). Springer, Heidelberg,

631–648. https://doi.org/10.1007/978-3-642-14623-7_34

[39] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. 1997. HMAC: Keyed-Hashing

for Message Authentication. IETF Internet Request for Comments 2104.

[40] Sam Kumar, Yuncong Hu, Michael P. Andersen, Raluca Ada Popa, and David E.

Culler. 2019. JEDI: Many-to-Many End-to-End Encryption and Key Delegation

for IoT. In USENIX Security 2019, Nadia Heninger and Patrick Traynor (Eds.).

USENIX Association, 1519–1536.

[41] DawnMacKeen. 2022. CanNewTechnologyMakeHomeDialysis aMore Realistic

Option? The New York Times (10 Nov 2022). Accessed 2023-02-27.

[42] Matt Burns. 2011. Nest Thermostat Teardown Reveals Beautiful Innards, Powerful

ARM CPU, Zigbee Radio. https://techcrunch.com/2011/12/22/nest-arm-zigbee/.

Accessed 2/27/2023.

[43] Rene Mayrhofer and Hans Gellersen. 2007. Shake well before use: two implemen-

tations for implicit context authentication. Adjunct Proc. Ubicomp 2007 (2007).

[44] Mordor Intelligence. 2022. Global smart homesmarket—growth, analysis, forecast

to 2022. https://www.mordorintelligence.com/industry-reports/global-smart-

homes-market-industry.

[45] David M’Raihi, Mihir Bellare, Frank Hoornaert, David Naccache, and Ohad Ranen.

2005. RFC 4226: HOTP: An hmac-based one-time password algorithm.

[46] David M’Raihi, Salah Machani, Mingliang Pei, and Johan Rydell. 2011. RFC 6238:

TOTP: Time-based one-time password algorithm.

[47] Moni Naor, Benny Pinkas, and Omer Reingold. 1999. Distributed Pseudo-random

Functions and KDCs. In EUROCRYPT’99 (LNCS, Vol. 1592), Jacques Stern (Ed.).

460

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://support.apple.com/kb/SP724
https://support.apple.com/kb/SP724
https://eprint.iacr.org/2018/1098
https://github.com/BastiaanJansen/Authenticator
https://github.com/BastiaanJansen/Authenticator
https://eprint.iacr.org/1999/024
https://eprint.iacr.org/1999/024
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://www.bhphotovideo.com/c/product/1437065-REG/amazon_b0792kthkj_echo_dot_3rd_generation.html/specs
https://www.bhphotovideo.com/c/product/1437065-REG/amazon_b0792kthkj_echo_dot_3rd_generation.html/specs
https://doi.org/10.1007/978-3-319-70500-2_3
https://doi.org/10.1007/978-3-642-22792-9_24
https://doi.org/10.1007/978-3-642-22792-9_24
https://doi.org/10.1007/978-3-642-03356-8_23
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/3-540-48184-2_43
https://duo.com/blog/the-2021-state-of-the-auth-report-2fa-climbs-password-managers-biometrics-trend
https://duo.com/blog/the-2021-state-of-the-auth-report-2fa-climbs-password-managers-biometrics-trend
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1007/978-3-030-84245-1_4
https://www.cisco.com/c/en/us/support/docs/security/anyconnect-secure-mobility-client/213931-configure-anyconnect-secure-mobility-cli.html
https://www.cisco.com/c/en/us/support/docs/security/anyconnect-secure-mobility-client/213931-configure-anyconnect-secure-mobility-cli.html
https://duo.com/docs/epic
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/BFb0055742
https://www.giac.org/paper/gsec/1508/overview-hardware-security-modules/102811
https://www.giac.org/paper/gsec/1508/overview-hardware-security-modules/102811
https://securitytoday.com/Articles/2018/12/01/The-Next-Generation.aspx?Page=1
https://securitytoday.com/Articles/2018/12/01/The-Next-Generation.aspx?Page=1
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-642-14623-7_34
https://techcrunch.com/2011/12/22/nest-arm-zigbee/
https://www.mordorintelligence.com/industry-reports/global-smart-homes-market-industry
https://www.mordorintelligence.com/industry-reports/global-smart-homes-market-industry

SocIoTy Proceedings on Privacy Enhancing Technologies 2024(1)

Springer, Heidelberg, 327–346. https://doi.org/10.1007/3-540-48910-X_23

[48] NIST. 2023. Lightweight Cryptography Standardization Process: NIST Selects

Ascon. https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-

ascon. Accessed 2/27/2023.

[49] Kim Parker, Juliana Menasce Horowitz, and Rachel Minkin. 2020. How the

Coronavirus Outbreak Has - and Hasn’t - Changed the Way Americans Work.

Pew Research Center (9 Dec 2020). Accessed 2023-02-27.

[50] Kenneth G Paterson and Elizabeth A Quaglia. 2010. Time-specific encryption.

In International Conference on Security and Cryptography for Networks. Springer,
1–16.

[51] Pew Research Center. 2021. Mobile Fact Sheet. https://www.pewresearch.org/

internet/fact-sheet/mobile/. Accessed 7/29/2022.

[52] Tran Viet Xuan Phuong, Willy Susilo, Guomin Yang, Jun Yan, and Dongxi Liu.

2019. Location Based Encryption. In ACISP 19 (LNCS, Vol. 11547), Julian Jang-

Jaccard and Fuchun Guo (Eds.). Springer, Heidelberg, 21–38. https://doi.org/10.

1007/978-3-030-21548-4_2

[53] Di Qiu, Sherman Lo, Per Enge, Dan Boneh, and Ben Peterson. 2007. Geoencryption

using loran. In Proceedings of the 2007 National Technical Meeting of The Institute
of Navigation. 104–115.

[54] Robinhood. 2022. Two-Factor Authentication. https://robinhood.com/us/en/

support/articles/twofactor-authentication/. Accessed 2022-07-29.

[55] Bryan Robinson. 2022. Remote Work is Here to Stay And Will Increase Into 2023,

Experts Say. Forbes (01 Feb 2022).
[56] Sarah Scheffler and Mayank Varia. 2021. Protecting Cryptography Against

Compelled Self-Incrimination. InUSENIX Security 2021, Michael Bailey and Rachel

Greenstadt (Eds.). USENIX Association, 591–608.

[57] Logan Scott and Dorothy E Denning. 2003. A location based encryption technique

and some of its applications. In Proceedings of the 2003 National Technical Meeting
of The Institute of Navigation. 734–740.

[58] Jayasree Sengupta, Sushmita Ruj, and Sipra Das Bit. 2020. A comprehensive

survey on attacks, security issues and blockchain solutions for IoT and IIoT.

Journal of Network and Computer Applications 149 (2020), 102481.
[59] Prakash Shrestha and Nitesh Saxena. 2018. Listening watch: Wearable two-factor

authentication using speech signals resilient to near-far attacks. In Proceedings
of the 11th ACM conference on security & privacy in wireless and mobile networks.
99–110.

[60] Stephan Sigg. 2011. Context-based security: State of the art, open research

topics and a case study. In Proceedings of the 5th ACM International Workshop on
Context-Awareness for Self-Managing Systems. 17–23.

[61] Stephan Sigg, Dominik Schuermann, and Yusheng Ji. 2012. Pintext: A framework

for secure communication based on context. In Mobile and Ubiquitous Systems:
Computing, Networking, and Services: 8th International ICST Conference, MobiQui-
tous 2011, Copenhagen, Denmark, December 6-9, 2011, Revised Selected Papers 8.
Springer, 314–325.

[62] Frank Stajano. 2011. Pico: No more passwords!. In Security Protocols XIX: 19th
International Workshop, Cambridge, UK, March 28-30, 2011, Revised Selected Papers
19. Springer, 49–81.

[63] Statista. 2022. Digital market - Smart Home. https://www.statista.com/outlook/

dmo/smart-home/worldwide.

[64] TechInfoDepot. 2023. Belkin WeMo Light Switch (F7C030). http://en.

techinfodepot.shoutwiki.com/wiki/Belkin_WeMo_Light_Switch_(F7C030). Ac-

cessed 2/27/2023.

[65] Nirvan Tyagi, Muhammad Haris Mughees, Thomas Ristenpart, and Ian Miers.

2018. BurnBox: Self-Revocable Encryption in a World Of Compelled Access. In

USENIX Security 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX

Association, 445–461.

[66] Juan Wang, Karim Lounis, and Mohammad Zulkernine. 2019. CSKES: a context-

based secure keyless entry system. In 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC), Vol. 1. IEEE, 817–822.

[67] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Secure

Multiparty Computation. In ACM CCS 2017, Bhavani M. Thuraisingham, David

Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, 39–56. https://doi.org/

10.1145/3133956.3133979

[68] Yash Wate. 2021. How to Enable Two-Factor Authentication on Facebook,

Instagram, and Twitter. https://techpp.com/2020/02/03/enable-two-factor-

authentication-instagram-facebook-twitter/. Accessed 2022-07-29.

[69] Marko Wolf and Timo Gendrullis. 2011. Design, implementation, and evalu-

ation of a vehicular hardware security module. In International Conference on
Information Security and Cryptology. Springer, 302–318.

[70] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In 27th FOCS. IEEE Computer Society Press, 162–167. https://doi.org/

10.1109/SFCS.1986.25

[71] C. Bormann Z. Shelby, K. Hartke. 2014. The Constrained Application Protocol
(CoAP). RFC 7252. RFC Editor. https://www.rfc-editor.org/rfc/rfc7252

[72] Jiansong Zhang, Zeyu Wang, Zhice Yang, and Qian Zhang. 2017. Proximity based

IoT device authentication. In IEEE INFOCOM 2017-IEEE conference on computer
communications. IEEE, 1–9.

Figure 10: A Simulator screenshot of our iOS app. Note that
all benchmarks were performed with a hardware iPhone X.

[73] Maximilian Zinkus, TusharM. Jois, andMatthewGreen. 2022. SoK: Cryptographic

Confidentiality of Data on Mobile Devices. PoPETs 2022, 1 (Jan. 2022), 586–607.
https://doi.org/10.2478/popets-2022-0029

A ADDITIONAL EVALUATION RESULTS
We present additional results from our evaluation in this section.

ESP32 Gen and Recon. As discussed in Section 5.1, we believe

that it is unlikely for Gen and Recon to be run on devices that have

computational resources below that of the Pi Zero. However, for

completeness we evaluated how Gen and Recon fare on the ESP32

for different configurations of (𝑛, 𝑡). These results are shown in

Tables 4 and 5, respectively. Note that 𝑥 is the average and 𝑠 is the

standard deviation of each execution.

Scalability with CoAP. CoAP scalability results for more con-

figurations of (𝑛, 𝑡) are shown in Table 6. Note that there is a sharp

461

https://doi.org/10.1007/3-540-48910-X_23
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://doi.org/10.1007/978-3-030-21548-4_2
https://doi.org/10.1007/978-3-030-21548-4_2
https://robinhood.com/us/en/support/articles/twofactor-authentication/
https://robinhood.com/us/en/support/articles/twofactor-authentication/
https://www.statista.com/outlook/dmo/smart-home/worldwide
https://www.statista.com/outlook/dmo/smart-home/worldwide
http://en.techinfodepot.shoutwiki.com/wiki/Belkin_WeMo_Light_Switch_(F7C030)
http://en.techinfodepot.shoutwiki.com/wiki/Belkin_WeMo_Light_Switch_(F7C030)
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://techpp.com/2020/02/03/enable-two-factor-authentication-instagram-facebook-twitter/
https://techpp.com/2020/02/03/enable-two-factor-authentication-instagram-facebook-twitter/
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://www.rfc-editor.org/rfc/rfc7252
https://doi.org/10.2478/popets-2022-0029

Proceedings on Privacy Enhancing Technologies 2024(1) Jois et al.

Table 4: Microbenchmarks for Gen on the ESP32 devices over
varying configurations of total number of parties 𝑛 and re-
construction threshold 𝑡 . All times are in milliseconds.

Experiment 𝑥 𝑠

Gen (𝑛 = 5, 𝑡 = 3) 41.16 0.02

Gen (𝑛 = 5, 𝑡 = 4) 41.63 0.02

Gen (𝑛 = 5, 𝑡 = 5) 42.12 0.02

Gen (𝑛 = 6, 𝑡 = 4) 49.78 0.02

Gen (𝑛 = 6, 𝑡 = 5) 50.33 0.02

Gen (𝑛 = 6, 𝑡 = 6) 50.89 0.02

Gen (𝑛 = 7, 𝑡 = 5) 58.55 0.02

Gen (𝑛 = 7, 𝑡 = 6) 59.18 0.02

Gen (𝑛 = 7, 𝑡 = 7) 59.83 0.02

Gen (𝑛 = 8, 𝑡 = 6) 67.48 0.02

Gen (𝑛 = 8, 𝑡 = 7) 68.20 0.02

Gen (𝑛 = 8, 𝑡 = 8) 68.92 0.02

Gen (𝑛 = 9, 𝑡 = 7) 76.58 0.02

Gen (𝑛 = 9, 𝑡 = 8) 77.36 0.02

Gen (𝑛 = 9, 𝑡 = 9) 78.17 0.02

Gen (𝑛 = 10, 𝑡 = 8) 85.83 0.02

Gen (𝑛 = 10, 𝑡 = 9) 86.70 0.02

Gen (𝑛 = 10, 𝑡 = 10) 87.73 0.02

Gen (𝑛 = 11, 𝑡 = 9) 95.25 0.02

Gen (𝑛 = 11, 𝑡 = 10) 96.18 0.02

Gen (𝑛 = 11, 𝑡 = 11) 97.31 0.02

Gen (𝑛 = 12, 𝑡 = 10) 104.81 0.02

Gen (𝑛 = 12, 𝑡 = 11) 105.83 0.02

Gen (𝑛 = 12, 𝑡 = 12) 107.05 0.02

Table 5: Microbenchmarks for Recon on the ESP32 devices
over varying configurations of total number of parties 𝑛 and
reconstruction threshold 𝑡 . All times are in milliseconds.

Experiment 𝑥 𝑠

Recon (𝑛 = 5, 𝑡 = 3) 382.47 0.01

Recon (𝑛 = 5, 𝑡 = 4) 382.47 0.01

Recon (𝑛 = 5, 𝑡 = 5) 382.11 0.01

Recon (𝑛 = 6, 𝑡 = 4) 495.02 0.01

Recon (𝑛 = 6, 𝑡 = 5) 495.02 0.01

Recon (𝑛 = 6, 𝑡 = 6) 494.48 0.01

Recon (𝑛 = 7, 𝑡 = 5) 622.77 0.01

Recon (𝑛 = 7, 𝑡 = 6) 622.77 0.01

Recon (𝑛 = 7, 𝑡 = 7) 622.02 0.01

Recon (𝑛 = 8, 𝑡 = 6) 765.77 0.01

Recon (𝑛 = 8, 𝑡 = 7) 765.77 0.01

Recon (𝑛 = 8, 𝑡 = 8) 764.76 0.01

Recon (𝑛 = 9, 𝑡 = 7) 923.98 0.01

Recon (𝑛 = 9, 𝑡 = 8) 923.98 0.01

Recon (𝑛 = 9, 𝑡 = 9) 922.68 0.01

Recon (𝑛 = 10, 𝑡 = 8) 1097.46 0.01

Recon (𝑛 = 10, 𝑡 = 9) 1097.46 0.01

Recon (𝑛 = 10, 𝑡 = 10) 1097.44 0.01

Recon (𝑛 = 11, 𝑡 = 9) 1286.10 0.01

Recon (𝑛 = 11, 𝑡 = 10) 1286.51 0.01

Recon (𝑛 = 11, 𝑡 = 11) 1286.09 0.01

Recon (𝑛 = 12, 𝑡 = 10) 1490.53 0.01

Recon (𝑛 = 12, 𝑡 = 11) 1490.53 0.01

Recon (𝑛 = 12, 𝑡 = 12) 1490.06 0.01

increase when the number of nodes is 𝑛 ≥ 10 and the threshold

is 𝑡 = 𝑛. In this case, we found that one of the Raspberry Pi Zeros

performs significantly worse on network communication than all

other devices, perhaps due to a manufacturing issue. As mentioned

in Section 5.3, when the threshold is sufficiently large to encompass

the slowest of devices, the computation becomes bounded by the

slowest performing devices.

iOS App. A screenshot of the iOS app we built for our end-to-end

deployment evaluation in Section 5.3 can be found in Figure 10.

Table 6: Protocol execution time using CoAP over all evalu-
ated configurations of total number of parties 𝑛 and recon-
struction threshold 𝑡 . All times are in milliseconds.

Experiment 𝑥 𝑠

(𝑛 = 5, 𝑡 = 3) 7.90 1.23

(𝑛 = 5, 𝑡 = 4) 8.96 1.76

(𝑛 = 5, 𝑡 = 5) 10.77 4.34

(𝑛 = 6, 𝑡 = 4) 8.85 1.76

(𝑛 = 6, 𝑡 = 5) 10.65 2.26

(𝑛 = 6, 𝑡 = 6) 12.05 2.16

(𝑛 = 7, 𝑡 = 5) 11.05 2.51

(𝑛 = 7, 𝑡 = 6) 12.57 2.65

(𝑛 = 7, 𝑡 = 7) 14.41 3.21

(𝑛 = 8, 𝑡 = 6) 12.39 2.38

(𝑛 = 8, 𝑡 = 7) 14.31 2.74

(𝑛 = 8, 𝑡 = 8) 16.06 2.99

(𝑛 = 9, 𝑡 = 7) 14.42 2.51

(𝑛 = 9, 𝑡 = 8) 16.70 3.47

(𝑛 = 9, 𝑡 = 9) 18.37 4.03

(𝑛 = 10, 𝑡 = 8) 17.07 4.28

(𝑛 = 10, 𝑡 = 9) 19.74 4.21

(𝑛 = 10, 𝑡 = 10) 49.57 151.41

(𝑛 = 11, 𝑡 = 9) 19.81 3.90

(𝑛 = 11, 𝑡 = 10) 22.35 3.97

(𝑛 = 11, 𝑡 = 11) 48.05 134.40

(𝑛 = 12, 𝑡 = 10) 23.34 4.87

(𝑛 = 12, 𝑡 = 11) 24.63 5.01

(𝑛 = 12, 𝑡 = 12) 53.62 145.06

B MPC-BASED SOCIOTY
In this appendix, we explore how SocIoTy could be built using

secure multi-party computation (MPC) and investigate its execution

time, comparing it to our dual-layered PRF solution presented in

the main body of this work.

MPC [11, 18, 28, 70] allows a set of parties to compute a function

of their inputs while keeping those inputs confidential. Generic

MPC protocols Π can securely compute arbitrary functions 𝑓 , de-

scribed as either Boolean or arithmetic circuits. Of course, the

security and properties provided by Π may differ widely based on

the protocol chosen.

MPC for IoT devices. In the main body of this work we build Soc-

IoTy from a combination of a TDPRF (on the smart home devices)

and a regular PRF (on the smartphone) to mitigate the impact of

device compromise. To do the same with MPC, we evaluate the stan-

dard cryptographic functions used in authentication and encryption

within an MPC protocol. Specifically, the secret key material is se-

cret shared among all 𝑛 IoT devices, and only ever reconstructed

within the MPC. Thus, like in the proposed SocIoTy model, compro-

mise of one device—or even a handful of devices—does not destroy

the security guarantees of the system.

We utilize an MPC system that allows for dynamic participa-
tion—entering and exiting—as a part of protocol execution. MPC

computations are potentially long-running and involve several

steps of interaction between parties, and it may be unrealistic to

expect parties (especially low-powered ones) to participate for the

duration of the whole protocol. So, with dynamic participation, a

party (i.e., an IoT device) that must leave (e.g., to service a user

event), can do so without seriously impacting protocol execution.

We choose the recent proposal of Choudhuri et al. [20], Fluid MPC,
in which the execution of an MPC protocol is divided into discrete

462

SocIoTy Proceedings on Privacy Enhancing Technologies 2024(1)

0 5000 10000 15000 20000 25000 30000
Execution Time (ms)

(n = 5, t = 3)

(n = 6, t = 4)

(n = 7, t = 5)

(n = 8, t = 6)

(n = 9, t = 7)

(n = 10, t = 8)

(n = 11, t = 9)

(n = 12, t = 10)

Figure 11: Comparison of execution time boxplots for the TDPRF-based SocIoTy protocol (lower boxplot, orange median) and
the MPC-based SocIoTy protocol (upper boxplot, blue median).

stages known as “epochs” such that a different set of parties, called a

“committee,” participates in each epoch. The Fluid MPC protocol—a

variant of BGW [11]—achieves maximal fluidity, i.e., each epoch

has one round of communication.

MPC-friendly PRFs. The SocIoTy solution presented in the main

body of this work builds its dual-layered PRF from a TDPRF, which

in turn is build with elliptic curve multiplications (see Section 4.5).

However, these kinds of Diffie-Hellman operations are too slow to

operate inside of anMPC circuit, and we require different primitives

for the distributed computation. So, in this appendix, we use the

symmetric cipherMiMC [2] to build a PRF for TOTP inside of MPC.

We studyMiMC because it is a relatively new, MPC-friendly cipher

with low multiplicative complexity; similar ciphers have been ex-

plored in [3, 4, 8, 29]. For MiMC, we represent our computation as

an arithmetic circuit over 𝐺𝐹 (2128).
Block ciphers are typically modeled as a pseudorandom permu-

tation (PRP), but there is a line of work in the theoretical litera-

ture [10, 26, 30] on how truncating the output of a PRP results in a

(secure) PRF. As defined [46], TOTP truncates the output of its PRF

to be 6 digits long. Thus, as long as our PRP-to-PRF truncation re-

sults in enough bits to be further truncated to be 6 digits long (PRF
mod 10

6
), we can use block ciphers as the PRF in TOTP. With this

in mind, we set PRF.Eval(𝑠𝑘, 𝑡) = Enc(𝑠𝑘, 𝑡) [: 24], where Enc is the
symmetric key encryption function of a block cipher like MiMC
and the output is truncated to be 24 bits long. Since 2

24 > 10
6
,

truncating the output to 24 bits will still allow for OTPs that are at

least 6 decimal digits, meeting the current interface for a TOTP.

Evaluation. With all of this in mind, we can evaluate how an

MPC-based SocIoTy construction would fare in the real world. Our

implementation consists of a BGW MPC [11] with extensions to

support churn derived from Fluid MPC [20]. The underlying MPC

requires communication between nodes to compute the result of

Table 7: MPC-based SocIoTy time distributions for varying
the (party size, threshold) pairs. All times are inmilliseconds.

Experiment TOTPMiMC
home

(MPC)

(𝑛 = 5, 𝑡 = 3) 𝑥 = 1903.05, 𝑠 = 60.63

(𝑛 = 6, 𝑡 = 4) 𝑥 = 2464.53, 𝑠 = 170.26

(𝑛 = 7, 𝑡 = 5) 𝑥 = 3342.50, 𝑠 = 116.07

(𝑛 = 8, 𝑡 = 6) 𝑥 = 5103.57, 𝑠 = 317.38

(𝑛 = 9, 𝑡 = 7) 𝑥 = 6461.75, 𝑠 = 508.85

(𝑛 = 10, 𝑡 = 8) 𝑥 = 19435.92, 𝑠 = 1129.71

(𝑛 = 11, 𝑡 = 9) 𝑥 = 24728.66, 𝑠 = 1031.36

(𝑛 = 12, 𝑡 = 10) 𝑥 = 28632.24, 𝑠 = 10212.52

a multiplication (referred to as 𝜋𝑚𝑢𝑙𝑡 in [20]), as well as to hand-

off shares to another party if exiting the network (𝜋𝑡𝑟𝑎𝑛𝑠 in [20]).

Communication between device is handled via a gRPC protocol that

transmits share data between parties.Wewrote a circuit TOTPMiMC
home

that implements the TOTP evaluation usingMiMC to build the PRF.

We present a benchmark of the MiMC protocol execution on

a smaller version of our simulated smart home used in Section 5,

with 6 Raspberry Pi 3B+ devices, 3 Raspberry Pi 2B devices, and 3

Raspberry Pi Zero devices, for a total of 12 devices. To align our

comparison to the evaluation presented in Section 5, we use the

same configurations of (𝑛, 𝑡) as the benchmarks in Figure 8.

The results of this evaluation can be found in Table 7, which

lists results for the average 𝑥 and standard deviation 𝑠 of the MPC

protocol executions at each configuration. Note that executions

take multiple seconds even at small (party size, threshold) pairs.

While our proposed SocIoTy construction was efficient enough

for end-to-end deployment on even an ESP32 (Section 5.3), we

were unable to effectively run the MPC implementation on smaller

classes of devices than the Raspberry Pi 3B+ and 2B. Also, our

proposed construction scaled well to even 17 participants in the

463

Proceedings on Privacy Enhancing Technologies 2024(1) Jois et al.

network, while the MPC approach slows considerably even at 𝑛 = 8,

likely due to its quadratic computation complexity. Lastly starting

at 𝑛 = 10, the Raspberry Pi Zero nodes join the protocol, slowing

the computation significantly.

Our results are visualized in Figure 11. For each (𝑛, 𝑡) configura-
tion, we plotted both the TDPRF-based SocIoTy (from Figure 8) and

our MPC-based SocIoTy execution results. Within the results for

a configuration, the lower boxplot with an orange median is the

TDPRF result, and the upper boxplot with a blue median is the MPC

result. Clearly, the MPC-based SocIoTy evaluation is has a much

higher execution time (by several orders of magnitude) – and is

more variable – when compared to our proposed TDPRF approach.

Thus, based on this experimental analysis, and despite several MPC-

specific optimizations, an MPC-based SocIoTy solution is clearly

far too inefficient for our use case.

464

	Abstract
	1 Introduction
	2 Background
	3 Designing At-Home Cryptography
	3.1 Case Studies
	3.2 Design Goals
	3.3 Threat Model

	4 SocIoTy
	4.1 Preliminaries
	4.2 Protocol Description
	4.3 Security Analysis
	4.4 Deployment Flexibility
	4.5 Instantiating the TDPRF

	5 Evaluation
	5.1 Microbenchmarks
	5.2 Scalability Benchmarks
	5.3 End-to-End Deployment

	6 Related work
	7 Conclusion
	Acknowledgments
	References
	A Additional Evaluation Results
	B MPC-based SocIoTy

