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ABSTRACT
Bit-decomposition-based zero-knowledge range proofs in the dis-
crete logarithm (DLOG) setting with a transparent setup, e.g., Bullet-
proof (IEEE S&P '18), Flashproof (ASIACRYPT '22), and SwiftRange
(IEEE S&P '24), have garnered widespread popularity across various
privacy-enhancing applications. These proofs aim to prove that a
committed value falls within the non-negative range [0, 2𝑁 − 1]
without revealing it, where 𝑁 represents the bit length of the range.
Despite their prevalence, the current implementations still suffer
from suboptimal performance. Some exhibit reduced communica-
tion costs at the expense of increased computational costs while
others experience the opposite. Presently, users are compelled to
utilize these proofs in scenarios demanding stringent requirements
for both communication and computation efficiency.

In this paper, we introduce, FlashSwift, a stronger DLOG-based
logarithmic-sized alternative. It stands out for its greater short-
ness and significantly enhanced computational efficiency compared
with the cutting-edge logarithmic-sized ones for the most common
ranges where 𝑁 ≤ 64. It is developed by integrating the techniques
from Flashproof and SwiftRange without using a trusted setup.
The substantial efficiency gains stem from our dedicated efforts in
overcoming the inherent incompatibility barrier between the two
techniques. Specifically, when 𝑁 = 64, our proof achieves the same
size as Bulletproof and exhibits 1.1× communication efficiency of
SwiftRange. More importantly, compared with the two, it achieves
2.3× and 1.65× proving efficiency, and 3.2× and 1.7× verification
efficiency, respectively. At the time of writing, our proof also cre-
ates two new records of the smallest proof sizes, 289 bytes and 417
bytes, for 8-bit and 16-bit ranges among all the bit-decomposition-
based ones without requiring trusted setups. Moreover, to the best
of our knowledge, it is the first configurable range proof that is
adaptable to various scenarios with different specifications, where
the configurability allows to trade off communication efficiency
for computational efficiency. In addition, we offer a bonus feature:
FlashSwift supports the aggregation of multiple single proofs for
efficiency improvement. Finally, we provide comprehensive perfor-
mance benchmarks against the state-of-the-art ones to demonstrate
its practicality.
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1 INTRODUCTION
Zero-knowledge proofs have been essential foundational compo-
nents in various privacy-enhancing applications since they were
firstly proposed by Goldwasser, Micali and Rackoff in 1985 [18].
By utilizing a zero-knowledge proof, a prover can demonstrate the
validity of a public statement without revealing any secret infor-
mation except the truth of the statement.

Zero-knowledge range proofs are one of the most widely used
proofs, which aim to demonstrate that a committed value lies within
a specified range without revealing it. Especially, bit-decomposition-
based ones in the discrete logarithm (DLOG) setting with a trans-
parent setup, e.g., Bulletproof [7], Flashproof1 [30] and SwiftRange
[32], have gained growing popularity among various applications.
These proofs utilize the folklore bit-decomposition approach to
demonstrate that a committed value lies within the range [0, 2𝑁 −1]
without using a trusted setup, where 𝑁 represents the bit length
of the range. Transparent or non-trusted setups are becoming an
increasingly desirable feature for zero-knowledge proofs, where
trusted setups rely on a specific group of trusted parties to gen-
erate public parameters and destroy secret trapdoors. However,
these trusted setups may pose risks of leaking trapdoor informa-
tion, undermining the security of the applications that rely on these
zero-knowledge proofs. On the flip side, transparent setups alleviate
this concern but introduce additional challenges in the design of
zero-knowledge proofs with higher efficiency.

1.1 Applications
Bit-decomposition-based range proofs are widely used in diverse ap-
plications. In blockchain-based confidential transactions (CT) [19],
range proofs play a crucial role in demonstrating the possession of
sufficient funds with non-negative balances while preserving pri-
vacy. Black-box accumulation (BBA) schemes [22] enable privacy-
preserving point collection and redemption on cryptographic to-
kens. They are important pillars for diverse user-centric protocols
such as payment and incentive systems. Range proofs can be used to
guarantee the committed balances are non-negative after deduction
when users spend points. In privacy-preserving data aggregation
schemes [8, 29], data providers are required to submit range proofs
to ensure the integrity of the committed data and prevent invalid
data from polluting the aggregate statistics. Zero-knowledge deep
learning schemes empower model owners to prove that the pre-
dictions of data samples are generated by their models without
1Flashproofs and Bulletproofs-based ones consist of multiple proofs. We use the singu-
lar names, Bulletproof(+) and Flashproof, to refer to their range instances.
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disclosing any model-related information. Range proof techniques
can be leveraged to compute the outputs of non-linear functions,
e.g., ReLU [26]. Vehicular digital forensics systems [23] collect vehic-
ular data to enable liability cognizance of accidents and fight against
crimes in a privacy-preserving manner. The systems leverage range
proofs to create digital warrants accompanied with expiration so
that others can check the validity of the warrants without knowing
the hidden sensitive data. Anonymous credentials [27] are popular
digital signatures accompanied by a series of secret attributes, such
as age, height, date of birth, etc. Users must provide range proofs
to demonstrate the validity of these attributes to the issuing parties
before presenting the signed credentials to verifiers to authenticate
themselves without revealing their identities. In anonymous repu-
tation systems [25], consumers can leave committed rating scores
for their experiences with retailers in order to help the retailers to
build reputations among industrial partners.

It is commonly accepted that the ranges for 𝑁 ∈ {8, 16, 32, 64}
are typically adequate for the majority of privacy-enhancing ap-
plications. For instance, CT platforms typically opt for 32-bit or
64-bit ranges, while BBA schemes commonly employ 16-bit or 32-
bit ranges. In the context of deep learning schemes, 8-bit ranges
find utility in computing ReLU functions, as indicated in [26]. For
crowdsensing applications, the requirements can be sufficiently
addressed with ranges where 𝑁 ≤ 32. In the domain of anonymous
credentials, 16-bit ranges are deemed suitable for parameters like
age and height, whereas 32-bit ranges are sufficient for represent-
ing date-of-birth. Vehicular digital forensics systems, on the other
hand, often find 16-bit ranges satisfactory for encoding warrant
expiration information. Anonymous reputation systems typically
make use of 3-bit range proofs.

1.2 Motivation
It is well-known that zero-knowledge proofs involve large amounts
of communication and computational costs, leading to the fact
that their performance tends to dominate that of the associated
applications. There are three key performance measures for zero-
knowledge proofs, namely proof size, proving and verification ef-
ficiency. Proof sizes influence the communication overheads of
applications while proving and verification efficiency determines
how quickly a proof can be generated and verified, which consider-
ably affects the user experience and the execution of applications.

In practical scenarios, a multitude of privacy-enhancing applica-
tions impose strict demands on both communication and compu-
tational efficiency. This is primarily due to the constraints posed
by limited resources such as computing power, storage capacity,
bandwidth availability and battery life, etc. Moreover, the perfor-
mance of the incumbent bit-decomposition-based zero-knowledge
range proofs remains suboptimal, which has long been a bottle-
neck, constraining the broader usability and adoption of relevant
applications. We elaborate on two concrete applications that are
experiencing such predicament:

• One application is the blockchain-empowered verifiable crowd-
sensing system [8], which allows a group of users to provide
crowdsensed data for privacy-preserving data aggregation.
Each user must store a 16-bit Bulletproof on the Ethereum
blockchain, ensuring public verifiability and substantiating

the validity of their provided data. However, the storage
expenses associated with these proofs on the Ethereum net-
work present a significant challenge. Based on the current
gas consumption formula (21000 + 16 * bytes), the expenses
are linearly proportional to the number of bytes, where gas
measures the resources used to conduct a transaction on the
Ethereum blockchain. Thus, storing proofs for 1000 users
alone would result in a financial loss of 8.76 million gas,
equivalent to a staggering $1549 USD at the time of writing,
where the prices of gas and ether were 73 gwei and $2422
USD, respectively. Additionally, the enhanced computational
overheads of Bulletproof may lead to a prolonged system
running time, negatively impacting user experience.
• The other application is the black-box wallets [22], a privacy-
preserving payment system for resource-constrained de-
vices, e.g., smartphones and smart cards. The system uses
16-bit Bulletproof to prove the non-negativity of users’ bal-
ances after payments without compromising privacy. In or-
der to provide a more favorable user experience with re-
duced interaction time, the system needs to navigate runtime-
communication trade-offs. It opts for the linear-sized proof,
prioritizing faster computational efficiency over the logarithmic-
sized alternative. Consequently, the system must compro-
mise on transmission time to attain a shorter computation
time. Unfortunately, the system fails to benefit from Bullet-
proof’s communication advantage.

In a nutshell, dealing with large and computationally intensive
proofs is a drain on time, storage and energy. The need for shorter
proofs with improved computational efficiency is always necessary
and beneficial. Moreover, cutting-edge range proofs employ distinct
algorithms for their constructions and are applied in diverse scenar-
ios, contingent on their unique strengths and limitations. In case
of any changes in requirements, replacing a proof with a different
one for resource-constrained devices presents challenges in both
communication and energy. Software upgrades can be problematic
for battery-operated devices, as they tend to be energy-consuming
and can significantly diminish the devices’ lifespan. Configurable
performance is a beneficial property for a proof that can allevi-
ate the strain on devices during resource-intensive upgrades. This
property enables a proof to adapt to various situations, eliminating
the need for a replacement for another proof in the event of any
changes. Therefore, we wonder curiously:

Is there a way to combine the strengths of the state-of-the-art proofs
to produce a stronger and configurable alternative without resorting
to a trusted setup?

1.3 Contributions
In this paper, we make a meaningful stride in crafting a stronger
logarithmic-sized alternative in the DLOG setting. We propose,
FlashSwift2, through the fusion of the techniques from Flashproof
and SwiftRange. FlashSwift stands out for its greater shortness and
significantly enhanced computational efficiency in contrast with
the state-of-the-art logarithmic-sized ones, e.g., Bulletproof and

2Technically, FlashSwift is an argument of knowledge, a proof whose soundness holds
for computationally bounded provers. We will use the two terms interchangeably.
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SwiftRange. The substantial efficiency gains stem from our ded-
icated efforts in overcoming the inherent incompatibility barrier
between the two proof techniques. Furthermore, by combining the
two proofs, FlashSwift not only gains their efficiency advantages
but also a distinctive feature, configurability. This means that its
performance can be adjusted to suit various scenarios with dif-
ferent specifications, providing users with more choices for their
applications. To the best of our knowledge, our work is the first
configurable range proof in the literature. Note that our proof does
not require any trusted setup or computationally expensive pairing
operations.

1.3.1 Overview. Flashproof and SwiftRange are two variants of the
bit-decomposition-based range proofs, which prove that a commit-
ted value lies within the range [0, 2𝑁 − 1] if it can be represented in
binary form. Flashproof is a 3-round zero-knowledge range protocol
Πfrg, which has𝑂 (𝑁

2
3 ) sublinear efficiency in both communication

and verification. It achieves comparable verification efficiency to
that of the most efficient zkSNARK [21] that only involves three
pairing operations for verification benefiting from a trusted setup.
SwiftRange is a logarithmic-sized range proof composed of a 5-
round zero-knowledge range protocol Πsrg and a sequence of non-
zero-knowledge compression protocols Πqc in Eqn. (1):

ΠSR = Πqc ⋄ · · · ⋄ Πqc︸             ︷︷             ︸
(log𝑁−3) times

⋄ Πsrg (1)

where the final messages of Πsrg are replaced by the execution of a
series of Πqc. When 𝑁 ≤ 8, the protocol Πsrg alone constitutes a
highly short range proof. When 𝑁 > 8, the prover can recursively
apply (log𝑁 − 3) times of the compression protocol Πqc to the
range protocol Πsrg until the witness dimension is reduced to 8 for
the minimum proof size.

1.3.2 Challenges. We begin with a concise overview of the chal-
lenges to provide a brief insight to our proof with further details
expounded in Section 5.1. At a high level, we combine the bit-
decomposition technique of Flashproof and the compression tech-
nique of SwiftRange. Inherently, there exists an incompatibility
barrier between the two techniques, which inhibits a direct fu-
sion. After a thorough examination of both techniques’ features,
we discovered that Flashproof comprises three verification equa-
tions, where two of them use one same witness vector for veri-
fication. We aim to leverage SwiftRange’ compression technique
to logarithmically reduce the dimension of this witness vector for
communication efficiency improvement. However, only one of the
two vector-related equations is compressible while the other is not.
Attempting to compress a single equation proves futile, as it would
compromise the other, resulting in a failed verification. Conse-
quently, the primary challenge lies in developing a comprehensive
approach to enable the compression-friendliness of Flashproof’s
multiple verification equations without using a trusted setup.

1.3.3 Our Solution. The high-level ideas of our solution are:
(1) to integrate Flashproof’s multiple verification equations into

a single one.
(2) to convert the integrated equation to the compression-friendly

form of SwiftRange.

We implement the ideas to devise a new 5-round compression-
friendly protocol Πrfrg based on the protocol Πfrg:

ΠFS = Πqc ⋄ · · · ⋄ Πqc︸             ︷︷             ︸
( ⌈log 𝑁

𝐾
⌉−3) times

⋄ Πrfrg (2)

where ⌈·⌉ is a round-up-to-the-nearest-integer operator. We borrow
the positive "batch-size" parameter 𝐾 from Flashproof and will
explain it in Section 4.1. Compared with SwiftRange, our proof
involves fewer compression recursions. When ⌈𝑁

𝐾
⌉ > 8, the prover

can apply (⌈log 𝑁
𝐾
⌉ − 3) times of the compression protocols to the

re-devised protocol Πrfrg until the witness dimension is reduced to
8 for the minimum proof size.

1.3.4 Configurability. Our proof achieves the optimal efficiency in
communication and computation when 𝐾 = 2 and 𝐾 ≈ 𝑁

1
3 , respec-

tively. We will call them Low-Gear (LG) proof and High-Gear (HG)
proof in the following to distinguish them, respectively. Generally,
as 𝐾 incrementally ranges from 2 to 𝑁

1
3 , our proof’s computational

efficiency improves, albeit at the cost of reduced communication
efficiency. Thus, the parameter 𝐾 can be flexibly configured in the
interval [2, 𝑁

1
3 ] so as to adapt to various scenarios with different

requirements. Notably, the high-gear proof can be a stronger con-
tender against Flashproof since it achieves greater shortness while
maintaining comparable computational overheads. The substantial
benefit of this configurability is that the shift between two gears
requires minimal adjustments to the implementation.
Remarks: The low-gear proof is the focus of this paper since
communication efficiency tends to draw more attention in many
privacy-enhancing applications, e.g., confidential transactions. Note
that we restrict the ranges sizes to the most common ones where
𝑁 ∈ {8, 16, 32, 64} and the efficiency advantages of our low-gear
proof over Bulletproof and SwiftRange holds within these ranges3.

1.3.5 Aggregation. We offer a bonus feature: FlashSwift allows for
the aggregation of 𝐽 single proofs, which is denoted by 𝐽 -aggregate
proof. A 𝐽 -aggregate proof compacts 𝐽 single proofs into one to
save computational and communication overheads. In the following
paper, 𝑁 and 𝐽 are the powers of 2 and we can pad zeros if not.

1.4 Comparisons with the State of the art
Tables 1 and 2 demonstrate the efficiency comparisons of the state-
of-the-art bit-decomposition-based range proofs with ours. For our
low-gear proof, it involves far fewer group exponentiations than
Bulletproof and SwiftRange in proving and verification. It uses
64 fewer bytes than SwiftRange for all ranges. Despite having a
quicker growth rate than Bulletproof in the number of elements,
it maintains an advantage in communication costs when 𝑁 ≤ 64.
Bulletproof+ [11] slightly improves Bulletproof by using three fewer
elements while retaining comparable computational efficiency. Our
proof still exhibits a smaller size when 𝑁 ≤ 16 while presenting
a substantial advantage in computational efficiency. Additionally,
our proof has lower round complexity, enabling tighter security
analysis than the two logarithmic-sized proofs in the random oracle

3Bulletproof has higher communication efficiency when 𝑁 > 64, but is still far less
efficient in computational efficiency.
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Table 1: The efficiency comparison of the state-of-the-art bit-decomposition-based range arguments, where 𝑁 is assumed
to be the power of 2. G indicates a cyclic group of prime order 𝑝 and Z𝑝 is the ring of integers modulo 𝑝. We compare the
group exponentiations as they dominate the computational overheads, where the computational complexity of Bulletproof+ is
comparable to that of Bulletproof based on their experimental results [11]. The same as Flashproof, we take the nearest integer
⌈𝑁

1
3 ⌋ as the cubic root of N and 𝑁

2
3 can thus be obtained by computing 𝑁 · ⌈𝑁−

1
3 ⌋. 𝐹 (·) is a function, defined by Flashproof,

which yields a specific value based on the input (Please see Section 4.1.2 and Appendix B for more details).

Type Bulletproof [7] Bulletproof+ [11] Flashproof [30] SwiftRange (𝑁 > 8) [32] FlashSwift (LG, 𝑁 > 16) FlashSwift (HG, ⌈log𝑁
2
3 ⌉ > 3)

Prover
No. of Exps (G) 10𝑁 + 4 log𝑁 + 7 ≈ Bulletproof 𝑁

2
3 · 𝐹 (𝑁

1
3 − 1) + 𝑁

1
3 8𝑁 − 79 5𝑁 − 77 8𝑁

2
3 + 𝑁

2
3 ·

(
𝐹 (𝑁

1
3 ) − 1

)
+ 𝑁

1
3 − 79

Verifier
No. of Exps (G) 2𝑁 + 2 log𝑁 + 7 ≈ Bulletproof 𝑁

2
3 + 𝐹 (𝑁

1
3 ) + 𝑁

1
3 + 2 𝑁 + 4 log𝑁 − 7 𝑁

2 + 4 log𝑁 − 10 𝑁
2
3 + ⌈log𝑁

2
3 ⌉ + 𝐹 (𝑁

1
3 ) + 𝑁

1
3 − 11

Proof Size
No. of Elements

2 log𝑁 + 4 (G)
5 (Z𝑝 )

2 log𝑁 + 3 (G)
3 (Z𝑝 )

𝑁
2
3 + 2 (G)

𝑁
1
3 + 𝐹 (𝑁

1
3 ) + 1 (Z𝑝 )

4 log𝑁 − 10 (G)
9 (Z𝑝 )

4 log𝑁 − 12 (G)
9 (Z𝑝 )

4⌈log𝑁
2
3 ⌉ + 𝐹 (𝑁

1
3 ) + 𝑁

1
3 − 13 (G)

9 (Z𝑝 )
No. of Rounds 2 log𝑁 + 5 2 log𝑁 + 5 3 2 log𝑁 − 1 2 log𝑁 − 3 2⌈log𝑁

2
3 ⌉ − 1

model [3] since the round complexity strongly impacts the tightness
of the security loss in the random oracle model [13].

Regarding our high-gear proof, compared with Flashproof, the
computational complexity is lower for 8-bit and 16-bit ranges, but
slightly higher for 32-bit and 64-bit ranges4. The round complexity
is also higher due to the use of the compression protocols. The
benefit is that the involved number of elements in the proof has been
greatly reduced. In a nutshell, the high-gear proof achieves higher
communication efficiency at a smaller ratio of costs in computation
and round in contrast to Flashproof.

What is more, to the best of our knowledge, our proofs for 8-bit
and 16-bit ranges create new records of the smallest proof sizes, 289
bytes and 417 bytes, among all the bit-decomposition-based range
proofs without requiring trusted setups. The records strengthen
the competitiveness in more communication-critical applications.

Table 2: The proof size comparison in bytes of the state-of-
the-art range proofs.

𝑁 8 16 32 64
Bulletproof 482 546 610 674
Bulletproof+ 386 450 514 578
Flashproof 385 513 738 994
SwiftRange 353 481 610 738

FlashSwift (LG) 289 417 546 674
FlashSwift (HG) 289 417 642 770

Hence, our proof can bring a significant performance enhance-
ment for existing applications. Reconsider the black-box wallets, ap-
plying our proof eliminates the need for the runtime-communication
trade-offs. In contrast to the 16-bit linear-sized Bulletproof with
1249 bytes, our logarithmic-sized proof achieves 3× transmission
efficiency, 2.2× proving efficiency, and 2.9× verification efficiency,
resulting in significant savings of 67% transmission time, 54% prov-
ing time, and 65% verification time. Compared with SwiftRange,
using our proof leads to savings of 13% transmission time, 69%
proving time, and 35% verification time. Compared to Flashproof,
using ours saves 19% transmission time and 18% verification time.

4It is not quite straightforward to compare the computational complexity of our high-
gear proof and Flashproof. Please see Section 7 for our experimental results.

Moreover, in terms of the blockchain-based crowdsensing system,
the computational efficiency gains of our proof over the others are
similar to those of black-box wallets. Our proof’s communication
advantage can help significantly save more monetary gas fees for
storing proofs on the Ethereum blockchain. For instance, given
1000 users, using Bulletproof, Flashproof and SwiftRange incurs
31%, 23% and 15% more gas costs than using ours, respectively.

1.5 Outline of Our Paper
Our paper is organized as follows. First, we review the related work
and introduce the cryptographic preliminaries in Section 2 and
3. We give a technical overview of Flashproof and SwiftRange in
Section 4. We elaborate on the techniques of our range proof in
Section 5. We present our the aggregate proof in Section 6. Finally,
we give a comprehensive performance evaluation and comparison
with the state-of-the-art range proofs in Section 7.

2 RELATEDWORK
This section provides an overview of various existing range proofs
found in the literature at the time of writing. It covers the range
proofs based on three approaches, namely, bit-decomposition-based,
square-decomposition-based and signature-based approaches.

Bit-Decomposition-Based Proofs. Apart from what has been
discussed in Section 1.4, we describe three other well-known proofs
in the DLOG setting. The range argument [5] has𝑂 (𝑁 ) complexity
in both communication and computation. Despite achieving loga-
rithmic shortness, the work [1] only demonstrates that a committed
bit-vector consists of zeros and ones without explicitly proving a
committed value falls within the range [0, 2𝑁 − 1]. SymmeProof
[17] is another improved Bulletproof by reducing the communica-
tion complexity through the use of special challenges. To achieve
this, they require each challenge 𝑐 to satisfy a quadratic residue
𝑐2 ≡ 1 (mod 𝑝) over a non-standard elliptic curve group of compos-
ite order 𝑝 . A computationally expensive algorithm was suggested
to convert the standard challenges to these special ones. Neverthe-
less, it may be challenging to achieve the conversion in practice.
Furthermore, computations over non-standard groups are more
computationally intensive than over standard ones.
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Square-Decomposition-Based Proofs. The square decomposi-
tion involves representing a committed value as a sum of squares
to prove its non-negativity. Boudot [6] proposed the first construc-
tion, which represents a value 𝑥 as the sum of the greatest square
less than 𝑥 and another positive value. Lipmaa [24] presented the
construction of using Lagrange’s four squares theorem to represent
a value as a sum of four squares. The construction can achieve
constant efficiency in communication and verification. Groth [20]
improved the construction by showing that 4𝑥 + 1 can always be
represented as a sum of three squares for a target value 𝑥 . If 4𝑥 + 1
is non-negative, then 𝑥 ≥ − 1

4 would be a non-negative integer.
Deng et al. [14] designed a constant-size range proof by adapting
Bulletproof for Lagrange’s four-square theorem. However, these
range proofs rely on the hardness of the RSA assumption, which
require a trusted setup to generate RSA modulus. Couteau et al.
introduced two novel constructions in the DLOG setting: CKLR21
[13] and Sharp [12]. These constructions make use of a bounded
integer commitment scheme, with the latter being an enhanced
version of the former. The key feature of this scheme is its ability
to convert the standard Pedersen commitment scheme from oper-
ating over Z𝑝 to operating within a smaller, bounded integer range.
Although these constructions offer improved efficiency in terms of
computation and communication compared to bit-decomposition
approaches, they do come with a drawback of relaxed soundness.
This relaxation places a constraint on the provers, requiring them
to work with rational witnesses within the desired integer ranges.
Additionally, the proofs themselves must adapt by using a sub-
stantially reduced challenge space to accommodate standard group
sizes, such as 256 bits. In order to achieve negligible soundness
errors 2−128 and 2−256, the proofs are compelled to employ larger
groups or undergo multiple iterations. To address the issue of re-
laxed soundness, Sharp employs RSA and class groups, aiming to
mitigate the limitations associated with this relaxation. Nonethe-
less, RSA groups require a trusted setup. While class groups offer a
trustless alternative to RSA groups, their efficiency still falls short
when compared to DLOG-based elliptic curve groups. For instance,
as indicated by a recent study [15], 3392-bit class groups can provide
a security level comparable to 256-bit elliptic curve groups.

Signature-Based Proofs. Signature-based constructions often en-
tail the need for undesirable trusted setups. In essence, the funda-
mental concept revolves around the verifier pre-calculating a digital
signature for each element falling within a designated range. Sub-
sequently, the prover employs a blind signature to sign a selected
element, making it computationally challenging to reveal the actual
signed element. Ultimately, the verifier aims to verify whether the
blind signature corresponds to the set of precomputed signatures.
The most typical construction [9] was proposed by Camenisch et al.
based on the Boneh-Boyen signature schemes under the 𝑞-Strong
Diffie-Hellman assumption. Chaabouni et al. [10] improved the
proof by doubling the communication and computation efficiency.

3 PRELIMINARIES
Let 𝜆 and negl(𝜆) be the security parameter and a negligible func-
tion. Denote a cyclic group of prime order 𝑝 by G, and the ring of

integers modulo 𝑝 by Z𝑝 . Let Z∗𝑝 be Z𝑝\{0}. Let 𝑔, 𝜌, (𝑔𝑖 )𝑛−1𝑖=0
$←− G

be uniformly random generators from G. Let 𝑥
$←− Z∗𝑝 be uniformly

random element from Z∗𝑝 . Denote the vector spaces of dimension 𝑛
over G and Z𝑝 by G𝑛 and Z𝑛𝑝 , respectively. PPT stands for proba-
bilistic polynomial time. Denote the prover and the verifier by P
andV , respectively.

We will use vector notations in the following paper. Bold font
denotes vectors or matrices. For example, 𝜶 = (𝛼0, ..., 𝛼𝑛−1) ∈
Z𝑛𝑝 denotes a vector of scalars. g = (𝑔0, ..., 𝑔𝑛−1) ∈ G𝑛, 𝝆 =

(𝜌0, ..., 𝜌𝑛−1) ∈ G𝑛 denote two generator vectors. We describe
some basic vector operations below:

• 𝛿 = 𝜶 · 𝜷 =
∑𝑛−1
𝑖=0 𝛼𝑖 · 𝛽𝑖 ∈ Z𝑝 .

• 𝜹 = 𝜶 + 𝜷 = (𝛼0 + 𝛽0, ..., 𝛼𝑛−1 + 𝛽𝑛−1) ∈ Z𝑛𝑝 .
• 𝜹 = 𝜶 ◦ 𝜷 = (𝛼0 · 𝛽0, ..., 𝛼𝑛−1 · 𝛽𝑛−1) ∈ Z𝑛𝑝 .
• 𝑔′ = g𝜶 =

∏𝑛−1
𝑖=0 𝑔

𝛼𝑖
𝑖
∈ G.

• g′ = g𝜶 ◦ 𝝆 = (𝑔𝛼00 · 𝜌0, ..., 𝑔
𝛼𝑛−1
𝑛−1 · 𝜌𝑛−1) ∈ G

𝑛 .

where ◦ denotes the component-wise Hadamard product.
Moreover, we introduce an important dual-index notation shown
on the left-hand side of Eqn. (3). It refers to a combination set of
size

(𝐾
2
)
= 𝐾2−𝐾

2 , where 𝐾 is a positive integer. The two indices 𝑘
and 𝑗 range between 0 and 𝐾 − 1, and 𝑘 is not equal to 𝑗 .

(𝑘, 𝑗) (𝐾−1,𝐾−1)(0,0) ∧ 𝑘 ≠ 𝑗 =⇒ (𝑘, 𝑗) (
𝐾
2 )−1

0 (3)

For brevity, we will use the simplified form on the right-hand side
of Eqn. (3) in the following paper.

3.1 Cryptographic Assumption
Definition 1

(
Discrete Logarithm (DLOG)

)
. The discrete loga-

rithm assumption holds for all PPT adversaries A:

𝑃𝑟


(𝑥𝑖 )𝑛−1𝑖=0 ← A

(
(𝑔𝑖 )𝑛−1𝑖=0

)
,

𝑛−1∏
𝑖=0

𝑔
𝑥𝑖
𝑖

= 𝜂

�������
G← Setup(𝜆),

(𝑔𝑖 )𝑛−1𝑖=0 , 𝜂
$←− G


≤ negl(𝜆)

The assumption asserts that no computationally bounded adver-
saries can discover discrete logarithm relations that fulfill the equa-
tion

∏𝑛−1
𝑖=0 𝑔

𝑥𝑖
𝑖

= 𝜂 for any arbitrary 𝜂 ∈ G and randomly chosen
generators. In order to eliminate the need for a trusted setup, the
random generators (𝑔𝑖 )𝑛−1𝑖=0 can be independently generated using
a collision-resistant hash function. This hash function maps ran-
dom values from Z∗𝑝 to G\{1}, ensuring that the discrete logarithm
relations between any two generators remain unknown.

3.2 Homomorphic Commitment Schemes
To formalize a homomorphic commitment scheme, we adhere to
the definitions presented in [30]. The scheme comprises two prob-
abilistic polynomial-time algorithms, denoted as G and Cm. The
setup algorithm G(𝜆) generates a commitment key denoted as ck,
while the commitment algorithm Cm defines a function Cmck :
Mck × Rck → Cck. In this scheme, Mck represents the message
space, Rck represents the randomness space, and Cck represents
the commitment space. For any given message 𝑚 ∈ Mck, a uni-
formly random value 𝑟 ∈ Rck is selected to compute a commitment
Cmck (𝑚; 𝑟 ).
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Definition 2 (Hiding). A commitment scheme (G, Cm) is hiding if
a commitment does not reveal the value for all PPT adversaries A:

𝑃𝑟


𝐶 = Cmck (𝑚𝑏 ),
𝑏 ∈ {0, 1},
𝑏 ′ ← A(𝐶), 𝑏 = 𝑏 ′

����� ck← G(𝜆),(𝑚0,𝑚1 ∈ Mck) ← A(ck)

 ≈
1
2

The scheme is perfectly hiding if the probability is 1
2 .

Definition 3 (Binding).A commitment scheme (G,Cm) is binding if
a commitment can only be opened to one value for all PPT adversaries
A:

𝑃𝑟


Cmck (𝑚0; 𝑟0)
= Cmck (𝑚1; 𝑟1),
𝑚0 ≠𝑚1

�����
ck← G(𝜆),
(𝑚0,𝑚1) ∈ Mck,

(𝑟0, 𝑟1) ∈ Rck
← A(ck)

 ≤ negl(𝜆)

The scheme is perfectly binding if the probability is 0.
Definition 4 (Pedersen Vector Commitment).Given the message
spaceM = Z𝑛𝑝 , the randomness space R = Z∗𝑝 , the commitment space

C = G of prime order p and (𝑔0, ..., 𝑔𝑛−1, 𝜌)
$←− G, we have:

Cm(𝑥0, ..., 𝑥𝑛−1; 𝑟 ) ≜
𝑛−1∏
𝑖=0

𝑔
𝑥𝑖
𝑖
𝜌𝑟

Pedersen vector commitment is perfectly hiding and computation-
ally binding. It satisfies the following homomorphic property:

Cm(𝑥0, ..., 𝑥𝑛−1; 𝑟𝑥 ) · Cm(𝑦0, ..., 𝑦𝑛−1; 𝑟𝑦)
= Cm(𝑥0 + 𝑦0, ..., 𝑥𝑛−1 + 𝑦𝑛−1; 𝑟𝑥 + 𝑟𝑦)

Pedersen commitment is a special case, where 𝑛 = 1. We follow
the notation [32] to denote commitments by capital letters in the
following paper, e.g., 𝑋 =

∏𝑛−1
𝑖=0 𝑔

𝑥𝑖
𝑖
𝜌𝑟 .

3.3 Zero-Knowledge Arguments of Knowledge
We employed the definitions from [30] to formalize zero-knowledge
arguments of knowledge. A zero-knowledge argument is comprised
of three interactive probabilistic polynomial-time algorithms, de-
noted as G, P, and V . The setup algorithm G(𝜆) generates a
common reference string denoted as 𝜎 . The prover and verifier
algorithms, P and V respectively, produce a public transcript
𝑡𝑟 ← ⟨P(𝑣),V(𝑡)⟩ based on their respective inputs 𝑣 and 𝑡 . We
introduce a polynomial-time decidable ternary relation, denoted as
R ⊂ 0, 1∗ × 0, 1∗ × 0, 1∗. A CRS-dependent language, denoted as L𝜎 ,
can be defined as follows:

L𝜎 = {𝑢 | ∃𝜔 : (𝜎,𝑢, 𝜔) ∈ R}

where 𝜔 represents a witness for a statement 𝑢 in the relation
(𝜎,𝑢, 𝜔) ∈ R.
Definition 5 (Argument of Knowledge). The triple (G, P,V) is
called an argument of knowledge for the relation R if it satisfies the
perfect completeness and computational witness-extended emulation.

Definition 6 (Perfect Completeness). An argument of knowledge
(G, P,V) has perfect completeness if for all PPT adversaries A:

𝑃𝑟

[
(𝜎,𝑢, 𝜔) ∉ R 𝑜𝑟
⟨P(𝜎,𝑢, 𝜔),V(𝜎,𝑢)⟩ = 1

���� 𝜎 ← G(𝜆),(𝑢,𝜔) ← A(𝜎)

]
= 1

Definition 7 (Computational Witness-Extended Emulation).
An argument of knowledge (G,P,V) has witness-extended emulation
if for all deterministic polynomial time P∗, there exists an expected
polynomial time emulator E such that for all PPT adversaries A:

𝑃𝑟

A(𝑡𝑟 ) = 1

�����
𝜎 ← G(𝜆)
(𝑢, 𝑠) ← A(𝜎),
𝑡𝑟 ← O

 ≈
𝑃𝑟


A(𝑡𝑟 ) = 1
∧ tr is accepting
→ (𝜎,𝑢,𝑤) ∈ R

�����
𝜎 ← G(𝜆),
(𝑢, 𝑠) ← A(𝜎),

(𝑡𝑟, 𝜔) ← EO (𝜎,𝑢)


where the oracle is defined asO = ⟨P∗ (𝜎,𝑢, 𝑠),V(𝜎,𝑢)⟩. Whenever
P∗ presents an argument in state 𝑠 , a corresponding knowledge
emulator E comes into play, enabling the extraction of a witness
for (𝜎,𝑢, 𝜔) ∈ R. This is achieved by rewinding the interaction to
specific points and then replaying it, utilizing the original state for
the prover but introducing new randomness for the verifier.
Definition 8 (Public Coin). An argument of knowledge (G, P,V)
is called public coin if the verifier chooses her messages uniformly at
random and independently of the messages sent by the prover.
Public-coin interactive protocols can bemade non-interative through
the well-known Fiat-Shamir transformation [16].
Definition 9 (Perfect Special Honest Verifier Zero-Knowledge,
SHVZK). A public coin argument of knowledge (G, P,V) is called
perfect special honest verifier zero-knowledge argument of knowledge
for R if there exists a PPT simulator S such that for all interactive
PPT adversaries A:

𝑃𝑟


(𝜎,𝑢, 𝜔) ∈ R
∧ A(𝑡𝑟 ) = 1

�����
𝜎 ← G(𝜆),
(𝑢,𝜔, 𝑒) ← A(𝜎),
𝑡𝑟 ← ⟨P(𝑣),V(𝑡)⟩

 =
𝑃𝑟


(𝜎,𝑢, 𝜔) ∈ R
∧ A(𝑡𝑟 ) = 1

�����
𝜎 ← G(𝜆),
(𝑢,𝜔, 𝑒) ← A(𝜎),
𝑡𝑟 ← S(𝑢, 𝑒)


where 𝑒 is a public coin challenge, 𝑣 = (𝜎,𝑢, 𝜔) and 𝑡 = (𝜎,𝑢, 𝑒).

4 TECHNICAL OVERVIEW
In this section, we give a brief technical overview of Flashproof and
SwiftRange before elaborating on our proofs.

4.1 Flashproof’s Bit-Decomposition Technique
Flashproof features its 𝑂 (𝑁

2
3 ) efficiency in both communication

and verification. The high-level idea behind Flashproof is that the
prover writes a committed value 𝑥 =

∑𝑁−1
𝑖=0 2𝑖𝑏𝑖 as a sequence of

terms (𝑤0,𝑤1, ...,𝑤𝑁−1) for the range [0, 2𝑁 −1], where 𝑏𝑖 ∈ {0, 1}
and𝑤𝑖 = 2𝑖𝑏𝑖 , 𝑖 ∈ {0, 1, ..., 𝑁 −1}. The prover arranges all the terms
(𝑤𝑖 )𝑁−1𝑖=0 in an 𝐿 ×𝐾 matrix in Eqn. (4), where 𝐿 and 𝐾 indicate the
number of rows and columns, respectively, and 𝐿 · 𝐾 ≥ 𝑁 .

©­­«
𝑣0
.
.
.

𝑣𝐿−1

ª®®¬ =
©­­­­«

𝑤0 . . . 𝑤𝐾−1
𝑤𝐾 . . . 𝑤𝐾+𝐾−1
.
.
.

. . .
.
.
.

𝑤 (𝐿−1)𝐾 . . . 𝑤 (𝐿−1)𝐾+𝐾−1

ª®®®®¬
·
©­­«
𝑒0
.
.
.

𝑒𝐾−1

ª®®¬ +
©­­«
𝑟0
.
.
.

𝑟𝐿−1

ª®®¬ (4)
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Subsequently, the prover can compute a series of values (𝑣𝑙 )𝐿−1𝑙=0
after obtaining a challenge vector (𝑒0, ..., 𝑒𝐾−1)⊺ from the verifier:

𝑣𝑙 =

𝐾−1∑︁
𝑘=0

𝑤𝑙𝐾+𝑘𝑒𝑘 + 𝑟𝑙

where 𝑟𝑙 ∈ Z∗𝑝 is a random value. The argument takes advantage of
a quadratic-term cancellation technique to prove each term𝑤𝑙𝐾+𝑘
is either the (𝑙𝐾 + 𝑘)-th power of 2 or 0. If this is the case, then it
can be concluded that the committed value 𝑥 is within the range
[0, 2𝑁 − 1].

4.1.1 3-Round Protocol Πfrg. Given a target commitment 𝑋 =

𝑔𝑥𝜌𝑟𝑥 , the generators 𝑔, 𝜌, (𝑔𝑙 )𝐿−1𝑙=0
$←− G and 𝑟𝑥

$←− Z∗𝑝 , the range
protocol Πfrg goes as follows:

P : (𝑟𝑙
$←− Z∗𝑝 )𝐿−1𝑙=0 , (𝑟𝑠𝑘

$←− Z∗𝑝 )𝐾𝑘=1 (5)

(𝑟𝑞𝑘
$←− Z∗𝑝 )𝐾𝑘=0, (𝑟𝑡𝑘,𝑗

$←− Z∗𝑝 )
(𝐾2 )−1
0

(6)

P ⇒ V : (𝑇𝑘,𝑗 =
𝐿−1∏
𝑙=0

𝑔
𝑡𝑙,(𝑘,𝑗 )
𝑙

· 𝜌𝑟𝑡𝑘,𝑗 ) (
𝐾
2 )−1

0 (7)

where 𝑡𝑙,(𝑘,𝑗) = 𝑤𝑙𝐾+𝑘 (2𝑙𝐾+𝑗 −𝑤𝑙𝐾+𝑗 ) +𝑤𝑙𝐾+𝑗 (2𝑙𝐾+𝑘 −𝑤𝑙𝐾+𝑘 )(
𝑄𝑘 =

𝐿−1∏
𝑙=0

𝑔
𝑞𝑙,𝑘
𝑙
· 𝜌𝑟𝑞𝑘

)𝐾
𝑘=0 (8)

where
(
𝑞𝑙,𝑘 = 2𝑟𝑙 (2𝑙𝐾+𝑘−1 −𝑤𝑙𝐾+𝑘 )

)𝐾−1
𝑘=0 , 𝑞𝑙,𝐾 = −𝑟2

𝑙

(𝑆𝑘 = 𝑔
∑𝐿−1
𝑙=0 𝑤𝑙𝐾+𝑘 𝜌

𝑟𝑠𝑘 )𝐾−1
𝑘=0 , 𝑆𝐾 = 𝑔

∑𝐿−1
𝑙=0 𝑟𝑙 𝜌𝑟𝑠𝐾 (9)

where 𝑟𝑠0 = 𝑟𝑥 −
𝐾−1∑︁
𝑘=1

𝑟𝑠𝑘 (10)

P ⇐ V : (𝑒𝑘
$←− Z∗𝑝 )𝐾−1𝑘=0

P ⇒ V :
(
𝑣𝑙 =

𝐾−1∑︁
𝑘=0

𝑤𝑙𝐾+𝑘𝑒𝑘 + 𝑟𝑙
)𝐿−1
𝑙=0 (11)

𝑢 =

(𝐾2 )−1∑︁
0

𝑟𝑡𝑘,𝑗 𝑒𝑘,𝑗 +
𝐾−1∑︁
𝑘=0

𝑟𝑞𝑘 𝑒𝑘 + 𝑟𝑞𝐾 (12)

𝜖 =

𝐾−1∑︁
𝑘=0

𝑟𝑠𝑘 𝑒𝑘 + 𝑟𝑠𝐾 (13)

where 𝑒𝑘,𝑗 = 𝑒𝑘 · 𝑒 𝑗 is the product of the two distinct challenges 𝑒𝑘
and 𝑒 𝑗 and 𝑘, 𝑗 ∈ {0, ..., 𝐾 − 1} ∧𝑘 ≠ 𝑗 . In the first round, the prover

sends a series of commitments (𝑇𝑘,𝑗 )
(𝐾2 )−1
0 , (𝑄𝑘 )𝐾𝑘=0 and (𝑆𝑘 )

𝐾
𝑘=0 to

the verifier. In the second round, the verifier replies with a random
challenge vector (𝑒𝑘 )𝐾−1𝑘=0 consisting of𝐾 distinct challenges. Finally,
in the third round, the verifier sends back a series of field elements
(𝑣𝑙 )𝐿−1𝑙=0 , 𝑢 and 𝜖 . For verification, the verifier:

(1) computes a value 𝑓𝑙 by subtracting 𝑣𝑙 from
∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘

for each 𝑙 ∈ {0, ..., 𝐿 − 1}:

𝑓𝑙 =

𝐾−1∑︁
𝑘=0

2𝑙𝐾+𝑘𝑒𝑘 − 𝑣𝑙 =
𝐾−1∑︁
𝑘=0
(2𝑙𝐾+𝑘 −𝑤𝑙𝐾+𝑘 )𝑒𝑘 − 𝑟𝑙 (14)

(2) computes 𝑓𝑙 · 𝑣𝑙 to generate ( 12𝐾
2 + 1

2𝐾 + 1) cross-terms on
the right-hand side of Eqn. (15):

𝐿−1∏
𝑙=0

𝑔
𝑓𝑙 𝑣𝑙
𝑙
· 𝜌𝑢 ?

=

𝐾−1∏
𝑘=0

𝑊
𝑒2
𝑘

𝑙𝐾+𝑘︸       ︷︷       ︸
=1

·
(𝐾2 )−1∏

0
𝑇
𝑒𝑘,𝑗

𝑘,𝑗
·
𝐾−1∏
𝑘=0

𝑄
𝑒𝑘
𝑘
·𝑄𝐾 (15)

where the opening of𝑊𝑙𝐾+𝑘 is𝑤𝑙𝐾+𝑘 (2𝑙𝐾+𝑘 −𝑤𝑙𝐾+𝑘 ). The
verifier aims to confirm that all the quadratic terms (𝑊 𝑒2

𝑘

𝑙𝐾+𝑘 )
𝐾−1
𝑘=0

are cancelled out. Thus, the verifier can be convinced that
the (𝑙𝐾 +𝑘)-th term𝑤𝑙𝐾+𝑘 ∈ {0, 2𝑙𝐾+𝑘 } for 𝑘 ∈ {0, ..., 𝐾 −1}.
Note that each 𝑣𝑙 consists of 𝐾 terms so that computing
𝑓𝑙 · 𝑣𝑙 can simultaneously check 𝐾 terms, which plays the
dominant role in yielding high verification efficiency.

(3) uses Eqn. (16) to check whether the 𝑘-th commitment 𝑆𝑘
commits to the sum of the terms in the 𝑘-th column of the
matrix for 𝑘 ∈ {0, ..., 𝐾 − 1}.

𝑔
∑𝐿−1
𝑙=0 𝑣𝑙 · 𝜌𝜖 ?

=

𝐾−1∏
𝑘=0

𝑆
𝑒𝑘
𝑘
· 𝑆𝐾 (16)

(4) checks if the committed value 𝑥 is the sum of all the terms
in the matrix if Eqn. (16) passes.

𝑋
?
=

𝐾−1∏
𝑘=0

𝑆𝑘 (17)

4.1.2 Optimization. Flashproof describes an optimization tech-
nique to improve the communication and verification efficiency by
changing the way that the challenge vectors (𝑒𝑘 )𝐾−1𝑘=0 are generated.
The verifier is allowed to randomly produce a single challenge 𝑒 ,
such that the other challenges in the vector can be generated by
taking different powers of 𝑒 . In this case, some cross-terms on the
right-hand side of Eqn. (15) can be combined to reduce the total
number of elements in the proof and the group exponentiations
for verification. Consider the case with 𝐾 = 4, we can use the 4
challenges (𝑒𝑘 )3𝑘=0 = (𝑒

−1, 𝑒, 𝑒4, 𝑒5). Originally, the computation of
𝑓𝑙 · 𝑣𝑙 will generate a polynomial with 1

2 · 4
2 + 1

2 · 4 + 1 = 11 terms.
With optimization, it only involves 8 terms in Eqn. (18)5 without
any quadratic terms 𝑒−2, 𝑒2, 𝑒8 or 𝑒10:

𝑤9𝑒
9 +𝑤6𝑒

6 +𝑤5𝑒
5 +𝑤4𝑒

4 +𝑤3𝑒
3 +𝑤1𝑒 +𝑤−1𝑒−1 +𝑤0 (18)

where𝑤∗ indicates the coefficients of the corresponding terms. Fur-
thermore, for𝐾 = 2, we can use the challenges (𝑒−1, 𝑒) to generate 3
cross-terms. Flashproof defines an optimization function 𝐹 (𝐾) that
lists the number of optimized cross-terms to replace (𝐾2

2 +
𝐾
2 + 1)

unoptimized terms on the right-hand side of Eqn. (15). Please see
Appendix B for the function 𝐹 (𝐾).

4.2 SwiftRange’s Compression Technique
Thework [2] proposed a non-zero-knowledge compression protocol
Πlc for the linear setting. The protocol Πlc achieves logarithmic size
for proving that a committed vector v satisfies the linear relation
𝑈 = gv for a generator vector g = (𝑔𝑖 )𝑁−1𝑖=0 ∈ G

𝑁 consisting of
𝑁 distinct generators. SwiftRange presented an extended protocol

5This equation is borrowed from Flashproof paper [30].
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Πqc for the quadratic setting, which proves that a committed vector
v satisfies the quadratic relation 𝑈 = hv · g−v2 , where g, h ∈ G𝑁
are two generator vectors. Furthermore, SwiftRange also slightly
improves the computational efficiency of the protocol Πlc.

In the following, we give a brief introduction to the protocol
Πqc. The protocol Πqc is defined with the inputs (h, g,𝑈 , v). The
recursive composition of the compression protocol Πqc goes as
below for |v| > 8:

If |v| ≤ 8 : (19)

P ⇒ V : v (20)

V : hv · g−v
2 ?
= 𝑈 (21)

Else : (22)

P ⇒ V : 𝐴 ≜ g
−v2
𝐿

𝑅
, 𝐵 ≜ hv𝐿

𝑅
· g−2v𝐿v𝑅
𝑅

∈ G (23)

𝐷 ≜ hv𝑅
𝐿
· g−2v𝐿v𝑅
𝐿

, 𝐸 ≜ g
−v2
𝑅

𝐿
∈ G (24)

P ⇐ V : 𝑐
$←− Z∗𝑝 (25)

P andV : h′ ≜ h𝐿 ◦ h𝑐
−1
𝑅 ∈ G

𝑁
2 (26)

g′ ≜ g𝐿 ◦ g𝑐
−2
𝑅 ∈ G

𝑁
2 (27)

𝑈 ′ ≜ 𝐴𝑐
−2
· 𝐵𝑐

−1
·𝑈 · 𝐷𝑐 · 𝐸𝑐

2 (28)

P : v′ = v𝐿 + 𝑐v𝑅 ∈ Z
𝑁
2
𝑝

(29)

Recursively run Πqc on input (h′, g′,𝑈 ′, v′) (30)

where v𝐿 = (𝑣0, ..., 𝑣 𝑁
2 −1
) and v𝑅 = (𝑣 𝑁

2
, ..., 𝑣𝑁−1) are the left-

half and right-half vectors of v, respectively. g𝐿 = (𝑔0, ..., 𝑔 𝑁
2 −1
)

and g𝑅 = (𝑔 𝑁
2
, ..., 𝑔𝑁−1) are the left-half and right-half generator

vectors of g. Similar rule applies to h𝐿 and h𝑅 . When |v| = 8, the
recursive compression terminates for the minimum communication
cost. If a new recursion is added, the vector v would be reduced by
half to 4. However, the recursion also adds four new group elements
𝐴, 𝐵, 𝐷 and 𝐸. Hence, the total proof size slightly increases since
a group element is generally larger than a field element. Conse-
quently, when |v| = 8, the argument has the minimum proof size
in bytes. Note that a prerequisite for applying the compression
protocol is that the vector dimension |v| must be a power of 2.

5 OUR PROOF
5.1 Challenges
Expanding the brief idea in Section 1.3.2, we further expound the
specific challenges we face. Recall from the technical overview in
Section 4 that the two equations Eqn. (15) and Eqn. (16) use the same
masking witness vector v = (𝑣𝑙 )𝐿−1𝑙=0 for verification. Our goal is to
apply SwiftRange’s compression protocol Πqc to logarithmically
reduce this witness vector in order to achieve logarithmic com-
munication efficiency while retaining comparable computational
efficiency. However, only Eqn. (15) in Flashproof is compressible
since the left-hand side of Eqn. (15) can be rewritten to the quadratic
form of the compression protocol Πqc:

𝐿−1∏
𝑙=0

𝑔
𝑓𝑙 𝑣𝑙
𝑙

=

𝐿−1∏
𝑙=0
(𝑔

∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘

𝑙
)𝑣𝑙 ·

𝐿−1∏
𝑙=0

𝑔
−𝑣2
𝑙

𝑙
= hv · g−v

2
(31)

where h = (𝑔
∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘

𝑙
)𝐿−1
𝑙=0 , g = (𝑔𝑙 )𝐿−1𝑙=0 . However, it is notice-

able that Eqn. (16) does not exhibit compressibility. Specifically,
Eqn. (16) satisfies a linear setting since the left-hand side of Eqn.
(16) utilizes a single generator 𝑔 to commit to the Hamming weight∑𝐿−1
𝑙=0 𝑣𝑙 of the vector v. However, the linear-setting compression

protocol Πlc does not apply to Eqn. (16). As outlined in Section 4,
the protocol Πlc is only designed to operate with the linear relation
𝑈 =

∏𝑁−1
𝑖=0 𝑔

𝑣𝑖
𝑖

using a set of distinct generators (𝑔𝑖 )𝑁−1𝑖=0 instead
of a single generator. Compressing Eqn. (15) in isolation would
result in a dimension-reduced witness vector in the form v𝐿 + 𝑐v𝑅 ,
where 𝑐 is an unpredictably random challenge. Consequently, it
is infeasible for verifiers to use this dimension-reduced vector to
reconstruct

∑𝑁−1
𝑖=0 𝑣𝑖 for the validation of Eqn. (16), leading to a

failed verification.

5.2 Techniques
We present a solution to enable the compression-friendliness by sub-
tly integrating the two equations Eqn. (15) and (16) in Section 5.2.1.
Furthermore, we also show a trick in Section 5.2.2 of integrating
Eqn. (17) with the other two to reduce proof size.

5.2.1 Integration &Conversion. In Eqn. (32), we use a random value
𝑦 ∈ Z∗𝑝 to achieve the integration. This is based on the folklore
observation [7] that checking 𝑔𝛼 = 1∧𝑔𝛽 = 1 amounts to checking
𝑔𝛼 ·𝑦+𝛽 = 1 for an arbitrary 𝑦 ∈ Z∗𝑝 . On the left-hand side, the

existence of 𝑦 aims to separate 𝑔
∑𝐿−1
𝑙=0 𝑣𝑙 from

∏𝐿−1
𝑙=0 𝑔

𝑓𝑙 ·𝑣𝑙
𝑙

. On the
right-hand side, the exponents of the commitments (𝑆𝑘 )𝐾−1𝑘=0 become
(𝑒𝑘 · 𝑦)𝐾−1𝑘=0 rather than (𝑒𝑘 )𝐾−1𝑘=0 :

(𝑔
∑𝐿−1
𝑙=0 𝑣𝑙 )𝑦 ·

𝐿−1∏
𝑙=0

𝑔
𝑓𝑙 ·𝑣𝑙
𝑙

?
= 𝜌−𝑢 ·

(𝐾2 )−1∏
0

𝑇
𝑒𝑘,𝑗

𝑘,𝑗
·
𝐾−1∏
𝑘=0

𝑄
𝑒𝑘
𝑘
·
𝐾−1∏
𝑘=0

𝑆
𝑒𝑘 ·𝑦
𝑘
· 𝑆𝑦
𝐾
·𝑄𝐾

(32)

Then we subtly convert the left-hand side of Eqn. (32) to enable the
compression-friendliness:

(𝑔
∑𝐿−1
𝑙=0 𝑣𝑙 )𝑦 ·

𝐿−1∏
𝑙=0

𝑔
𝑓𝑙 ·𝑣𝑙
𝑙

=

𝐿−1∏
𝑙=0
(𝑔𝑦)𝑣𝑙 ·

𝐿−1∏
𝑙=0
(𝑔𝑓𝑙
𝑙
)𝑣𝑙

=

𝐿−1∏
𝑙=0
(𝑔𝑦 · 𝑔

∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘−𝑣𝑙

𝑙
)𝑣𝑙

=

𝐿−1∏
𝑙=0
(𝑔𝑦 · 𝑔

∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘

𝑙
)𝑣𝑙 ·

𝐿−1∏
𝑙=0

𝑔
−𝑣2
𝑙

𝑙

= hv · g−v
2

(33)

We successfully convert the two verification equations of Flashproof
to the desired compression-friendly form hv · g−v2 of the compres-

sion protocol Πqc, where h becomes (𝑔𝑦 · 𝑔
∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘

𝑙
)𝐿−1
𝑙=0 and

g = (𝑔𝑙 )𝐿−1𝑙=0 remains intact.
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5.2.2 Use of Target Commitment. Note that Eqn. (17) has not been
integrated. We present a trick to take advantage of the target com-
mitment 𝑋 to reduce the proof size by one group element. Interest-
ingly, the verifier can obtain 𝑆𝐾−1 by computing𝑋 ·∏𝐾−2

𝑘=0 𝑆
−1
𝑘

based
on Eqn. (17). In this case, the prover only needs to transfer 𝐾 − 1
commitments (𝑆𝑘 )𝐾−2𝑘=0 without the need for sending 𝑆𝐾−1. The part∏𝐾−1
𝑘=0 𝑆

𝑒𝑘𝑦

𝑘
at the right-hand side of Eqn. (32) can be converted to

the following by substituting 𝑋 ·∏𝐾−2
𝑘=0 𝑆

−1
𝑘

for 𝑆𝐾−1:

𝐾−1∏
𝑘=0

𝑆
𝑒𝑘𝑦

𝑘
=

𝐾−2∏
𝑘=0

𝑆
𝑒𝑘𝑦

𝑘
· (𝑋 ·

𝐾−2∏
𝑘=0

𝑆−1
𝑘
)𝑒𝐾−1𝑦

=

𝐾−2∏
𝑘=0

𝑆
(𝑒𝑘−𝑒𝐾−1)𝑦
𝑘

· 𝑋𝑒𝐾−1𝑦
(34)

5.3 5-Round Protocol Πrfrg

In this section, we give details on our re-devised protocol. There
is another trick we want to introduce to reduce the proof size by
one more element. We transform the original 3-round Flashproof
protocol Πfrg to a new 5-round one Πrfrg so that the openings of
𝑆𝐾 are merged to those of 𝑄𝐾 . In the following, we incorporate all
the above techniques to present a new 5-round protocol Πrfrg:

P : (𝑟𝑙
$←− Z∗𝑝 )𝐿−1𝑙=0 , (𝑟𝑠𝑘

$←− Z∗𝑝 )𝐾−2𝑘=0
(35)

(𝑟𝑞𝑘
$←− Z∗𝑝 )𝐾𝑘=0, (𝑟𝑡𝑘,𝑗

$←− Z∗𝑝 )𝐾−10 (36)

P ⇒ V : (𝑇𝑘,𝑗 =
𝐿−1∏
𝑙=0

𝑔
𝑡𝑙,(𝑘,𝑗 )
𝑙

· 𝜌𝑟𝑡𝑘,𝑗 ) (
𝐾
2 )−1

0 (37)

where 𝑡𝑙,(𝑘,𝑗) = 𝑤𝑙𝐾+𝑘 (2𝑙𝐾+𝑗 −𝑤𝑙𝐾+𝑗 ) +𝑤𝑙𝐾+𝑗 (2𝑙𝐾+𝑘 −𝑤𝑙𝐾+𝑘 )(
𝑄𝑘 =

𝐿−1∏
𝑙=0

𝑔
𝑞𝑙,𝑘
𝑙
· 𝜌𝑟𝑞𝑘

)𝐾−1
𝑘=0 (38)

where
(
𝑞𝑙,𝑘 = 2𝑟𝑙 (2𝑙𝐾+𝑘−1 −𝑤𝑙𝐾+𝑘 )

)𝐾−1
𝑘=0

(𝑆𝑘 = 𝑔
∑𝐿−1
𝑙=0 𝑤𝑙𝐾+𝑘 𝜌

𝑟𝑠𝑘 )𝐾−2
𝑘=0 (39)

P ⇐ V : 𝑦
$←− Z∗𝑝

P ⇒ V : 𝑄𝐾 = 𝑔𝑦
∑𝐿−1
𝑙=0 𝑟𝑙

𝐿−1∏
𝑙=0

𝑔
−𝑟 2
𝑙

𝑙
· 𝜌𝑟𝑞𝐾 (40)

P ⇐ V : (𝑒𝑘
$←− Z∗𝑝 )𝐾−1𝑘=0

(41)

P ⇒ V :
(
𝑣𝑙 =

𝐾−1∑︁
𝑘=0

𝑤𝑙𝐾+𝑘𝑒𝑘 + 𝑟𝑙
)𝐿−1
𝑙=0 (42)

𝑢 =

(𝐾2 )−1∑︁
0

𝑟𝑡𝑘,𝑗 𝑒𝑘,𝑗 +
𝐾−1∑︁
𝑘=0

𝑟𝑞𝑘 𝑒𝑘

+
𝐾−2∑︁
𝑘=0

𝑟𝑠𝑘 (𝑒𝑘 − 𝑒𝐾−1)𝑦 + 𝑟𝑥𝑒𝐾−1𝑦 + 𝑟𝑞𝐾

(43)

V : LHS ?
= RHS (44)

LHS = hv · g−v
2 (45)

RHS = 𝜌−𝑢 ·
(𝐾2 )−1∏

0
𝑇
𝑒𝑘,𝑗

𝑘,𝑗
·
𝐾−1∏
𝑘=0

𝑄
𝑒𝑘
𝑘
·𝑄𝐾

·
𝐾−2∏
𝑘=0

𝑆
(𝑒𝑘−𝑒𝐾−1)𝑦
𝑘

· 𝑋𝑒𝐾−1𝑦
(46)

where the two composite generators h and g are defined in Eqn.
(33). Note that the major difference from Πfrg in Section 4.1.1 is that
the verifier only needs to use a single equation to check the validity
of the proof rather than three. On the prover side, in the first round,
the prover sends all the commitments except𝑄𝐾 before receiving a
random challenge 𝑦 from the verifier in the second round. Then the
prover uses 𝑦 to compute 𝑄𝐾 in the third round before obtaining
the challenge vector (𝑒𝑘 )𝐾−1𝑘=0 in the fourth round. The value of
the field element 𝑢 in the fifth round is adapted accordingly to
satisfy the equality. In a nutshell, we trade off round complexity for
communication complexity. Even though, the round complexity of
our proof is still lower than those of Bulletproof and SwiftRange.

Corollary 1. The range proof Πrfrg is a 5-move protocol, which has
perfect completeness, computational witness-extended emulation and
perfect special honest-verifier zero-knowledge (SHVZK).

The range proof Πrfrg is a special case of the aggregate range proof
Πarg, where 𝐽 = 1. Consequently, it is a corollary of Theorem 1.

5.4 Compressed proofs
Recall that the vector dimension |v| = 𝑁

𝐾
must be a power of 2 so

that the compression protocols can be applied. Thus, we can append
zeros to v until its dimension reaches the nearest power of 2 if |v|
is not. Then the prover can recursively apply (⌈log 𝑁

𝐾
⌉ − 3) times

of the compression protocol Πc to the range protocol Πrfrg until
the vector dimension |v| is reduced to 8. The prover can call the
protocol Πqc with the inputs (h, g,𝑈 , v), where 𝑈 is initialized as
RHS of Eqn. (46). Finally, the verifier can use the following equation
to verify the validity of the proof:

ĥv̂ · ĝ−v̂
2 ?
= RHS ·

⌈log 𝑁
𝐾
⌉−4∏

𝜏=0
𝐴
𝑐−2𝜏
𝜏 𝐵

𝑐−1𝜏
𝜏 𝐷

𝑐𝜏
𝜏 𝐸

𝑐2𝜏
𝜏

where v̂, ĥ and ĝ represent the final compressed vectors of witnesses
and generators of dimension 8. The verifier needs to use (2⌈𝑁

𝐾
⌉−16)

group exponentiations to compute the composite generators ĥ and
ĝ. Fortunately, the verification can be reduced to a single multi-
exponentiation for 2× efficiency improvement by leveraging the
multi-exponentiation technique [28]. The verifier can pre-compute
the exponents of the base generators before performing one-off
group exponentiations using Eqn. (47):

𝑔𝑎
⌈𝑁
𝐾
⌉−1∏

𝑙=0
𝑔
𝑎𝑙
𝑙

?
= RHS ·

⌈log 𝑁
𝐾
⌉−4∏

𝜏=0
𝐴
𝑐−2𝜏
𝜏 𝐵

𝑐−1𝜏
𝜏 𝐷

𝑐𝜏
𝜏 𝐸

𝑐2𝜏
𝜏 (47)

where 𝑎 and (𝑎𝑙 )
⌈𝑁
𝐾
⌉−1

𝑙=0 are the pre-computed exponents for the
corresponding base generators. We can see that computing the left-
hand side of Eqn. (47) only involves ⌈𝑁

𝐾
⌉ + 1 group exponentiations.
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Corollary 2. The compressed range proof ΠFS is a (2⌈log 𝑁𝐾 ⌉ − 1)-
move protocol, which has perfect completeness, computational witness-
extended emulation and perfect special honest-verifier zero-knowledge
(SHVZK).

The compressed range proof ΠFS is a special case of the compressed
aggregate range proof Πcarg, where 𝐽 = 1. Consequently, it is a
corollary of Theorem 2.

5.5 Configurability
Combining the techniques from Flashproof and SwiftRange gives
us two cost functions F|ΠFS | in Eqn. (48) and F|VFS | in Eqn. (49) to
calculate the number of elements in the proof and the number of
computationally-intensive group exponentiations for verification,
respectively:

F|ΠFS | =
𝐾2

2
+ 3𝐾

2
+ 4⌈log 𝑁

𝐾
⌉ − 3 (48)

F|VFS | = ⌈
𝑁

𝐾
⌉ + 𝐾

2

2
+ 3𝐾

2
+ 4⌈log 𝑁

𝐾
⌉ − 10 (49)

We can draw the following conclusions, respectively:
• Based on the derivativeF ′|ΠFS | = 𝐾−

4
𝐾 ln 2+

3
2 ,F|ΠFS | achieves

the minimum when 𝐾 = 2.
• Based on the derivative F ′|VFS | = 𝐾 −

4
𝐾 ln 2 −

𝑁
𝐾2 + 3

2 , F|VFS |

achieves the minimum when 𝐾 ≈ 𝑁
1
3 .

The two cost functions, each attaining minimum values at distinct
K values, allow for configurable performance, offering a choice
between the low-gear and high-gear settings:
• Low-Gear (LG): When 𝐾 = 2, the proof has the smallest
proof size but higher computational overheads.
• High-Gear (HG): When 𝐾 ≈ 𝑁

1
3 , the proof has highest com-

putational efficiency but larger proof size.
Moreover, by utilizing Flashproof’s optimization in Section 4.1.2,
we redefine the cost functions F|ΠFS | and F|VFS | for the optimized
proof:

F|ΠFS | = 4⌈log 𝑁
𝐾
⌉ + 𝐹 (𝐾) + 𝐾 − 4 (50)

F|VFS | = ⌈
𝑁

𝐾
⌉ + 4⌈log 𝑁

𝐾
⌉ + 𝐹 (𝐾) + 𝐾 − 11 (51)

Remarks: In unoptimized implementations, a simple adjustment
involves changing the parameter K. In optimized implementations,
only (𝐾2

2 +
𝐾
2 + 1) cross-terms need to be replaced by 𝐹 (𝐾) terms,

eliminating the need for an overhaul of the entire algorithm. This
adjustment is much easier compared to transitioning to an entirely
different range proof.

6 AGGREGATION
6.1 Aggregate proof Πarg

FlashSwift allows to simultaneously prove 𝐽 committed values lie
within a specific range for efficiency improvement in both commu-
nication and verification. A 𝐽 -aggregate proof uses 𝐽 · 𝐿 generators
(𝑔 𝑗,𝑙 )

𝐽 −1,𝐿−1
𝑗=0,𝑙=0 to achieve the construction. In this section, we essen-

tially use the parameter 𝐿 instead of ⌈𝑁
𝐾
⌉ for brevity. Given 𝐽 target

commitments (𝑋 𝑗 ) 𝐽 −1𝑗=0 , we use Eqn. (52) to verify our aggregate
proof based on the aggregation technique of SwiftRange [32]:

LHS
?
=RHS (52)

LHS =

𝐽 −1∏
𝑗=0
(𝑔

∑𝐿−1
𝑙=0 𝑣𝑗,𝑙 )𝑦

𝑗+1
·
𝐽 −1∏
𝑗=0

𝐿−1∏
𝑙=0

𝑔
𝑓𝑗,𝑙 ·𝑣𝑗,𝑙
𝑗,𝑙

(53)

RHS = 𝜌−𝑢 ·
(𝐾2 )−1∏

0
𝑇
𝑒𝑘,𝑗

𝑘,𝑗
·
𝐽 −1∏
𝑗=0

𝐾−2∏
𝑘=0

𝑆
(𝑒𝑘−𝑒𝐾−1)𝑦 𝑗+1
𝑗,𝑘

·
𝐽 −1∏
𝑗=0

𝑋
𝑒𝐾−1𝑦 𝑗+1

𝑗
·
𝐾−1∏
𝑘=0

𝑄
𝑒𝑘
𝑘
·𝑄𝐾

(54)

Note that the factors (𝑔
∑𝐿−1
𝑙=0 𝑣𝑗,𝑙 ) 𝐽 −1

𝑗=0 in Eqn. (53) are separated by a

series of non-linear challenges (𝑦 𝑗+1) 𝐽 −1
𝑗=0 . Accordingly, the factors

(𝑋 𝑗 ) 𝐽 −1𝑗=0 in Eqn. (54) are isolated by a series of non-linear chal-

lenges (𝑒𝐾−1 · 𝑦 𝑗+1) 𝐽 −1𝑗=0 . We can further re-write Eqn. (53) to the
compression-friendly form:

𝐽 −1∏
𝑗=0
(𝑔

∑𝐿−1
𝑙=0 𝑣𝑗,𝑙 )𝑦

𝑗+1
·
𝐽 −1∏
𝑗=0

𝐿−1∏
𝑙=0

𝑔
𝑓𝑗,𝑙 ·𝑣𝑗,𝑙
𝑗,𝑙

=

𝐽 −1∏
𝑗=0

𝐿−1∏
𝑙=0
(𝑔𝑦

𝑗+1
· 𝑔𝑓𝑗,𝑙
𝑗,𝑙
)𝑣𝑗,𝑙

=

𝐽 −1∏
𝑗=0

𝐿−1∏
𝑙=0
(𝑔𝑦

𝑗+1
· 𝑔

∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘

𝑗,𝑙
)𝑣𝑗,𝑙 ·

𝐽 −1∏
𝑗=0

𝐿−1∏
𝑙=0

𝑔
−𝑣2
𝑗,𝑙

𝑗,𝑙

= hv · g−v
2

(55)

where v = (𝑣 𝑗,𝑙 )
𝐽 −1,𝐿−1
𝑗=0,𝑙=0 , h = (𝑔𝑦 𝑗+1 · 𝑔

∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘

𝑗,𝑙
) 𝐽 −1,𝐿−1
𝑗=0,𝑙=0 and

g = (𝑔 𝑗,𝑙 )
𝐽 −1,𝐿−1
𝑗=0,𝑙=0 .

Theorem 1. Our aggregate range proof Πarg is 5-move protocol,
which has perfect completeness, computational witness-extended em-
ulation and perfect special honest-verifier zero-knowledge (SHVZK).

Please see Appendix A.2 for the proof of Theorem 1.

6.2 Compressed Aggregate proof Πcarg

By analogy, for the compressed aggregate proof, the prover needs to
append zeros to v so as to recursively apply (⌈log 𝐽𝐿⌉ − 3) times of
the compression protocol Πqc to the aggregate range protocol Πarg
until the vector dimension |v| is reduced to 8. For an unoptimized
𝐽 -aggregate proof, the number of elements would be:

F|Πcarg | = 4⌈log 𝐽𝐿⌉ + 𝐽𝐾 − 𝐽 + 𝐾
2

2
+ 𝐾

2
− 2 (56)

The verification is dominated by:

F|Vcarg | = 𝐽𝐿 + 4⌈log 𝐽𝐿⌉ + 𝐽𝐾 +
𝐾2

2
+ 𝐾

2
− 10 (57)
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(a) The proof size in bytes. (b) The proving time in milliseconds (c) The verification time in milliseconds

Figure 1: The performance of the single proofs.

Compared with naively combining 𝐽 single proofs, the savings are
considerable:

ΔF|Πcarg | = 4(𝐽 ⌈log𝐿⌉ − ⌈log 𝐽𝐿⌉) + (𝐽 − 1) (𝐾
2

2
+ 𝐾

2
+ 1) − 3𝐽 + 3

ΔF|Vcarg | = 4(𝐽 ⌈log𝐿⌉ − ⌈log 𝐽𝐿⌉) + (𝐽 − 1) (𝐾
2

2
+ 𝐾

2
+ 1) − 11𝐽 + 11

Moreover, according to Eqn. (56) and (57), we can conclude that:
• Low-Gear (LG): When 𝐾 = 2, the proof has the smallest
proof size but higher computational overheads.
• High-Gear (HG): According to the derivative F ′|Vcarg | = 𝐾 −

4
𝐾 ln 2−

𝐽 𝑁

𝐾2 +𝐽 + 32 , due to the existence of 𝐽 , when𝐾 is slightly

smaller than (𝐽𝑁 )
1
3 , the proof has highest computational

efficiency. We highly recommend that readers empirically
determine the optimal 𝐾 through experiments.

Note that the same as the single proofs, the cross-terms (𝐾2

2 +
𝐾
2 +1)

can be replaced by 𝐹 (𝐾) terms for optimization.

Theorem2.Our compressed aggregate range proofΠcarg is (2⌈log 𝐽 𝑁
𝐾
⌉−

1)-move protocol, which has perfect completeness, computational
witness-extended emulation and perfect special honest-verifier zero-
knowledge (SHVZK).
Please see Appendix A.3 for the proof of Theorem 2.

7 EXPERIMENTAL EVALUATION
7.1 Settings
We conducted comprehensive performance evaluations to com-
pare the efficiency of FlashSwift with the other state-of-the-art
range proof systems, namely Bulletproof(+), Flashproof and Swif-
tRange. Apart from our specially-designed low-gear (LG, K=2) and
high-gear (HG, 𝐾 ≈ (𝐽𝑁 )

1
3 ) settings, we also evaluated an extra

medium-gear (MG, K=3) setting in our experiment to help readers
understand our configurability feature. In general, our medium-
gear proof demonstrates intermediate performance between the
low-gear and high-gear counterparts, with a caveat. Exceptions in
the proof size may occur for optimized single proofs, as Flashproof’s
optimization function 𝐹 (𝐾) does not follow a regular pattern, as

shown in Appendix B. We recommend users choose the low-gear
and high-gear settings that best suit their specific applications.

For our experiments, we utilized the same experimental settings
as SwiftRange for straightforward comparisons. We employed the
standard elliptic curve group of prime 254-bit order, BN-1286, for
Pedersen commitment schemes. Our experiments were executed
in a single thread on a Java Virtual Machine 15 with an Apple
M1 Pro processor, where the Java implementations were primarily
aimed for performance comparison purposes and some lower-level
programming languages, e.g., Rust and C, can provide higher com-
putational efficiency in practice.

For communication overheads, we measured the proof sizes in
bytes of different range proofs over a 256-bit field for the most
common ranges where 𝑁 ≤ 64. We followed Bulletproof’s strat-
egy of using the compressed representation of elliptic curve points,
which can be stored as a 256-bit value accompanied by an additional
bit that indicates one of the two potential y coordinates. For com-
putational overheads, we measured the running time of proving
and verification of different range proofs, where we omit Bullet-
proof+ as it has comparable computational efficiency to Bulletproof.
Moreover, we adopted the generic implementations of the unopti-
mized versions of FlashSwift and Flashproof for a fair comparison
since the optimized versions for each combination of (𝐽 , 𝑁 ) require
slightly specific implementations. We encourage readers to create
the optimized versions that cater to their own needs. Our code is
available at this github repository.

7.2 Line Charts
7.2.1 Communication Overhead. We generated a line chart in Fig-
ure 1a to offer a more direct proof size comparison than Table 2.
The proof sizes of our low-gear proof start with the smallest sizes in
bytes for 8-bit and 16-bit ranges among them all and intersect with
that of Bulletproof when 𝑁 = 64 and that of Bulletproof+ when
N is slightly greater than 16. We observe a consistent 64-byte gap
between SwiftRange and ours. Furthermore, our high-gear proof en-
tails slightly greater communication costs compared to SwiftRange.

6Other standard groups can also be used, e.g., secp256k1.
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(a) The proof size in bytes (b) The proving time in seconds (c) The verification time in seconds

Figure 2: The performance of the 64-bit aggregate proofs

(a) The comparison for 8-bit ranges. (b) The comparison for 16-bit ranges.

(c) The comparison for 32-bit ranges. (d) The comparison for 64-bit ranges.

Figure 3: The normalized efficiency comparisons of different ranges regarding proof size, proving and verification time, where
the closer the vertices to the center, the higher efficiency.

In stark contrast, a substantial reduction in communication costs
becomes evident when compared with Flashproof. An exception
arises wherein our medium-gear proofs for 𝑁 ∈ {32, 64} involve
one more element than the high-gear counterparts. According to

Eqn. (50), the term 4⌈log 𝑁3 ⌉ for the medium-gear one incorporates
four additional elements than the term 4⌈log 𝑁4 ⌉ for the high-gear
one, while 𝐹 (3)+3 involves three fewer elements than 𝐹 (4)+4. How-
ever, in most cases where unoptimized single proofs and aggregate
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proofs are involved, no exceptions are observed. Turning to aggre-
gate proofs as displayed in Figure 2a, it can be observed that the
disparities between our low-gear proof and the other logarithmic-
sized ones are small. The communication efficiency advantage of
our high-gear proof over Flashproof is evident. Furthermore, our
proof in the medium-gear configuration demonstrates a smooth
efficiency improvement compared to the high-gear setting, and a
reduction compared to the low-gear setting, respectively.

7.2.2 Computational Overhead. In Figure 1b and 1c, we can observe
that our proofs run significantly faster than the other logarithmic-
sized ones in both proving and verification. Notably, compared with
Bulletproof for 𝑁 = 64, our low-gear one achieves 2.3× and 3.2×
proving and verification efficiency, respectively, which corresponds
to the complexity comparison in Table 1. In comparison to Swif-
tRange, the efficiency improvements in proving and verification
are also remarkable, which is a factor of 1.65 and 1.7, respectively.
Moreover, the high-gear one retains comparable computational
efficiency to Flashproof. The proving and verification efficiency
is parallel to that of Flashproof when 𝑁 ≤ 32. When 𝑁 = 64,
our prover and verifier need to spend more time than those of
Flashproof in executing one compression recursion for the sake of
communication efficiency. In terms of verification running time, the
efficiency gap is slim as the two lines almost coincide. As expected,
our medium-gear proof attains an intermediate level of efficiency
performance, falling between the efficiency levels of the low-gear
and high-gear proofs. With respect to the aggregate proofs in Fig-
ure 2b and 2c, the performance disparities are approximately as
significant as those of the single proofs.

7.3 Radar Charts
Apart from the line charts, we also provide four more straight-
forward radar charts in Figure 3 to present normalized efficiency
comparisons across various ranges. For 8-bit and 16-bit ranges,
both the charts of our three versions of proofs exactly coincide
due to the use of the same 𝐾 = 2. They demonstrate significantly
superior performance than the other proofs. For 32-bit and 64-bit
ranges, the advantages of the three proofs become more noticeable
that the low-gear one is more communication efficient whereas the
high-gear one is more computationally efficient. Our medium-gear
proof demonstrates a balanced performance, positioned between
the efficiency levels of the lower-gear and high-gear alternatives.
Holistically, we can see that our proofs achieve the most balanced
performance for all the ranges. Specifically, our low-gear proof out-
performs the two logarithmic-sized ones in all three performance
measures since their performance charts are fully enclosed by those
of the two. Moreover, compared with Flashproof, our high-gear
proof achieves a considerable advantage in communication effi-
ciency for all four ranges, but slightly falls behind in both proving
and verification efficiency.

7.4 Discussion
Based on our experimental findings, it is evident that our low-
gear proof stands out with shorter size and significantly faster
performance compared to the current state-of-the-art logarithmic-
sized proofs. On the other hand, our high-gear proof, while slightly
compromising on computational efficiency, exhibits a substantial

improvement in communication efficiency, making it a preferable
choice over Flashproof. Our medium-gear one exhibits a balanced
performance between the former two, offering an additional choice
for privacy-preserving applications. While the communication ef-
ficiency of the low-gear aggregate proof does not have logarith-
mic shortness, there remains considerable room for further en-
hancement. It currently keeps pace reasonably well with other
logarithmic-sized proofs, and the minor communication gaps can be
mitigated to some extent by its markedly higher computational effi-
ciency. Furthermore, it’s worth noting that single proofs suffice for
meeting the requirements of many privacy-enhancing applications,
such as BBA schemes, anonymous credentials, privacy-preserving
crowdsensing.

8 CONCLUSION
In this paper, we presented, FlashSwift, a new logarithmic-sized
zero-knowledge range proof in the DLOG setting with a transpar-
ent setup. We breach the inherent incompatibility barrier between
Flashproof and SwiftRange to construct a shorter and significantly
faster range proof than the state-of-the-art logarithmic-sized ones,
Bulletproof and SwiftRange, for the most common ranges where
𝑁 ∈ {8, 16, 32, 64}. To the best of our knowledge, on the one hand,
our proof achieves the smallest proof sizes, 289 bytes and 417 bytes,
for 8-bit and 16-bit ranges among all the bit-decomposition-based
range proofs without requiring trusted setups; On the other hand,
our proof is the first configurable range proof, whose communi-
cation efficiency can be traded off for computational efficiency to
easily adapt to different scenarios. The high-gear proof gains a
considerable communication efficiency advantage over Flashproof
while incurring comparable computational efficiency. Our low-gear
aggregate proof does not achieve the desirable logarithmic short-
ness. We anticipate overcoming this limitation in our forthcoming
research endeavors.
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A SECURITY ANALYSIS
A.1 Useful Theorems
We provide a brief overview of the forking lemma from [4] and
the security theorem of the compression protocol from SwiftRange
[32], which will be essential for the security proofs of our range
arguments.

A.1.1 A General Forking Lemma. Suppose we have a public-coin
argument with (2𝜇−1)moves and 𝜇 challenges 𝑒1, ..., 𝑒𝜇 in sequence.
We consider

∏𝜇

𝑖=1 𝜃𝑖 accepting transcripts organized in a tree for-
mat. This tree has a depth of 𝜇 and

∏𝜇

𝑖=1 𝜃𝑖 leaves, with the root
labeled with the statement. Each node at depth 𝑖 has exactly 𝜃𝑖 chil-
dren, each labeled with a distinct value of the 𝑖-th challenge 𝑒𝑖 . We
refer to this structure as an (𝜃1, ..., 𝜃𝜇 )-tree of accepting transcripts.
The forking lemma naturally generalizes the special soundness for
public-coin arguments with (2𝜇 − 1) moves. Thus, by using Theo-
rem 3, we will prove that our protocols possess witness-extended
emulation.

Theorem 3 (Forking Lemma). Let G, P,V be a (2𝜇 − 1)-move,
public coin interactive protocol. Let E be a witness extraction algo-
rithm that succeeds with probability 1 − negl(𝜆) for some negligible
function negl(𝜆) in extracting a witness from an (𝜃1, ..., 𝜃𝜇 )-tree of
accepting transcripts in probabilistic polynomial time. Assume that∏𝜇

𝑖=1 𝜃𝑖 is bounded above by a polynomial in the security parameter
𝜆. Then G, P,V has witness-extended emulation.

A.1.2 Compression Protocol Theorem. The security theorem of the
compression protocol Πqc goes as below. Please refer to the original
paper [31] for detailed security proofs.

Theorem4. The compression protocolΠqc is a 3-move protocol, which
has perfect completeness and computational 5-special soundness.

A.2 Proof of Theorem 1
Proof. Perfect completeness follows by a careful inspection of the
protocol. Then we depict a perfect SHVZK simulation. Given
a challenge 𝑦, a challenge vector (𝑒𝑘 )𝐾−1𝑘=0 and a series of target
commitments (𝑋 𝑗 ) 𝐽 −1𝑗=0 , a simulator randomly picks up group ele-

ments (𝑇𝑘,𝑗 )
(𝐾2 )−1
0 , (𝑆 𝑗,𝑘 )

𝐽 −1,𝐾−2
𝑗=0,𝑘=0 , (𝑄𝑘 )

𝐾−1
𝑘=0

$←− G and field elements

(𝑣 𝑗,𝑙 )
𝐽 −1,𝐿−1
𝑗=0,𝑙=0 , 𝑢

$←− Z∗𝑝 . By the perfect hiding property, the Pedersen
commitments in a real argument are uniformly random as those in
the simulation. The field elements in a real argument are also uni-
formly random due to the random choices of (𝑟 𝑗,𝑙 )

𝐽 −1,𝐿−1
𝑗=0,𝑙=0 , (𝑟𝑞𝑘 )𝐾𝑘=0

and (𝑟𝑠 𝑗,𝑘 )
𝐽 −1,𝐾−2
𝑗=0,𝑘=0 . Hence, in both real argument and simulation, the

random elements uniquely determine the value 𝑄𝐾 by computing:

𝑄𝐾 = h−v · gv
2
· 𝜌𝑢 ·

(𝐾2 )−1∏
0

𝑇
−𝑒𝑘,𝑗
𝑘,𝑗

·
𝐽 −1∏
𝑗=0

𝐾−2∏
𝑘=0

𝑆
(𝑒𝐾−1−𝑒𝑘 )𝑦 𝑗+1
𝑗,𝑘
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·
𝐽 −1∏
𝑗=0

𝑋
−𝑒𝐾−1𝑦 𝑗+1
𝑗

·
𝐾−1∏
𝑘=0

𝑄
−𝑒𝑘
𝑘

where v = (𝑣 𝑗,𝑙 )
𝐽 −1,𝐿−1
𝑗=0,𝑙=0 . This means we have identical distributions

of real and simulated arguments with the given challenges.
Finally, we prove witness-extended emulation. The protocol

Πcarg fulfils 𝛾-special soundness. Given the verification equality as
below:

hv · g−v
2 ?
= 𝜌−𝑢 ·

(𝐾2 )−1∏
0

𝑇
𝑒𝑘,𝑗

𝑘,𝑗
·
𝐽 −1∏
𝑗=0

𝐾−2∏
𝑘=0

𝑆
(𝑒𝑘−𝑒𝐾−1)𝑦 𝑗+1
𝑗,𝑘

·
𝐽 −1∏
𝑗=0

𝑋
𝑒𝐾−1𝑦 𝑗+1

𝑗
·
𝐾−1∏
𝑘=0

𝑄
𝑒𝑘
𝑘
·𝑄𝐾

Let (𝑎𝑡 )𝛾𝑡=0 ← Z𝑝 be a tuple of variables, where 𝛾 = 𝐽𝐾 + 1
2 (𝐾

2 +
𝐾) + 1. We can create 𝛾 equations by multiplying these variables
on both sides:(

(hv
(t)
· g−(v

(t) )2 · 𝜌𝑢
(𝑡 )
)𝑎𝑡

= (
(𝐾2 )−1∏

0
𝑇
𝑒
(𝑡 )
𝑘,𝑗

𝑘,𝑗
·
𝐽 −1∏
𝑗=0

𝐾−2∏
𝑘=0

𝑆
(𝑒 (𝑡 )
𝑘
−𝑒 (𝑡 )
𝐾−1) (𝑦

(𝑡 ) ) 𝑗+1
𝑗,𝑘

·
𝐽 −1∏
𝑗=0

𝑋
𝑒
(𝑡 )
𝐾−1 (𝑦

(𝑡 ) ) 𝑗+1
𝑗

·
𝐾−1∏
𝑘=0

𝑄
𝑒
(𝑡 )
𝑘

𝑘
·𝑄𝐾 )𝑎𝑡

)𝛾−1
𝑡=0

Then we obtain the following by taking a linear combination of
these 𝛾 equations:

h
∑𝛾−1
𝑡=0 v(t)𝑎𝑡 · g−

∑𝛾−1
𝑡=0 (v(t) )2𝑎𝑡 · 𝜌

∑𝛾−1
𝑡=0 𝑢

(𝑡 )𝑎𝑡

=

(𝐾2 )−1∏
0

𝑇

∑𝛾−1
𝑡=0 𝑒

(𝑡 )
𝑘,𝑗
𝑎𝑡

𝑘,𝑗
·
𝐽 −1∏
𝑗=0

𝐾−2∏
𝑘=0

𝑆

∑𝛾−1
𝑡=0 (𝑒

(𝑡 )
𝑘
−𝑒 (𝑡 )
𝐾−1) (𝑦

(𝑡 ) ) 𝑗+1𝑎𝑡
𝑗,𝑘

·
𝐽 −1∏
𝑗=0

𝑋

∑𝛾−1
𝑡=0 𝑒

(𝑡 )
𝐾−1 (𝑦

(𝑡 ) ) 𝑗+1𝑎𝑡
𝑗

·
𝐾−1∏
𝑘=0

𝑄

∑𝛾−1
𝑡=0 𝑒

(𝑡 )
𝑘
𝑎𝑡

𝑘
·𝑄

∑𝛾−1
𝑡=0 𝑎𝑡

𝐾

To ensure the left-hand side is equal to the 𝛽-th target commitment
𝑋𝛽 , where 𝛽 ∈ {0, ..., 𝐽 − 1}, we need the following 𝛾 equations:( 𝛾−1∑︁

𝑡=0
𝑒
(𝑡 )
𝑘,𝑗
𝑎𝑡 = 0

) (𝐾2 )−1
0

,

( 𝛾−1∑︁
𝑡=0
(𝑒 (𝑡 )
𝑘
− 𝑒 (𝑡 )

𝐾−1) (𝑦
(𝑡 ) ) 𝑗+1𝑎𝑡 = 0

) 𝐽 −1,𝐾−2
𝑘=0, 𝑗=0

,

( 𝛾−1∑︁
𝑡=0

𝑒
(𝑡 )
𝐾−1 (𝑦

(𝑡 ) )𝛽+1𝑎𝑡
)
= 1,

( 𝛾−1∑︁
𝑡=0

𝑒
(𝑡 )
𝐾−1 (𝑦

(𝑡 ) ) 𝑗+1𝑎𝑡
) 𝐽 −1
𝑗≠𝛽

= 0,

( 𝛾−1∑︁
𝑡=0

𝑒
(𝑡 )
𝑘
𝑎𝑡 = 0

)𝐾−1
𝑘=0

,

𝛾−1∑︁
𝑡=0

𝑎𝑡 = 0

We can obtain a 𝛾 × 𝛾 challenge matrix:

e =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

𝑒
(0)
0,0 . . . 𝑒

(𝛾−1)
0,0

.

.

.
. . .

.

.

.

𝑒
(0)
𝑘=𝐾−1, 𝑗=𝐾−2,𝑘≠𝑗 . . . 𝑒

(𝛾−1)
𝑘=𝐾−1, 𝑗=𝐾−2,𝑘≠𝑗

(𝑒 (0)0 − 𝑒 (0)
𝐾−1)𝑦

(0) . . . (𝑒 (𝛾−1)0 − 𝑒 (𝛾−1)
𝐾−1 )𝑦

(𝛾−1)

.

.

.
. . .

.

.

.

(𝑒 (0)
𝐾−2 − 𝑒

(0)
𝐾−1) (𝑦

(0) ) 𝐽 . . . (𝑒 (𝛾−1)
𝐾−2 − 𝑒

(𝛾−1)
𝐾−1 ) (𝑦

(𝛾−1) ) 𝐽

𝑒
(0)
𝐾−1𝑦

(0) . . . 𝑒
(𝛾−1)
𝐾−1 𝑦 (𝛾−1)

.

.

.
. . .

.

.

.

𝑒
(0)
𝐾−1 (𝑦

(0) )𝛽+1 . . . 𝑒
(𝛾−1)
𝐾−1 (𝑦

(𝛾−1) )𝛽+1
.
.
.

. . .
.
.
.

𝑒
(0)
𝐾−1 (𝑦

(0) ) 𝐽 . . . 𝑒
(𝛾−1)
𝐾−1 (𝑦

(𝛾−1) ) 𝐽

𝑒
(0)
0 . . . 𝑒

(𝛾−1)
0

.

.

.
. . .

.

.

.

𝑒
(0)
𝐾−1 . . . 𝑒

(𝛾−1)
𝐾−1

1 . . . 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
We can see that all the rows and columns of the left multiplying
challenge matrix are linearly independent since these challenges
are randomly generated based on the assumption of the random
oracle model. The matrix is invertible for being a full-rank matrix.
We can compute the openings of the 𝛽-th commitment:

e−1 ·
©­­«
𝑎0
.
.
.

𝑎𝛾−1

ª®®¬ =
©­­­­­­­­­­­­«

0
.
.
.

0
1
0
.
.
.

0

ª®®®®®®®®®®®®¬
(58)

A solution of such variables (𝑎𝑡 )𝛾−1𝑡=0 to the equations exists. We
can obtain the openings of each target commitment by setting a
different vector whose Hamming weight is 1 on the right-hand side
of Eqn. (58).

A.3 Proof of Theorem 2
Proof. The security proof of Πcarg is similar to that of Πcarg in [32].
Perfect completeness follows by carefully inspecting the final
verification equation:

ĥv̂ · ĝ−v̂
2 ?
= 𝜌−𝑢 ·

(𝐾2 )−1∏
0

𝑇
𝑒𝑘,𝑗

𝑘,𝑗
·
𝐾−2∏
𝑘=0

𝑆
(𝑒𝑘−𝑒𝐾−1)𝑦 𝑗+1
𝑗,𝑘

·
𝐽 −1∏
𝑗=0

𝑋
𝑒𝐾−1𝑦 𝑗+1

𝑗

·
𝐾−1∏
𝑘=0

𝑄
𝑒𝑘
𝑘
·𝑄𝐾 ·

⌈log 𝐽 𝑁
𝐾
⌉−4∏

𝜏=0
𝐴
𝑐−2𝜏
𝜏 𝐵

𝑐−1𝜏
𝜏 𝐷

𝑐𝜏
𝜏 𝐸

𝑐2𝜏
𝜏

where v̂, ĥ and ĝ are the final compressed vectors of witnesses and
generators of dimension 8.

The compressed aggregate range argument Πcarg exhibits a per-
fect SHVZK property, which is derived from the perfect SHVZK
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property of the aggregate range argument Πarg through the follow-
ing composition structure:

Πcarg = Πqc ⋄ · · · ⋄ Πqc︸             ︷︷             ︸
( ⌈log 𝐽 𝑁

𝐾
⌉−3) times

⋄ Πarg

The simulator of Πcarg operates by running the simulator of Πarg
and then replacing the final messages of the simulated transcripts
through honest executions of Πqc ⋄ · · · ⋄ Πqc. The subsequent
compression protocols Πqc preserve their zero-knowledge property.
The field vector v′ is the sum of two zero-knowledge field elements
vL and 𝑐vR. Additionally, the Pedersen commitments are perfectly
hiding. As a result, the zero-knowledge property of the overall
protocol Πcarg remains unchanged.

Finally, we establish the computational witness-extended
emulation of Πcarg. The protocol Πcarg is a combination of a 𝛾-
special sound aggregate range protocol Πarg, where 𝛾 =

(
𝐽𝐾 +

1
2 (𝐾

2 + 𝐾) + 1
)
and a sequence of 5-special sound compression

protocols Πqc. As a result, Πcarg can be observed as (𝛾, 5, ..., 5)-
special sound. This implies the existence of an efficient knowledge
emulator that can extract the witnesses of the commitments along
the path from the leaves to the root of the (𝛾, 5, ..., 5)-tree of 𝛾 ·
5log( 𝐽 𝑁 )−log𝐾−3 accepting transcripts. The emulator utilizes fewer
than𝛾 ·5log( 𝐽 𝑁 )−log𝐾−3 < 𝛾 ·8log( 𝐽 𝑁 ) =

(
𝐽𝐾+ 12 (𝐾

2+𝐾)+1
)
· (𝐽𝑁 )3

transcripts and thus runs in expected polynomial time in 𝑁 , 𝐾 and
𝐽 .

B THE FUNCTION 𝐹 (𝐾)
Flashproof gives a list of values for the optimization function 𝐹 (𝐾)
of Flashproof in Table 3. Please refer to their paper [30] for more
details.

Table 3: The values of 𝐹 (𝐾)

𝐾 2 3 4 5 6 7 8 9 10
𝐹 (𝐾) 3 6 8 11 13 20 27 32 37
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