
Differentially Private Functional Encryption
Jasmin Zalonis

University of Mannheim

Mannheim, Germany

zalonis@uni-mannheim.de

Frederik Armknecht

University of Mannheim

Mannheim, Germany

armknecht@uni-mannheim.de

Linda Scheu-Hachtel

University of Mannheim

Mannheim, Germany

lscheuha@mail.uni-mannheim.de

ABSTRACT
We address the question of realizing privacy preserving analysis

of user data. The abstract scenario considered is that an analyst

aims to evaluate a function 𝑓 on some user data 𝑋 . To achieve com-

prehensive privacy, it is necessary to protect the input 𝑋 directly.

However, it is known that 𝑓 (𝑋) may leak too much information

about 𝑋 as well. A common approach to mitigate such risks is to

make the computation differential private. In practice, this is often

accomplished by replacing 𝑓 by a noisy variant 𝑓 ∗.
We investigate the use of multi-input functional encryption

(MIFE) for achieving input- and output-privacy in one crypto-

graphic mechanism. In a MIFE scheme, a setup authority can gen-

erate restricted decryption keys which enable to learn specific

functions of encrypted messages, without revealing any additional

information. To achieve differential privacy in this process, we

introduce as a new cryptographic primitive: noisy multi-input func-

tional encryption (NMIFE). It extends the concept of MIFE such

that the decryption key may also encode a noisy function where

the noise value is secret.

While the change from MIFE to NMIFE is rather straightforward,

the challenge is to come up with precise and workable definitions of

correctness and security definition that we propose and explain in

this work. Here, the security definition is tailored to the use case of

differential privacy. As it is a special case of the established notion

of full-hiding security, we present a generic transformation that

allows to turn any full-hiding MIFE scheme into a secure NMIFE

scheme that has practically the same performance as the initial

MIFE scheme.

Moreover, we make use of the fact that the proposed security

definition is less restrictive and present a new concrete NMIFE

scheme for evaluating the inner product. It is dubbedDiffPIPE (short
for DIFFerentially Private Inner Product Evaluation). DiffPIPE is

not the result from the transformation and outperforms all from

existing full-hiding MIFE schemes constructed NMIFE schemes. In

experiments, we demonstrate its applicability for realizing privacy

preserving counting queries on data sets.

KEYWORDS
Privacy preserving analysis, differential privacy, functional encryp-

tion

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(2), 509–530
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0061

1 INTRODUCTION
For numerous applications, the analysis of massive data sets leads to

valuable improvement in various parts of research, for example in

medicine. A typical scenario can be generalized as follows: An ana-

lyst is interested in evaluating a function 𝑓 on data𝑋 = (𝑥1, . . . , 𝑥𝑛).
For this purpose, there is a computation process Π that receives as

inputs 𝑥𝑖 from different users 𝑖 and a function 𝑓 from the analyst

and returns 𝑓 ∗ (𝑋) to the latter (see Figure 1).

A major challenge is to realize the trade-off between correctness

and privacy. On the one hand, it is in the interest of the analyst

that 𝑓 ∗ = 𝑓 or at least as close as possible. On the other hand,

this process should not compromise the privacy of the users. This

is motivated by various use cases such as the census data survey

or patients that want to participate in medical research, without

revealing too much sensitive information.

Modern cryptography features several mechanisms for poten-

tially resolving this conflict partially. These can roughly be divided

into two categories: based on multi-party computation and based

on encryption. Note that these mechanisms only protect the inputs
to the process Π, i.e., 𝑋 in our case. However, it is well known that

also the output of this process, namely 𝑓 ∗ (𝑋), may leak information

about 𝑋 as well. To mitigate this risk, a common practical solution

is to make the computation differential private. A popular approach

for realizing differential privacy (DP) is to replace the deterministic

numeric function 𝑓 by a noisy counterpart, i.e., 𝑓 ∗ = 𝑓 +𝜈 for some

noise value 𝜈 . This paper focuses on the question how a mechanism

for input privacy can be combined with DP.

A straightforward solution would be the use of multi party com-

putation (MPC). However, as we elaborate in Section 3, some prop-

erties of this approach such as the synchronous interaction between

several computing parties, can be problematic in some cases. In

such cases, non-interactive solutions based on processing encrypted

data can be beneficial.

While literature discusses several approaches based on homo-

morphic encryption (HE), the use of functional encryption (FE)

has not been investigated so far. As opposed to the case of HE, FE

has the advantage that the computation of 𝑓 ∗ does not need to be

outsourced to another party that is independent of the analyst. For

this and further reasons that we explain in Section 3, we introduce

the concept of differential private computation on encrypted data

using FE. More precisely, our contributions are as follows:

• We introduce and formalize the notion of noisy multi-input

functional encryption (NMIFE). This includes a tailored se-

curity definition that adopts the concepts of message- and

function-hiding and restricts these accordingly for the DP

scenario as follows:

– The analyst has access to the encryption of a single set of

user data.

509

https://orcid.org/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0061

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

User 1

...

User n

Analyst
Computation

Process Π

𝑥1

𝑥𝑛

𝑓

𝑓 ∗ (𝑋)

Figure 1: The generic scenario with 𝑋 = (𝑥1, . . . , 𝑥𝑛) and >𝑓 ∗

being an appropriate noisy variant of 𝑓 .

– The decryption keys realize noisy functions where only

the noise part is hidden.

Consequently, we refer to it as single-message-and-noise-

hiding (SMN-H).

• We describe a generic construction for a SMN-H NMIFE

from a full-hiding multi input functional encryption (MIFE)

scheme. Actually, the resulting NMIFE scheme fulfills an

even stronger security notion where multiple message chal-

lenges are possible (referred to as message-and-noise-hiding

(MN-H)).

• Webuild a SMN-HNMIFE scheme for linear functions, dubbed

DiffPIPE, based on a full-hiding MIFE scheme for linear func-

tions by Datta et al. [14] that allows for smaller elements.

Experiments confirm the improved efficiency and the appli-

cability of the scheme for privacy-preserving analysis with

input- and output-privacy.

We emphasize that our paper represents basic research. More

precisely, we present a new cryptographic primitive that has prop-

erties that do not yet exist. Although there are real use cases for this

(see Section 4) and although such schemes can already be realized

for linear functions, we consider research to be still in its early

stages and the efficiency and functionality of such schemes still

needs to be further increased (similar to research on functional

encryption in general).

The paper is structured as follows. Section 2 provides technical

preliminaries for the follow-up sections. In Section 3, we formulate

the considered problem statement and requirements and discuss

related work. Section 4 presents an overview, necessary definitions

and open challenges how FE can be used to address this problem.

In Section 5, we introduce the concept of noisy multi input func-

tional encryption (NMIFE) and formalize correctness and security

properties. A generic transformation from certain MIFE schemes

into a NMIFE scheme is presented in Section 6. It includes the proof

of correctness and security of the constructed NMIFE scheme. In

Section 7 we build a concrete SMN-H NMIFE scheme named Diff-
PIPE and analyze its efficiency over real medical data sets. Section 8

concludes the paper and presents open questions for future work.

2 PRELIMINARIES
2.1 Notations
Let 𝜆 define the security parameter. [𝑛] denotes the set {1, . . . , 𝑛}
for any 𝑛 ∈ N, where N defines the set of all positive integers

and Z the set of all integers. For any prime 𝑞 ∈ Z, the term F𝑞
refers to the finite field of of size 𝑞. Note that there is a natural

assignment between F𝑞 and the set of integers modulo 𝑞. We often

use this relation implicitly. The all zero vector in F𝑚𝑞 is denoted

by ®0𝑚 . ®𝑥 denotes a vector, ®𝑥 𝑗 the 𝑗𝑡ℎ element of the vector ®𝑥 . ®𝑣 · ®𝑤
stands for the inner product of the vectors ®𝑣, ®𝑤 . For a function

𝑓 : 𝑋1 × · · · ×𝑋𝑛 → 𝑌 and some 𝜈 ∈ 𝑌 , we denote by (𝑓 + 𝜈) (®𝑥) :=
𝑓 (®𝑥) + 𝜈 for all ®𝑥 ∈ 𝑋1 × · · · × 𝑋𝑛 . For a subset Δ ⊆ 𝑌 , we define

𝑓 + Δ = {𝑓 + 𝜈 |𝜈 ∈ Δ}. For a distribution D over some set Δ,

Pr[𝑥 D← Δ] denotes the probability that 𝑥 is sampled according to

distributionD over Δ. For any set 𝑆 , 𝑠
$← 𝑆 represents the process of

uniformly sampling an element 𝑠 ∈ 𝑆 . We use the abbreviation PPT

to mean probabilistic polynomial time. A function negl : N→ R+
is said to be negligible if for every 𝑐 ∈ N, there exists a 𝜏 ∈ N such

that for all 𝑥 ∈ N with 𝑥 > 𝜏 , it holds that |negl(𝑥) | < 1/𝑥𝑐 .

2.2 Differential Privacy
DP is an established technique to achieve output privacy [17, 18,

29, 40]. In DP we have one party, the curator, that holds a set of

sensitive data 𝑋 = (𝑥𝑖)𝑖∈[𝑛] and wants to make analysis on this

data possible, while limiting the disclosure of private information

of records that are in the data set. On request of a function or algo-

rithm 𝑓 from the analyst, the curator performs the evaluation of

a corresponding differential private function or algorithm 𝑓 ∗ and
sends the result back to the analyst. Roughly an algorithm is differ-

ential private if an analyst seeing only the output of the algorithm

cannot distinguish if a particular record was in the data set, that

the algorithm was evaluated on, or was missing from the data set.

A simple and common way to produce differential private numeric

functions, especially in the setting of privacy-preserving analysis, is

to perturb the function output with noise sampled through special

distributions, 𝑓 ∗ (𝑋) = 𝑓 (𝑋) + 𝜈 . In general, the noise is depen-

dent on how much the function reveals about the input data and

what privacy level we want to achieve. Since the analyst can make

multiple requests on the same data set, it may learn additional in-

formation through combining the results. DP is still achieved if the

noise is carefully handled. Therefore, when designing a DP system,

normally the curator tracks a privacy budget for the analyst. The

curator allows a series of questions whose total impact is not more

than the whole privacy budget. For more technical details we refer

to Appendix A.

3 PROBLEM STATEMENT AND RELATED
WORK

The purpose of this section is to discuss benefits and possible short-

comings of existing cryptographic mechanisms
1
for realizing the

use case of privacy preserving computation as displayed in Figure 1

where 𝑓 ∗ is a noisy variant of 𝑓 with an appropriately chosen noise.

The requirement for input-privacy implies that parties executing

Π (and no other party) do not receive the user inputs 𝑥𝑖 directly.

Moreover, to achieve output-privacy only the analyst should see

the output 𝑓 ∗ (𝑋) directly but should know nothing about the noise

used in 𝑓 ∗ despite its distribution.

1
Note that we consider solutions based on trusted execution environments as out of

scope as it is hardly possible to analyze their security and hence require a different

trust model than plain cryptographic solutions.

510

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

User 1

...

User n

Analyst

𝑃1

𝑃2 𝑃𝑙

. . .

{𝑆 (𝑥
1
, 𝑖) }𝑖∈[𝑙]

{𝑆 (𝑥𝑛, 𝑖) }𝑖∈[𝑙] {𝑆 (𝑓 ∗ (𝑋), 𝑖) }𝑖∈[𝑙]

𝑓

Figure 2: Differentially private multi party computation.
𝑆 (·, 𝑖) denotes the 𝑖th share.

The two most common cryptographic techniques to realize data

analysis without revealing the data are multi party computation

(MPC) and homomorphic encryption (HE).

Multi-Party Computation. In MPC [7, 21, 42, 48], a set of parties

jointly compute a function over their inputs while keeping those

inputs private from other parties. Consequently, it is nowadays

a widely used technique to securely evaluate machine learning

algorithms in the context of privacy-preserving analysis [2, 30, 45].

A typical application of MPC to realize Figure 1 is the following.

We assume a set of computing parties {𝑃1, 𝑃2, . . .} that interactively
compute Π. At the beginning, each user 𝑖 secretly shares its input

data 𝑥𝑖 to the computing parties of the MPC protocol. The parties

then evaluate a predetermined function on the shared inputs over

encrypted channels. The security of the MPC protocol ensures

that the computing parties do not learn anything about the input

data. Depending on the security model, the parties need to behave

accordingly to the protocol or may be dishonest. The result is either

disclosed to all computing parties, or in our use casemore suitable, is

forwarded again as shares to another party, e.g. the analyst. Only the

analyst can combine the shares to achieve the result. An overview

of this process is given in Figure 2, where 𝑆 (·, 𝑖) stands for the 𝑖th
share. To combine MPCwith DP, for example the computing parties

also need to add noise to the function result of 𝑓 [8, 9, 19, 34, 35]. A

main advantage of MPC protocols is, that almost any function that

can be expressed as a sequence of addition and multiplications is

very efficiently computable in contrast to HE or FE. But this comes

with the cost of communication between the computing parties and

requires a communication network with strong delivery guarantees.

Moreover, the computation overhead is on the side of the computing

parties and not the analyst. Each time the analyst wishes to evaluate

a function, the computing parties that hold shares of the input data

need to participate in the computation. In addition, it is necessary

to trust that a certain fraction of computing parties is honest.

Homomorphic Encryption. HE schemes [3, 12, 20] allow to en-

crypt data in such a way that certain computations on the plaintext

data can be executed on the encrypted data instead so that all inter-

mediate results, including the final output, remain encrypted the

whole time. Consequently, there exist several works using HE to

realize privacy preserving analysis, where the concern lies on input

privacy [22, 36, 37].

Similar to the case of MPC, the standard scenario assumes a

computing party that executes the computation on the (encrypted)

user inputs on behalf of the analyst (see Figure 3). That is, the

analyst sends its public key to the users, who then encrypt their

User 1

...

User n

Computing Party

Analyst

Enc(𝑟)
𝑓

Enc(𝑥1)

Enc(𝑥𝑛)

Enc(𝑟) =
Eval(𝑓 ∗, Enc(𝑋))

Dec(𝑠𝑘,Enc(𝑟))

pk

pk

Figure 3: Differentially private homomorphic encryption,
scenario 1.

data 𝑥𝑖 and send them to the computing party. Likewise, the analyst

sends its function 𝑓 to the computing party, who then can perform

the analysis on the encrypted data, getting an encrypted result

𝐸𝑛𝑐 (𝑟) = 𝐸𝑛𝑐 (𝑓 (𝑥1, . . . , 𝑥𝑛)). The result can then be decrypted only
by the analyst with its secret key, without being able to decrypt

single data records 𝑥𝑖 .

It is necessary that the computing party chooses and integrates

the noise into the computation. One approach would be to sample

the noise directly in the encrypted domain, hence preventing the

computing party to learn the noise value 𝜈 . The problem is that

sampling algorithms are computational expensive and, at the mo-

ment, HE is not fast enough to ignore the costs of the computational

complexity. This leaves only the option that the computing party

samples 𝜈 in plaintext and adapts the encrypted result accordingly.

In general, existing work ([5, 38]) assume the computing party to

act as curator, that is on the one hand collecting the encrypted data,

on the other hand keeping track of the privacy budget and make

sure, that only differential private functions are evaluated achieving

input privacy and output privacy.

Zorarpacı and Özel [49] use a slightly different scenario. Next to

the analyst that wants to compute a function 𝑓 and the computing

party that evaluates 𝑓 on the encrypted data, they introduce an

additional party, called key holder, that on the one hand holds the

secret key and distributes the public key, and on the other hand

ensures differential privacy by adding noise after decrypting 𝑟 .

Although this resolves the problem that the analyst should not be

able to control the noise, the key holder now observes the output

𝑓 ∗ (𝑋) directly.
Note that all these approaches suffer from the same problem as

the MPC approach, namely that the computation overhead is on

the side of the computing parties and not the analyst. Hence, the

analyst relies on the availability of computational power of external

parties. An alternative HE based solution could be the one displayed

in Figure 4. As opposed to the previous approach, the computation

is done directly by the analyst. Instead of requiring a separate

computing party, now an authority is present that generates the

public key and decrypts the result of the computation. However,

the authority sees the output 𝑓 ∗ (𝑋) directly and the analyst can

possibly control the choice of 𝑓 ∗.

Conclusion. While both MPC and HE can be used to realize input-

and output-privacy, they also have in common that if nobody ex-

cept of the analyst should learn 𝑓 ∗ (𝑋) while the analyst must not

511

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

User 1

...

User n

Authority

Analyst

𝑟

Enc(𝑟)
pk

pk

𝑟 = Dec(𝑠𝑘, Enc(𝑟))

Enc(𝑟) = Eval(𝑓 ∗, Enc(𝑋))

Enc(𝑥1)

Enc(𝑥𝑛)

Figure 4: Differentially private homomorphic encryption,
scenario 2.

control the noise of 𝑓 ∗, the computation of 𝑓 ∗ (𝑋) needs to be out-

sourced. That is the computation overhead is on the side of the

computing parties and not the analyst and that the analyst relies

on the availability and honesty of external parties. Depending on

the concrete use case, this may be problematic. In the next section,

we discuss an alternative approach based on functional encryp-

tion that likewise offers input- and output-privacy but where the

computation does not need to be outsourced to third parties.

4 PRIVACY PRESERVING ANALYSIS WITH
FUNCTIONAL ENCRYPTION

4.1 Overview
Similar to HE, FE [10] allows to compute on encrypted data. The

main difference is that the computing party sees directly the result

of the computation without the need to request another party for

decryption first. Thus, as opposed to the approaches discussed in

Section 3, the computation overhead is on the side of the analyst

who does not rely on the availability of computational power of

external parties.

This is accomplished by supporting restricted decryption keys

which enable to learn specific functions of encrypted messages,

without revealing any additional information. This involves a setup

authority which holds amaster secret key and publishes (on request)

decryption keys dk𝑓 that allow to compute 𝑓 (𝑋) (and nothing else)
for encrypted inputs 𝑋 .

A formal definition of FE is the following:

Definition 4.1 (Multi-Input Functional Encryption [1]).
Let {F𝑛}𝑛∈N be an ensemble where each F𝑛 is a family of 𝑛-ary

functions. A function 𝑓 ∈ F𝑛 is defined as follows 𝑓 : X1 × · · · ×
X𝑛 → Y. A private key multi-input functional encryption scheme

MIFE for F consists of the following four algorithms:

Setup(𝜆, F𝑛): On input the security parameter 𝜆 and a descrip-

tion of F𝑛 ∈ F , outputs a public parameter pp, a master

secret key msk and a secret key sk𝑖 for each slot 𝑖 ∈ [𝑛]. The
other algorithms implicitly take pp.

Enc(sk𝑖 , 𝑖, 𝑥𝑖): On input the secret key sk𝑖 for slot 𝑖 ∈ [𝑛], and
a message 𝑥𝑖 ∈ X𝑖 , outputs a ciphertext ct. We assume that

each ciphertext has an associated index i, which denotes

what slot this ciphertext can be used for.

KeyGen(msk, 𝑓): On input the master secret key msk and a func-
tion 𝑓 ∈ F𝑛 , outputs a decryption key dk.

User 1

...

User n

Authority

Analyst

𝑠𝑘1

𝑠𝑘𝑛

dk𝑓 ∗

𝑓

Enc(𝑥1)

Enc(𝑥𝑛)
r = Eval(dk𝑓 ∗ , Enc(𝑋))

Figure 5: Differentially private multi-input functional en-
cryption.

Dec(dk, ct1, . . . , ct𝑛): on input a decryption key dk and 𝑛 ci-

phertexts, outputs a 𝑦 ∈ Y or a symbol ⊥.

A solution based on a MIFE scheme could look as follows. Mul-

tiple users can encrypt their data 𝑥𝑖 with an encryption key sk𝑖 ,
provided by an authority

2
. The users provide their encrypted data

to the analyst. The analyst can request function keys dk𝑓 in regard

to a function 𝑓 and gets as result a decryption key dk𝑓 ∗ where
𝑓 ∗ = 𝑓 + 𝜈 with 𝜈 being some noise value sampled by the author-

ity, see Figure 5. That is the analyst can compute the noisy result

𝑟 = Dec(dk𝑓 ∗ , ct1, . . . , ct𝑛) = 𝑓 (𝑥1, . . . , 𝑥𝑛) + 𝜈 . The authority can

ensure, that only differentially private functions are evaluated and

keeps track of the privacy budget [13]. Note that this approach

satisfies input- and output-privacy and keeps the evaluation effort

to the side of the analyst. In particular, there is neither the need to

rely on the availability of computing parties nor to trust these.

Another advantage is that FE can enable a scenario in which

a data set is provided in encrypted form once. Theoretically even

the noisy decryption keys for relevant or allowed functions can be

uploaded beside the encrypted data set. The authority only has a one

time effort of setting up the scheme and generating the decryption

keys. Since the computation itself lies with the analyst, no third

party needs to be involved after the setup. This most closely reflects

the current situation, in which any researcher can directly use data

from public databases for research.

Furthermore the combination of FE and DP can be helpful to

achieve the training of machine learning algorithms using FE. Cur-

rent MIFE schemes are limited in their functionality, basically either

allowing to compute inner products [15, 44] or quadratic functions

[4, 16, 39]. Most of the works combining privacy preserving analysis

with FE [33] concentrate on evaluatingmachine learning algorithms

[23, 28, 39]. To train a complex algorithm using only limited func-

tions, e.g. linear or quadratic, on the input data means to compute

only intermediate results on the encrypted data and then use them

for further computation, yielding a lot of decryption key queries to

train an algorithm. The bigger problem is that intermediate results

leak information about the input data [11, 39] and therefore need

be protected, for example with DP.

2
In some schemes it is also possible to have multiple authorities. This resolves the

issue of trust in the authority, but we will not go into more detail in this section.

512

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

4.2 Challenges
To the best of our knowledge, the work of Bakas and Michalas [6]

is the only related work that also investigates the combination of

FE with DP. However, they do not provide any formal definition, in

particular lacking a concise security model and analysis. Actually,

we consider coming up with these as the main challenges here.

In general a NMIFE should be correct and secure. In the following,

we recall corresponding definitions for MIFE and explain why these

cannot be applied directly to the case of NMIFE.

Correctness. Correctness of an MIFE essentially means that run-

ning the decryption operation Dec with a decryption key dk𝑓 out-

puts the evaluation of 𝑓 on the encrypted inputs.

Definition 4.2 (Correctness of MIFE). The scheme MIFE (Defini-

tion 4.1) is correct if for all 𝑓 ∈ F𝑛 , all 𝑥𝑖 ∈ X𝑖 for 1 ≤ 𝑖 ≤ 𝑛, we

have

Pr


(pp, msk, {𝑠𝑘𝑖 }𝑖∈[𝑛]) ← Setup(𝜆, F𝑛),

dk𝑓 ← KeyGen(msk, 𝑓) :
Dec(dk𝑓 , ct1, . . . , ct𝑛) = 𝑓 (𝑥1, . . . 𝑥𝑛)

 = 1 (1)

with ct𝑖 = Enc(sk𝑖 , 𝑖, 𝑥𝑖) where the probability is taken over the

coins of Setup, KeyGen and Enc.

In the case of NMIFE, the analyst receives a decryption key for a

noisy variant 𝑓 ∗ of 𝑓 where the noise is sampled according to some

chosen, publicly known distribution. Thus, the condition that the

equality displayed at the end of Equation (1) has to hold for sure is

not applicable anymore.

Security. When using FE as explained in Section 4.1, two security

requirements are obvious. First, the analyst should not learn any-

thing about the user data 𝑥𝑖 from its encryption ct𝑖 = Enc(sk𝑖 , 𝑖, 𝑥𝑖).
This property is usually referred to as message hiding. Second, it is

important that the analyst cannot learn anything about the noise

𝜈 from the decryption key dk𝑓 ∗ . This is covered by the notion of

function-hiding which requires that a decryption key dk𝑓 leaks

nothing about the underlying function 𝑓 .

The security notion of FE that covers both is full-hiding secu-

rity [15]. For such a scheme, an attacker can neither distinguish

between different ciphertexts (𝑥 𝑗𝑖
𝑖,0
, 𝑥

𝑗𝑖
𝑖,1
) nor between different func-

tions (𝑓𝑙,0, 𝑓𝑙,1). That is, both the content of encrypted messages as

well as the concrete functions encoded in a decryption key dk are
hidden to an adversary. A formal definition is the following:

Definition 4.3 (Full-Hiding Security of MIFE). The full-hiding se-

curity notion for a private key MIFE scheme is formalized through

the experiment Expt𝑀𝐼𝐹𝐸
A (𝛽) for random 𝛽 ← {0, 1}, which in-

volves a PPT adversaryA and a PPT challenger C. The experiment

involves three phases in the following order: a setup phase, a query

phase, and a guess phase.

Setup phase: C generates (pp, msk, {𝑠𝑘𝑖 }𝑖∈[𝑛]) by invoking

Setup(𝜆, F𝑛), providing pp to A, and sampling 𝛽
$← {0, 1}.

Query Phase: A is allowed to adaptively make any polyno-

mial number of queries of the following two types in arbi-

trary order:

• Decryption key query: In response to the 𝑙𝑡ℎ decryption

key query ofA corresponding to a pair of functions (𝑓𝑙,0, 𝑓𝑙,1) ∈

F𝑛 × F𝑛 , C forms a decryption key

dk𝑙 ← KeyGen(msk, 𝑓𝑙,𝛽) and hands dk𝑙 to A.

• Ciphertext query: To answer a ciphertext query of A for

the 𝑖𝑡ℎ index corresponding to a pair (𝑥 𝑗𝑖
𝑖,0
, 𝑥

𝑗𝑖
𝑖,1
), C prepares

a ciphertext ct
𝑗
𝑖
← Enc(sk𝑖 , 𝑖, 𝑥 𝑗𝑖𝑖,𝛽) and gives ct

𝑗
𝑖
to A.

Let the total number of decryption key queries made by A
be 𝑞𝑘𝑒𝑦 (≥ 0) and the total number of ciphertext queries

made for the 𝑖𝑡ℎ index be 𝑞ct,𝑖 (≥ 0). The restriction on the

queries of A are that if 𝑞ct,𝑖 ≥ 1 for all 𝑖 ∈ [𝑛], then for all

𝑙 ∈ [𝑞𝑘𝑒𝑦] and for all (𝑗1, . . . , 𝑗𝑛) ∈ [𝑞ct,1] × · · · × [𝑞ct,𝑛],
we must have

𝑓𝑙,0 (𝑥
𝑗1
1,0
, . . . , 𝑥

𝑗𝑛
𝑛,0
) = 𝑓𝑙,1 (𝑥

𝑗1
1,1
, . . . , 𝑥

𝑗𝑛
𝑛,1
) (2)

Guess: A eventually outputs a guess bit, which is the output

of the experiment.

A private key MIFE scheme is said to be full-hiding if for any PPT

adversaryA and for any security parameter 𝜆, the advantage ofA
in the above experiment is negligible.

Adv𝑀𝐼𝐹𝐸
A (𝜆) = |𝑃𝑟 [Expt𝑀𝐼𝐹𝐸

A (0) = 1]

−𝑃𝑟 [Expt𝑀𝐼𝐹𝐸
A (1) = 1] | ≤ 𝑛𝑒𝑔𝑙 (𝜆)

While full-hiding security is sufficient for realizing the solution

explained in Section 4.1, we argue that it is actually too strong. For

example, the function 𝑓 is chosen by the analyst. Thus, it is not

necessary that dk𝑓 ∗ with 𝑓 ∗ = 𝑓 + 𝜈 does not leak any information

but only needs to hide the noise value 𝜈 . Therefore, we are going

to present a new security notion (Definition 5.3) that is adapted to

the solution explained in Section 4.1. As we are going to show in

Section 7, this allows for new constructions with a better efficiency.

5 NOISY MULTI-INPUT FUNCTIONAL
ENCRYPTION

In this section, we introduce a new variant of MIFE, being noisy

multi input functional encryption (NMIFE). It allows to combine the

benefits of functional encryption (Section 4) and differential privacy

(Section 2.2). That is, one can realize a scenario where the analyst

performs the computation of some function 𝑓 on user inputs 𝑥𝑖
non-interactively, such that these values are kept hidden and the

authority can control how much the output of the computation

leaks. In a nutshell, NMIFE extends the classic notion of MIFE by

incorporating the possibility that a decryption key dk realizes a

noisy variant of a given function 𝑓 . That is, the decryption key

does not encode 𝑓 but 𝑓 + 𝜈 where 𝜈 is a noise value sampled

according to some chosen distribution D. For example, one may

pick a distribution, so that (𝜖, 0)-DP is achieved (see Appendix A).

In the following, we formally define NMIFE (Definition 5.1) and

the corresponding notion of correctness (Definition 5.2). After-

wards, we introduce a security notion tailored to NMIFE schemes.

These definitions build on the definitions recalled in Section 4. To

help readability, we not only explain the differences but also mark

these in the definitions by boxes.

The difference to MIFE (cf. Definition 4.1) affects the generation

of decryption keys which takes as additional input also a distribu-

tion. The full formal definition is as follows:

513

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

Definition 5.1 (Noisy Multi-Input Functional Encryption). Let
{F𝑛}𝑛∈N be an ensemble where each F𝑛 is a family of n-ary func-

tions. A function 𝑓 ∈ F𝑛 is defined as follows 𝑓 : X1×· · ·×X𝑛 → Y.
A noisy multi-input functional encryption scheme NMIFE for F
consists of the following algorithms:

Setup(𝜆, F𝑛): On input the security parameter 𝜆 and a descrip-

tion of F𝑛 ∈ F , outputs a public parameter pp, a master

secret key msk and a secret key 𝑠𝑘𝑖 for each slot 𝑖 ∈ [𝑛]. All
of the remaining algorithms implicitly take pp.

Enc(sk𝑖 , 𝑖, 𝑥𝑖): On input the secret key sk𝑖 for slot 𝑖 ∈ [𝑛], and
a message 𝑥𝑖 ∈ X𝑖 , outputs a ciphertext ct𝑖 . We assume that

each ciphertext has an associated index i, which denotes

what slot this ciphertext can be used for.

KeyGen(msk, 𝑓 , D): On input the master secret key msk, a

function 𝑓 ∈ F𝑛 and a distribution D over some Δ ⊆ Y

such that 𝑓 + Δ ∈ F𝑛 , sample 𝜈
D← Δ and outputs a

decryption key dk.
Dec(dk, ct1, . . . , ct𝑛): On input a decryption key dk for func-

tion 𝑓 and 𝑛 ciphertexts, outputs a 𝑦 ∈ Y or a symbol ⊥.
Recall that correctness of a MIFE is defined as follows: given a de-

cryption key dk𝑓 ← KeyGen(msk, 𝑓), one can run Dec(dk𝑓 , . . .) to
get the evaluation of 𝑓 on encrypted inputs. Correctness of NMIFE

is defined analogously with the difference that a noisy variant of 𝑓

is evaluated. More precisely, given dk𝑓 ← KeyGen(msk, 𝑓 ,D), one
can run Dec(dk𝑓 , . . .) to get the evaluation of 𝑓 + 𝜈 on encrypted

inputs with 𝜈 being sampled according to D.

Definition 5.2 (Correctness of NMIFE). The scheme NMIFE (Defi-

nition 5.1) is correct if for all 𝑓 ∈ F𝑛 , for all 𝑥𝑖 ∈ X𝑖 , for 1 ≤ 𝑖 ≤ 𝑛,

for all distributions D𝑓 over some set Δ ⊆ Y with 𝑓 + Δ ∈ F𝑛 ,

and for all 𝜈 ∈ Δ we have

Pr


(pp, msk, {𝑠𝑘𝑖 }𝑖∈[𝑛]) ← Setup(𝜆, F𝑛),

dk𝑓 ← KeyGen(msk, 𝑓 , D𝑓) :
Dec(dk𝑓 , ct1, . . . , ct𝑛) = 𝑓 (𝑥1, . . . 𝑥𝑛) +𝜈

 = Pr[𝜈
D𝑓

← Δ]

with ct𝑖 = Enc(sk𝑖 , 𝑖, 𝑥𝑖) where the probability is taken over the

coins of Setup, KeyGen and Enc.

Note that if we restrict all distributions D𝑓 to be the all-zero

distribution, i.e., that outputs only 0, then a correct NMIFE scheme

becomes a MIFE scheme. This shows that the introduced definitions

are extensions of the definitions in Section 4.

With respect to defining security of an NMIFE, we likewise aim

to build on the existing definition of full-hiding security (Defini-

tion 4.3). One (straightforward) approach is to incorporate into the

decryption key queries that an attacker can specify a function 𝑓 and
a distribution D. Of course, the condition specified in Equation (2)

would have to be adapted accordingly. As the distributions D can

be chosen arbitrarily, including the all zero distribution, an attacker

would not be restricted compared to the attacker considered for

full-hiding security. In other words, this security definition would

be (at least) as strong as full-hiding security.

In the following, we introduce two alternatives for more relaxed

notion of security (Definition 5.3). To tailor the security definition

more towards the DP scenario, we assume a fixed set of messages,

meaning for each slot 𝑖 there exists only one single message-pair

(𝑥𝑖,0, 𝑥𝑖,1). Additionally instead of requiring full function-hiding,

the proposed definition relaxes it to noise-hiding. That is, instead of

requiring that the decryption key does not leak the encoded func-

tion in its entirety, we assume that the “base” function 𝑓 is known

anyhow and only the noise value 𝜈 needs to be protected. We dub

this security definition as single-message-and-noise-hiding (SMN-

H) security. The reasons that this more relaxed security definition

is relevant are twofold: First, the security definition is more tailored

towards the DP scenario. There, the analyst chooses the function

𝑓 but eventually learns the evaluation of 𝑓 + 𝜈 for an unknown

noise value 𝜈 on a prefixed data set 𝑋 . There is no need to demand

that multiple messages can be encrypted per slot or that the full

function is hidden as part of the function is known anyway. Second,

a relaxed (but still sufficient) security requirement allows for new

or improved designs that were not possible for full-hiding schemes.

In Section 7 we improve an existing design to build a SMN-H secure

NMIFE scheme, named DiffPIPE, and show that it is more efficient.

Moreover, we extend our security definition to allow multiple

messages, referring to it as message-and-noise-hiding (MN-H) secu-

rity. We show how a full-hiding MIFE can be turned into a NMIFE

that provides MN-H security. That is, going for the stronger security

definition is still an option.

Next, we provide the formal security definitions. As before, boxes

highlight the differences to Definition 4.3. While the meaningful-

ness of most changes are easy to see, Equation (3) may require some

additional explanation. Recall that for a MIFE scheme, Equation (2)

in Definition 4.3 prevents trivial attacks by assuring that the at-

tacker only chooses messages and functions which do not reveal

the chosen 𝛽 simply by evaluating the functions on the plaintext

and comparing the result to the encrypted evaluation. Similarly,

this is assured for NMIFE schemes by Equation (3) in Definition 5.3

by restricting the adversary to messages and noise pairs that do
not reveal anything beyond the expected result. Note that for the

decryption key query, the adversary only queries one function but

two noise values.

Definition 5.3 ((Single-)Message-and-Noise-Hiding Security). The
(single-)message-and-noise-hiding security notion for a private key

NMIFE is formalized through the experiment Expt𝑁𝑀𝐼𝐹𝐸
A (𝛽), for

random 𝛽
$← {0, 1}, which involves a PPT adversary A and a PPT

challenger C. The experiment involves three phases as follows:

Setup phase: C generates (pp, msk, {𝑠𝑘𝑖 }𝑖∈[𝑛]) by invoking

Setup(𝜆, F𝑛), providing pp to A, and sampling 𝛽
$← {0, 1}.

Query Phase: A is allowed to adaptively make any polyno-

mial number of queries of the following two types in arbi-

trary order:

• Decryption key query: In response to the 𝑙𝑡ℎ decryption

key query of A corresponding to a function 𝑓𝑙 ∈ F𝑛
and two noise values 𝜈𝑙,0, 𝜈𝑙,1 ∈ Δ for some Δ ⊆

Y such that 𝑓𝑙 + Δ ∈ F𝑛 , C forms a decryption key

dk𝑙 ← KeyGen(msk, 𝑓𝑙 ,D𝑙,𝛽)
514

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

where D𝑙,𝛽 describes the distribution that outputs

𝜈𝑙,𝛽 with probability 1 and hands dk𝑙 to A.

• Ciphertext query: To answer a ciphertext query of A for

the 𝑖𝑡ℎ index corresponding to a pair (𝑥 𝑗𝑖
𝑖,0
, 𝑥

𝑗𝑖
𝑖,1
), C prepares

a ciphertext ct
𝑗
𝑖
← Enc(sk𝑖 , 𝑖, 𝑥 𝑗𝑖𝑖,𝛽) and gives ct

𝑗
𝑖
to A.

Let the total number of decryption key queries made by A
be 𝑞𝑘𝑒𝑦 (≥ 0) and the total number of ciphertext queries

made for the 𝑖𝑡ℎ index be 𝑞ct,𝑖 (≥ 0). The restriction on the

queries of A are that if 𝑞ct,𝑖 ≥ 1 for all 𝑖 ∈ [𝑛], then for all

𝑙 ∈ [𝑞𝑘𝑒𝑦] and for all (𝑗1, . . . 𝑗𝑛) ∈ [𝑞ct,1] × · · · × [𝑞ct,𝑛], we
must have

𝑓𝑙 (𝑥
𝑗1
1,0
, . . . , 𝑥

𝑗𝑛
𝑛,0
) + 𝜈𝑙,0 = 𝑓𝑙 (𝑥

𝑗1
1,1
, . . . , 𝑥

𝑗𝑛
𝑛,1
) + 𝜈𝑙,1 . (3)

Guess: A eventually outputs a guess bit 𝛽 ′ ∈ {0, 1}, which is

the output of the experiment.

A private key NMIFE scheme is said to bemessage-and-noise-hiding

if for any PPT adversary A, for any security parameter 𝜆, the

advantage of A in the above experiment is negligible. A private

key NMIFE scheme is said to be single-message-and-noise-hiding

if for any PPT adversary A that makes at most one ciphertext

query per index, for all 𝑖 ∈ [𝑛] it holds that 𝑞ct,𝑖 = 1, for any

security parameter 𝜆, the advantage of A in the above experiment

is negligible.

Adv𝑁𝑀𝐼𝐹𝐸
A (𝜆) = | Pr[Expt𝑁𝑀𝐼𝐹𝐸

A (0) = 1]

− Pr[Expt𝑁𝑀𝐼𝐹𝐸
A (1) = 1] | ≤ 𝑛𝑒𝑔𝑙 (𝜆)

6 BUILDING A NMIFE SCHEME FROM AMIFE
SCHEME

The purpose of this section is to show how one may transform a

full-hiding MIFE into a secure NMIFE scheme. We use this transfor-

mation to construct a concrete secure and correct NMIFE scheme

in Appendix C. The transformation and properties are discussed in

the following theorem. Note that for NMIFE to support function 𝑓 ,

MIFE at least needs to support function 𝑓 + 𝜈, 𝜈 ∈ Δ, for some Δ.

Theorem 6.1 (Construction). Consider a MIFE scheme S with

S = (S.Setup,S.Enc,S.KeyGen,S.Dec)
with parameters as explained in Definition 4.1 and 𝑓 + Δ ∈ F𝑛 for
some Δ. We build an NMIFE scheme S∗ from S with

S∗ = (S∗ .Setup,S∗ .Enc,S∗ .KeyGen,S∗ .Dec)
as follows. The setup, encryption, and decryption algorithms are the
same as for S, that is
S∗ .Setup := S.Setup;S∗ .Enc := S.Enc;S∗ .Dec := S.Dec. (4)

Only the KeyGen algorithm is different and works as follows:
S∗ .KeyGen(msk, 𝑓 ,D): On input the master secret key msk, a

function 𝑓 ∈ F𝑛 and a distribution D over some Δ ⊆ Y such

that 𝑓 +Δ ∈ F𝑛 , samples 𝜈
D← Δ and outputs a decryption key

dk← S.KeyGen(msk, 𝑓 ∗) (5)

with 𝑓 ∗ = 𝑓 + 𝜈 .
The following two properties hold:

Correctness: If S is correct, then S∗ is correct as well.
Security: IfS is full-hiding, thenS∗ is message-and-noise-hiding

We want to give a short intuition of the proof here, along with

an overview in Figure 6 and present the full proof in Appendix B.

Whereas the correctness claim essentially follows directly from the

definition, the security claim is shown by a standard reduction argu-

ment. That is, we assume a PPT attacker A∗ against S∗ with non-

negligible advantage and construct a PPT attackerA against S that

has the same non negligible advantage in the full-hiding security

game. An overview of the reduction can be found in Figure 6. The

only critical part is to ensure that the queries ofA are valid with re-

spect to condition (2), that is 𝑓𝑙,0 (𝑥
𝑗1
1,0
, . . . , 𝑥

𝑗𝑛
𝑛,0
) = 𝑓𝑙,1 (𝑥

𝑗1
1,1
, . . . , 𝑥

𝑗𝑛
𝑛,1
)

for all 𝑙 ∈ [𝑞𝑘𝑒𝑦] and for all (𝑗1, . . . , 𝑗𝑛) ∈ [𝑞ct,1] × · · · × [𝑞ct,𝑛].
This follows from the fact that the queries of A∗ need to fulfill

equation (3), that is for all 𝑙 ∈ [𝑞𝑘𝑒𝑦] and for all (𝑗1, . . . 𝑗𝑛) ∈
[𝑞ct,1] × · · · × [𝑞ct,𝑛] it holds

𝑓𝑙 (𝑥
𝑗1
1,0
, . . . , 𝑥

𝑗𝑛
𝑛,0
) + 𝜈𝑙,0 = 𝑓𝑙 (𝑥

𝑗1
1,1
, . . . , 𝑥

𝑗𝑛
𝑛,1
) + 𝜈𝑙,1 .

To keep the description simple, we directly state the noise values

𝜈𝑙,𝛽 instead of the corresponding distributions D𝑙,𝛽 . Given this, it

follows that

𝑓𝑙,0 (𝑥
𝑗1
1,0
, . . . , 𝑥

𝑗𝑛
𝑛,0
) = 𝑓𝑙 (𝑥

𝑗1
1,0
, . . . , 𝑥

𝑗𝑛
𝑛,0
) + 𝜈𝑙,0

= 𝑓𝑙 (𝑥
𝑗1
1,1
, . . . , 𝑥

𝑗𝑛
𝑛,1
) + 𝜈𝑙,1

= 𝑓𝑙,1 (𝑥
𝑗1
1,1
, . . . , 𝑥

𝑗𝑛
𝑛,1
)

for all 𝑙 ∈ [𝑞𝑘𝑒𝑦] and for all (𝑗1, . . . , 𝑗𝑛) ∈ [𝑞ct,1] × · · · × [𝑞ct,𝑛].
We can use this transformation on an existing MIFE scheme

to construct a concrete NMIFE scheme that is MN-H secure. As

starting point we take the multi-input inner product functional

encryption (MIPE) scheme of Datta et al. [15], referring to it as

DOT scheme, named after the authors Datta, Okamoto and To-

mida. The choice is motivated by the fact that it is the only full-

hiding MIFE so far. We first modify it to support affine functions
i.e., 𝑓𝑦,𝑐 (𝑥1, . . . , 𝑥𝑛) + 𝑐 = 𝑐 +∑𝑖∈[𝑛] 𝑦𝑖 · 𝑥𝑖 with a constant value 𝑐

such that correctness and full-hiding security are preserved This

new scheme is dubbed affine-DOT . Then, we transform affine-DOT
scheme into a NMIFE scheme according to the transformation pre-

sented above. Since the construction of affine-DOT is rather straight

forward, the modifications to DOT and to security are described in

Appendix C. In the following section, we depict a more advanced

construction of a NMIFE scheme, DiffPIPE (short for differentially

private inner product evaluation). It is SMN-H secure and more

efficient than noisy-DOT .

7 A SINGLE-MESSAGE-AND-NOISE-HIDING
NOISY MULTI-INPUT FUNCTIONAL
ENCRYPTION SCHEME FOR INNER
PRODUCTS

7.1 Overview
The goal of this section is to construct a concrete SMN-H NMIFE

scheme dubbed DiffPIPE and to analyze its efficiency. To this end,

we take the bounded full-hiding MIFE scheme for inner products

of Datta et al. [15] as starting point and modify it into a scheme

515

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

Setup Phase

CT-Query Phase

DK-Query Phase

Guess Phase

Oracle A A∗

pp, msk← S.Setup(𝜆, F𝑛)

𝛽
$← {0, 1}

pp pp

adaptively choose:

{𝑥 𝑗𝑖
𝑖,1
, 𝑥

𝑗𝑖
𝑖,1
}

{𝑥 𝑗𝑖
𝑖,1
, 𝑥

𝑗𝑖
𝑖,1
}{𝑥 𝑗𝑖

𝑖,1
, 𝑥

𝑗𝑖
𝑖,1
}

𝑐𝑡
𝑗𝑖
𝑖
← S.Enc(sk𝑖 , 𝑖, 𝑥 𝑗𝑖

𝑖,𝛽
)

𝑐𝑡
𝑗𝑖
𝑖

𝑐𝑡
𝑗𝑖
𝑖

adaptively choose:

(𝑓𝑙 , 𝜈𝑙,0, 𝜈𝑙,1)
(𝑓𝑙 , 𝜈𝑙,0, 𝜈𝑙,1)

𝑓𝑙,0 := 𝑓𝑙 + 𝜈𝑙,0

𝑓𝑙,1 := 𝑓𝑙 + 𝜈𝑙,1
(𝑓𝑙,0, 𝑓𝑙,1)

dk𝑙 ← S.KeyGen(msk, 𝑓𝑙,𝛽)
dk𝑙 dk𝑙

𝛽′𝛽′

Figure 6: Security reduction used in the Proof of Theorem 6.1

that is a SMN-H NMIFE scheme for inner products. In the follow-

ing, we refer to the scheme of Datta et al. [15] as DOT scheme. It

is a function-hiding multi-input inner product functional encryp-

tion (FH-MIPE) scheme with security being based on the 𝑘-linear

assumption (Definition 7.1). It supports polynomial number of en-

cryption slots, incurring only polynomial loss in the security re-

duction and was the first and so far only practical and efficient

MIFE scheme with function-hiding security. This FH-MIPE scheme

operates over some finite field F𝑞 with 𝑞 being some prime num-

ber. The input data consists of vectors ®𝑥𝑖 ∈ F𝑚𝑞 for 𝑖 ∈ [𝑛]. The
decryption keys dk are build based on a linear function 𝑓𝑦 de-

scribed through a concatenation of vectors 𝑦 = (®𝑦1 ∥ · · · ∥ ®𝑦𝑛) ∈
F𝑛 ·𝑚𝑞 with ®𝑦𝑖 ∈ F𝑚𝑞 . An evaluation of the decryption key dk𝑦 ←
KeyGen(msk, 𝑦,D) on ciphertexts ct𝑖 ← Enc(sk𝑖 , 𝑖, ®𝑥𝑖) yields the
inner product: Dec(dk, ct1, . . . , ct𝑛) = 𝑓𝑦 (®𝑥1, . . . , ®𝑥𝑛) =

∑𝑛
𝑖=1 ®𝑥𝑖 · ®𝑦𝑖 .

The design rationale behind DiffPIPE is as follows. As described

in Appendix CDOT can be transformed into a scheme, that provides

a full-hiding (FH) FE scheme for affine functions with no additional

overhead or increase in size of elements. We refer to this scheme as

affine-DOT . Then, Section 6 shows that we can use it to construct a

MN-H scheme noisy-DOT , that has the same efficiency as DOT .
If we restrict our security definition to SMN-H security, we can

construct a scheme with smaller elements. More concretely, we

reduce the element sizes for ciphertexts from 2𝑚 + 2𝑘 + 1 group
elements to𝑚 + 2𝑘 + 2, where𝑚 is the number of attributes and

𝑛 the number of records. The parameter 𝑘 is associated with the

𝑘-LIN assumption and is independent of𝑚 and 𝑛. The size of the

decryption key is reduced from 𝑛(2𝑚+2𝑘+1) to 𝑛(𝑚+2𝑘+2) group
elements. Our experiments in Section 7.5 show that this allows for

a better runtime compared to noisy-DOT .
The efficiency gain by reducing the size of ciphertexts by𝑚 − 1

and the keys by 𝑛(𝑚 − 1) group elements depends strongly on the

choice of the attribute number 𝑚. Additionally, DiffPIPE proves

the conceptual differences between MIFE and NMIFE. In other

words, reducing DOT or affine-DOT would not be possible without

violating the standard security definitions. DiffPIPE as a NMIFE

scheme comes with a new proof of security based on our new

security definition (Definition 5.3).

In a nutshell, this reduction is achieved as follows. The cipher-

texts of DOT (and hence noisy-DOT) contain a number of buffer

slots that are used for the proof of security. Among these, 2𝑚 slots

are reserved for the two different functions considered in the secu-

rity definition of FH. As SMN-H considers one function only but

two different noise values, we save𝑚 slots that are used to encode

the second function, needing only one additional slot for the second

noise value. While this allows to save elements, it also means that

it is no longer possible to encode two different functions. That is

DiffPIPE is not FH but, as we are going to prove, fulfills SMN-H

Note that the authors of DOT actually presented two schemes:

a bounded scheme, where the number of encryption slots 𝑛 is

prior bounded and an unbounded scheme that can handle arbitrary

number of encryption slots. Since we want to provide a scheme

that is tailored for a privacy preserving analysis on a prefixed set

of user data, we can limit us to the bounded variant, where the

adversary makes one ciphertext query for each of the 𝑛 encryption

slots. Under this restriction, the scheme DOT used in its simplest

form achieves full-hiding security.
3

In the next sections, we present a more detailed description

of DiffPIPE. As the construction is based on DOT , we omit some

mathematical details and focus instead on the concepts that are

necessary to understand our arguments. We refer to Datta et al.

[15] for more details.

7.2 Mathematical Foundations
We make use of a bilinear pairing

𝑒 : G1 × G2 → G𝑇 (6)

with G1,G2,G𝑇 being cyclic multiplicative groups, with generators

𝑔1 ∈ G1, 𝑔2 ∈ G2, each of size 𝑞 = |F𝑞 |. The mapping 𝑒 satisfies the

following two properties:

• Bilinearity: 𝑒 (𝑔𝜁
1
, 𝑔

𝜂

2
) = 𝑒 (𝑔1, 𝑔2)𝜁𝜂 for all 𝜁 , 𝜂 ∈ F𝑞 .

• Non-degeneracy: 𝑒 (𝑔1, 𝑔2) ≠ 1G𝑇 , where 1G𝑇 denotes the

identity element of the group G𝑇 .

Here, we implicitly identify elements in F𝑞 with integers in [0, 𝑞−1]
as mentioned in Section 2.1.

For an integer 𝑑 ≥ 1, V1 = G𝑑
1
and V2 = G𝑑

2
are F𝑞-vector

spaces of dimension 𝑑 . The bilinear pairing 𝑒 in Equation (6) can be

3
The modifications which are necessary for achieving full-hiding security, without

the restriction that the adversary makes at least one ciphertext query, can be found in

Datta et al. [15]

516

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

extended to a pairing on the dual vector space V1 × V2 as follows:

𝑒 : V1 × V2 → G𝑇 , (v,w) ↦→
∏
𝑗 ∈[𝑑]

𝑒 (𝑔𝑣
(𝑗)

1
, 𝑔𝑤

(𝑗)
2
)

for v = (𝑔𝑣 (1)
1

, . . . , 𝑔𝑣
(𝑑)

1
) ∈ V1 and w = (𝑔𝑤 (1)

2
, . . . , 𝑔𝑤

(𝑑)
2
) ∈ V2.

The newly defined map 𝑒 is also non-degenerate bilinear, i.e., 𝑒

satisfies the following two properties:

• Bilinearity: 𝑒 (𝜇 ◦ v, 𝜈 ◦w) = 𝑒 (v,w)𝜇𝜈 , for 𝜇, 𝜈 ∈ F𝑞, v ∈ V1
and w ∈ V2.
• Non-degeneracy: If 𝑒 (v,w) = 1G𝑡 for all w ∈ V2, then v =

1𝑚
G1

.

Let B = {b1, . . . , b𝑑 } and B∗ = {b∗1, . . . , b
∗
𝑑
} be a basis ofV1 andV2,

respectively. Then, B and B∗ are dual orthogonal if for all 𝑖, 𝑗 ∈ [𝑑]
it holds that 𝑒 (b𝑖 , b∗𝑗) = 1G𝑡 if 𝑖 ≠ 𝑗 .

7.3 Description
We are now ready to describe the four algorithms defining our

scheme DiffPIPE.

DiffPIPE.Setup(𝜆, F𝑛): This algorithm takes the security pa-

rameter 𝜆, a description of F𝑛 = {𝑚,𝑛,Δ, 𝐵} with the length

𝑚 ∈ N of the vectors, the arity 𝑛 ∈ N of the multi-input

functionality, Δ ⊊ N of polynomial size and a bound 𝐵 ∈ N
on each component inner product. It works as follows:

(1) Setup a bilinear pairing 𝑒 : G1×G2 → G𝑇 with paramsG =

(𝑞,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒), where the corresponding group

sizes are chosen to be a prime number𝑞 ≫ 𝑛𝐵+max𝛿 ∈Δ (𝛿).
(2) Extend 𝑒 to a pairing on a dual vector space V1 ×V2 with
V1 = G𝑚+2𝑘+2

1
and V2 = G𝑚+2𝑘+2

2
for an appropriately

chosen parameter 𝑘 , associated with the 𝑘-LIN assump-

tion.

(3) Sample random 𝜁
$← F𝑞\{0}, and compute𝑔𝑇 = 𝑒 (𝑔1, 𝑔2)𝜁

with 𝑔1 and 𝑔2 being the generators of G1 and G2, respec-
tively.

(4) For 𝑖 ∈ [𝑛], generate a dual orthogonal basis
B𝑖 = {b𝑖,1, . . . , b𝑖,𝑚+2𝑘+2} and B∗𝑖 = {b∗𝑖,1, . . . , b

∗
𝑖,𝑚+2𝑘+2}

such that 𝑒 (b𝑖, 𝑗 , b∗𝑖, 𝑗) = 𝑔𝑇 for all 𝑗 ∈ [𝑚 + 2𝑘 + 2] and set

ˆB𝑖 = {b𝑖,1, . . . , b𝑖,𝑚, b𝑖,𝑚+1, b𝑖,𝑚+𝑘+2, . . . , b𝑖,𝑚+2𝑘+1},
ˆB∗𝑖 = {b∗𝑖,1, . . . , b

∗
𝑖,𝑚, b∗𝑖,𝑚+1, b

∗
𝑖,𝑚+3, . . . , b

∗
𝑖,𝑚+𝑘+1}.

(5) Publish public parameters pp = (paramsG, 𝑔𝑇) and set

the master secret key msk = { ˆB∗
𝑖
}𝑖∈[𝑛] . Let sk𝑖 = ˆB𝑖 be

the secret encryption key for slot 𝑖 . All of the remaining

algorithms implicitly take pp.
DiffPIPE.Enc(sk𝑖 , 𝑖, ®𝑥𝑖): Takes as input the secret key sk𝑖 , an

index 𝑖 ∈ [𝑛], a vector ®𝑥𝑖 = (𝑥 (1)
𝑖

, . . . , 𝑥
(𝑚)
𝑖
) ∈ F𝑚𝑞 and

performs the following steps:

(1) Select random 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘
$← F𝑞 , and compute

c𝑖 =
∑︁

𝑗 ∈[𝑚]
𝑥
(𝑗)
𝑖

b𝑖, 𝑗 + b𝑖,2+1 +
∑︁
𝑗 ∈[𝑘]

𝜑𝑖, 𝑗b𝑖,𝑚+1+𝑗

= (®𝑥𝑖 , 1, 0, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)B𝑖
(2) Output ciphertext ct𝑖 = (𝑖, c𝑖).

DiffPIPE.KeyGen(msk, 𝑓 ,D): On input the msk and a function

described by a set of vectors { ®𝑦𝑖 }𝑖∈[𝑛] and a distribution D
over Δ, execute the following steps:

(1) Sample 𝜈
D← Δ and random 𝑟𝑖 , 𝛾𝑖,1, . . . , 𝛾𝑖,𝑘−1

$← F𝑞 , for
𝑖 ∈ [𝑛], with the restriction that

∑
𝑖∈[𝑛] 𝑟𝑖 = 𝜈 .

(2) For each 𝑖 ∈ [𝑛] compute

k𝑖 =
∑︁

𝑗 ∈[𝑚]
𝑦
(𝑗)
𝑖

b∗𝑖, 𝑗 + 𝑟𝑖b
∗
𝑖,𝑚+1 +

∑︁
𝑗 ∈[𝑘−1]

𝛾𝑖, 𝑗b∗𝑖,𝑚+1+𝑗

= (®𝑦𝑖 , 𝑟𝑖 , 0, 𝛾𝑖,1, . . . , 𝛾𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖 ,

where ®𝑦𝑖 = (𝑦 (1)
1

, . . . , 𝑦
(𝑚)
1
) .

(3) Output decryption key dk = {k𝑖 }𝑖∈[𝑛]
DiffPIPE.Dec(dk, ct1, . . . , ct𝑛): This algorithm takes a decryp-

tion key dk = {k𝑖 }𝑖∈[𝑛] , 𝑛 ciphertexts ct1, . . . ct𝑛 and pro-

ceeds as follows:

(1) Compute 𝐿𝑇 =
∏

𝑖∈[𝑛] 𝑒 (c𝑖 ,k𝑖)
(2) Attempt to determine a value 𝛬 ∈ Z such that 𝑔𝛬

𝑇
=

𝐿𝑇 by performing an exhaustive search over a specific

polynomial-size range of possible values. If it succeeds,

output 𝛬, else output ⊥.4

7.4 Analysis
In the following, we show the correctness and security of the pro-

posed scheme DiffPIPE.

7.4.1 Correctness. We need to show that for any set of ciphertexts

𝑋 and any decryption key the probability that the evaluation of

the decryption key, associated with a function 𝑓 , on the set of

ciphertexts outputs 𝑓 (𝑋) + 𝜈 with the same probability that 𝜈 was

sampled over Δ. For any set of ciphertexts {ct𝑖 = (𝑖, c𝑖)}𝑖∈[𝑛] with

c𝑖 = (®𝑥𝑖 , 1, 0, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)B𝑖
where ct𝑖 encrypts some vector ®𝑥𝑖 ∈ F𝑚𝑞 with respect to index

𝑖 ∈ [𝑛] and any decryption key dk𝑓 = {k𝑖 }𝑖∈[𝑛] corresponding to
a function 𝑓 described by { ®𝑦𝑖 }𝑖∈[𝑛] such that ®𝑦𝑖 ∈ F𝑚𝑞 for all 𝑖 ∈ [𝑛]
and 𝜈 ∈ Δ with k𝑖 = (®𝑦𝑖 , 𝑟𝑖 , 0, 𝛾𝑖,1, . . . , 𝛾𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖 and therefore

𝐿𝑇 =
∏
𝑖∈[𝑛]

𝑒 (c𝑖 ,k𝑖) =
∏
𝑖∈[𝑛]

𝑔
c𝑖 ·k𝑖
𝑇

=
∏
𝑖∈[𝑛]

𝑔
®𝑥𝑖 · ®𝑦𝑖+𝑟𝑖
𝑇

= 𝑔

∑
𝑖∈[𝑛] (®𝑥𝑖 · ®𝑦𝑖+𝑟𝑖)

𝑇

= 𝑔
𝜈+∑𝑖∈[𝑛] ®𝑥𝑖 · ®𝑦𝑖
𝑇

= 𝑔
𝜈+𝑓 (®𝑥1,... ®𝑥𝑛)
𝑇

This follows from the fact that for each 𝑖 ∈ [𝑛],B𝑖 and B∗𝑖 are dual
orthogonal bases and

∑
𝑖∈[𝑛] 𝑟𝑖 = 𝜈 . Since Δ is of polynomial size

and therefore, also the range [𝑛𝐵 +max𝛿 ∈Δ] is of polynomial size.

Thus, if 𝜈 +∑𝑖∈[𝑛] ®𝑥𝑖 · ®𝑦𝑖 is in the polynomial size range of possible

values that the decryption algorithm searches, the algorithm would

output 𝛬 = 𝜈 + ∑𝑖∈[𝑛] ®𝑥𝑖 · ®𝑦𝑖 with the same probability that 𝜈 is

sampled over Δ.

7.4.2 Security. In the following, we sketch a security proof of

DiffPIPE, where missing details can be found in Appendix D. Our

4
Similar exhaustive search steps are part of all bilinear map-based inner product

constructions. The polynomial running time is guaranteed by restricting the output to

lie within a fixed polynomial size range [15].

517

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

𝐺0 = 𝐺1,0,3
𝑘−𝐿𝐼𝑁−−−−−−→ 𝐺1,1,1

=−→ 𝐺1,1,2
𝑘−𝐿𝐼𝑁−−−−−−→ 𝐺1,1,3

𝑘−𝐿𝐼𝑁−−−−−−→ 𝐺1,2,1
=−→ · · · 𝑘−𝐿𝐼𝑁−−−−−−→ 𝐺1,𝑞𝑘𝑒𝑦 ,3︸ ︷︷ ︸

Sequence 1

= 𝐺2,0,3
𝑘−𝐿𝐼𝑁−−−−−−→ 𝐺2,1,1

=−→ 𝐺2,1,2
𝑘−𝐿𝐼𝑁−−−−−−→ 𝐺2,1,3

𝑘−𝐿𝐼𝑁−−−−−−→ 𝐺2,2,1
=−→ · · · 𝑘−𝐿𝐼𝑁−−−−−−→ 𝐺2,𝑛,3︸ ︷︷ ︸

Sequence 2

=−→ 𝐺3

𝑆𝑒𝑞.1 with
−−−−−−−−−−−−−−−−−→
®𝑥𝑖,0,®𝑥𝑖,1 interchanged

𝐺4

Figure 7: Sequence of games in the proof of Theorem 7.2. 𝐺𝑙 denotes Game𝑙 .

schemes relies on the hardness of the general 𝑘-Linear assumption

[41], being still the basis of various state-of-the-art papers, e.g.,

[46]. It works for any choice of 𝑘 , including the Symmetric External

Diffie-Hellman Assumption (SXDH) for 𝑘 = 1 and the Decisional

Linear Assumption (DLIN) for 𝑘 = 2. By increasing 𝑘 , the hardness

of the problem can be increased as well.

Definition 7.1 (𝑘-Linear Assumption: 𝑘-LIN). Let 𝑘 ≥ 1. Fix a num-

ber 𝜒 ∈ [2]. The 𝑘-LIN problem is to guess a bit 𝛽
$← {0, 1} given

𝜀𝛽 = (paramsG, 𝑔
𝜉1
𝜒 , . . . , 𝑔

𝜉𝑘
𝜒 , 𝑔

𝛿1𝜉1
𝜒 , . . . , 𝑔

𝛿𝑘𝜉𝑘
𝜒 , 𝜌𝛽);where paramsG =

(𝑞,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒)
$← G𝐵𝑃𝐺 (𝜆); 𝜉1, . . . , 𝜉𝑘 , 𝜎

$← F𝑞 \ {0};

𝛿1, . . . , 𝛿𝑘
$← F𝑞 ; and 𝜌0 = 𝑔

∑
𝑗 ∈[𝑘]𝛿 𝑗

𝜒 and 𝜌1 = 𝑔
𝜎+∑𝑗∈[𝑘] 𝛿 𝑗

𝜒 . The

𝑘-LIN assumption states that for any PPT algorithm A, for any

security parameter 𝜆 the advantage of A in deciding the 𝑘-LIN

problem is

Adv𝑘−𝐿𝐼𝑁A (𝜆) = | Pr[1← A(𝜀0)] − Pr[1← A(𝜀1)] | ≤ 𝑛𝑒𝑔𝑙 (𝜆)

for some negligible function 𝑛𝑒𝑔𝑙 .

The security of our scheme is shown in the following theorem:

Theorem 7.2. Assume that the the 𝑘-LIN problem is hard. Then
the above described NMIFE scheme achieves SMN-H security under
the restriction, that the adversary makes at least one ciphertext query
for each encryption slot.5 For any PPT adversaryA against the SMN-
H security of the NMIFE scheme described above, there exists a PPT
algorithm B against the 𝑘-LIN problem such that for any security
parameter 𝜆, we have

AdvA (𝜆) ≤ (4𝑞𝑘𝑒𝑦 + 2𝑛)Adv𝑘−𝐿𝐼𝑁B (7)

The proof is structured as a series of games which differ in

the construction of the decryption keys and/or the ciphertexts

queried by the adversary A. The detailed description of the games

is postponed to the end of this section. In the first game, Game0, the

queried ciphertexts and the queried decryption keys are constructed

as those in the security experiment Expt𝑁𝑀𝐼𝐹𝐸
A (0). We change the

answers to the queries in multiple steps to those in the security

experiment Expt𝑁𝑀𝐼𝐹𝐸
A (1), being Game4. The considered sequence

of games is displayed in Figure 7.

For some pairs of subsequent games, the probability to distin-

guish between these is upper bounded by the advantage of an

adversary B that aims to solve the 𝑘-LIN problem:

5
This restriction can be rescinded if a generic transformation analogue to the one

described in Datta et al. [14] is applied. Since we aim for a DP scenario, we assume a

prefixed data set.

Lemma 7.3. For any PPT adversary A between Game𝑗,𝑙−1,3 and
Game𝑗,𝑙,1 and anyA between Game𝑗,𝑖,2 and Game𝑗,𝑖,3, 𝑗 ∈ [2] there
exists a PPT algorithm B for the 𝑘-LIN assumption (Definition 7.1)
such that for any security parameter 𝜆, we have���Adv𝐺𝑎𝑚𝑒 𝑗,𝑖−1,3

A (𝜆) − Adv𝐺𝑎𝑚𝑒 𝑗,𝑖,1

A (𝜆)
������Adv𝐺𝑎𝑚𝑒1,𝑖,2

A (𝜆) − Adv𝐺𝑎𝑚𝑒1,𝑖,3
A (𝜆)

��� ≤ Adv𝑘−𝐿𝐼𝑁B (𝜆)

for all 𝑖 ∈ [𝑞𝑘𝑒𝑦], 𝑖 𝑓 𝑗 = 1, 𝑖 ∈ [𝑛], 𝑖 𝑓 𝑗 = 2.

In Figure 7, this is displayed by

𝑘−𝐿𝐼𝑁−−−−−−→. For the remaining pairs

of subsequent games, one can show that these are indistinguishable

(being represented by

=−→):

Lemma 7.4. For any PPT adversaryA, for any security parameter
𝜆, we have

Adv𝐺𝑎𝑚𝑒1,𝑙,1
A (𝜆) = Adv𝐺𝑎𝑚𝑒1,𝑙,2

A (𝜆), for all 𝑙 ∈ [𝑞𝑘𝑒𝑦] .

Adv𝐺𝑎𝑚𝑒2,𝑖,1
A (𝜆) = Adv𝐺𝑎𝑚𝑒2,𝑖,2

A (𝜆), for all 𝑖 ∈ [𝑛] .

Adv𝐺𝑎𝑚𝑒2,𝑛,3
A (𝜆) = Adv𝐺𝑎𝑚𝑒3

A (𝜆) .

The proofs including a more detailed analysis are presented in

Appendix D. By counting the number of transitions in Figure 7

which have the same form as those in Lemma 7.3, the bound given

in Equation (7) follows.

▷ Sequence of Games:
It remains to define the games used in Figure 7, what happens next.

The framed parts indicate the terms that were modified in the trans-

formation from the previous game.

Game0: This experiment corresponds to the experiment

Expt𝑁𝑀𝐼𝐹𝐸
A (0) described in Definition 5.3, therefore the security

experiment where the random bit is 𝛽 = 0. More precisely, for all

𝑖 ∈ [𝑛], in response to the ciphertext query of A with respect to

index 𝑖 corresponding to a pair of vectors (®𝑥𝑖,0, ®𝑥𝑖,1 ∈ F𝑚𝑞 × F𝑚𝑞)B
returns ct𝑖 = (𝑖, c𝑖) where

c𝑖 = (®𝑥𝑖,0, 1, 0, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)B𝑖 (8)

and for all 𝑙 ∈ [𝑞𝑘𝑒𝑦], to answer the 𝑙𝑡ℎ decryption key query ofA
corresponding to a set of vectors and two noise values ({®𝑦𝑙,𝑖 }𝑖∈[𝑛] ,
𝜈𝑙,0, 𝜈𝑙,1) such that ®𝑦𝑙,𝑖 ∈ F𝑚𝑞 and 𝜈𝑙,0, 𝜈𝑙,1 ∈ Δ,B generates dk𝑙 =
{k𝑙,𝑖 }𝑖∈[𝑛] , where

k𝑙,𝑖 = (®𝑦𝑙,𝑖 , 𝑟𝑙,𝑖,0, 0, 𝛾𝑙,𝑖,1, . . . , 𝛾𝑙,𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖 (9)

and

∑
𝑖∈[𝑛] 𝑟𝑙,𝑖 = 𝜈𝑙,0 for 𝑖 ∈ [𝑛]. All other variables and parameters

are generated as in Section 7.3.

518

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

Sequence 1
For each 𝑙 ∈ [𝑞𝑘𝑒𝑦], execute the following three steps iteratively.
Game

1,𝑙,1 (𝑙 ∈ [𝑞𝑘𝑒𝑦]): Game1,0,3 coincides with Game0. This ex-

periment is analogous to Game
1,𝑙−1,3 with the only exception that

in response to the 𝑙𝑡ℎ decryption key query of A corresponding

to ({®𝑦𝑙,𝑖 }𝑖∈[𝑛] , 𝜈𝑙,0, 𝜈𝑙,1) ∈ F𝑚𝑞 × Δ × Δ for all 𝑖 ∈ [𝑛] B gives back

dk𝑙 = {k𝑖,𝑙 }𝑖∈[𝑛] , where

k𝑙,𝑖 = (®𝑦𝑙,𝑖 , 𝑟𝑙,𝑖,0, 0, 𝛾𝑙,𝑖,1, . . . , 𝛾𝑙,𝑖,𝑘−1, ®0𝑘 , 𝜌𝑙,𝑖)B∗𝑖 (10)

with 𝜌𝑙,𝑖
$← F𝑞 \ {0} for all 𝑖 ∈ [𝑛], such that

∑
𝑖∈[𝑛] 𝜌𝑙,𝑖 = 0, and

all other variables are generated as in Game
1,𝑙−1,3.

Game
1,𝑙,2 (𝑙 ∈ [𝑞𝑘𝑒𝑦]): This experiment is identical to Game

1,𝑙,1

except that in response to the 𝑙𝑡ℎ decryption key query of A cor-

responding to ({®𝑦𝑙,𝑖 }𝑖∈[𝑛] , 𝜈𝑙,0, 𝜈𝑙,1) ∈ F𝑚𝑞 × Δ × Δ for all 𝑖 ∈ [𝑛] B
returns dk𝑙 = {k𝑖,𝑙 }𝑖∈[𝑛] , where

k𝑙,𝑖 = (®𝑦𝑙,𝑖 , 𝑟𝑙,𝑖,0, 𝑟𝑙,𝑖,1 , 𝛾𝑙,𝑖,1, . . . , 𝛾𝑙,𝑖,𝑘−1, ®0𝑘 , 𝜌𝑙,𝑖)B∗𝑖 (11)

with 𝑟𝑙,𝑖,1
$← F𝑞 for all 𝑖 ∈ [𝑛], such that

∑
𝑖∈[𝑛] 𝑟𝑙,𝑖,1 = 𝜈𝑙,1, and all

other variables are generated as in Game
1,𝑙,1.

Game
1,𝑙,3 (𝑙 ∈ [𝑞𝑘𝑒𝑦]): This experiment is analogous to Game

1,𝑙,2

except that in response to the 𝑙𝑡ℎ decryption key query of A cor-

responding to ({®𝑦𝑙,𝑖 }𝑖∈[𝑛] , 𝜈𝑙,0, 𝜈𝑙,1) ∈ F𝑚𝑞 × Δ × Δ for all 𝑖 ∈ [𝑛] B
returns dk𝑙 = {k𝑖,𝑙 }𝑖∈[𝑛] , where

k𝑙,𝑖 = (®𝑦𝑙,𝑖 , 𝑟𝑙,𝑖,0, 𝑟𝑙,𝑖,1, 𝛾𝑙,𝑖,1, . . . , 𝛾𝑙,𝑖,𝑘−1, ®0𝑘 , 0)B∗
𝑖
. (12)

All variables are generated as in Game
1,𝑙,2.

Sequence 2:
For each 𝑖 ∈ [𝑛], execute the following three steps iteratively.
Game2,𝑖,1 (𝑖 ∈ [𝑛]): Game2,0,3 coincides with Game1,𝑞𝑘𝑒𝑦 ,3. This ex-

periment is analogous to Game2,𝑖−1,3 with the only exception that

in response to the ciphertext query for slot 𝑖 of A corresponding

to (®𝑥𝑖,0, ®𝑥𝑖,1) ∈ F𝑚𝑞 × F𝑚𝑞 , B gives back ct𝑖 = (𝑖, c𝑖), where

c𝑖 = (®𝑥𝑖,0, 1, 0, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 𝜔𝑖)B𝑖 (13)

with𝜔𝑖
$← F𝑞 \{0} and all other variables formed as in Game2,𝑖−1,3.

Game2,𝑖,2 (𝑖 ∈ [𝑛]): This experiment is analogous to Game2,𝑖,1

except that in response to the ciphertext query for slot 𝑖 of A
corresponding to (®𝑥𝑖,0, ®𝑥𝑖,1) ∈ F𝑚𝑞 × F𝑚𝑞 , B returns ct𝑖 = (𝑖, c𝑖),
where

c𝑖 = (®𝑥𝑖,1, 0, 1 , ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 𝜔𝑖)B𝑖 . (14)

Here, all the variables are formed as in Game2,𝑖,1.

Game2,𝑖,3 (𝑖 ∈ [𝑛]): This experiment is analogous to Game2,𝑖,2

except that in response to the ciphertext query for slot 𝑖 of A
corresponding to (®𝑥𝑖,0, ®𝑥𝑖,1) ∈ F𝑚𝑞 × F𝑚𝑞 , B returns ct𝑖 = (𝑖, c𝑖),
where

c𝑖 = (®𝑥𝑖,1, 0, 1, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)B𝑖 . (15)

All the variables are formed as in Game2,𝑖,2.

Game3: In this experiment for all ciphertext queries of A corre-

sponding to (®𝑥𝑖,0, ®𝑥𝑖,1) ∈ F𝑚𝑞 ×F𝑚𝑞 , for 𝑖 ∈ [𝑛] and all decryption key
queries of A corresponding to ({®𝑦𝑙,𝑖 }𝑖∈[𝑛] , 𝜈𝑙,0, 𝜈𝑙,1) ∈ F𝑚𝑞 × Δ × Δ
for 𝑙 ∈ [𝑞𝑘𝑒𝑦], B returns ct𝑖 = (𝑖, c𝑖), where

c𝑖 = (®𝑥𝑖,1, 1, 0 , ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)B𝑖 (16)

and dk𝑙 = {k𝑖,𝑙 }𝑖∈[𝑛] , where

k𝑙,𝑖 = (®𝑦𝑙,𝑖 , 𝑟𝑙,𝑖,1, 𝑟𝑙,𝑖,0 , 𝛾𝑙,𝑖,1, . . . , 𝛾𝑙,𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖 . (17)

Here all the variables are formed as in Game2,𝑛,3.

Game4: This experiment corresponds to the experiment

Expt𝑁𝑀𝐼𝐹𝐸
A (1) described in Definition 5.3, therefore the security

experiment where the random bit is 𝛽 = 1.

7.5 Implementation
We implemented our above described SMN-H NMIFE scheme Diff-
PIPE and used it in a series of experiments to privately evaluate

counting queries on different data sets in the medical context. That

is, we assume a set of 𝑛 users. Each user has a record of𝑚 elements

®𝑥𝑖 = (𝑥1
𝑖
, . . . , 𝑥𝑚

𝑖
), representing𝑚 different attributes. Moreover,

there is an authority that runs DiffPIPE.Setup for generating a

master secret key msk and the single secret keys {sk𝑖 }𝑖∈[𝑛] for the
𝑛 users. After the authority distributes the secret keys to the clients

over a secure channel, the clients encrypt their record using Diff-
PIPE.Enc. The analyst itself is interested in an evaluation over the

data set𝑋 = (®𝑥1, . . . , ®𝑥𝑛), sending a function 𝑓 to the authority. The

authority itself first checks, if the analyst has proper entitlement,

regarding differential privacy guidelines, e.g. enough privacy bud-

get (cf. Section 2.2), and if 𝑓 ∈ F𝑛 . In the positive case, it generates

a decryption key dk with DiffPIPE. KeyGen(msk, 𝑓 ,D) where D is

an appropriate choice of a distribution achieving DP [18]. With this

dk the analyst can evaluate the function on the encrypted data set,

getting a noisy result that protects the data itself. As the described

use case assumes only one data set 𝑋 that is encrypted, the relaxed

security notion of single-message-and-noise-hiding is sufficient.

In our experiments, we measured on the one hand the time re-

quired for basic operations but also for running a complete analysis

on existing databases. We compared DiffPIPE with noisy-DOT (Ap-

pendix C) build according to Section 6 from a modified form of the

DOT scheme of [15] implemented in the library [28]
6
. As expected

DiffPIPE is more efficient than noisy-DOT . For our experiments

we used 𝑘 = 2 and therefore based the security on the Decisional

Linear assumption.

As the process of checking if the DP requirements are fulfilled

and choosing the distribution to compute the noise depending on

the requested analysis and the privacy-budget are a consequence

of applying DP and not of FE, we skipped this part. More precisely,

we focused on the implementation of the general setup, assuming

only one counting query is made by the analyst where we know

we can achieve DP with sampling noise from a Laplace distribution

𝐿𝑎𝑝 (1/𝜖) choosing 𝜖 = 1. To sample the noise for the key generation

algorithm we used the differential privacy library of google [43].

6
The scheme in [28] is slightly modified from original proposed scheme in [15] to

achieve better performance, for more information see [28], and therefore also our

implementation of the DOT scheme is slightly modified for better performance.

519

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

0 10 20 30 40 50

0

5

10

15

20

25

30

#attributes

t
i
m
e
i
n
m
i
l
i
s
e
c

noisy-DOT
DiffPIPE

Figure 8: Time for encrypting one record in noisy-DOT and
DiffPIPE (dashed lines) regarding the number of attributes.

Therefore our overhead for adding noise is the same as sampling

the noise from the library with above parameters.

Since our scheme is basically a 𝑛-fold extension of a single input

FE scheme with small modifications to achieve security, the size

of the decryption keys and also the evaluation time grow linear

with the data set size (# records × # attributes). To support this

conjecture and also compare the basic operations to the noisy-DOT
scheme, we did some benchmarking. As the record values have

no impact, they have been randomly generated. The results of our

experiments are visualized in Figure 8 to Figure 10 and confirm

the expected behavior, that DiffPIPE has also linear growth but

with a smaller growing rate then noisy-DOT . Figure 8 shows the
time needed to encrypt one single record in dependency of the

number of attributes. Figure 9 and Figure 10 show the time needed

to generate the decryption key and the time needed to evaluate

the function in dependency of the number of records for different

attribute size. Note that since the setup algorithm of DiffPIPE is

essentially the same as in noisy-DOT , the time needed is practically

identical and therefore we omit a figure here.

To demonstrate the usefulness of the relaxed security notion

of SMN-H and therefore our scheme DiffPIPE, we compared the

evaluation process of our scheme compared to noisy-DOT on the

following data sets:

- Low Birth Weight study data set [24]: “How many children

with low birth weight are born in this data set?”

- Prostate Cancer Study data set [26]: “What is the percentage

of tumor penetration of prostatic capsule?”

- Umaru Impact Study data set [27]: “How many percent are

drugfree for at least 12 months?”

- Nhanes III data set [25]:“How many percent of the partici-

pants have high systolic blood pressure?”

The data sets vary in number of records and attributes (Table 1).

We modified the data sets so that there were only complete records

regarding the important attributes. Since most of the cryptographic

0 100 200 300 400 500

0

5

10

15

20

25

30

#records

t
i
m
e
i
n
s
e
c

10 attr noisy-DOT
30 attr noisy-DOT
10 attr DiffPIPE
30 attr DiffPIPE

Figure 9: Time for generating the decryption key in noisy-
DOT and DiffPIPE (dashed lines).

0 100 200 300 400 500

0

5

10

15

20

25

30

#records

t
i
m
e
i
n
s
e
c

10 attr noisy-DOT
30 attr noisy-DOT
10 attr DiffPIPE
30 attr DiffPIPE

Figure 10: Time for evaluating the function in noisy-DOT
and DiffPIPE (dashed lines).

Table 1: Number of records and attributes in cleaned data
sets.

Data set # records # attributes

Low Birth Weight Study 189 10

Prostate Cancer Study 380 8

Umaru Impact Study 575 8

Nhanes III 16,427 12

520

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

techniques operate over finite fields, such as F𝑞 but most numeric

real world data is in R a well known problem is how to convert the

real world data into input data for encryption schemes. A standard

solution is to use a fix-point arithmetic, meaning to interpret a

value 𝑧 ∈ R as 𝑥 = ⌊𝑧 · 𝑠⌉ with a scaling factor 𝑠 . For example

the value 𝑧 = 8791.5467891 with a scaling factor 100 would result

in 𝑥 = 879155. After the computation on the encrypted data is

finished, the result needs to be scaled back, e.g. dividing by the

scaling factor 𝑠 . If 𝑠 is chosen appropriate to the input data and to

F𝑞 the usefulness of the data is not compromised while preserving

the ability to operate on the encrypted data. Most of the data sets

from Table 1 were already represented as values in N or had only

two decimal places. But this was not the case for the noise sampled

from the Laplace distribution. Therefore for our experiments we

set our scaling factor to 100,000 without compromising the result

of our computation.

Another challenge was to handle the noise sampling process.

Normally noise sampled from the Laplace distribution is distributed

over R. The DP libraries handles the problem of sampling over a

discrete set, but we additionally needed to restrict the range, so

we could assure that the sampled noise 𝜈 is still in the range that

can be decrypted, e.g. restricting Δ. We exploited that the Laplace

distribution samples values close to zero. To make sure that the

sampled noise values lie in Δ with probability 𝑝 we need to choose

Δ = [⌊𝑙𝑜𝑔𝑒 (1 − 𝑝)⌋, ⌈−𝑙𝑜𝑔𝑒 (1 − 𝑝)⌉]. For a probability of 𝑝 = 0.9,

sensitivity of the function 𝑓 equals 1 and 𝜖 = 1, this would mean

Δ ≈ [−2.303, 2.303], for probability 𝑝 = 0.95,Δ ≈ [−2.996, 2.996].
Additionally we rounded the noise 𝜈 not mathematically but always

to 𝜈 ′ = 𝑠𝑖𝑔𝑛(𝜈) · ⌈|𝜈 |⌉ with 𝑠𝑖𝑔𝑛(𝑥) = 1, 𝑥 ≥ 0 and 𝑠𝑖𝑔𝑛(𝑥) = −1, 𝑥 <

0 to assure enough noise is added in the step of representing the

noise as element of F𝑞 .
We performed all benchmarking experiments on a system run-

ning Ubuntu 22.04.2 LTS, 256GB RAM and 18 vCPUs (AMD Epyc

7272). For each data set, the following attributes measured for both

DiffPIPE and noisy-DOT :

• the time to set up the scheme, e.g. generating pp, msk and

the secret keys {sk𝑖 }𝑖∈[𝑛] which is in the nano seconds area

and represents the one time effort of the authority,

• the time to encrypt one record, e.g. the effort of one partici-

pating user,

• the time to generate a noisy decryption key dk, e.g. the effort
of the authority,

• and the time to evaluate the dk on the encrypted data set,

e.g. the effort of the analyst.

Results can be seen in Table 2. As expected and consistent to our

results of the basic operations, the experiments on the real data

sets show an advantage of our scheme DiffPIPE: less time is needed

to encrypt, generating decryption keys and evaluating a function

while the setup algorithm only differs in a few nanoseconds.

8 CONCLUSION
Motivated by the need for cryptographic schemes that simultane-

ously realize input and output privacy, we introduced the concept

of noisy multi input functional encryption (NMIFE) that allows to

integrate differential privacy into the decryption procedure. More-

over, we explained its potential benefits compared to approaches

Table 2: Run time of DiffPIPE vs. noisy-DOT for single op-
erations for different data bases. Encryption time refers to
encrypting 𝑥𝑖 of a single user. First value represents the time
for DiffPIPE, second value for noisy-DOT .

Data set Setup [ns] Enc [ms] KeyGen [s] Eval [s]

LBW

768.10 2.12 1.23 4.10

759.60 3.23 1.93 6.33

PC

751.40 1.80 2.17 7.15

662.95 2.70 3.25 10.63

UI

711.55 1.85 3.28 10.89

780.55 2.69 4.92 16.14

Nhanes III

949.05 2.37 120.61 385.80

965.50 3.82 194.88 620.52

that aim for combining DP with multi party computation or homo-

morphic encryption, respectively. We provided an adapted security

definition, namely single-message-and-noise-hiding (SMN-H), and

explained how certain function-hiding MIFE schemes can be trans-

formed into secure SMN-H NMIFE schemes (actually even meeting

a stronger security definition). This was demonstrated on a concrete

NMIFE scheme, dubbed noisy-DOT . We additionally constructed a

new secure SMN-H NMIFE scheme DiffPIPE and demonstrated its

applicability for realizing privacy preserving counting queries in a

number of experiments, comparing its efficiency to noisy-DOT .
While NMIFE may have already their use in practical use cases,

we see various opportunities for further research. For instance, the

restriction of noisy-DOT to linear functions is a consequence of the

lack of function-hiding FE schemes for more complex functions

and not of the definition of NMIFE or the transformation. While

linear functions practically limit the use cases to simple statistical

analysis, e.g. counting queries, quadratic functions allow for more

complex analysis. In other words, progress made in the area of FE

can most likely be used for building more powerful NMIFE schemes

as well. If a full-hiding MIFE scheme for polynomials of degree 2 is

constructed, with the help of our transformation it would directly

yield an according NMIFE scheme. In fact, as the security notion

of SMN-H is probably weaker than full-hiding, designing NMIFE

schemes for more complex functions fulfilling SMN-H might be

easier than for full-hiding FE.

Another potential line of research is the combination of FE and

machine learning. If it comes to the training of a model, one main

problem is still the restricted functionality of existing FE schemes.

The schemes today are not able to train a whole model, but with iter-

ative updates, the encrypted data can still be used. As we have seen

in the context of federated learning ([31, 32, 47]), the intermediate

results of the iterative algorithms often leak too much information

about the underlying data. Here, one could use DP, and therefore a

NMIFE scheme, to secure these intermediate results. To train com-

plex models, linear NMIFE schemes are not sufficient. It has been

shown that we can train complex machine learning algorithms with

a quadratic FE scheme [11, 39], but these leak information about

the input data through the intermediate results. With a quadratic

NMIFE scheme we would be able to protect these data using DP.

521

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

ACKNOWLEDGMENTS
This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

REFERENCES
[1] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. 2017. Multi-

input inner-product functional encryption from pairings. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
601–626.

[2] Mark Abspoel, Daniel Escudero, and Nikolaj Volgushev. 2020. Secure training of

decision trees with continuous attributes. Cryptology ePrint Archive (2020).
[3] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, andMauro Conti. 2018. A survey on

homomorphic encryption schemes: Theory and implementation. ACMComputing
Surveys (Csur) 51, 4 (2018), 1–35.

[4] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. 2021. Multi-input quadratic

functional encryption from pairings. In Advances in Cryptology–CRYPTO 2021:
41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16–20, 2021, Proceedings, Part IV 41. Springer, 208–238.

[5] Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and LihuaWang. 2016. Scalable

and secure logistic regression via homomorphic encryption. In Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy. 142–144.

[6] Alexandros Bakas and Antonis Michalas. 2022. Heal the Privacy: Functional

Encryption and Privacy-Preserving Analytics. arXiv preprint arXiv:2205.03083
(2022).

[7] Amos Beimel. 2011. Secret-sharing schemes: A survey. In Coding and Cryptology:
Third International Workshop, IWCC 2011, Qingdao, China, May 30-June 3, 2011.
Proceedings 3. Springer, 11–46.

[8] Jonas Böhler and Florian Kerschbaum. 2020. Secure multi-party computation of

differentially private median. In Proceedings of the 29th USENIX Conference on
Security Symposium. 2147–2164.

[9] Jonas Böhler and Florian Kerschbaum. 2021. Secure multi-party computation

of differentially private heavy hitters. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 2361–2377.

[10] Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption: Defini-

tions and challenges. In Theory of Cryptography: 8th Theory of Cryptography Con-
ference, TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings 8. Springer,
253–273.

[11] Sergiu Carpov, Caroline Fontaine, Damien Ligier, and Renaud Sirdey. 2020. Il-

luminating the Dark or how to recover what should not be seen in FE-based

classifiers. Proceedings on Privacy Enhancing Technologies 2020, 2 (2020), 5–23.
[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23. Springer, 409–437.

[13] Fida Kamal Dankar and Khaled El Emam. 2013. Practicing differential privacy in

health care: A review. Trans. Data Priv. 6, 1 (2013), 35–67.
[14] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. 2018. Full-Hiding (Un-

bounded) Multi-Input Inner Product Functional Encryption from the 𝑘-Linear

Assumption. Cryptology ePrint Archive, Paper 2018/061. https://eprint.iacr.org/

2018/061 https://eprint.iacr.org/2018/061.

[15] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. 2018. Full-hiding (un-

bounded) multi-input inner product functional encryption from the k-linear as-

sumption. In IACR International Workshop on Public Key Cryptography. Springer,
245–277.

[16] Edouard Dufour-Sans, Romain Gay, and David Pointcheval. 2018. Reading in

the Dark: Classifying Encrypted Digits with Functional Encryption. Cryptology

ePrint Archive, Paper 2018/206. https://eprint.iacr.org/2018/206 https://eprint.

iacr.org/2018/206.

[17] Cynthia Dwork. 2006. Differential privacy. In Automata, Languages and Program-
ming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II 33. Springer, 1–12.

[18] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[19] Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, and Koji Nuida. 2022. Efficient

Noise Generation Protocols for Differentially Private Multiparty Computation.

IEEE Transactions on Dependable and Secure Computing (2022).

[20] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[21] Oded Goldreich. 1998. Secure multi-party computation. Manuscript. Preliminary

version 78, 110 (1998).

[22] Michela Iezzi. 2020. Practical Privacy-Preserving Data Science With Homomor-

phic Encryption: An Overview. In 2020 IEEE International Conference on Big Data
(Big Data). 3979–3988. https://doi.org/10.1109/BigData50022.2020.9377989

[23] Damien Ligier, Sergiu Carpov, Caroline Fontaine, and Renaud Sirdey. 2017. Pri-

vacy preserving data classification using inner product encryption. In Security and
Privacy in Communication Networks: 12th International Conference, SecureComm
2016, Guangzhou, China, October 10-12, 2016, Proceedings 12. Springer, 755–757.

[24] LogisticDx. 2023. Diagnostic Tests for Models with a Binomial Response. lbw:

Low Birth Weight study data. https://rdrr.io/rforge/LogisticDx/man/lbw.html

[25] LogisticDx. 2023. Diagnostic Tests for Models with a Binomial Response. nhanes3:

NHANES III data. https://rdrr.io/rforge/LogisticDx/man/nhanes3.html

[26] LogisticDx. 2023. Diagnostic Tests for Models with a Binomial Response. pcs:

Prostate Cancer Study data. https://rdrr.io/rforge/LogisticDx/man/pcs.html

[27] LogisticDx. 2023. Diagnostic Tests for Models with a Binomial Response. uis:

UMARU IMPATCT Study data. https://rdrr.io/rforge/LogisticDx/man/uis.html

[28] Tilen Marc, Miha Stopar, Jan Hartman, Manca Bizjak, and Jolanda Modic. 2019.

Privacy-enhanced machine learning with functional encryption. In Computer
Security–ESORICS 2019: 24th European Symposium on Research in Computer Secu-
rity, Luxembourg, September 23–27, 2019, Proceedings, Part I 24. Springer, 3–21.

[29] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Computa-

tional differential privacy. In Advances in Cryptology-CRYPTO 2009: 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009.
Proceedings. Springer, 126–142.

[30] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable

privacy-preserving machine learning. In 2017 IEEE symposium on security and
privacy (SP). IEEE, 19–38.

[31] Viraaji Mothukuri, Reza M. Parizi, Seyedamin Pouriyeh, Yan Huang, Ali De-

hghantanha, and Gautam Srivastava. 2021. A survey on security and privacy

of federated learning. Future Generation Computer Systems 115 (2021), 619–640.
https://doi.org/10.1016/j.future.2020.10.007

[32] Ahmed El Ouadrhiri and Ahmed Abdelhadi. 2022. Differential Privacy for Deep

and Federated Learning: A Survey. IEEE Access 10 (2022), 22359–22380. https:

//doi.org/10.1109/ACCESS.2022.3151670

[33] Prajwal Panzade and Daniel Takabi. 2022. SoK: Privacy Preserving Machine

Learning using Functional Encryption: Opportunities and Challenges. arXiv
preprint arXiv:2204.05136 (2022).

[34] Sikha Pentyala, Davis Railsback, Ricardo Maia, Rafael Dowsley, David Melanson,

Anderson Nascimento, and Martine De Cock. 2022. Training differentially private

models with secure multiparty computation. arXiv preprint arXiv:2202.02625
(2022).

[35] Martin Pettai and Peeter Laud. 2015. Combining differential privacy and secure

multiparty computation. In Proceedings of the 31st Annual Computer Security
Applications Conference. 421–430.

[36] Bernardo Pulido-Gaytan, Andrei Tchernykh, Jorge M Cortés-Mendoza, Mikhail

Babenko, Gleb Radchenko, Arutyun Avetisyan, and Alexander Yu Drozdov. 2021.

Privacy-preserving neural networks with homomorphic encryption: C hallenges

and opportunities. Peer-to-Peer Networking and Applications 14, 3 (2021), 1666–
1691.

[37] Luis Bernardo Pulido-Gaytan, Andrei Tchernykh, Jorge M Cortés-Mendoza,

Mikhail Babenko, and Gleb Radchenko. 2021. A survey on privacy-preserving

machine learning with fully homomorphic encryption. In High Performance Com-
puting: 7th Latin American Conference, CARLA 2020, Cuenca, Ecuador, September
2–4, 2020, Revised Selected Papers 7. Springer, 115–129.

[38] Jean Louis Raisaro, Gwangbae Choi, Sylvain Pradervand, Raphael Colsenet,

Nathalie Jacquemont, Nicolas Rosat, Vincent Mooser, and Jean-Pierre Hubaux.

2018. Protecting Privacy and Security of Genomic Data in i2b2 with Ho-

momorphic Encryption and Differential Privacy. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 15, 5 (2018), 1413–1426. https:

//doi.org/10.1109/TCBB.2018.2854782

[39] Théo Ryffel, Edouard Dufour-Sans, Romain Gay, Francis Bach, and David

Pointcheval. 2019. Partially encrypted machine learning using functional encryp-

tion. arXiv preprint arXiv:1905.10214 (2019).
[40] Rathindra Sarathy and Krishnamurty Muralidhar. 2011. Evaluating Laplace noise

addition to satisfy differential privacy for numeric data. Trans. Data Priv. 4, 1
(2011), 1–17.

[41] Hovav Shacham. 2007. A cramer-shoup encryption scheme from the linear

assumption and from progressively weaker linear variants. Cryptology ePrint
Archive (2007).

[42] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[43] Differential Privacy Team. 2022. Differential Privacy Library (DP Lib v2.0.0).

https://github.com/google/differential-privacy

[44] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. 2016. Efficient functional

encryption for inner-product values with full-hiding security. In International
Conference on Information Security. Springer, 408–425.

[45] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2018. SecureNN: Efficient

and private neural network training. Cryptology ePrint Archive (2018).
[46] BrentWaters and David J.Wu. 2022. Batch Arguments for NP andMore from Stan-

dard Bilinear Group Assumptions. Cryptology ePrint Archive, Paper 2022/336.

https://eprint.iacr.org/2022/336 https://eprint.iacr.org/2022/336.

[47] KangWei, Jun Li, Ming Ding, ChuanMa, Howard H. Yang, Farhad Farokhi, Shi Jin,

Tony Q. S. Quek, and H. Vincent Poor. 2020. Federated LearningWith Differential

522

https://eprint.iacr.org/2018/061
https://eprint.iacr.org/2018/061
https://eprint.iacr.org/2018/061
https://eprint.iacr.org/2018/206
https://eprint.iacr.org/2018/206
https://eprint.iacr.org/2018/206
https://doi.org/10.1109/BigData50022.2020.9377989
https://rdrr.io/rforge/LogisticDx/man/lbw.html
https://rdrr.io/rforge/LogisticDx/man/nhanes3.html
https://rdrr.io/rforge/LogisticDx/man/pcs.html
https://rdrr.io/rforge/LogisticDx/man/uis.html
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1109/ACCESS.2022.3151670
https://doi.org/10.1109/ACCESS.2022.3151670
https://doi.org/10.1109/TCBB.2018.2854782
https://doi.org/10.1109/TCBB.2018.2854782
https://github.com/google/differential-privacy
https://eprint.iacr.org/2022/336
https://eprint.iacr.org/2022/336

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

Privacy: Algorithms and Performance Analysis. IEEE Transactions on Information
Forensics and Security 15 (2020), 3454–3469. https://doi.org/10.1109/TIFS.2020.

2988575

[48] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi Gao,

Hongwei Li, and Yu-an Tan. 2019. Secure multi-party computation: theory,

practice and applications. Information Sciences 476 (2019), 357–372.
[49] Ezgi Zorarpacı and Selma Ayşe Özel. 2020. A hybrid approach of homomorphic

encryption and differential privacy for privacy preserving classification. Inter-
national Journal of Applied Mathematics Electronics and Computers (2020), 138 –
147. https://doi.org/10.18100/ijamec.801157

A DIFFERENTIAL PRIVACY
As shortly explained in Section 2.2 DP is a technique to achieve

output privacy of a function. In the following we want to present

the formal definitions.

Definition A.1 (Distance between Databases). The 𝑙1 norm of a

database 𝑋 = (®𝑥1, . . . , ®𝑥𝑛) is denoted by | |𝑋 | |1 and is defined to be

| |𝑋 | |1 =
𝑛∑︁
𝑖=1

| ®𝑥𝑖 |.

The 𝑙1 distance between two databases 𝑋 and 𝑌 is | |𝑋 − 𝑌 | |1.

The 𝑙1 distance measures how many records differ between data-

base 𝑋 and database 𝑌 . Typically in the standard definition of (𝜖, 𝛿)-

differential privacy ((𝜖, 𝛿)-DP) we look at neighboring databases,

meaning databases that differ in at most 1 record.

Definition A.2 (Differential Privacy). A randomized algorithm𝑀

with domainN |𝑋 | is (𝜖, 𝛿)-differential private if for all 𝑆 ⊆ Range(𝑀)

and for all 𝑋,𝑌 ∈ N |𝑋 | such that | |𝑋 − 𝑌 | |1 ≤ 1:

Pr[𝑀 (𝑋) ∈ 𝑆] ≤ 𝑒𝑥𝑝 (𝜖) Pr[𝑀 (𝑌) ∈ 𝑆] + 𝛿,

where the probability space is over the coin flips of the mechanism

𝑀 . If 𝛿 = 0, we say that𝑀 is 𝜖-differential private.

A simple and common way to produce differential private nu-

meric functions, especially in the setting of privacy-preserving anal-

ysis, is to perturb the function output with noise sampled through

special distributions.

Definition A.3 (Laplace Mechanism [18]). Given any function

𝑓 : N |𝑋 | → R𝑘 , the Laplace mechanism is defined as:

𝑀𝐿 (𝑋, 𝑓 (·), 𝜖) = 𝑓 (𝑋) + (𝑌1, . . . , 𝑌𝑘)

where 𝑌𝑖 are independent identical distributed random variables

drawn from the Laplace Distribution 𝐿𝑎𝑝 (𝑠1 (𝑓)/𝜖), centered at zero
and 𝑠1 (𝑓) denotes the 𝑙1-sensitivity of the function 𝑓 7:

𝑠1 (𝑓) =𝑚𝑎𝑥𝑋,𝑌 ∈N|𝑋 |, | |𝑋−𝑌 | |1=1 | |𝑓 (𝑋) − 𝑓 (𝑌) | |1

B PROOF OF THEOREM 6.1
Proof. We start with the correctness claim which essentially

follows directly from the definitions. More precisely, let

(pp, msk, {𝑠𝑘𝑖 }𝑖∈[𝑛]) ← S∗ .Setup(𝜆, F𝑛),
ct𝑖 = S∗ .Enc(sk𝑖 , 𝑖, 𝑥𝑖), 𝑖 ∈ [𝑛],

dk𝑓 ∗ ←S∗ .KeyGen(msk, 𝑓 ,D𝑓)

7
Normally the 𝑙1-sensitivity is denoted by Δ𝑓 . However, since we’re already using

Δ elsewhere, we wanted to introduce a distinctive notation for the 𝑙1-sensitivity of a

function.

Our goal is to show that

Pr

[
S∗ .Dec(dk𝑓 ∗ , ct1, . . . , ct𝑛) = 𝑓 (𝑥1, . . . 𝑥𝑛) + 𝜈

]
= Pr[𝜈

D𝑓

← Δ]
for all 𝜈 ∈ Δ and for all inputs 𝑥𝑖 . By definition of S∗, the decryp-
tion key dk𝑓 ∗ is the result of invoking S.KeyGen(msk, 𝑓 ∗) for some

chosen function 𝑓 ∗. Because of equation (4) and the correctness of

S, it follows that
Pr

[
S∗ .Dec(dk𝑓 ∗ , ct1, . . . , ct𝑛) = 𝑓 (𝑥1, . . . 𝑥𝑛) + 𝜈

]
= Pr

[
𝑓 ∗ = 𝑓 + 𝜈

]
for all 𝜈 . By construction of S∗ .KeyGen, it holds that

Pr[𝑓 ∗ = 𝑓 + 𝜈] = Pr[𝜈
D𝑓

← Δ]
which shows the claim.

We show the security claim by a standard reduction argument.

That is, we assume a PPT attackerA∗ against S∗ with non negligi-

ble advantage and construct a PPT attacker A against S that has

the same non negligible advantage in the full-hiding security game.

We have an oracle O for A that sets up the scheme and chooses a

𝛽 ← {0, 1}, forwarding pp toA.A acts as an oracle toA∗ and for-
wards pp. A∗ can adaptively make queries of the type decryption

key query and ciphertext query. Ciphertext queries from A∗ are
simply forwarded to O and the responses are given back to A∗.

For the decryption key queries,A∗ chooses a triple (𝑓𝑙 , 𝜈𝑙,0, 𝜈𝑙,1)
and sends it to A.

8 A sets 𝑓𝑙,0 = 𝑓𝑙 + 𝜈𝑙,0 and 𝑓𝑙,1 = 𝑓𝑙 + 𝜈𝑙,1, and
sends the request (𝑓𝑙,0, 𝑓𝑙,1) to O, who generates the decryption key

dk𝑙 ← S.KeyGen(msk, 𝑓𝑙,𝛽). A forwards dk𝑙 to A∗.
The queries of A∗ need to fulfill the equation (3) that for all

𝑙 ∈ [𝑞𝑘𝑒𝑦] and for all (𝑗1, . . . 𝑗𝑛) ∈ [𝑞ct,1] × · · · × [𝑞ct,𝑛], we have

𝑓𝑙 (𝑥
𝑗1
1,0
, . . . , 𝑥

𝑗𝑛
𝑛,0
) + 𝜈𝑙,0 = 𝑓𝑙 (𝑥

𝑗1
1,1
, . . . , 𝑥

𝑗𝑛
𝑛,1
) + 𝜈𝑙,1 .

Because of this restriction the queries of A are valid with respect

to condition (2), since

𝑓𝑙,0 (𝑥
𝑗1
1,0
, . . . , 𝑥

𝑗𝑛
𝑛,0
) = 𝑓𝑙 (𝑥

𝑗1
1,0
, . . . , 𝑥

𝑗𝑛
𝑛,0
) + 𝜈𝑙,0

= 𝑓𝑙 (𝑥
𝑗1
1,1
, . . . , 𝑥

𝑗𝑛
𝑛,1
) + 𝜈𝑙,1

= 𝑓𝑙,1 (𝑥
𝑗1
1,1
, . . . , 𝑥

𝑗𝑛
𝑛,1
)

for all 𝑙 ∈ [𝑞𝑘𝑒𝑦] and for all (𝑗1, . . . , 𝑗𝑛) ∈ [𝑞ct,1] × · · · × [𝑞ct,𝑛].
A∗ eventually outputs a bit 𝛽 ′ ∈ {0, 1}. This 𝛽 ′ is also the guess

of A. An overview of the reduction can be found in Figure 6.

Note that A perfectly simulates the oracle for A∗. Hence, we
have Expt𝑀𝐼𝐹𝐸

A (𝛽) = Expt𝑁𝑀𝐼𝐹𝐸
A (𝛽) for each 𝛽 ∈ {0, 1}. In particu-

lar, it follows that A and A∗ have the same advantage. □

C A MESSAGE-AND-NOISE-HIDING NOISY
MULTI-INPUT FUNCTIONAL ENCRYPTION
SCHEME FOR INNER PRODUCTS

C.1 Overview
As stated in Section 6 we want to show that we can use the transfor-

mation from Theorem 6.1 on an existing MIFE scheme to construct

a concrete NMIFE scheme and to analyze its efficiency. The current

state of the art does not include any efficient schemes that realize FE

8
To keep the description simple, we directly state the noise values 𝜈𝑙,𝛽 instead of the

corresponding distributions D𝑙,𝛽 .

523

https://doi.org/10.1109/TIFS.2020.2988575
https://doi.org/10.1109/TIFS.2020.2988575
https://doi.org/10.18100/ijamec.801157

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

for all functions. Existing FE usually support only inner product or

quadratic functions. However, so far no FE for quadratic functions

is known that has full-hiding security and allows for multi-inputs.

Therefore we apply the transformation to an existing MIPE scheme.

More precisely, we take the scheme of Datta et al. [15] as starting

point. In the following, we refer to it as DOT scheme. Note that

only linear functions 𝑓𝑦 are directly supported by DOT . However,
an NMIFE deploys affine functions to add a noise value 𝜈 to the

function evaluation. That is, we need to extend DOT to support also

affine functions, i.e., 𝑓𝑦,𝑐 (𝑥1, . . . , 𝑥𝑛)+𝑐 = 𝑦1 ·𝑥1+· · ·+𝑦𝑛 ·𝑥𝑛+𝑐 with
a constant value 𝑐 such that correctness and full-hiding security

are preserved. That is, our strategy is composed of the following

two steps:

Step 1: Extend DOT to a new (correct and full-hiding) scheme

affine-DOT that also supports affine functions

Step 2: Apply the transformation from Theorem 6.1 to con-

struct a correct and message-and-noise-hiding NMIFE noisy-
DOT

A simple way to achieve the first step with any FH-MIPE scheme

would be that in the setup phase the data for slot 1 is set to a fix

vector, e.g. ®𝑥 = (0, . . . , 0, 1) resulting in a data set𝑋 = ((0, . . . , 0, 1) ∥
®𝑥1 ∥ · · · ∥ ®𝑥𝑛) ∈ F(𝑛+1) ·𝑚𝑞 with ®𝑥𝑖 ∈ F𝑚𝑞 . For a requested decryption

key dk for function 𝑓 described by (𝑦, 𝑐) = ((®𝑦 ∥ · · · ∥ ®𝑦), 𝑐)
encode the constant at the beginning of dk, so that the key encodes

𝑦 = ((0, . . . , 0, 𝑐) ∥ ®𝑦1 ∥ · · · ∥ ®𝑦𝑛) ∈ F(𝑛+1) ·𝑚𝑞 . Evaluating the inner

product results in 𝑋 · 𝑦 = (0, . . . , 0, 1) · (0, . . . , 0, 𝑐) +∑𝑛
𝑖=1 ®𝑥𝑖 · ®𝑦𝑖 =

𝑐 +∑𝑛
𝑖=1 ®𝑥𝑖 · ®𝑦𝑖 . This would mean to increase the size of the collected

data set by one record ®𝑥 = (0, . . . , 0, 1) and also increase the size

of the decryption key dk, yielding more ciphertexts and larger

decryption keys. This does not only impact the space requirement

but also the effort for setting up the FH-MIPE scheme and evaluating

the function.

In the following, we present another approach to turn the lin-

ear DOT scheme into an affine scheme and dub the new scheme

affine-DOT . The approach exploits properties of the key generation

algorithm for directly embedding the noise value. This has the ben-

efit that neither the ciphertexts nor the decryption keys need to

be enlarged. Thus, we consider this variant to be of interest on its

own. Again we concentrate on the bounded scheme of Datta et al.

[15]. We omit the mathematical foundations, since we described

them before in Section 7.

C.2 Full-Hiding Bounded Multi-Input
Functional Encryption Scheme for Affine
Functions

In this subsection we describe the affine-DOT scheme for affine

functions, build upon the scheme DOT for linear functions, and

prove its correctness and security. Before we proceed, we give an

overview of the underlying idea of the transformation.

DOT is build upon the single input FE scheme proposed by

Tomida et al. [44]. The naive approach to build a MIFE scheme out

of a single-input FE scheme is to use an 𝑛-fold extension. Consider

a master secret key msk that consists of 𝑛 independently generated

master secret keys msk𝑖 for the single-input scheme. A ciphertext

for some vector ®𝑥𝑖 ∈ F𝑚𝑞 with respect to index 𝑖 is simply a single-

input FE ciphertext for ®𝑥𝑖 ∈ F𝑚𝑞 with respect to the master secret

key msk𝑖 for slot 𝑖 . A decryption key for a set of n vectors {®𝑦𝑖 }𝑖∈[𝑛]
for ®𝑦𝑖 ∈ F𝑚𝑞 is given by the set of decryption keys {dk ®𝑦𝑖 }𝑖∈[𝑛] with
respect to the master secret keys of each slot. Decrypting multiple

inputs simply means to decrypt each input individually and to

combine the results afterwards.

However this construction is not secure, since an attacker can

easily recover ®𝑥𝑖 · ®𝑦𝑖 for a single 𝑖 , instead of only receiving the

final result

∑𝑛
𝑖=1 ®𝑥𝑖 · ®𝑦𝑖 . For example, this would render the property

of message-hiding impossible. Datta et al. [15] solves this problem

analogue to Abdalla et al. [1] by introducing additional randomness

in the ciphertexts and the decryption keys such that the random

values eventually add up to zero. Our main idea is to choose the

random values such that they do not add up to zero but to the

constant value 𝑐 in the affine function 𝑓 described by ((®𝑦1 ∥ · · · ∥
®𝑦𝑛), 𝑐) with 𝑓 (®𝑥1 ∥ · · · ∥ ®𝑥𝑛) =

∑𝑛
𝑖=1 ®𝑥𝑖 · ®𝑦𝑖 + 𝑐 .

Description.

affine-DOT .Setup(𝜆, F𝑛): This algorithm takes the security

parameter 𝜆, a description of F𝑛 = {𝑚,𝑛, Δ , 𝐵} with the

length𝑚 ∈ N of the vectors, the arity 𝑛 ∈ N of the multi-

input functionality, Δ ⊊ N of polynomial size and a bound

𝐵 ∈ N on each component inner product. It works as follows:

(1) Setup a bilinear pairing 𝑒 : G1 × G2 → G𝑇 where the

group sizes are chosen to be a prime number 𝑞 ≫ 𝑛𝐵+
max𝛿 ∈Δ (𝛿) ,

(2) Extend 𝑒 to a pairing on a dual vector space V1 ×V2 with
V1 = G

2𝑚+2𝑘+1
1

and V2 = G
2𝑚+2𝑘+1
2

for an appropriately

chosen parameter 𝑘 , associated with the 𝑘-LIN assump-

tion.

(3) Sample random 𝜁
$← F𝑞\{0}, and compute𝑔𝑇 = 𝑒 (𝑔1, 𝑔2)𝜁

with 𝑔1 and 𝑔2 being the generators of G1 and G2, respec-
tively.

(4) For 𝑖 ∈ [𝑛], generate a dual orthogonal basis
B𝑖 = {b𝑖,1, . . . , b𝑖,2𝑚+2𝑘+1} andB∗𝑖 = {b∗𝑖,1, . . . , b

∗
𝑖,2𝑚+2𝑘+1}

such that 𝑒 (b𝑖, 𝑗 , b∗𝑖, 𝑗) = 𝑔𝑇 for all 𝑗 ∈ [2𝑚 + 2𝑘 + 1] and set
ˆB𝑖 = {b𝑖,1, . . . , b𝑖,𝑚, b𝑖,2𝑚+1, b𝑖,2𝑚+𝑘+1, . . . , b𝑖,2𝑚+2𝑘 },
ˆB∗𝑖 = {b∗𝑖,1, . . . , b

∗
𝑖,𝑚, b∗𝑖,2𝑚+1, . . . , b

∗
𝑖,2𝑚+𝑘 }.

(5) Publish public parameters pp = (paramsG, 𝑔𝑇) and set

the master secret key msk = { ˆB∗
𝑖
}𝑖∈[𝑛] . Let sk𝑖 = ˆB𝑖 be

the secret encryption key for slot 𝑖 . All of the remaining

algorithms implicitly take pp.
affine-DOT .Enc(sk𝑖 , 𝑖, ®𝑥𝑖): Takes as input the secret key sk𝑖 ,

an index 𝑖 ∈ [𝑛], a vector ®𝑥𝑖 ∈ F𝑚𝑞 and performs the follow-

ing steps:

(1) Select random 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘
$← F𝑞 , and compute

c𝑖 =
∑︁

𝑗 ∈[𝑚]
𝑥
(𝑗)
𝑖

b𝑖, 𝑗 + b𝑖,2𝑚+1 +
∑︁
𝑗 ∈[𝑘]

𝜑𝑖, 𝑗b𝑖,2𝑚+𝑘+𝑗

= (®𝑥𝑖 , ®0𝑚, 1, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)B𝑖
(2) Output ciphertext ct𝑖 = (𝑖, c𝑖).

524

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

affine-DOT .KeyGen(msk, 𝑓): On input the msk and a function

described by a set of vectors { ®𝑦𝑖 }𝑖∈[𝑛] and a constant 𝑐 ∈ Δ ,

execute the following steps:

(1) Sample random 𝑟𝑖 , 𝛾𝑖,1, . . . , 𝛾𝑖,𝑘−1
$← F𝑞 , for 𝑖 ∈ [𝑛], with

the restriction that

∑
𝑖∈[𝑛] 𝑟𝑖 = 𝑐 .

(2) For each 𝑖 ∈ [𝑛] compute

k𝑖 =
∑︁

𝑗 ∈[𝑚]
𝑦
(𝑗)
𝑖

b∗𝑖, 𝑗 + 𝑟𝑖b
∗
𝑖,2𝑚+1 +

∑︁
𝑗 ∈[𝑘−1]

𝛾𝑖, 𝑗b∗𝑖,2𝑚+1+𝑗

= (®𝑦𝑖 , ®0𝑚, 𝑟𝑖 , 𝛾𝑖,1, . . . , 𝛾𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖 ,

where ®𝑦𝑖 = (𝑦 (1)
1

, . . . , 𝑦
(𝑚)
1
) .

(3) Output decryption key dk = {k𝑖 }𝑖∈[𝑛]
affine-DOT .Dec(dk, ct1, . . . , ct𝑛): This algorithm takes a de-

cryption key dk = {k𝑖 }𝑖∈[𝑛] , 𝑛 ciphertexts ct1, . . . ct𝑛 and

computes the following:

(1) first compute 𝐿𝑇 =
∏

𝑖∈[𝑛] 𝑒 (c𝑖 ,k𝑖)
(2) attemp to determine a value 𝛬 ∈ Z such that 𝑔𝛬

𝑇
= 𝐿𝑇 by

performing an exhaustive search over a specific polynomial-

size range of possible values. If it succeeds, output 𝛬, else

output ⊥.9

Correctness. The correctness of the above MIFE scheme affine-
DOT can be verified easily and is similar to the correctness of DOT .
For any set of ciphertexts {ct𝑖 = (𝑖, c𝑖)}𝑖∈[𝑛] with

c𝑖 = (®𝑥𝑖 , ®0𝑚, 1, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)B𝑖
where ct𝑖 encrypts some vector ®𝑥𝑖 ∈ F𝑚𝑞 with respect to index

𝑖 ∈ [𝑛] and any decryption key dk𝑓 = {k𝑖 }𝑖∈[𝑛] corresponding to
a function 𝑓 described by ({ ®𝑦𝑖 }𝑖∈[𝑛] , 𝑐)such that ®𝑦𝑖 ∈ F𝑚𝑞 for all

𝑖 ∈ [𝑛] and 𝑐 ∈ Δ with k𝑖 = (®𝑦𝑖 , ®0𝑚, 𝑟𝑖 , 𝛾𝑖,1, . . . , 𝛾𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖 and
therefore

𝐿𝑇 =
∏
𝑖∈[𝑛]

𝑒 (c𝑖 ,k𝑖) =
∏
𝑖∈[𝑛]

𝑔
c𝑖 ·k𝑖
𝑇

=
∏
𝑖∈[𝑛]

𝑔
®𝑥𝑖 · ®𝑦𝑖+𝑟𝑖
𝑇

= 𝑔

∑
𝑖∈[𝑛] (®𝑥𝑖 · ®𝑦𝑖+𝑟𝑖)

𝑇

= 𝑔
𝑐+∑𝑖∈[𝑛] ®𝑥𝑖 · ®𝑦𝑖
𝑇

This follows from the fact that for each 𝑖 ∈ [𝑛],B𝑖 and B∗𝑖 are dual
orthogonal bases and

∑
𝑖∈[𝑛] 𝑟𝑖 = 𝑐 . Since Δ is of polynomial size

and therefore, also the range [𝑛𝐵 +max𝛿 ∈Δ] is of polynomial size.

Thus, if 𝑐 +∑𝑖∈[𝑛] ®𝑥𝑖 · ®𝑦𝑖 is in the polynomial size range of possible

values that the decryption algorithm searches, the algorithm would

output the correct 𝛬 = 𝑐 +∑𝑖∈[𝑛] ®𝑥𝑖 · ®𝑦𝑖 .

Security. We prove that our affine-DOT scheme is again a full-

hiding scheme under the restriction that the adversary makes at

least one ciphertext query per slot. For more details how to achieve

full-hiding security without that restriction, we refer to [15]. Our

proof follows the same logic as the proof of scheme DOT . Therefore
we refer to the full version of the paper of Datta et al. [14] for most

parts of the proof and only want to discuss the parts that change.

9
Similar exhaustive search steps are part of all bilinear map-based inner product

constructions. The polynomial running time is guaranteed by restricting the output to

lie within a fixed polynomial size range [15].

The proof ofDOT is structured as a hybrid argument over a series

of experiments which differ in the construction of the decryption

keys and/or ciphertexts. The first experiment reflects the security

experiment Expt𝑀𝐼𝐹𝐸
A (0). They progressively change the decryp-

tion keys and ciphertexts in multiple steps to those in security

experiment Expt𝑀𝐼𝐹𝐸
A (1). Proving that each hybrid is indistinguish-

able from the previous one, yielding the full-hiding security.

We discuss now how this proof can be adapted to cover affine-
DOT . First of all, an adversary needs to be allowed to make decryp-

tion queries for affine functions. That is, whenever a 𝑖𝑡ℎ decryption

key query ({®𝑦𝜄,𝑖,0}𝜄∈[𝑛] , {®𝑦𝜄,𝑖,1}𝜄∈[𝑛]) for scheme DOT is made, we

require a decryption key query

(𝑓𝑖,0, 𝑓𝑖,1) = (({®𝑦𝜄,𝑖,0}𝜄∈[𝑛] , 𝑐𝑖,0), ({®𝑦𝜄,𝑖,1}∈[𝑛] , 𝑐𝑖,1))
with 𝑐𝑖,0, 𝑐𝑖,1 ∈ Δ.

The proof description contains two different sequences of ran-

dom values: {𝑟𝜄,𝑖 }𝜄∈[𝑛] and {𝑟𝜄,𝑖 }𝜄∈[𝑛] . The former are used in situa-

tions where 𝑓𝑖,0 is encoded and consequently the latter for the case

of 𝑓𝑖,1. To preserve correctness, whenever values 𝑟𝜄,𝑖 are sampled

uniformly and random from F𝑞 we require that

∑
𝜄∈[𝑛] 𝑟𝜄,𝑖 = 𝑐𝑖,0

instead of

∑
𝜄∈[𝑛] 𝑟𝜄,𝑖 = 0 and analogously

∑
𝜄∈[𝑛] 𝑟𝜄,𝑖 = 𝑐𝑖,1.

As long as these two cases are separated, that is the values 𝑟𝜄,𝑖
are only used in conjunction with 𝑓𝑖,0 and likewise 𝑟𝜄,𝑖 with 𝑓𝑖,1, this

has no impact on the security arguments. Here, we also make use

of the fact that in the original proof, the conditions

∑
𝜄∈[𝑛] 𝑟𝜄,𝑖 = 0

and

∑
𝜄∈[𝑛] 𝑟𝜄,𝑖 = 0 have only been used to ensure correctness.

The only potentially critical step is transformation from 𝑓𝑖,0 to 𝑓𝑖,1
which is covered in lemma C.5. The indistinguishability is argued

by a change of the dual orthogonal bases B𝑖 and B
∗
𝑖
. This change

also induces a change of the 𝑟𝜄,𝑖 values, namely as follows:
10

𝑟𝜄,𝑖 = 𝑟𝜄,𝑖 + ®𝑥𝜄,1,0 · ®𝑦𝜄,𝜈,0 − ®𝑥𝜄,1,1 · ®𝑦𝜄,𝜈,1 . (18)

Because of the restriction on the queries of A that

𝑓𝑖,0 (®𝑥1,1,0, . . . , ®𝑥𝑛,1,0) = 𝑓𝑖,1 (®𝑥1,1,1, . . . , ®𝑥𝑛,1,1)
(see Equation (2)), it follows:∑︁
𝜄∈[𝑛]

𝑟𝜄,𝑖 =
∑︁
𝜄∈[𝑛]
(𝑟𝜄,𝑖 + ®𝑥𝜄,1,0 · ®𝑦𝜄,𝜈,0 − ®𝑥𝜄,1,1 · ®𝑦𝜄,𝜈,1)

=
∑︁
𝜄∈[𝑛]

𝑟𝜄,𝑖 +
∑︁
𝜄∈[𝑛]

®𝑥𝜄,1,0 · ®𝑦𝜄,𝜈,0 −
∑︁
𝜄∈[𝑛]

®𝑥𝜄,1,1 · ®𝑦𝜄,𝜈,1

= 𝑐𝜈,0 +
∑︁
𝜄∈[𝑛]

®𝑥𝜄,1,0 · ®𝑦𝜄,𝜈,0 + (𝑐𝜈,1 − 𝑐𝜈,1)
∑︁
𝜄∈[𝑛]

®𝑥𝜄,1,1 · ®𝑦𝜄,𝜈,1

= 𝑐𝜈,1

This shows that the random values after the transformation auto-

matically fulfill the condition

∑
𝜄∈[𝑛] 𝑟𝜄,𝑖 = 𝑐𝑖,1. Moreover, as the

values 𝑟𝜄,𝑖 have been uniformly sampled (under the condition to

sum up to 𝑐𝑖,0), the same property holds as well for the values 𝑟𝜄,𝑖 .

A further adaptation that is required affects values 𝜃𝜄,𝜈 used in

the proof of Lemma C.4. We require that the random values 𝜃𝜄,𝜈 sum

up to

∑
𝜄∈[𝑛] 𝜃𝜄,𝜈 = 𝑐𝑖,0 instead of 0 to ensure that

∑
𝜄∈[𝑛] 𝑟𝜄,𝑖 = 𝑐𝑖,0.

To understand why this has no impact on the security claim, we

have to quickly explain the role of these values. In lemma C.4 the

advantage of deciding between to hybrid sequences is reduced to

10
Please be aware that in the original Paper of Datta et al. [14] there is a construction

error. The 𝑟𝜄,𝑖 need to be constructed as specified in Equation (18).

525

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

a decisional problem 1
∗
[15, Def. 2.6], that can be reduced itself

to the k-LIN problem. In the proof, the values 𝑟𝜄,𝑖 are replaced by

values taken from the considered problem instance. In addition, the

values 𝜃𝜄,𝜈 are added for masking the problem-instance-values and

to ensure that the values 𝑟𝜄,𝑖 are still uniformly sampled. Because of∑
𝜄∈[𝑛] 𝑟𝜄,𝑖 =

∑
𝜄∈[𝑛] 𝜃𝜄,𝑖 , the change mentioned above is necessary

to maintain correctness, while they still mask the values of the

problem instance.

Through applying the transformation presented in Section 6

we construct an equally efficient MN-H NMIFE scheme, which is

dubbed affine-DOT .

D PROOF OF THEOREM 7.2
To prove Lemma 7.3, we need to reduce the advantage of an adver-

sary to the 𝑘-LIN assumption. To this end, we follow the approach

of Datta et al. [14]. In order to shorten the respective proofs and

focus on the main idea, this reduction will not be done directly.

Instead, they presented two problems (Problem 1 and 2), which can

be reduced to a third problem (Problem 0) which in turn can be

reduced to the 𝑘-LIN assumption. Since we modified the construc-

tion of the ciphertexts and keys in our scheme DiffPIPE, missing

𝑚 − 1 and 𝑛(𝑚 − 1) slots, we cannot directly adapt their problems.

Therefore, we describe two problems, (Problem 1 and Problem 2),

which are mostly similar but adapted the structure of our cipher-

texts and decryption keys, respectively. For these, we show that

they can be reduced to another problem, Problem 0, which is equal

to the problem used in [14].

In favour of readability, Lemma 7.3 and Lemma 7.4 are broken

down to a series of lemmas (Lemma D.3- Lemma D.9) and proven

individually. Combined with Lemma D.2, this concludes the proof

of Theorem 7.2.

Let us start by defining Problem 0 as well as the follow up prob-

lems, Problem 1 and Problem 2.

Problem 0 ([14]). Fix an arbitrary number 𝜒 ∈ [2] Problem 0 is

to guess a bit ˆ𝛽
$← {0, 1} given 𝜗

ˆ𝛽
= (paramsG,D, ˆD∗, 𝑔

𝜁
𝜒 ,

𝛀
ˆ𝛽
); where paramsG = (𝑞,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒)

$← G𝐵𝑃𝐺 (); 𝜁 , 𝜋
$←

F𝑞 \ {0};𝛼1, . . . , 𝛼𝑘
$← F𝑞 ;𝐷 = (𝑑 𝑗,𝑡) (𝑘+1)×(𝑘+1)

$← GL(𝑘 + 1, F𝑞);
𝐷★ = (𝑑∗

𝑗,𝑡
) (𝑘+1)×(𝑘+1) = 𝜁𝐷∗; 𝒅 𝑗 = (𝑔𝑑 𝑗,1

𝜒 , . . . , 𝑔
𝑑 𝑗,𝑘+1
𝜒), 𝒅∗𝑗 =

(𝑔
𝑑∗𝑗,1
3−𝜒 , . . . , 𝑔

𝑑∗
𝑗,𝑘+1

3−𝜒) for 𝑗 ∈ [𝑘 + 1]; D = {𝒅1, . . . , 𝒅𝑘+1}; ˆD∗ = {𝒅∗1}
and 𝛀𝜷 = (𝛼1, . . . , 𝛼𝑘 , 0)D or 𝛀𝜷 = (𝛼1, . . . , 𝛼𝑘 , 𝜋)D according as ˆ𝛽

is 0 or 1. For any PPT algorithm A, the advantage of A in deciding
Problem 0 is defined as

Adv𝑃0A (𝜆) = | Pr[1← A(𝜗0)] − Pr[1← A(𝜗1)] |.

Lemma D.1 ([14]). For any PPT algorithm A for Problem 0, there
exists a PPT algorithm B for the 𝑘-LIN assumption such that for any
security parameter 𝜆, we have Adv𝑃0A (𝜆) ≤ Adv𝑘−𝐿𝐼𝑁B (𝜆) .

Problem 1 is used in the games that apply changes in the con-

struction of the keys.

Problem 1. Problem 1 is to guess a bit 𝛽
$← {0, 1} given 𝜃𝛽 =

(paramsG, 𝑔𝑇 , { ˆB𝑖 , ˆB∗𝑖 }𝑖∈[𝑛] , {𝜙𝑖,𝛽 }𝑖∈[𝑛]); where

paramsG = (𝑞,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒)
$← G𝐵𝑃𝐺 (); paramsV = (𝑞,V1,

V2,G𝑇 ,A1,A2, 𝑒)
$← G𝐷𝑃𝑉𝑆 (𝑚+2𝑘+2, paramsG);𝑜

$← F𝑞\{0};𝑔𝑡 =

𝑒 (𝑔1, 𝑔2)𝑜 ; (B𝑖 ,B∗𝑖)
$← G𝑂𝐵 (𝑚 + 2𝑘 + 2, paramsG, 𝑜), ˆB𝑖 = {b𝑖,1, . . . ,

b𝑖,𝑚, b𝑖,𝑚+1, b𝑖,𝑚+𝑘+2, . . . , b𝑖,𝑚+2𝑘+1}, ˆB∗𝑖 = {b∗𝑖,1, . . . , b
∗
𝑖,𝑚, b∗𝑖,𝑚+1,

b∗𝑖,𝑚+3, . . . , b
∗
𝑖,𝑚+𝑘+1, b

∗
𝑖,𝑚+2𝑘+2} for 𝑖 ∈ [𝑛]; 𝛼1, . . . , 𝛼𝑘

$← F𝑞, 𝜋
$←

F𝑞 \ {0}; and 𝜙𝑖,0 = (®0𝑚, 𝛼1, 0, 𝛼2, . . . , 𝛼𝑘 , ®0𝑘 , 0)B∗𝑖 , 𝜙𝑖,1 = (®0
𝑚, 𝛼1, 0,

𝛼2, . . . , 𝛼𝑘 , ®0𝑘 , 𝜋)B∗𝑖 . For any PPT algorithm A, the advantage of A
in deciding Problem 1 is defined as

Adv𝑃1A (𝜆) = | Pr[1← A(𝜃0)] − Pr[1← A(𝜃1)] | ≤ negl(𝜆)

for some negligible function negl.

Problem 2 is essentially the same as Problem 1, with the excep-

tion, that it concerns the basis vectors used for the construction of

the ciphertexts.

Problem 2. Problem 2 is to guess a bit 𝛽
$← {0, 1} given 𝜃𝛽 =

(paramsG, 𝑔𝑇 , { ˆB𝑖 , ˆB∗
𝑖
}𝑖∈[𝑛] , {𝜙𝑖,𝛽 }𝑖∈[𝑛]); where

paramsG = (𝑞,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒)
$← G𝐵𝑃𝐺 (); paramsV = (𝑞,V1,

V2,G𝑇 ,A1,A2, 𝑒)
$← G𝐷𝑃𝑉𝑆 (𝑚+2𝑘+2, paramsG);𝑜

$← F𝑞\{0};𝑔𝑡 =

𝑒 (𝑔1, 𝑔2)𝑜 ; (B𝑖 ,B∗𝑖)
$← G𝑂𝐵 (𝑚 + 2𝑘 + 2, paramsG, 𝑜), ˆB𝑖 = {b𝑖,1, . . . ,

b𝑖,𝑚, b𝑖,𝑚+1, b𝑖,𝑚+𝑘+2, . . . , b𝑖,𝑚+2𝑘+1}, ˆB∗𝑖 = {b∗𝑖,1, . . . , b
∗
𝑖,𝑚, b∗𝑖,𝑚+1,

b∗𝑖,𝑚+3, . . . , b
∗
𝑖,𝑚+𝑘+1, b

∗
𝑖,𝑚+2𝑘+2} for 𝑖 ∈ [𝑛]; 𝛼1, . . . , 𝛼𝑘

$← F𝑞, 𝜋
$←

F𝑞\{0}; and𝜙𝑖,0 = (®0𝑚+𝑘+1, 𝛼1, . . . , 𝛼𝑘 , 0)B𝑖 , 𝜙𝑖,1 = (®0𝑚+𝑘+1, 𝛼1, . . . ,
𝛼𝑘 , 𝜋)B𝑖 . For any PPT algorithm A, the advantage of A in deciding
Problem 2 is defined as

Adv𝑃2A (𝜆) = | Pr[1← A(𝜃0)] − Pr[1← A(𝜃1)] | ≤ negl(𝜆)

for some negligible function negl.

Next, we show that both Problem 1 and Problem 2 can be reduced

to the 𝑘-LIN assumption by using Lemma D.1.

Lemma D.2. For any PPT algorithm A for Problem 𝑖 ∈ [2], there
exists a PPT algorithm B for the 𝑘-LIN assumption such that for any
security parameter 𝜆, we have Adv𝑃𝑖A (𝜆) ≤ Adv𝑘−𝐿𝐼𝑁B (𝜆)

Proof. First, we are going to show the reduction for Problem 1

and then state the differences for Problem 2. Suppose there exists

PPT adversary A for Problem 1, which can be used by a PPT algo-

rithm B as a subroutine trying to solve an instance of Problem 0.

B is given this particular instance corresponding to 𝜒 = 2,

𝜗
ˆ𝛽
= (paramsG,D, ˆD∗, 𝑔

𝜁
𝜒 ,𝛀 ˆ𝛽

),

where everything is chosen in accordance with the notation of

Problem 0. Then, B carries out the following steps:

• B generates paramsV = (𝑞,V1,V2,G𝑇 ,A1,A2, 𝑒)
$←

G𝐷𝑃𝑉𝑆 (𝑚 + 2𝑘 + 2, paramsG) and calculates 𝑔𝑇 = 𝑒 (𝑔1, 𝑔𝜁
2
).

• For each 𝑖 ∈ [𝑛], B acts as followed:

– Sample a random invertible matrix𝑊𝑖 =

(𝑤𝑖, 𝑗,𝑡) (𝑚+2𝑘+2)×(𝑚+2𝑘+2)
$← GL(𝑚 + 2𝑘 + 2, F𝑞)

526

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

– Compute

𝒃∗𝑖, 𝑗 = (1
𝑘+𝑗
G2

, 𝑔
𝜁

2
, 1𝑘+𝑚+1−𝑗
G2

)𝑊𝑖 𝑗 ∈ [𝑚]

𝒃∗𝑚+1 = (𝒅1, 1
𝑚+𝑘+1
G2

)𝑊𝑖

𝒃∗𝑚+2 = (1
𝑘+𝑚+1
G2

, 𝑔
𝜁

2
, 1𝑘G2

)𝑊𝑖

𝒃∗𝑚+1+𝑗 = (𝒅 𝑗 , 1𝑚+𝑘+1G2

)𝑊𝑖 𝑗 ∈ [2, 𝑘]

𝒃∗
𝑚+1+𝑘+𝑗 = (1

𝑘+𝑚+1+𝑗
G2

, 𝑔
𝜁

2
, 1𝑘−𝑗
G2

)𝑊𝑖 𝑗 ∈ [𝑘]

𝒃∗
𝑚+2𝑘+2 = (𝒅𝑘+1, 1

𝑚+𝑘+1
G2

)𝑊𝑖

𝒃𝑖, 𝑗 = (1𝑘+𝑗G1

, 𝑔1, 1
𝑘+𝑚+1−𝑗
G1

)𝑊 ∗𝑖 𝑗 ∈ [𝑚]

𝒃𝑖,𝑚+1 = (𝒅∗1, 1
𝑘+𝑚+1
G1

)𝑊 ∗𝑖
𝒃𝑖,𝑚+2 = (1𝑘+𝑚+1G1

, 𝑔1, 1𝑘G1

)𝑊 ∗𝑖
𝒃𝑖,𝑚+1+𝑘+𝑗 = (1

𝑘+𝑚+1+𝑗
G1

, 𝑔1, 1
𝑘−𝑗
G1

)𝑊 ∗𝑖 𝑗 ∈ [𝑘]

– As B does not know the precise values of 𝒅∗𝑗 for 𝑗 > 1,

they implicitly set

𝒃𝑖,𝑚+1+𝑗 = (𝒅∗𝑗 , 1
𝑘+𝑚+1
G1

)𝑊 ∗𝑖 𝑗 ∈ [2, 𝑘]

𝒃𝑖,𝑚+2𝑘+2 = (𝒅∗𝑘+1, 1
𝑘+𝑚+1
G1

)𝑊 ∗𝑖
to implicitly obtain

B𝑖 = {𝒃𝑖,1, . . . , 𝒃𝑖,𝑚+2𝑘+2}
B∗𝑖 = {𝒃∗𝑖,1, . . . , 𝒃

∗
𝑖,𝑚+2𝑘+2}.

These are indeed dual orthogonal bases of V1 and V2
which are uniformly and independently distributed due

to the sampling of𝑊𝑖 . Moreover, 𝑒 (𝒃𝑖, 𝑗 , 𝒃∗𝑖, 𝑗) = 𝑔𝑇 ∀𝑗 ∈
[𝑚 + 2𝑘 + 2].

– B defines

ˆB𝑖 = {𝒃𝑖,1, . . . , 𝒃𝑖,𝑚+1, 𝒃𝑖,𝑚+𝑘+2, . . . , 𝒃𝑚+2𝑘+1}
ˆB∗𝑖 = {𝒃∗𝑖,1, . . . , 𝒃

∗
𝑖,𝑚+1, 𝒃

∗
𝑖,𝑚+3, . . . 𝒃

∗
𝑖,𝑚+𝑘+1, 𝒃

∗
𝑖,𝑚+2𝑘+2}.

Note that all of these values are known to 𝑐𝐵.

– Define 𝜙
𝑖, ˆ𝛽

= (𝛀𝜷 , 1
𝑚+𝑘+1
G2

)𝑊𝑖 .

• B hands 𝜃
ˆ𝛽
= (paramsG, 𝑔𝑇 , { ˆB𝑖 , ˆB∗𝑖 }𝑖∈[𝑛] , {𝜙𝑖,𝛽 }𝑖∈[𝑛]) to

A and outputs the same guessing bit as A. Note that

𝜙
𝑖, ˆ𝛽

= (𝛀𝜷 , 1
𝑚+𝑘+1
G2

)𝑊𝑖 (19)

= 𝛼1 (𝒅 𝑗 , 1𝑚+𝑘+1G2

)𝑊𝑖 +
𝑘∑︁
𝑗=2

𝛼 𝑗 (𝒅 𝑗 , 1𝑚+𝑘+1G2

)𝑊𝑖 (20)

+𝜓
ˆ𝛽
(𝒅𝑘+1, 1𝑚+𝑘+1G2

)𝑊𝑖 (21)

= 𝛼1𝒃
∗
𝑚+1 +

𝑘∑︁
𝑗=2

𝛼 𝑗𝒃
∗
𝑚+1+𝑗 +𝜓 ˆ𝛽

𝒃∗
𝑚+2𝑘+2 (22)

= (®0𝑚, 𝛼1, 0, 𝛼2, . . . , 𝛼𝑘 , ®0𝑘 ,𝜓 ˆ𝛽
)B∗

𝑖
, (23)

where𝜓
ˆ𝛽
= 𝜋 if

ˆ𝛽 = 1 and 0 else. Therefore, 𝜃
ˆ𝛽
is indeed an

instance of Problem 1 simulated by B with challenge bit
ˆ𝛽 .

Thus, the claim follows for 𝑖 = 1.

As mentioned, the proof for 𝑖 = 2 is very similar. Instead of 𝜒 = 2,

we choose 𝜒 = 1 and let B form the base vectors in the following

manner:

𝒃𝑖, 𝑗 = (1𝑗+𝑘G1

, 𝑔
𝜁

1
, 1𝑚+𝑘+1−𝑗
G1

)𝑊𝑖 𝑗 ∈ [𝑚 + 𝑘 + 1]

𝒃𝑖,𝑚+𝑘+1+𝑗 = (𝒅 𝑗 , 1𝑚+𝑘+1G1

)𝑊𝑖 𝑗 ∈ [𝑘 + 1]

𝒃∗𝑖, 𝑗 = (1
𝑗+𝑘
G2

, 𝑔2, 1
𝑚+𝑘+1−𝑗
G2

)𝑊 ∗𝑖 𝑗 ∈ [𝑚 + 𝑘 + 1]

𝒃𝑖,𝑚+𝑘+2 = (𝒅∗1, 1
𝑚+𝑘+1
G2

)𝑊 ∗𝑖

Afterwards, B continues as before by building the reduced bases

as in Problem 2. This concludes the lemma. □

The following computation analyzes the security of Section 7 in

greater detail. By definitions of the games, we have

Adv𝐺𝑎𝑚𝑒0
A (𝜆) = Pr[Expt𝑁𝑀𝐼𝐹𝐸

A (0) = 1],

Adv𝐺𝑎𝑚𝑒1,0,3
A (𝜆) = Adv𝐺𝑎𝑚𝑒0

A (𝜆),

Adv𝐺𝑎𝑚𝑒2,0,3
A (𝜆) = Adv

𝐺𝑎𝑚𝑒1,𝑞𝑘𝑒𝑦,3

A (𝜆),

Adv𝐺𝑎𝑚𝑒4
A (𝜆) = Pr[Expt𝑁𝑀𝐼𝐹𝐸

A (1) = 1] .

Also the transition from Game3 to Game4 is essentially the re-

verse transition of the Game1 sequence with ®𝑥𝑖,0 and ®𝑥𝑖,1 inter-

changed. Therefore, we have:

AdvA (𝜆) ≤ 2 ·
∑︁

𝑙 ∈[𝑞𝑘𝑒𝑦]

(
|Adv𝐺𝑎𝑚𝑒1,𝑙−1,3

A (𝜆) − Adv𝐺𝑎𝑚𝑒1,𝑙,1
A (𝜆) |

+
∑︁

𝑗 ∈[2,3]
|Adv𝐺𝑎𝑚𝑒1,𝑙,𝑗−1

A (𝜆) − Adv𝐺𝑎𝑚𝑒1,𝑙,𝑗

A (𝜆) |
)

+
∑︁
𝑖∈[𝑛]

(
|Adv𝐺𝑎𝑚𝑒2,𝑖−1,3

A (𝜆) − Adv𝐺𝑎𝑚𝑒2,𝑖,1
A (𝜆) |

+
∑︁

𝑗 ∈[2,3]
|Adv𝐺𝑎𝑚𝑒2,𝑖,𝑗−1

A (𝜆) − Adv𝐺𝑎𝑚𝑒2,𝑖,𝑗

A (𝜆) |
)

+ |Adv𝐺𝑎𝑚𝑒2,𝑛,3
A (𝜆) − Adv𝐺𝑎𝑚𝑒3

A (𝜆) |

≤ (4𝑞𝑘𝑒𝑦 + 2𝑛)Adv𝑘−𝐿𝐼𝑁B (𝜆) .

The following lemmas conclude the security analysis. Each lemma

represents one step in the sequence of games defined in 7.4.2.

Lemma D.3. For any PPT adversary A between Game
1,𝑙−1,3 and

Game
1,𝑙,1, there exists a PPT algorithm B for 1 such that for any

security parameter 𝜆, we have���AdvGame1,𝑙−1,3
A (𝜆) − AdvGame1,𝑙,1

A (𝜆)
��� ≤ Adv𝑃1B (𝜆), for all 𝑙 ∈ [𝑞𝑘𝑒𝑦] .

Proof. Suppose there exists a PPT adversary A between

Game
1,𝑙−1,3 and Game

1,𝑙,1. Then we can construct a PPT algorithm

B for Problem 1 using A as a subroutine in the following manner,

where B takes the role of the challenger in the SMN-H security

game as described in Definition 5.3.

• B is given an instance of Problem 1

𝜃
ˆ𝛽
= (paramsG, 𝑔𝑇 , { ˆB𝑖 , ˆB∗𝑖 }𝑖∈[𝑛] , {𝜙𝑖, ˆ𝛽 }𝑖∈[𝑛])

527

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

where all variables are generated as in Problem 1. B hands

pp = (paramsG, 𝑔𝑇) to A.

• For 𝑡 ∈ [𝑞𝑘𝑒𝑦], in order to answer the 𝑡𝑡ℎ decryption key

query of A corresponding to a set of vectors and two noise

values ({ ®𝑦𝑡,𝑖 }𝑖∈[𝑛] , 𝜈𝑡,0, 𝜈𝑡,1), B generates the components

of dk𝑡 as follows.

i) (𝑡 < 𝑙). B selects random 𝑟𝑡,𝑖,0, 𝑟𝑡,𝑖,1
$← F𝑞 for 𝑖 ∈ [𝑛] such

that

∑
𝑖∈[𝑛] 𝑟𝑡,𝑖,0 = 𝜈𝑡,0 and

∑
𝑖∈[𝑛] 𝑟𝑡,𝑖,1 = 𝜈𝑡,1. Further,

sample 𝛾𝑡,𝑖,1, . . . , 𝛾𝑡,𝑖,𝑘−1
$← F𝑞 to compute

k𝑡,𝑖 = (®𝑦𝑡,𝑖 , 𝑟𝑡,𝑖,0, 𝑟𝑡,𝑖,1, 𝛾𝑡,𝑖,1, . . . , 𝛾𝑡,𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖 .

ii) (𝑡 = 𝑙). B samples random 𝜔𝑙,𝑖
$← F𝑞 \ {0}; 𝛿𝑙,𝑖 , 𝜅𝑙,𝑖,1, . . .

𝜅𝑙,𝑖,𝑘−1
$← F𝑞 such that

∑
𝑖∈[𝑛] 𝜔𝑙,𝑖 = 0 and

∑
𝑖∈[𝑛] 𝛿𝑙,𝑖 =

𝜈𝑙,0. Compute

k𝑙,𝑖 =
∑︁
𝑗 ∈[𝑛]

𝑦
𝑗

𝑙,𝑖
b∗𝑖, 𝑗 + 𝛿𝑙,𝑖b

∗
𝑖,𝑚+1

+
∑︁

𝑗 ∈[𝑘−1]
𝜅𝑙,𝑖, 𝑗b

∗
𝑖,𝑚+2+𝑗 + 𝜔𝑙,𝑖𝜙𝑖, ˆ𝛽 .

iii) (𝑡 > 𝑙) . B selects random 𝑟𝑡,𝑖,0, 𝛾𝑡,𝑖,1, . . . , 𝛾𝑡,𝑖,𝑘−1
$← F𝑞 for

𝑖 ∈ [𝑛] such that

∑
𝑖 𝑟𝑡,𝑖,0 = 𝜈𝑡,0 and compute

k𝑡,𝑖 = (®𝑦𝑡,𝑖 , 𝑟𝑡,𝑖,0, 0, 𝛾𝑡,𝑖,1, . . . , 𝛾𝑡,𝑖,𝑘−1®0𝑘 , 0)B∗𝑖 .

B gives dk𝑡 = {k𝑡,𝑖 }𝑖∈[𝑛] to A.

• For 𝑖 ∈ [𝑛], in order to answer the 𝑖𝑡ℎ ciphertext query of

A corresponding to a pair of vectors (®𝑥𝑖,0, ®𝑥𝑖,1), B samples

random 𝜑𝑖,1, . . . 𝜑𝑖,𝑘
$← F𝑞 and computes

c𝑖 = (®𝑥𝑖,0, 1, 0, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)B𝑖 .
B hands ct𝑖 = (𝑖, c𝑖) to A.

• A outputs a guess bit 𝛽 ′ ∈ {0, 1}. B outputs
ˆ𝛽 ′ = 𝛽 ′ as its

guess bit in its own Problem 1 challenge.

Note that if
ˆ𝛽 = 0, i.e., 𝜙𝑖,0 = (®0𝑚, 𝛼1, 0, 𝛼2, . . . , 𝛼𝑘 , ®0𝑘 , 0)B∗𝑖 , then

for all 𝑖 ∈ [𝑛],
k𝑙,𝑖 =(®𝑦𝑙,𝑖 , 𝛼1𝜔𝑙,𝑖 + 𝛿𝑙,𝑖 , 0, 𝛼2𝜔𝑙,𝑖 + 𝜅𝑙,𝑖,1, . . . ,

𝛼𝑘𝜔𝑙,𝑖 + 𝜅𝑙,𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖 ,

which is the same form as in Equation (9) for 𝑟𝑙,𝑖,0 = 𝛼1𝜔𝑙,𝑖 + 𝛿𝑙,𝑖
and 𝛾𝑙,𝑖, 𝑗 = 𝛼 𝑗+1𝜔𝑙,𝑖 + 𝜅𝑙,𝑖, 𝑗 for 𝑗 ∈ [𝑘 − 1] and this is the proper

form of k𝑙,𝑖 in Game
1,𝑙−1,3 for all 𝑖 ∈ [𝑛]. If ˆ𝛽 = 1, i.e., 𝜙𝑖,1 =

(®0𝑚, 𝛼1, 0, 𝛼2, . . . , 𝛼𝑘 , ®0𝑘 , 𝜋)B∗𝑖 , then for all 𝑖 ∈ [𝑛],

k𝑙,𝑖 =(®𝑦𝑙,𝑖 , 𝛼1𝜔𝑙,𝑖 + 𝛿𝑙,𝑖 , 0, 𝛼2𝜔𝑙,𝑖 + 𝜅𝑙,𝑖,1, . . . ,

𝛼𝑘𝜔𝑙,𝑖 + 𝜅𝑙,𝑖,𝑘−1, ®0𝑘 , 𝜔𝑖,𝑙𝜋)B∗𝑖 ,

which is the same form as in Equation (10) for 𝑟𝑙,𝑖,0 = 𝛼1𝜔𝑙,𝑖 + 𝛿𝑙,𝑖 ,
𝛾𝑙,𝑖, 𝑗 = 𝛼 𝑗+1𝜔𝑙,𝑖 + 𝜅𝑙,𝑖, 𝑗 for 𝑗 ∈ [𝑘 − 1] and 𝜌𝑙,𝑖 = 𝜔𝑙,𝑖𝜋 and this is

the proper form of k𝑙,𝑖 in Game
1,𝑙,1 for all 𝑖 ∈ [𝑛]. In particular,∑

𝑖∈[𝑛] 𝑟𝑙,𝑖,0 = 𝜈𝑙,0 and
∑
𝑖∈[𝑛] 𝜌𝑙,𝑖 = 0. For 𝑡 < 𝑙 ,k𝑡,𝑖 has the form as

in Equation (12) for all 𝑖 ∈ [𝑛], whereas for 𝑡 > 𝑙 , k𝑡,𝑖 has the form
as in Equation (10) for all 𝑖 ∈ [𝑛]. But these are the proper forms

of k𝑡,𝑖 in the respective cases in both Game
1,𝑙−1,3 and Game

1,𝑙,1.

Moreover, the answer to the ciphertext query in index 𝑖 is given

as in Equation (8), which is their proper form in both Game
1,𝑙−1,3

and Game
1,𝑙,1. Therefore, the view of the adversary A simulated

by B is distributed as in Game
1,𝑙−1,3 and Game

1,𝑙,1, respectively,

according as
ˆ𝛽 = 0 or 1. □

Lemma D.4. For any probabilistic adversary A, for any security
parameter 𝜆, we have

AdvGame1,𝑙,1
A (𝜆) = AdvGame1,𝑙,2

A (𝜆), for all 𝑙 ∈ [𝑞𝑘𝑒𝑦] .

Proof. In order to prove this lemma, we show that the view of

the adversary A in Game
1,𝑙,1 and that in Game

1,𝑙,2 are identically

distributed. This is done by defining new sets of dual orthogonal

bases {U𝑖 = {u𝑖,1, . . . , u𝑖,𝑚+2𝑘+2},U∗𝑖 = {u∗
𝑖,1
, . . . , u∗

𝑖,𝑚+2𝑘+2}}𝑖∈[𝑛]
of the pair of vector spaces (V1,V2) using the sets of dual orthogo-
nal bases {B𝑖 ,B∗𝑖 }𝑖∈[𝑛] generated from G𝑂𝐵 (𝑚+2𝑘+2, paramsG, 𝑜)
in Game

1,𝑙,1 in the following manner:

u∗
𝑖,𝑚+2𝑘+2 = b∗

𝑖,𝑚+2𝑘+2 −
𝑟𝑙,𝑖,1

𝜌𝑙,𝑖
b∗𝑖,𝑚+2, 𝑖 ∈ [𝑛]

u∗𝑖, 𝑗 = b∗𝑖, 𝑗 , 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚 + 2𝑘 + 1]

u𝑖,𝑚+2 = b𝑖,𝑚+2 +
𝑟𝑙,𝑖,1

𝜌𝑙,𝑖
b𝑖,𝑚+2𝑘+2, 𝑖 ∈ [𝑛]

u𝑖, 𝑗 = b𝑖, 𝑗 , 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚 + 2𝑘 + 2]\{𝑚 + 2}.

Indeed, {U𝑖 ,U∗𝑖 }𝑖∈[𝑛] is a set of dual orthogonal bases as they
are obtained from the set of orthogonal bases {B𝑖 ,B∗𝑖 } by apply-

ing invertible linear transformations. Moreover, {U𝑖 ,U∗𝑖 }𝑖∈[𝑛] are
distributed uniformly at random due to {B𝑖 ,B∗𝑖 }𝑖∈[𝑛] being so.

Now, observe that the components of the 𝑙𝑡ℎ answered decryp-

tion key dk𝑙 = {k𝑙,𝑖 }𝑖∈[𝑛] corresponding to a set of vectors and two
noise values ({ ®𝑦𝑙,𝑖 }𝑖∈[𝑛] , 𝜈𝑡,0, 𝜈𝑡,1) with ®𝑦𝑙,𝑖 ∈ F𝑚𝑞 , 𝜈𝑡,0, 𝜈𝑡,1 ∈ F𝑞 for

all 𝑖 ∈ [𝑛], in Game
1,𝑙,1 can be displayed as

k𝑙,𝑖 = (®𝑦𝑙,𝑖 , 𝑟𝑙,𝑖,0, 0, 𝛾𝑙,𝑖,1, . . . , 𝛾𝑙,𝑖,𝑘−1, ®0𝑘 , 𝜌𝑙,𝑖)B∗𝑖
= (®𝑦𝑙,𝑖 , 𝑟𝑙,𝑖,0, 𝑟𝑙,𝑖,1, 𝛾𝑙,𝑖,1, . . . , 𝛾𝑙,𝑖,𝑘−1, ®0𝑘 , 𝜌𝑙,𝑖)U∗𝑖 .

(24)

Obviously, the form of k𝑙,𝑖 in the equation above is identical to that

in Equation (11) corresponding to Game
1,𝑙,2 for all 𝑖 ∈ [𝑛]. There-

fore, the form of the 𝑙𝑡ℎ answered decryption key is changed from

that in Game
1,𝑙,1 to that in Game

1,𝑙,2 through the basis transforma-

tions. Further, for all 𝑡 ≠ 𝑙 , the components of the 𝑡𝑡ℎ answered

decryption key corresponding to ({ ®𝑦𝑙,𝑖 }𝑖∈[𝑛] , 𝜈𝑡,0, 𝜈𝑡,1) in Game
1,𝑙,1

can be expressed as follows for all 𝑖 ∈ [𝑛]:
i) (𝑡 < 𝑙):

k𝑡,𝑖 = (®𝑦𝑡,𝑖 , 𝑟𝑡,𝑖,0, 𝑟𝑡,𝑖,1, 𝛾𝑡,𝑖,1, . . . , 𝛾𝑡,𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖
= (®𝑦𝑡,𝑖 , 𝑟𝑡,𝑖,0, 𝑟𝑡,𝑖,1, 𝛾𝑡,𝑖,1, . . . , 𝛾𝑡,𝑖,𝑘−1, ®0𝑘 , 0)U∗𝑖 .

ii) (𝑡 > 𝑙):

k𝑡,𝑖 = (®𝑦𝑡,𝑖 , 𝑟𝑡,𝑖,0, 0, 𝛾𝑡,𝑖,1, . . . , 𝛾𝑡,𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖
= (®𝑦𝑡,𝑖 , 𝑟𝑡,𝑖,0, 0, 𝛾𝑡,𝑖,1, . . . , 𝛾𝑡,𝑖,𝑘−1, ®0𝑘 , 0)U∗𝑖 .

Thus, for all 𝑡 ≠ 𝑙 , the forms of the components of dk𝑡 are preserved
under the basis transformations.

Further, for all 𝑖 ∈ [𝑛], the answer to the ciphertext query in

index 𝑖 , ct𝑖 = (𝑖, c𝑖) corresponding to a pair of vectors (®𝑥𝑖,0, ®𝑥𝑖,1)
528

Differentially Private Functional Encryption Proceedings on Privacy Enhancing Technologies 2024(2)

in Game
1,𝑙,1 can be expressed in the following manner:

c𝑖 = (®𝑥𝑖,0, 1, 0, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)B𝑖 .

= (®𝑥𝑖,0, 1, 0, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 0)U𝑖 ,

i.e. the form of ct𝑖 = (𝑖, c𝑖) is preserved under basis transformations

for all 𝑖 ∈ [𝑛].
In addition, note that 𝑒 (u𝑖, 𝑗 , u∗𝑖, 𝑗) = 𝑒 (b𝑖, 𝑗 , b∗𝑖, 𝑗) = 𝑔𝑇 for all

𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚+2𝑘 +2] and thus the basis transformations are com-

patible with the public parameters pp = (paramsG, 𝑔𝑇) in Game
1,𝑙,1

as well. Therefore, the view of A in Game
1,𝑙,1 can be conceptually

changed to that in Game
1,𝑙,2. □

Lemma D.5. For any PPT adversary A between Game
1,𝑙,2 and

Game
1,𝑙,3, there exists a PPT algorithm B for Problem 1 such that for

any security parameter 𝜆, we have���AdvGame1,𝑙,2
A (𝜆) − AdvGame1,𝑙,3

A (𝜆)
��� ≤ Adv𝑃1B (𝜆), for all 𝑙 ∈ [𝑞𝑘𝑒𝑦] .

Proof. The proof of this lemma is essentially the same as the

proof of Lemma D.3. Note that the only difference on the view of

an adversary trying to distinguish Game
1,𝑙,1 and Game

1,𝑙−1,3 and
that of one trying to differentiate between Game

1,𝑙,2 and Game
1,𝑙,3

for some 𝑙 ∈ [𝑞𝑘𝑒𝑦] is a possible non-zero value in the𝑚 + 2𝑡ℎ slot

of the decryption key query. More precise, having the exact same

setting as in the proof of Lemma D.3, B answers the 𝑡𝑡ℎ decryption

key query for 𝑡 = 𝑙 in the following manner.

B samples 𝜔𝑙,𝑖
$← F𝑞 \ {0}; 𝛿𝑙,𝑖 , 𝑟𝑙,𝑖,1, 𝜅𝑙,𝑖,1, . . . , 𝜅𝑙,𝑖,𝑘−1

$← F𝑞
such that

∑
𝑖∈[𝑛] 𝜔𝑙,𝑖 = 0,

∑
𝑖∈[𝑛] 𝑟𝑙,𝑖,1 = 𝜈𝑙,1 and

∑
𝑖∈[𝑛] 𝛿𝑙,𝑖 = 𝜈𝑙,0.

Compute

k𝑙,𝑖 =
∑︁
𝑗 ∈[𝑛]

𝑦
𝑗

𝑙,𝑖
b∗𝑖, 𝑗 + 𝛿𝑙,𝑖b

∗
𝑖,𝑚+1 + 𝑟𝑙,𝑖,1b

∗
𝑖,𝑚+2

+
∑︁

𝑗 ∈[𝑘−1]
𝜅𝑙,𝑖, 𝑗b

∗
𝑖,𝑚+2+𝑗 + 𝜔𝑙,𝑖𝜙𝑖, ˆ𝛽 .

and give dk𝑡 = {k𝑡,𝑖 }𝑖∈[𝑛] to A.

By the same arguments, all of the requirements hold and we

have the same form as in Equation (11) or Equation (12), depending

on whether
ˆ𝛽 is 1 or 0.

□

Lemma D.6. For any PPT adversary A between Game2,𝑖−1,3 and
Game2,𝑖,1, there exists a PPT algorithm B for Problem 2 such that for
any security parameter 𝜆, we have���AdvGame2,𝑖−1,3

A (𝜆) − AdvGame2,𝑖,1
A (𝜆)

��� ≤ Adv𝑃2B (𝜆), for all 𝑖 ∈ [𝑛] .

Proof. Suppose there exists a PPT adversary A between

Game2,𝑖−1,3 and Game2,𝑖,1. Then we can construct a PPT algorithm

B for Problem 2 using A as a subroutine in the following manner,

where B takes the role of the challenger in the SMN-H security

game as described in Definition 5.3.

• B is given an instance of Problem 2

𝜃
ˆ𝛽
= (paramsG, 𝑔𝑇 , { ˆB𝑖 , ˆB∗𝑖 }𝑖∈[𝑛] , {𝜙𝑖, ˆ𝛽 }𝑖∈[𝑛])

where all variables are generated as in Problem 2. B hands

pp = (paramsG, 𝑔𝑇) to A.

• For 𝑙 ∈ [𝑞𝑘𝑒𝑦], in order to answer the 𝑙𝑡ℎ decryption key

query of A corresponding to a set of vectors and two noise

values ({ ®𝑦𝑙,𝑖 }𝑖∈[𝑛] , 𝜈𝑙,0, 𝜈𝑙,1), B selects random 𝑟𝑙,𝑖,0, 𝑟𝑙,𝑖,1
$←

F𝑞 for 𝑖 ∈ [𝑛] such that∑𝑖∈[𝑛] 𝑟𝑙,𝑖,0 = 𝜈𝑙,0 and
∑
𝑖∈[𝑛] 𝑟𝑙,𝑖,1 =

𝜈𝑙,1. Further, sample 𝛾𝑡,𝑖,1, . . . , 𝛾𝑡,𝑖,𝑘−1
$← F𝑞 to compute

k𝑙,𝑖 = (®𝑦𝑙,𝑖 , 𝑟𝑙,𝑖,0, 𝑟𝑙,𝑖,1, 𝛾𝑙,𝑖,1, . . . , 𝛾𝑙,𝑖,𝑘−1, ®0𝑘 , 0)B∗𝑖 .

B gives dk𝑙 = {k𝑙,𝑖 } to A.

• For 𝑡 ∈ [𝑛], in order to answer the ciphertext query of A
in index 𝑡 corresponding to a pair of vectors (®𝑥𝑡,0, ®𝑥𝑡,1), B
computes c𝑡 as follows:

i) (𝑡 < 𝑖) B samples random 𝜑𝑡,1, . . . 𝜑𝑡,𝑘
$← F𝑞 and calcu-

lates c𝑡 as

c𝑡 = (®𝑥𝑡,1, 0, 1, ®0𝑘−1, 𝜑𝑡,1, . . . , 𝜑𝑡,𝑘 , 0)B𝑡 .
ii) (𝑡 = 𝑖) B calculates c𝑖 as

c𝑖 =
∑︁

𝑗 ∈[𝑚]
𝑥
𝑗

𝑖,0
b𝑖, 𝑗 + b𝑖,𝑚+1 + 𝜙𝑖, ˆ𝛽

iii) (𝑡 > 𝑖) B samples random 𝜑𝑡,1, . . . 𝜑𝑡,𝑘
$← F𝑞 and calcu-

lates c𝑡 as

c𝑡 = (®𝑥𝑡,0, 1, 0, ®0𝑘−1, 𝜑𝑡,1, . . . , 𝜑𝑡,𝑘 , 0)B𝑡 .
B hands ct𝑡 = (𝑡, c𝑡) to A.

• A outputs a guess bit 𝛽 ′ ∈ {0, 1}. B outputs
ˆ𝛽 ′ = 𝛽 ′ as its

guess bit in its own Problem 1 challenge.

Note that if
ˆ𝛽 = 0, i.e., 𝜙𝑖,0 = (®0𝑚+𝑘+1, 𝛼1, 𝛼2, . . . , 𝛼𝑘 , 0)B𝑖 , then

we have

c𝑖 = (®𝑥𝑖,0, 1, 0, ®0𝑘−1, 𝛼1, . . . , 𝛼𝑘 , 0)B𝑖
which is the same form as in Equation (8) for 𝜑𝑖, 𝑗 = 𝛼 𝑗 , 𝑗 ∈ [𝑘]. If
ˆ𝛽 = 1, i.e., 𝜙𝑖,0 = (®0𝑚+𝑘+1, 𝛼1, 𝛼2, . . . , 𝛼𝑘 , 𝜋)B𝑖 , then,

c𝑖 = (®𝑥𝑖,0, 1, 0, ®0𝑘−1, 𝛼1, . . . , 𝛼𝑘 , 𝜋)B𝑖
which is the same form as in Equation (13) for 𝜑𝑖, 𝑗 = 𝛼 𝑗 , 𝑗 ∈ [𝑘]
and 𝜔𝑖 = 𝜋 and this is the proper form of c𝑖 in Game2,𝑖,1. For 𝑡 < 𝑖 ,

c𝑡 has the form as in Equation (15) for all 𝑡 ∈ [𝑛], whereas for 𝑡 > 𝑖 ,

c𝑡 has the form as in Equation (13) for all 𝑡 ∈ [𝑛]. But these are the
proper forms of c𝑡 in the respective cases in both Game2,𝑖−1,3 and
Game2,𝑖,1. Moreover, the answer to the 𝑙𝑡ℎ decryption key query

is given as in Equation (12), which is their proper form in both

Game2,𝑖−1,3 and Game2,𝑖,1. Therefore, the view of the adversary

A simulated by B is distributed as in Game2,𝑖−1,3 or Game2,𝑖,1,

according as
ˆ𝛽 = 0 or 1. □

Lemma D.7. For any probabilistic adversary A, for any security
parameter 𝜆, we have

AdvGame2,𝑖,1
A (𝜆) = AdvGame2,𝑖,2

A (𝜆), for all 𝑖 ∈ [𝑛] .

Proof. In order to prove this lemma, we show that the view of

the adversary A in Game2,𝑖,1 and that in Game2,𝑖,2 are identically

distributed. This is done by defining new sets of dual orthogonal

bases {U𝑡 = {u𝑡,1, . . . , u𝑡,𝑚+2𝑘+2},U∗𝑡 = {u∗
𝑡,1
, . . . , u∗

𝑡,𝑚+2𝑘+2}}𝑡 ∈[𝑛]
of the pair of vector spaces (V1,V2) using the sets of dual orthogo-
nal bases {B𝑡 ,B∗𝑡 }𝑡 ∈[𝑛] generated fromG𝑂𝐵 (𝑚+2𝑘+2, paramsG, 𝑜)
in Game2,𝑖,1 in the following manner:

529

Proceedings on Privacy Enhancing Technologies 2024(2) Jasmin Zalonis, Frederik Armknecht, and Linda Scheu-Hachtel

u𝑡,𝑚+2𝑘+2 = b𝑡,𝑚+2𝑘+2 +
1

𝜔𝑡
(b𝑡,𝑚+1 − b𝑡,𝑚+2

+
∑︁

𝑗 ∈[𝑚]
(𝑥 𝑗

𝑡,0
− 𝑥 𝑗

𝑡,1
)b𝑡, 𝑗), 𝑡 ∈ [𝑛]

u𝑡, 𝑗 = b𝑡, 𝑗 , 𝑡 ∈ [𝑛], 𝑗 ∈ [𝑚 + 2𝑘 + 1]

u∗𝑡, 𝑗 = b∗𝑡, 𝑗 +
1

𝜔𝑡
(𝑥 𝑗

𝑡,1
− 𝑥 𝑗

𝑡,0
)b∗

𝑡,𝑚+2𝑘+2, 𝑡 ∈ [𝑛], 𝑗 ∈ [𝑚]

u∗𝑡,𝑚+1 = b∗𝑡,𝑚+1 −
1

𝜔𝑡
b∗
𝑡,𝑚+2𝑘+2, 𝑡 ∈ [𝑛]

u∗𝑡,𝑚+2 = b∗𝑡,𝑚+2 +
1

𝜔𝑡
b∗
𝑡,𝑚+2𝑘+2, 𝑡 ∈ [𝑛]

u∗𝑡, 𝑗 = b∗𝑡, 𝑗 , 𝑡 ∈ [𝑛], 𝑗 ∈ [𝑚 + 3,𝑚 + 2𝑘 + 2]

Indeed, {U𝑡 ,U∗𝑡 }𝑡 ∈[𝑛] is a set of dual orthogonal bases as they
are obtained from the set of orthogonal bases {B𝑡 ,B∗𝑡 } by apply-

ing invertible linear transformations. Moreover, {U𝑡 ,U∗𝑡 }𝑡 ∈[𝑛] are
distributed uniformly at random due to {B𝑡 ,B∗𝑡 }𝑡 ∈[𝑛] being so.

Observe that the components of the ciphertext query in the 𝑖𝑡ℎ

index corresponding to a set of two vectors (®𝑥𝑖,0, ®𝑥𝑖,1) in Game2,𝑖,1

can be displayed as

c𝑖 = (®𝑥𝑖,0, 1, 0, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 𝜔𝑖)B𝑖
= (®𝑥𝑖,1, 0, 1, ®0𝑘−1, 𝜑𝑖,1, . . . , 𝜑𝑖,𝑘 , 𝜔𝑖)U𝑖 .

Clearly, the form of c𝑖 in the equation above is identical to that

in Equation (14) corresponding to Game2,𝑖,2. Thus, the form of this

ciphertext request is changed from that in Game2,𝑖,1 to Game2,𝑖,2

through the basis transformations. Further, for all 𝑡 ≠ 𝑖 corre-

sponding to the ciphertext query in the 𝑡𝑡ℎ index corresponding to

(®𝑥𝑡,0, ®𝑥𝑡,1) in Game2,𝑖,1 can be expressed in the following manner:

i) (𝑡 < 𝑖) :

c𝑡 = (®𝑥𝑡,1, 0, 1, ®0𝑘−1, 𝜑𝑡,1, . . . , 𝜑𝑡,𝑘 , 0)B𝑡
= (®𝑥𝑡,1, 0, 1, ®0𝑘−1, 𝜑𝑡,1, . . . , 𝜑𝑡,𝑘 , 0)U𝑡

ii) (𝑡 > 𝑖) :

c𝑡 = (®𝑥𝑡,0, 1, 0, ®0𝑘−1, 𝜑𝑡,1, . . . , 𝜑𝑡,𝑘 , 0)B𝑡
= (®𝑥𝑡,0, 1, 0, ®0𝑘−1, 𝜑𝑡,1, . . . , 𝜑𝑡,𝑘 , 0)U𝑡

Hence, for all 𝑡 ≠ 𝑖 , the forms of the components of ct𝑡 are pre-
served under the basis transformations.

Further, for all decryption key queries 𝑙 ∈ [𝑞𝑘𝑒𝑦] corresponding
to a set of vectors and two noise values ({ ®𝑦𝑙,𝑡 }𝑡 ∈[𝑛] , 𝜈𝑙,0, 𝜈𝑙,1), it
holds that for all 𝑡 ∈ [𝑛] that

k𝑙,𝑡 = (®𝑦𝑙,𝑡 , 𝑟𝑙,𝑡,0, 𝑟𝑙,𝑡,1, 𝛾𝑙,𝑡,1, . . . , 𝛾𝑙𝑡,𝑘−1, ®0𝑘 , 0)B∗𝑡
= (®𝑦𝑙,𝑡 , 𝑟𝑙,𝑡,0, 𝑟𝑙,𝑡,1, 𝛾𝑙,𝑡,1, . . . , 𝛾𝑙𝑡,𝑘−1, ®0𝑘 , 0)U∗𝑡 ,

i.e., the form of dk𝑙 is preserved under basis transformations for all

𝑡 ∈ [𝑛].
In addition, note that 𝑒 (u𝑡, 𝑗 , u∗𝑡, 𝑗) = 𝑒 (b𝑡, 𝑗 , b∗𝑡, 𝑗) = 𝑔𝑇 for all

𝑡 ∈ [𝑛], 𝑗 ∈ [𝑚+2𝑘 +2] and thus the basis transformations are com-

patible with the public parameters pp = (paramsG, 𝑔𝑇) in Game2,𝑖,1

as well. Therefore, the view of A in Game2,𝑖,1 can be conceptually

changed to that in Game2,𝑖,2. □

Lemma D.8. For any PPT adversary A between Game2,𝑖,2 and
Game2,𝑖,3, there exists a PPT algorithm B for 2 such that for any
security parameter 𝜆, we have���AdvGame2,𝑖,2

A (𝜆) − AdvGame2,𝑖,3
A (𝜆)

��� ≤ Adv𝑃2B (𝜆), for all 𝑖 ∈ [𝑛] .

Proof. The proof of this lemma is essentially the same as the

proof of Lemma D.6. Note that the only difference on the view of an

adversary trying to distinguish Game2,𝑖,1 and Game2,𝑖−1,3 and one

trying to differentiate between Game2,𝑖,2 and Game2,𝑖,3 is that the

𝑚+1𝑡ℎ and𝑚+2𝑡ℎ slot in the 𝑖𝑡ℎ ciphertext query are interchanged

and ®𝑥𝑖,0 is replaced by ®𝑥𝑖,1. In detail, having the exact same setting

as in the proof of Lemma D.6, B answers the 𝑖𝑡ℎ ciphertext query

in the following way.

B calculates

c𝑖 =
∑︁

𝑗 ∈[𝑚]
𝑥
𝑗

𝑖,1
b𝑖, 𝑗 + b𝑖,𝑚+2 + 𝜙𝑖, ˆ𝛽

and hands ct𝑖 = (𝑖, c𝑖) to A.

by the same arguments as before, all of the requirements hold

and we have the same form as in Equation (14) or (15), depending

on whether
ˆ𝛽 is 1 or 0. □

Lemma D.9. For any probabilistic adversary A, for any security
parameter 𝜆, we have

AdvGame2,𝑛,3
A (𝜆) = AdvGame3

A (𝜆) .

Proof. Proving this lemma is straightforward as it simply re-

quires a base transformation where the base vectors of B𝑖 and 𝐵
∗
𝑖
in

position𝑚 + 1 and𝑚 + 2 are interchanged. Clearly, this transforma-

tion maintains all the crucial properties of the bases and changes

the view of the adversary accordingly. □

530

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Differential Privacy

	3 Problem Statement and Related Work
	4 Privacy Preserving Analysis with Functional Encryption
	4.1 Overview
	4.2 Challenges

	5 Noisy Multi-Input Functional Encryption
	6 Building a NMIFE scheme from a MIFE scheme
	7 A Single-Message-and-Noise-Hiding Noisy Multi-Input Functional Encryption Scheme for Inner Products
	7.1 Overview
	7.2 Mathematical Foundations
	7.3 Description
	7.4 Analysis
	7.5 Implementation

	8 Conclusion
	Acknowledgments
	References
	A Differential Privacy
	B Proof of Theorem 6.1
	C A Message-and-Noise-Hiding Noisy Multi-Input Functional Encryption Scheme for Inner Products
	C.1 Overview
	C.2 Full-Hiding Bounded Multi-Input Functional Encryption Scheme for Affine Functions

	D Proof of Theorem 7.2

