
Attacking Connection Tracking Frameworks as used by Virtual
Private Networks

Benjamin Mixon-Baca
ASU/Breakpointing Bad

bmixonba@asu.edu

Jeffrey Knockel
Citizen Lab, University of Toronto

Diwen Xue
University of Michigan

Tarun Ayyagari
Arizona State University

Deepak Kapur
University of New Mexico

Roya Ensafi
University of Michigan

Jedidiah R. Crandall
ASU/Breakpointing Bad

ABSTRACT
VPNs (Virtual Private Networks) have become an essential privacy-
enhancing technology, particularly for at-risk users such as dissi-
dents, journalists, NGOs, and others vulnerable to targeted threats.
While previous research investigating VPN security has focused
on cryptographic strength or traffic leakages, there remains a gap
in understanding how lower-level primitives fundamental to VPN
operations, specifically connection tracking, might undermine the
security and privacy that VPNs are intended to provide.

In this paper, we examine the connection tracking frameworks
used in common operating systems, identifying a novel exploit prim-
itive that we refer to as the port shadow. We use the port shadow to
build four attacks against VPNs that allow an attacker to intercept
and redirect encrypted traffic, de-anonymize a VPN peer, or even
portscan a VPN peer behind the VPN server. We build a formal
model of modern connection tracking frameworks and identify that
the root cause of the port shadow lies in five shared, limited resources.
Through bounded model checking, we propose and verify six miti-
gations in terms of enforcing process isolation. We hope our work
leads to more attention on the security aspects of lower-level sys-
tems and the implications of integrating them into security-critical
applications.

KEYWORDS
computer network, security, VPN, exploit, formal methods

1 INTRODUCTION
Internet service providers (ISPs) and national governments are in-
creasingly disrupting and manipulating Internet traffic [16, 42, 48].
As a result, the use of virtual private networks (VPNs) has been on
the rise, not only among average users who wish to protect their
privacy but also, and more notably, among high-risk individuals
such as dissidents, activists, or NGO workers, who turn to VPNs to
mitigate threats from adversarial network infrastructures that aim

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(3), 109–126
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0070

to compromise their security. VPN clients encapsulate users’ traffic
within an encrypted tunnel to the VPN server, which then relays the
traffic to its final destination, thus protecting users from potentially
untrusted upstream networks.

Although VPNs are not typically thought of as middleboxes,
in a privacy context network address translation (NAT) is a key
part of VPNs and so both the VPN client and VPN server are de
facto middleboxes. Operating systems typically implement NAT and
connection tracking in kernel space but completely separate from the
kernel’s network stack, meaning that none of the actual connection
state is available to the connection tracking framework. This creates
a situation that conflicts with the end-to-end principle that guided
the development of the Internet’s core protocols. This end-to-end
principle advocates for functionalities such as reliability and security
to be implemented on end-hosts. However, applications such as
VPNs rely heavily on a stateful connection tracking framework that
manages connections as they enter and leave the network stack.
Notably, the connection tracking framework is generally a shared
resource. It enables efficient management of connections across
various kernel threads and processes within the system. Yet, this
approach also introduces shared states that, if not properly managed,
can pose potential security risks to any applications dependent on
the framework.

In this paper, we take the first look at how modern connection
tracking frameworks might impact the security and privacy of VPN
applications built upon them. Previous research into VPN security
has focused on aspects such as protocol integrity, cryptographic
strength, or traffic leakages [7, 12, 43, 51]. However, there has been
less attention on how underlying systems that facilitate VPN opera-
tions, such as connection tracking, might compromise the security
offered by VPNs. A key observation that motivated our work is that
many of these lower-level systems rely on shared resources. In any
system where resources are shared, security is contingent upon how
effectively processes are isolated from one another. For connection
tracking frameworks, the main concern is the degree of isolation
between connections, especially when these are a mix of local and re-
mote connections, or when they are associated with different security
notions, as is often the case with VPN applications.

We present a novel exploit primitive that leverages shared re-
sources within connection tracking frameworks as used by many

109

https://orcid.org/0000-0002-4670-4578
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0070

Proceedings on Privacy Enhancing Technologies 2024(3) Mixon-Baca et al.

VPNs and the ability of an attacker to manipulate it to violate pro-
cess isolation of clients connected to the same VPN server as the
attacker. We use the exploit primitive, that we refer to as the port
shadow, to develop four related attacks against VPNs discovered via
static and dynamic analysis of real-world implementations (Linux,
FreeBSD, OpenVPN, WireGuard, and OpenConnect) and reviewing
thirteen VPN and NAT RFCs [17–19, 23, 26, 27, 29, 36, 39]. The
attacks challenge the typical security and privacy expectations users
may have when using VPNs. For example, in situations where multi-
ple users are connected to the same VPN server, one might expect
that the processes of different users should be separate and unable
to interfere with each other. However, as shown later in the paper,
we demonstrate attacks that violate process isolation, allowing an
attacker to intercept a target’s encrypted traffic and redirect their
traffic, de-anonymize other users connected to the same VPN server,
or port scan them behind the VPN server.

To evaluate the practicality of the attacks, we conducted tests
in both virtualized and live environments, targeting 58 different
configurations of operating systems and connection tracking frame-
works. Our evaluation revealed that the attacks were successful in
the majority of cases across all tested VPN protocols (OpenVPN,
OpenConnect, and WireGuard) using a range of connection tracking
frameworks. The broad applicability of the port shadow across con-
figurations indicates that the vulnerability lies not within any specific
VPN protocol, but rather in the underlying systems that facilitate
VPN operations.

Finally, we build a formal model of modern connection tracking
frameworks based on our analysis and relevant RFCs. Through this
model, we identify that the port shadow stems from five shared,
limited resources that are fundamental to connection tracking frame-
works. Building on this insight, we develop six mitigations and use
bounded model checking with a depth of up to 2,000,000 state tran-
sitions to verify that non-interference holds. While the mitigations
are effective at enforcing process isolation, our analysis also reveals
the challenges, trade-offs, and inherent limitations of implementing
these mitigations, particularly in the context of VPNs.

Connection tracking frameworks were not initially designed with
the same threat model and security considerations as VPNs. The
attacks we demonstrate here clearly indicate that the way VPNs
rely on connection tracking can have significant implications on
the security and privacy that VPNs are intended to provide. While
we discuss potential mitigations, we hope that our work leads to
a broader, more systematic reevaluation of the security aspects of
lower-level primitives and the implications of integrating them into
security-critical applications.

The remainder of this paper is structured as follows. § 2 pro-
vides background on VPNs, connection tracking frameworks, model
checking, the non-interference property, and our threat model. § 3
explains the attacks. The testing environment and case studies are
described in § 4, along with evaluation results. § 5 describes the
formal model and model checking. We discuss the root causes and
propose mitigations in § 6. § 7 covers related work. § 8 covers ethics
and the disclosure process. We summarize our insights in § 9.

2 BACKGROUND
In this section, we introduce concepts key to understanding our
work: VPNs, connection tracking frameworks, and model checking.
Then we outline the threat model under which our attacks have been
devised and tested.

2.1 Virtual Private Networks
Virtual private networks (VPNs) serve as an essential tool for at-risk
users, such as journalists and dissidents, to safeguard against surveil-
lance and interception from adversarial network infrastructures. The
core security features provided by VPNs are IP address obfuscation
and encryption. IP obfuscation works by ensuring that when a VPN
client sends a packet through the network, it appears to originate
from a different IP address than the client’s actual IP. Encryption, on
the other hand, secures the data in transit and prevents eavesdroppers
from identifying the actual servers the client is communicating with.
Both IP obfuscation and encryption features in VPNs necessitate
address translation, for which most modern VPNs rely on connection
tracking frameworks provided by the host system.

When a VPN client initiates a connection to a VPN server, it starts
by sending a connection request to the server’s listening port. Upon
receiving this request, the VPN server allocates an IP address for
the client, usually from the private address space [39]. This private
IP address, along with specific routing rules, is then sent back to
the client. These routing rules ensure that all the client’s subsequent
packets, except those addressed directly to the VPN server, are first
encrypted and sent to the VPN server, which then relays the packets
to their final destination.

2.1.1 VPNs in this work. VPNs refer to a broad class of systems
that use a variety of protocols and layers of the OSI network model.
Shodowsocks is an application layer proxy that we do not consider
because it is fundamentally different from the “NAT” VPNs consid-
ered in this work. We assume VPNs that work at Layer 3, such as
OpenVPN, WireGuard, or OpenConnect. We don not consider IPsec
because it is not widely deployed. Because these VPNs perform
routing and NAT at the network layer, an attacker can modify shared
state in components of the stateful connection tracking framework
that facilitate the VPN’s NAT and thus its routing behavior. VPNs
are often used to either let the client access resources behind the
VPN such as those used in corporate networks or they can change the
client’s IP address to route their traffic with an obfuscated identity,
such as, those used for removing geoblocking, protecting against
surveillance, or similar threats to at-risk users. We focus on the latter
types of VPNs given the higher stakes, though that does not mean
the former type of VPN is unaffected. We consider both IPv4 and
IPv6 VPNs.

The VPN and connection tracking frameworks they interact with
can be configured in many ways. We discuss specific configurations
details when describing each attack in § 3 and the implications of
their effects to attack success or failure in § 4 and § 6.

2.2 Connection Tracking Framework
When a VPN client sends a packet to the VPN server, the VPN
process on the server first decrypts the payload to access the encap-
sulated packet. The source IP address of the encapsulated packet

110

Attacking Connection Tracking Frameworks as used by Virtual Private Networks Proceedings on Privacy Enhancing Technologies 2024(3)

is from the private IP space used by the VPN to create its virtual
network. From here, the VPN server uses its connection tracking
framework to perform address translation and route the decrypted
packets to their intended destination. Connection tracking frame-
works maintain an internal table, finite in size and shared across
all processes, to track connections and support address translation
(NAT). The table stores an entry for each connection, recording the
originator (e.g., the client), the responder (e.g., a web server), the
direction of the last packet sent, source and destination IPs and ports,
the layer-4 protocol, etc. Additional information, such as expiry,
reply status, and eviction eligibility, might also be stored to help
manage memory by evicting stale entries. Despite the connection
tracking framework’s efforts to maintain a consistent connection
state that mirrors the end hosts, it is inherently limited as the pro-
tocols it tracks, such as IP, TCP, UDP, and ICMP, were originally
designed with end-to-end principles in mind. As a result, the con-
nection tracking framework, being an intermediary, cannot always
reliably mirror the state of these protocols. This limitation can lead
to ambiguities in connection states, such as uncertainty about which
host initiated the connection.

Figure 1 depicts a VPN, N, routing packets between private and
public IPs spaces for two separate UDP processes running between
two pairs of hosts, (A, S) and (B, S). We describe packets encap-
sulated and encrypted within the VPN tunnel using the notation
⟨saddr : sport,daddr : d port,∗⟩ where saddr is the source IP ad-
dress, sport is the source port, daddr is the destination IP address,
dport is the destination port, and ∗ is additional information such as
a payload, transport layer protocol information, or TCP flags. The
outer layer packet in which the VPN packets are encapsulated is im-
plied by this notation. Packets outside of the tunnel use curly braces.
We define a connection, per the RFCs [1, 2], as a pair of processes
performing interprocess communication via transport layer ports and
identified by the same 4-tuple that describes a packet. This simplifies
logical processes, e.g., kernel threads that track connections, VPN
server processes, attack code, etc., to a unified view as a pair of ports
and IP addresses with the understanding that IP aliasing and network
address translation must be taken into account when identifying the
specific machine on which the process runs, and introduce a 5-tuple
that includes the protocol number only as necessary.

The following pathological example highlights port and IP col-
lisions between two clients connected to the same VPN server and
forms the basis for the port shadow. In steps 1 and 2, A and B con-
nect to N’s VPN process. It assigns them the private IP addresses,
10.0.0.2, and 10.0.0.3, respectively. In step 3, A sends the packet
⟨10.0.0.2 : 1,4.4.4.4 : 80,GET ⟩ to S at 4.4.4.4. When N receives the
packet, its connection tracking framework does not find an entry for
it in T (the green box), so the packet is passed from the network
stack to its VPN process. The VPN process decrypts the payload,
and extracts the packet. It then sends the packet to its network stack.
Because the packet has a private IP address, the network stack in-
vokes the connection tracking framework to perform NAT, changing
the packet’s saddr from a private IP address to its own globally
routable IP address, 2.2.2.2. It creates and inserts the entry, orig =
{10.0.0.2 : 1,4.4.4.4 : 80},reply = {4.4.4.4 : 80,10.0.0.2 : 1}, into
T . In step 4, N routes the packet to S. The orig and reply variables
facilitate routing between public and private networks and play a
major role in routing outside of the routing table.

In step 5, S replies to A’s request by sending the response to N.
In step 6, after N receives S’s reply, it checks T for a matching
entry. N’s connection tracking framework finds the entry’s matching
reply variable from step 3 and performs address translation using
the entry’s orig variable. It also updates Expiry (RFC 4787 [29]
recommends no less than 2 minutes). Depending on the system, the
expiry and other meta-data are used to remove entries either when
the number of entries within T exceeds an upper limit, H or when its
expiry is reached. Its VPN process then encrypts the packet, sets the
payload to the encrypted packet in a second packet, and sends the
reply back to A.

In step 7, B sends the packet ⟨10.0.0.3 : 1,4.4.4.4 : 80⟩ to S. The
sport of B’s packet matches the sport of A’s packet from step
3. This causes a collision because both hosts use N’s public IP to
communicate with S and select the same port, 1. If N uses the same
sport for A and B, then S cannot differentiate the connections and
N cannot determine the route back to the correct sender. In step 8,
N resolves the collision by selecting a new sport, 3, creating an
entry, and routing the packet to S. In step 9, S sends a reply back
to N. In step 10, N uses the translation it create for B to translate
the destination port and IP address to those that B is expecting and
forwards the response to B.

2.2.1 Connection Tracking in Practice. Connection tracking is of-
ten implemented as a separate module from the operating system’s
network stack. This design is intentional and allows the kernel to
separate mechanisms, such as routing decisions from policy, e.g.,
allowing clients from one network to talk to another. The systems
we consider in this paper are Ubuntu 20.04 and FreeBSD. We chose
these systems because Ubuntu uses Netfilter for its connection track-
ing. Netfilter is installed on many Linux systems by default and is
thus going to be present in many server implementations. It is also
present on Android systems. FreeBSD is the basis for many network
appliances such as pfsense, and also has overlapping code with the
iOS network and connection tracking code. It has four distinct con-
nection tracking frameworks: IPFW, natd, PF, and IPFILTER. We
point out in § 3 how the differences between the implementations
impact whether the attacks succeed.

2.3 Model Checking
The collision example hints at the possibility that connection tracking
frameworks might not enforce process isolation in the context of
VPNs, but a concrete answer is absent from the research literature.
While exploring whether or not connection tracking frameworks do
enforce process isolation we discovered several design flaws that
an attacker can exploit. The next step was developing mitigations.
Instead of writing kernel code for multiple operating systems that
may or may not fix the underlying problem, we built a formal model
based on the VPNs, connection tracking frameworks, and relevant
RFCs to design and test mitigations. After describing the details
of the attacks we discovered in § 3, we describe our model and
how we used model checking to verify the mitigations we proposed
fix the vulnerabilities. Model checking verifies the consistency of a
system description with its formal specification [15] by modeling the
system as a set of states and state-transition functions. Correctness is
tested by exhaustively searching for states that violate one or more
invariants defined using the system description.

111

Proceedings on Privacy Enhancing Technologies 2024(3) Mixon-Baca et al.

A (Client A)
1.1.1.1 <10.0.0.2>

B (Client B)
3.3.3.3 <10.0.0.3> N (VPN Server)

2.2.2.2
S (Web Server)

4.4.4.4

Tunnel web page request
<10.0.0.2:1, 4.4.4.4:80, GET>

Proxy web page request
{2.2.2.2:1, 4.4.4.4:80

GET}

Web server response
{4.4.4.4:80, 2.2.2.2:1, Page}

Tunnel web server response
<10.0.0.2:1, 4.4.4.4:80, Page>

Tunnel web page request
<10.0.0.3:1, 4.4.4.4:80,

GET>
Proxy web page request

{2.2.2.2:3, 4.4.4.4:80, GET}

Web server response
{4.4.4.4:80, 2.2.2.2:3,

Page}

Tunnel web server response
<10.0.0.3:1, 4.4.4.4:80,

Page>

Create tunnel
Client A Connects to VPN

Private IP = 10.0.0.2Create tunnel
Client B Connects to VPN

Private IP = 10.0.0.3

7

10

8

Orig Reply
{1.1.1.1 : 100, 2.2.2.2: 1194} {2.2.2.2:1194, 1.1.1.1:100}

T
 (VPN Server Connection Tracking Table)

Client A and B connect to VPN Server

Source port of Client B's connection to
the Web Server collides with Client A's

Client A's connection to the Web Server

{2.2.2.2:1194, 3.3.3:300}{3.3.3.3 : 300, 2.2.2.2: 1194}

1-2

3-6

7-10

Orig Reply
{1.1.1.1 : 100, 2.2.2.2: 1194} {2.2.2.2:1194, 1.1.1.1:100}

{2.2.2.2:1194, 3.3.3:300}{3.3.3.3 : 300, 2.2.2.2: 1194}
{10.0.0.2 : 1, 4.4.4.4: 80} {4.4.4.4:80, 2.2.2.2:1}

{1.1.1.1 : 100, 2.2.2.2: 1194} {2.2.2.2:1194, 1.1.1.1:100}
{2.2.2.2:1194, 3.3.3:300}{3.3.3.3 : 300, 2.2.2.2: 1194}

{10.0.0.2 : 1, 4.4.4.4: 80} {4.4.4.4:80, 2.2.2.2:1}
{ 4.4.4.4:80, 2.2.2.2:3 }{10.0.0.3 : 1, 4.4.4.4: 80}

Orig Reply

7

9

8

6 5

43

2
1

Expiry

29
29

Proto
udp
udp

229 tcp

Expiry

29
29

Proto
udp
udp

Expiry

29
29

Proto
udp
udp

229 tcp
229 tcp

Figure 1: Source port collision and resolution process for two
client’s connecting to the same Web Server through the same
VPN.

2.3.1 Non-Interference. Goguen and Meseguer proposed a general
framework for defining security policies based on the concept of
the non-interference property [22]. Non-interference asserts that two
processes are non-interfering if the actions of one process have no
effect on what the other process can observe in the system. For
example, if N’s connection tracking framework forwards A’s packets
to S, then B should not be able to affect A’s connection. We chose
this framework to explore process isolation of connection tracking
frameworks because it is flexible enough for us to consider the
flaws of insecure designs while being rigorous enough to verify that
mitigations are effective.

2.4 Threat Model
Previous research has considered various on-path and in-path attack-
ers [12, 44, 51] where the attacker is a wifi access point or a machine
between the VPN client and critical infrastructure such as the VPN
server, DNS server, or DHCP server, or between the VPN server
and destination. While such a position can ease the execution of our

attacks, such positioning is not strictly required for our model (an
adjacent attacker) that considers an attacker connected to the same
VPN server as the target. At minimum, our threat model includes
four classes of hosts: Server (S, e.g. HTTP(S) server or DNS server),
Victim (B), Attacker (A and C), and the VPN server (N) bridging the
public and private networks. S operates a public service on an open
port and only sends packets in response to incoming connection
requests. N is in-path, capable of manipulating packets traversing
through it, and is also stateful with a connection tracking table, T ,
and allocating virtual IPs from a private IP space (e.g., 10.0.0.0/24)1.
Finally, we assume A possesses reasonable computation and stor-
age capabilities and can send packets with spoofed source IPs from
the public network and can connect to the same VPN server as the
victim — i.e. the attacker is adjacent in the virtual IP space to the
victim. While not required, some attacks are significantly easier if
the attacker has information about the target, such as their public IP
address. A nation state actor can satisfy this assumption as follows.
If the client has an app that leaks their PII to a server across the
attacker’s firewall, their public IP along with PII can be collected.
Such situations arise in the wild, e.g., Sogou keyboard [32].

3 ATTACKS
In this section, we introduce the port shadow, an exploit primitive
that allows an attacker to reroute the packets of other VPN clients
by inserting entries into the connection tracking table that cause
port and IP collisions with VPN clients routing their traffic through
the shared VPN server. The port shadow allows an attacker to po-
sition herself in-path between an adjacent VPN client and server,
deanonymize adjacent client connections, reroute packets from the
adjacent VPN clients to the attacker, or port scan a target behind
a VPN server without requiring that the attacker be in- or on-path
between the VPN server and client, or other privilege location. Pre-
vious attacks have demonstrated how an attacker can take over a
VPN client’s connections by an in-path attacker [44] or remove the
tunnel encryption completely [51]. These attacks, however, assume
the attacker is in a privileged position, such as being in the routing
path between the VPN client and server, or between both the VPN
client and DNS server and between the VPN client and a targeted
website. In contrast, the port shadow has no such requirements. We
only require that the attacker connect to the same VPN server as the
target and that the attacker knows the target’s public IP. We provide
more details about the attack assumptions in § 4.3.

3.1 Adjacent-to-In-Path (ATIP)
The most significant consequence of using NAT frameworks in
VPNs is that an attacker (A) can insert routes into the connection
tracking table that collide with connections between the VPN server
and VPN client (the target). The attacker can use these collisions
to redirect a target’s (B) packets, including their VPN connection
request, to herself and escalate from a virtual adjacent position (i.e.,
as the target’s peer) to an in-path position between the target and
the VPN server (N) (i.e., as the target’s upstream). Figure 2 depicts
how A uses collisions in T to reroute B’s VPN connection request to
herself and escalating from adjacent to in-path.

1N is not strictly required to assign “private” IPs from the RFC 1918 [39] address space.

112

Attacking Connection Tracking Frameworks as used by Virtual Private Networks Proceedings on Privacy Enhancing Technologies 2024(3)

Orig Reply
{1.1.1.1 : 1, 2.2.2.2:1194} {2.2.2.2:1194, 1.1.1.1:1}

Reply
{1.1.1.1 : 1, 2.2.2.2:1194} {2.2.2.2:1194, 1.1.1.1:1}

{10.0.0.2:1194, 3.3.3.3: 3} {3.3.3.3:3, 2.2.2.2:1194}

A (Attacker)
1.1.1.1 <10.0.0.2>

B (Target)
3.3.3.3 <10.0.0.3>

Port Shadow
<10.0.0.2:1194, 3.3.3.3:e>

Create Tunnel

N (VPN Server)
2.2.2.2

Create Tunnel

{1.1.1.1 : 3, 2.2.2.2:1194} {2.2.2.2:1194, 1.1.1.1:3}

Reroute B's request
{3.3.3.3.e, 10.0.0.2:1194, <Create>}

Create 2nd tunnel request
{1.1.1.1:e, 2.2.2.2:1194, <Create>}

Create 2nd tunnel response
{2.2.2.2:1194, 1.1.1.1:e <10.0.0.3>}

Relay 2nd tunnel response
{10.0.0.2:1194, 3.3.3.3:e, <10.0.0.3>}

Tunnel Established
{2.2.2.2:1194, 3.3.3.3:e <10.0.0.3>}

Orig Reply

{10.0.0.2:1194, 3.3.3.3: 3} {3.3.3.3:3, 2.2.2.2:1194}

T
(VPN Server Connection Tracking Table)

A's 1st Tunnel

Port Shadow:
A overwrites VPN listening port for B

A's 2nd tunnel

1
2

3

5

6

7

8

9

4
2-3

4-9

1

{1.1.1.1 : 1, 2.2.2.2:1194}, {2.2.2.2:1194, 1.1.1.1:1}

Orig

Figure 2: Adjacent-to-in-path attack.

In (1), A establishes a VPN connection to N and is assigned the
private IP address 10.0.0.2. Next (2), A sends packets of the form
⟨10.0.0.2 : 1194,3.3.3.3 : e⟩ (i.e., port shadow) through its tunnel
to B’s public IP address, with e denoting ephemeral ports, and (3)
creates entries in the tracking table T . A sends a packet to each
ephemeral port to ensure that when B attempts a connection request
to N, the ephemeral port chosen by B will collide with an entry in
the tracking table. 1194 is a typical port for a VPN to listen on.

(4) B sends a VPN connection request to N. The request collides
with A’s previously created entry from (2-3). Next (5), when N
receives B’s packet, it uses the colliding entry to translate the packet
back to 10.0.0.2 instead of passing it to the VPN process. After A
decrypts and extracts the payload containing B’s VPN connection
request, it changes the source IP address to 1.1.1.1 and sends it to N
directly as if establishing a second VPN connection (6)2. Next, N
completes A’s second VPN connection and sends a response back
to A along with a new private IP, 10.0.0.3 (7). Upon receiving this
response, A forwards it through A’s first VPN tunnel (8). Finally, N
decrypts, decapsulates, NATs, and forwards the packet back to B
(9). When B receives the packet, it believes N is following the VPN
connection establishment protocol. At this point, A has successfully
positioned herself in-path between B and N. As a result, any packets
sent by B will be routed through A’s first tunnel and then relayed to
N, which proxies these packets as part of a second tunnel. A can use
this position to perform subsequent injection attacks, such as those
covered by Tolley et al. [44].

The root of the port shadow, detailed in § 6, lies in the shared
resources, VPN public IP, port space used by every host connected to

2Note that A cannot decrypt B’s encryption, only the encryption N’s VPN process
applied to the packet for its own VPN connection.

or routing packets through the VPN server, the connection tracking
table, and the contention for these resources between VPN clients. In
addition to modifying the network topology, an attacker can leverage
the port shadow to infer the existence of connections between the
VPN server and other IPs and redirect forwarded ports on the VPN
server from the intended client to herself. The following subsections
cover these tertiary consequences.

3.1.1 Connection Inference. A can leverage colliding ports and IPs
to learn whether B is currently connected to N. This is possible be-
cause when B establishes a VPN connection to N, an entry is created
for the connection in T , as shown in Figure 8 of Appendix A.1. If A
sends a packet to B as she typically would in an ATIP attack, and the
destination port collides with the ephemeral port B is using for the
VPN connection, the resulting port collision will force N to select a
new port for the reply direction corresponding to the entry of A’s
packet. A can test this by spoofing a packet from B to N that should
match the colliding packet. If A receives the packet, then no collision
occurred because the source port was not changed and A infers that
no connection exists; otherwise, it indicates a connection exists.

3.1.2 Port-forward Overwrite. A can also use collisions to overwrite
forwarded ports on the VPN server to redirect incoming packets to
herself. This is achieved by A sending outgoing packets with a source
port that matches the forwarded port, as in the ATIP and connection
inference attacks. N creates an entry in T with a destination port
in the reply direction that collides with the forwarded port. As a
result, N will incorrectly route any incoming packets destined to
the forwarded port to A instead of B. While this attack requires that
A know the forwarded port, she can easily discover it by using a

113

Proceedings on Privacy Enhancing Technologies 2024(3) Mixon-Baca et al.

A (Attacker)
1.1.1.1 <10.0.0.2>

B (Target)
3.3.3.3 <10.0.0.3> N (VPN Server)

2.2.2.2 : 1194
DNS Server
5.5.5.5 : 53

Port shadow web server
<10.0.0.2 : 80, 3.3.3.3 : e>

DNS injection
{5.5.5.5 : 53, 2.2.2.2 : 3,
Payload : A = 2.2.2.2 }

Tunnel DNS request
<10.0.0.3 : 3, 5.5.5.5 : 53>

Send unencrypted request
{3.3.3.3 : e, 2.2.2.2: 80,

Payload : GET}

Proxy naked replay to B
{2.2.2.2: 80, 3.3.3.3 : e}

1

10

8

Proxy DNS request
{2.2.2.2 : 3, 5.5.5.5 : 53}ATIP relay

Detect DNS request

Translate DNS Injection
<5.5.5.5 : 53, 10.0.0.3 : 3,
DNS A Record = 2.2.2.2>

Redirect request to A
<3.3.3.3: e, 10.0.0.2 : 80>

Impersonate web server
<10.0.0.2 : 80, 3.3.3.3: e>

11

Proxy port shadow
{2.2.2.2 : 80, 3.3.3.3 : e} 2

3 4
5

6
7

9

T
(VPN Server Connection Tracking Table)

Port Shadow: A primes T to impersonate web page1-2

Orig Reply
{1.1.1.1 : 1, 2.2.2.2:1194} {2.2.2.2:1194, 1.1.1.1:1}
{1.1.1.1 :3, 2.2.2.2:1194} {2.2.2.2:1194, 1.1.1.1:3}

3-5. B sends DNS request through A
6-7. A performs a DNS Injection
8. B sends a web request to VPN

3-9

A sends a forged webpage
10-
11

{10.0.0.2 : 80, 3.3.3.3:e} {3.3.3.3:e, 2.2.2.2:80}

TCP State

SYN_SENT

{2.2.2.2:1194, 1.1.1.1:1}
Reply

{1.1.1.1 : 1, 2.2.2.2:1194}
Orig

{1.1.1.1 :3, 2.2.2.2:1194}
{10.0.0.2 : 80, 3.3.3.3:e}

{10.0.0.3 : e, 5.5.5.5:53} {5.5.5.5:53, 3.3.3.3:3}

{2.2.2.2:1194, 1.1.1.1:3}
{3.3.3.3:e, 2.2.2.2:80}

ReplyOrig
{1.1.1.1 : 1, 2.2.2.2:1194} {2.2.2.2:1194, 1.1.1.1:1}
{1.1.1.1 :3, 2.2.2.2:1194} {2.2.2.2:1194, 1.1.1.1:3}

{10.0.0.2 : 80, 3.3.3.3:e} {3.3.3.3:e, 2.2.2.2:80}

Proto

tcp
udp
udp

Expiry
29
29
59

29
29
59
29

TCP State

SYN_SENT2

Proto

tcp
udp
udp

Expiry

udp

29
29

59

TCP State

ESTABLISHED

Proto

tcp

udp
udp

Expiry

Figure 3: Decapsulation used to redirect B to a forged webpage
served by A through N.

technique similar to the connection inference attack to identify port
collisions.

3.2 Decapsulation
When applications send packets from a client with an established
VPN connection, these packets are encrypted by the VPN software
before being routed to the VPN server and then to their final destina-
tion IP. Layer 3 VPNs achieve this by assigning each host a private
IP when they first connect to the VPN. VPN clients ensure traffic is
routed through the VPN tunnel by modifying the routing rules on the
client so that all packets destined for public IP addresses are routed
first to the VPN client software for encryption, and then passed to
the client’s network stack, where the encrypted packet is placed
in the payload of a second packet and sent to the connected VPN

server. To avoid routing loops, the routing rules are set so that all
packets destined for the VPN server are sent directly to it, bypassing
the VPN client’s encryption. Appelbaum et al. [12] discusses these
issues with VPNs of 2012 and this was subsequently used by Perfect
Privacy [7] to reveal the victim’s real IP if port forwarding is in
use. More recently Xue et al. [51] used similar methods to remove
encryption between a VPN client and target (non-)server. Aside from
the limitation of their threat model, their attack–specifically their
“ServerIP” attack–can only perform decryption against one target
IP address at a time because they replace the VPN IP address with
the target server’s when performing DNS injection. We demonstrate
how an attacker can combine this routing weakness with IP and port
collisions in the connection tracking table that permits the attacker
deanonymize multiple servers by replacing server IP addresses the
client wishes to communicate with to the VPN server IP and using
the collisions in T to relay packets between the VPN client and
target (non-VPN) server. An attacker can exploit this to make the
target send packets outside of the VPN tunnel in two ways: first,
by injecting DNS requests made by the target and replacing the
actual server’s IP with the IP of the VPN server and then relaying the
packets between the target server and client and second, by targeting
popular peer-to-peer applications like BitTorrent.

Figure 3 demonstrates how an attacker can combine port and IP
collisions she insert into T , the ATIP attack, and routing weakness
to replace the actual server IP with the VPN server IP, remove the
VPN tunnel encryption and break anonymity. Assume that A has
executed an ATIP against B and is now in-path. First, A prepares T
to reroute B’s web page request by sending a sequence of packets
to B, which are forwarded by N (1-2). This creates an opening for
incoming packets from B to be routed to A (the port shadow). Note
that the packets are TTL-limited so that they do not trigger responses
from B, such as TCP RST packets that would close the port shadow
created. When B sends a DNS request (3), the request gets relayed by
A (4). Being in-path, A can detect DNS packets by their size. Next,
N proxies B’s legitimate DNS request to the DNS server, which also
creates an opening to route the DNS response (5). A injects a DNS
A record, to the VPN server, mapping the queried domain name to
the VPN server IP (6). In turn, the forged DNS response gets routed
by N to B’s private IP at 10.0.0.3 (7). Receiving the forged A record,
B sends a web request, without VPN encryption, directly to the VPN
server (8). The VPN server then relays the request to A’s private IP
10.0.0.2 (9) because of the port shadow created by collision between
the request packet and entries from step (1). Finally, A sends a
forged web page through her tunnel to B (10), which is relayed
unencrypted by N (11). Our example assumes that the target visited
an unencrypted website that the attacker impersonated. If the site is
HTTPS, then A needs a compromised certificate to impersonate the
site. Additionally, instead of impersonating the website through the
VPN, A can relay the packets to eavesdrop on B’s packets because
they were sent outside the VPN tunnel.

If A targets a peer-to-peer protocol like BitTorrent, then A simply
needs to connect to the same VPN server as B then connect to the
peer who is using the VPN server IP address as their real IP address.
When B’s p2p software responds to A’s requests, the p2p traffic is
sent to N directly, outside the VPN tunnel.

114

Attacking Connection Tracking Frameworks as used by Virtual Private Networks Proceedings on Privacy Enhancing Technologies 2024(3)

3.3 Eviction Reroute
The next vulnerability combines IP and port collisions in T with
that attacker’s ability to evict entries from T . This allows an attacker
to redirect ingress packets intended for the target to the attacker
after the client has connected to the VPN server. This attack is pos-
sible because the mappings between private IP addresses and the
VPN clients managed by the VPN server are mutable. An attacker
can exploit the NAT framework to overwrite existing mappings in
the connection tracking table. Figure 4 illustrates how A can abuse
mutable nature of connection mappings within the connection track-
ing table to replace a target’s entries with her own, thus rerouting
incoming packets that were meant for the target to herself instead.

Assume initially that T is empty. B and A connect to N and re-
ceive the private IPs 10.0.0.3 and 10.0.0.2, respectively (1-2). N
adds two entries to T , increasing the number of entries to two. A
then sends H − 4 packets, ⟨10.0.0.2 : e,x.x.x.x : x⟩, through N (3),
where the destination IP and port are arbitrary. The entries are ini-
tially evictable (Assured= False) because N has not seen packets in
both directions (seen_reply= False). Next, A spoofs responses to
those packets to N (4) updating seen_reply and Assured variables,
making the entries ineligible for eviction. T now contains H − 2
entries that cannot be evicted prior to their expiry. Next, B sends an
outgoing packet (e.g., a DNS request) to a public server (5), creating
a connection tracking entry in T and increasing the number of entries
to H − 1 (6). B’s entry can be evicted (Assured= False) because
packets have not been seen in both directions (seen_reply= False).
After this, A sends the Hth packet to induce evictions from T (7), re-
sulting in the entry corresponding to B’s DNS request being evicted
(8). A builds the port shadow by replacing B’s entry from (5-6) by
sending the packet ⟨10.0.0.2 : 3,4.4.4.4 : 53⟩ to the DNS server. Fi-
nally, the DNS server sends the response to B’s DNS request from
step 5 (11), and N uses A’s port shadow entry from step 9 to route the
ingress DNS response intended for B to A instead (12). While this
attack does require a significant volume of packets, it highlights how
design flaws in connection tracking frameworks have downstream
consequences to VPN security.

3.4 Port Scan
The eviction reroute attack is enabled by two factors: the private
IP space shared by all clients, and the mutable mapping between a
private IP and its assigned logical host. A third aspect to consider
is the direction in which packets travel across the VPN. An attacker
can exploit these factors to port scan a host behind the VPN server.
Specifically, when a VPN client disconnects, its previously assigned
private IP can be reallocated to another client. If the attacker has
placed entries in T and disconnects from N, but those entries remain
active in T , then any incoming packets to the VPN that match these
stale entries will be rerouted to the newly connected VPN client,
which will respond based on the status of the destination port on the
current client. Figure 5 illustrates an example where the attacker can
connect to an SSH server running on a client behind VPN.

Assume initially that A and B are not connected to N and that
B has an SSH server listening on port 22. First, A connects to N
and receives private IP address 10.0.0.2 (1), creating an entry in T .
Next, A sends a TCP SYN packet to a second machine she controls,
A2 (2), creating a second connection tracking entry into T (3). The

Orig Reply
{3.3.3.3 : 3, 2.2.2.2 : 1194} {2.2.2.2 : 1194, 3.3.3.3 : 3}

A (Attacker)
1.1.1.1 <10.0.0.2>

B (Target)
3.3.3.3 <10.0.0.3> N (VPN Server)

2.2.2.2

T
(VPN Server Connection Tracking Table)

B (1) and A (2) connect to N

A sends H-4 packets through N to fill T

B sends a DNS request to C(5-6)

C (DNS Server)
4.4.4.4

Create tunnel

Create tunnel

Fill Table
<10.0.0.2:e, x.x.x.x:x>

Tunnel DNS request
<10.0.0.3 : 3, 4.4.4.4: 53,

Req>

Induce eviction
<10.0.0.2 : e, x.x.x.x : x >

Port Shadow: B's DNS
<10.0.0.2: 3, 4.4.4. : 53 >

DNS response
{4.4.4.4: 53, 2.2.2.2:3, A}

{2.2.2.2 : 1194, 1.1.1.1 : 1}{1.1.1.1 : 1, 2.2.2.2 : 1194}

1

1-2

3

5-6

Translate DNS response
<4.4.4.4: 53, 10.0.0.2:3, A>

Proxy DNS request
{2.2.2.2 : 3, 4.4.4.4: 53,

Req}

Proxy inducer
{2.2.2.2 : e, x.x.x.x : x }

Proxy Replacement
{ 2.2.2.2: 3, 4.4.4.4 : 53 }

A sends H-4 replies packets to N to prevent entries from eviction (4)
A filles T, inducing N to evict B's DNS request entry (7-8)4,7-8

5
4

2

3

7

6

8

9

11

10

12

Orig Reply
{3.3.3.3 : 3, 2.2.2.2 : 1194} {2.2.2.2 : 1194, 3.3.3.3 : 3}

{2.2.2.2 : 1194, 1.1.1.1 : 1}{1.1.1.1 : 1, 2.2.2.2 : 1194}
False{10.0.0.2 : e1, x.x.x.x : e2} {x.x.x.x : e2, 2.2.2.2 : e1}

Orig Reply
{3.3.3.3 : 3, 2.2.2.2 : 1194} {2.2.2.2 : 1194, 3.3.3.3 : 3}

{2.2.2.2 : 1194, 1.1.1.1 : 1}{1.1.1.1 : 1, 2.2.2.2 : 1194}
{10.0.0.2 : e1, x.x.x.x : e2} {x.x.x.x : e2, 2.2.2.2 : e1}

Orig Reply
{3.3.3.3 : 3, 2.2.2.2 : 1194} {2.2.2.2 : 1194, 3.3.3.3 : 3}

{2.2.2.2 : 1194, 1.1.1.1 : 1}{1.1.1.1 : 1, 2.2.2.2 : 1194}

Assured

{10.0.0.2 : e1, x.x.x.x : e2} {x.x.x.x : e2, 2.2.2.2 : e1}
{4.4.4.4:53, 2.2.2.2:1194}{10.0.0.3 : 3, 4.4.4.4: 53}

Port Shadow: A replaces B's DNS request entry (8-12)

Orig Reply
{3.3.3.3 : 3, 2.2.2.2 : 1194} {2.2.2.2 : 1194, 3.3.3.3 : 3}

{2.2.2.2 : 1194, 1.1.1.1 : 1}{1.1.1.1 : 1, 2.2.2.2 : 1194}
{10.0.0.2 : e1, x.x.x.x : e2} {x.x.x.x : e2, 2.2.2.2 : e1}

{4.4.4.4:53, 2.2.2.2:1194}{10.0.0.2 : 3, 4.4.4.4: 53}

8-12

seen_reply

seen_reply

seen_reply

seen_reply

seen_reply
True
True

True
True

False

True
True
True

True
True
True

False

True
True
True
True

Assured

Assured

Assured

Assured
True
True

True
True

True
True
True

True
True
True

False

True
True
True
True

Figure 4: Eviction reroute attack.

entry is in the SYN_SENT state. A disconnects from N (4). When A
disconnects, the entry for A’s VPN connection is eventually removed
by the garbage collector.

B connects to N and is assigned the same private IP address
(10.0.0.2) that A previously had (5). Next, A2 sends a second TCP
SYN to N to initiate a TCP 3-way handshake with B 3, and N uses the
entry A created in step 2 to route the SYN packet to B (6-7). N also

3If A had sent a packet with different TCP flags, then the incoming packet would not be
routed to B. This is because only specific sequences of TCP packets are valid according

115

Proceedings on Privacy Enhancing Technologies 2024(3) Mixon-Baca et al.

A (Attacker)
1.1.1.1 <10.0.0.2>

B (Target)
3.3.3.3 <10.0.0.2>

Create tunnel
Private IP = 10.0.0.2

N (VPN Server)
2.2.2.2

Connect to SSH Server
{6.6.6.6 : 6, 2.2.2.2 : 80,

SYN}

Orig Reply
{1.1.1.1 : 1, 2.2.2.2:1194} {2.2.2.2:1194, 1.1.1.1:1}
{10.0.0.2 : 22, 6.6.6.6: 6} {6.6.6.6 : 6, 2.2.2.2:22}

T
(VPN Server Connection Tracking Table)

A connects to N

A creates a hole in N by sending a SYN
packet to a second attacker machine2-3

1

Disconnect from VPN

Send breach packet
{10.0.0.2: 22, 6.6.6.6 : 6,

SYN}

Create tunnel
Private IP = 10.0.0.2

Tunnel SYN/ACK
{10.0.0.2 : 22, 6.6.6.6: 60

SYN/ACK}

Complete the TCP 3-way
handhshake

{6.6.6.6 : 6, 2.2.2.2:22, ACK}

A disconnects from N4

B connects to N5

A sends a SYN packet to connect to B's SSH server6-7

A2 (Attacker)
6.6.6.6

Orig Reply
{1.1.1.1 : 1, 2.2.2.2:1194} {2.2.2.2:1194, 1.1.1.1:1}

Orig Reply

{3.3.3.3 : 3, 2.2.2.2:1194} {2.2.2.2:1194, 3.3.3.3:3}
{10.0.0.2 : 22, 6.6.6.6: 6} {6.6.6.6 : 6, 2.2.2.2:22}

B sends sends a SYN/ACK response8-9

A completes the 3-way handshake10-11

Orig Reply

{3.3.3.3 : 3, 2.2.2.2:1194} {2.2.2.2:1194, 3.3.3.3:3}

{10.0.0.2 : 22, 6.6.6.6: 6}, {6.6.6.6 : 6, 2.2.2.2:22}

Translate breach packet
{2.2.2.2: 22, 6.6.6.6 : 6,

SYN}

Translate SSH connection
{6.6.6.6 : 6, 10.0.0.2 : 80,

SYN}
Translate SYN/ACK

{10.0.0.2 : 22, 6.6.6.6: 60
SYN/ACK}

Translate final ACK
{6.6.6.6 : 6, 10.0.0.2 : 80,

ACK} 1011

Orig Reply

{3.3.3.3 : 3, 2.2.2.2:1194} {2.2.2.2:1194, 3.3.3.3:3}

{10.0.0.2 : 22, 6.6.6.6: 6} {6.6.6.6 : 6, 2.2.2.2:22}

Orig Reply
{10.0.0.2 : 22, 6.6.6.6: 6} {6.6.6.6 : 6, 2.2.2.2:22}

Orig Reply
{10.0.0.2 : 22, 6.6.6.6: 6} {6.6.6.6 : 6, 2.2.2.2:22}

{3.3.3.3 : 3, 2.2.2.2:1194} {2.2.2.2:1194, 3.3.3.3:3}

TCP STATE

TCP STATE

8

5

9

7 6

4

3

2

1

SYN_SENT

TCP STATE

SYN_SENT

SYN_SENT
TCP STATE

SYN_SENT2
TCP STATE

SYN_RECV
TCP STATE

ESTABLISHED
TCP STATE

Figure 5: Port scan attack.

updates the entry’s TCP state to SYN_SENT2. The SYN_SENT2 state is
used by TCP for SIMULTANEOUS_OPEN, which is an alternative to the
TCP 3-way handshake that two TCP end-points can use to establish
a connection. B responds to the SYN packet with a SYN/ACK packet,
and N updates the source port to its public IP address and forwards it
to A2 (8-9). Finally, A sends the final ACK packet completing the TCP
3-way handshake, which N uses the translation to forward to B at
10.0.0.2 (10-11). At this point, A has successfully confirmed that B
is running an SSH server. A can use similar methods to perform SYN
scans, connect scans, UDP scans, and various other scans against
hosts behind the VPN server.

4 CASE STUDIES
We demonstrate the efficacy of our attacks in case-studies in both
virtualized and live test environments. We first describe the platforms
tested and then present the experimental results. Finally, we describe
additional analyses we performed to test assumptions the attacker
must satisfy for successful exploitation.

4.1 Testing Environments
We evaluated our attacks in both virtualized and live test environ-
ments. Our virtualized environment consists of nine machines. All
machines are Ubuntu Linux 20.04 except one VPN server that runs
FreeBSD 14. We use Vagrant with VirtualBox to configure and
provision the machines. We target three popular VPN implementa-
tions: OpenVPN, WireGuard, and OpenConnect deployed on Ubuntu
Linux running Netfilter, FreeBSD running IPFW, natd, IPFILTER,
or IPF. We did not target application layer VPNs like ShadowSocks
because their address translation is not tightly coupled with the
operating system’s connection tracking framework.

Our live environment consists of OpenVPN or WireGuard running
on an Ubuntu Linux 20.04 server. The attacker machine is a desktop
running Ubuntu Linux 20.04 and OpenVPN or WireGuard. We used
two sets of targets, one consisting of Android and Apple mobile
devices and one consisting of a server deployed to a Vultr virtual
server running Ubuntu Linux 20.04. All machines are in different
geographic regions.

4.1.1 Configuration. Figure 6 depicts this environment. For the
Ubuntu VPN server, we tested both IPv4 and IPv6. For the Ubuntu
OpenVPN clients, we tested with and without network namespaces
using namespaced. Our VPN configuration is based on tutorials that
we googled, such as, from Digital Ocean [3, 4, 10], the official Open-
VPN, WireGuard, and OpenConnect documentation [6, 9, 11], and
additional documentation [30]. We discussed our configuration envi-
ronment during disclosure and received no actionable information
about how to make it more like actual deployments. Our impression
based on our research is that system administrators are supposed
to know what needs hardening and act accordingly. This is made
difficult given that the Netfilter, IPFW, natd IPFILTER, and PF doc-
umentation does not discuss explicitly behavior in the presence of IP
obfuscating VPNs. Between this and a lack of explicit and consistent
information in the RFCs regarding both NAT and VPNs, it is no
surprise the risk of IP/port collisions has gone undocumented.

to the TCP protocol and the connection tracking framework detects this and does not
forward the packets.

116

Attacking Connection Tracking Frameworks as used by Virtual Private Networks Proceedings on Privacy Enhancing Technologies 2024(3)

VPN

Attacker

Target

NAT Routers

Figure 6: Full virtualized testing environment.

4.2 Attack Results
We now describe our attack results which are summarized in Table 1.
We describe the different operating systems used and details about
success rate, timing, and configurations where relevant.

4.2.1 Adjacent-to-in-path. We tested this attack in both the virtual-
ized and live environments against OpenVPN, OpenConnect, and
WireGuard. The attack was successful in both environments against
all three VPNs on Linux and Netfilter and against IPv4 and IPv6. We
tested FreeBSD in the virtualized environment and found the same
implementation-specific behaviors that we found in the connection
inference attack also allow the ATIP attack for IPFW and natd but
not PF or IPFILTER. Once blind in-path, we executed an HTTP
injection to serve the client a custom web page when they made
an HTTP request to the web server. The injection only works for
HTTP but not HTTPS due to encryption. Next, we injected a DNS
response by inferring the client’s DNS request through packet size.
The DNS response had a CNAME/A record combination, pointing
to an attacker-controlled server and tricked the client into connecting
to this server instead of to the legitimate one.

We tested the amount of time it takes for the client to establish
a connection to the VPN server with and without ATIP. The victim
takes 6.1 seconds to connect to the VPN server without ATIP and
16.6 seconds with it. It takes the attacker on average 5 seconds to fill
the 27,850 ephemeral IP addresses and the success rate is close to
100% in the control environment and in the network environment -
it is directly proportional to the percent of the ephemeral port space
the attacker fills. Subsequent packets have an average RTT delay of
1000ms RTT added against OpenVPN and 100ms for WireGuard.

4.2.2 Port-forward Overwrite. We conducted this attack in the vir-
tualized environment against Linux and FreeBSD systems, targeting
OpenVPN, WireGuard, and OpenConnect. The attack was success-
ful in both settings against OpenVPN, WireGuard, and OpenConnect
on Linux running Netfilter and against IPv4 and IPv6.

It failed against FreeBSD with PF and IPFILTER and caused a
DoS against IPFW and natd. IPFILTER fails because it maintains
two separate lists for connection entries, one for outgoing and in-
coming rules. The rule that implements port forward is stored as an
entry in the incoming table so the attacker’s outgoing packet does not
overwrite the incoming rule. For IPFW, the forwarding rule is stored
separately from the table, as with Netfilter, however, this creates a
conflict with the table’s dynamic rule, which prevents IPFW from
correctly routing the packet.

4.2.3 Connection Inference. We confirmed this attack succeeds in
both the virtualized and the live environments against OpenVPN,
WireGuard, and OpenConnect only in the virtualized environment
and against IPv4 and IPv6. For FreeBSD it was successful against
IPFW and natd, similar to Linux running Netfilter. The success rate
is over 90%. However, when testing on FreeBSD running IPFILTER
and PF, the source port of outgoing packets was randomized by
default and restricted to the range 49152,65535. The attack can
still be executed but the VPN server’s listening port must be in this
range and enough packets must be sent for a collision between the
selected source port and the listening port to occur. OpenVPN’s
default listening port is 1194, but both OpenVPN and WireGuard
can be configured with ports within the range, making the attack
possible.

4.2.4 Decapsulation. We tested two versions of the decapsulation
attack in the virtualized and live environments against OpenVPN.
First, we tested whether an attacker can perform the DNS injection
to redirect a target from a normal web page to the VPN server IP.
We successfully injected a DNS A record with the VPN server IP
to the target. The traffic between the target and VPN server was
sent unencrypted but the packets sent from the VPN server to the
attacker were encrypted. Next, we tested an attacker targeting a
peer-to-peer application. We selected BitTorrent as the target ap-
plication and used qBittorent on both the target and attacker. The
target provided a seed file pointing to an mp4 stored on its hard
drive. When the attacker downloaded the mp4, the packets sent
from the target to the VPN server were sent unencrypted. When
executing the attack, we fill the 28231 ephemeral ports defined by
net.ipv4.ip_local_port_range in under 10 seconds. Upon the
target sending the request to the VPN server, the success rate is over
90%. The attack was successful against IPv4 and IPv6.

4.2.5 Eviction Reroute. We tested eviction rerouting in the virtual-
ized environment on both Ubuntu running OpenVPN, WireGuard,
and OpenConnect and FreeBSD running the same OpenVPN. First,
the attacker executed ATIP. Next, the attacker filled the connection
tracking table such that evictions could be triggered by a small num-
ber of additional packets. When the client made a DNS request,
the attacker inserted entries that matched the reply direction of the
DNS request and triggered evictions. The DNS response was then
routed to the attacker. The attack was successful against IPv4 and
IPv6. We are able to fill a 262144 entry table in less than 5 minutes.
This attack took on average 30 minutes before a single successful
attempt and the success rate was 20% on average. This is because
the attack requires very specific timings to succeed and the attacker
cannot precisely control which entries are evicted. If an attacker can
more precisely control the ports assigned to the target’s source port
in the reply direction, it may be possible to increase the success rate
and/or decrease the time to successful execution.

We were unsuccessful against FreeBSD configurations. IPFW/natd’s
NAT implementation maintains two separate lists for managing en-
tries, one for connections with packets in only one direction and one
for both directions. Once packets reach the latter list, they remain
until the expiry. Unlike Linux, the entries cannot be evicted early,
even if the table becomes full. Because of this, an attacker cannot
force entries to be removed. IPFILTER removes entries when the
table becomes full, but it will not remove entries unless they are

117

Proceedings on Privacy Enhancing Technologies 2024(3) Mixon-Baca et al.

System Details Attack
Evaluation
Environment(s)OS

Connection
Tracking
Framework

VPN ATIP Connection
Inference

Port Forward
Overwrite Decapsulation Eviction

Reroute Port Scan

Ubuntu 20.04–22.04 Netfilter OpenVPN Virtualized, live
OpenConnect Virtualized
WireGuard Virtualized, live

FreeBSD 14 IPFW OpenVPN † † ♢ Virtualized
WireGuard † † ♢ Virtualized

FreeBSD 14 natd OpenVPN † † ♢ Virtualized
WireGuard † † ♢ Virtualized

FreeBSD 14 IPFILTER OpenVPN † † ♢ Virtualized
WireGuard † † ♢ Virtualized

FreeBSD 14 PF OpenVPN ‡ ‡ ♢ Virtualized
WireGuard ‡ ‡ ♢ Virtualized

Table 1: Case-study Results. indicates a specific VPN configuration (row) is vulnerable to a specific attack (column). indicates the
attack does not work for the specific configuration. indicates a DoS instead of rerouting. ♢ indicates the attack does not apply to
that configuration. † indicates the platform can be configured to use “Port Preservation” as the source port assignment behavior as
described in RFC 4787 §4.2.1 [29]. ‡ indicates that the system uses “Random Assignment” for source port assignment behavior as
described in RFC 4787 §4.2.1 [29].

“inactive”. Inactive can range anywhere from not being used for more
than 4 days to as little as 30 seconds.

4.2.6 Port Scan. Two members of the research team, that we refer
to as the attacker and target, tested the port scan attack in the live
environment. The attacker connected to the VPN, created entries
in the table, and disconnected following the steps outlined in § 3.4.
The target then connected to the same VPN and was assigned the
same private IP address previously assigned to the attacker. The port
scanning successfully revealed services running on Apple and An-
droid devices. The two researchers were in different locations, and
the results were consistent in the virtual environment. The IP version
made no difference to attack success. We verify port scanning is also
possible against IPFW and natd in FreeBSD in the virtualized envi-
ronment. We are able to fill the 28231 ephemeral ports in under 10
seconds. We can achieve a success rate of over 90% if either the tar-
get waits for 10 minutes after the attacker connects and disconnects
from the VPN server or the attacker consumes all of the private IPs
by repeatedly connecting and disconnecting from the VPN server, in
which case the target is assigned the attacker’s previously assigned
private IP address.

We were unable to perform port scanning against PF and IPFIL-
TER. The default behavior randomizes source ports which means we
cannot scan specific services. Furthermore, the ranges are restricted
to above port 1024 so the privileged ports cannot be accessed by
default. We were also unable to get sequences of packets, such as
outgoing SYN, incoming ACK for PF and this appears to be the result
of the logic used for transitioning entries between TCP states.

4.3 Attack Assumption Tests
The attacks require three key assumptions: The attacker knows the
target’s public IP address; the attacker knows the VPN server IP;
and, the VPN server’s entry and exit IP addresses are the same.
The following sections provide results for our analysis of these
assumptions and while we believe that a well-resourced attacker (e.g.,

0 5 10 15 20 25 30
Day

0.0

0.2

0.4

0.6

0.8

1.0
P

er
ce

nt
ag

e
of

 d
is

ti
nc

t I
P

 e
nu

m
er

at
ed

ExpressVPN

Private Internet Access

SurfShark

CyberGhost

Windscribe

NordVPN

Mullvad

Astrill

ProtonVPN

TunnelBear

Figure 7: Variance in the VPN server selection when connected
in default setting and from the same location.

state-sponsored) could easily satisfy them, our analysis provides
more concrete justifications for each case.

4.3.1 Target IP. Most of the attacks assume that the attacker knows
the target’s public IP address. An adversary analyzing traffic at their
national border may be able to harvest this information if the client
has applications installed on their device that transmit sensitive or
identifiable information that the attacker can correlate to the target’s
public IP address. Researchers have shown how applications com-
monly leak sensitive information about users [32, 33, 49]. Leaks
occur directly due to normal software operation, by third-party adver-
tising network behavior, through crash reporting, or by periodically
sending telemetry back to a server in the application’s country of
origin. Adversaries sitting on the server-side or operating on-path
as a firewall can passively acquire the target’s public IP, even if they
use a VPN or proxies. For example, Ramesh et al. found 26 VPN
providers leak the client’s public IP during tunnel failure [43]. An
intelligence service can combine these information leaks to collect
the target’s public IP address.

118

Attacking Connection Tracking Frameworks as used by Virtual Private Networks Proceedings on Privacy Enhancing Technologies 2024(3)

4.3.2 VPN server IP. To launch the ATIP, decapsulation, and evic-
tion reroute attacks, the attacker needs to know the VPN server IP to
which the target connects. In addition to collecting this information
at the national border when the target connects to VPN services,
the target location may also permit an attacker to learn the VPN
server IP. We observe that knowing the name of the VPN provider
and target’s geographic location can ease this requirement, as VPN
providers often select servers for clients to connect to based on geo-
graphic location to optimize performance. We examine the feasibility
of the attacker knowing the VPN server IP given the name of the
VPN provider and target’s geolocation by evaluating the variance
in server selection when a person connects 1) in the default way
and 2) from the same location. Specifically, we connect through a
VPN provider using the default setting4 every 20 minutes and log
the VPN server IP upon a successful connection. We repeat this
process for 28 days with the 10 most popular VPN providers [45].
We collected 13,925 valid test results. As shown in Figure 7, even
for popular VPN providers with large selections of servers, an ad-
versary can feasibly guess the target’s VPN IP by enumeration. For
7 out of 10 VPN providers, we were able to enumerate, in 12 days,
over 80% of all servers we would see over the entire testing period
of 28 days, suggesting that VPN server selections may not vary
much over time. With the server variance of the top 10 VPNs being
min = 2,avg = 184,max = 383 when connected from the same loca-
tion an intelligence service could enumerate the target’s VPN server
IPs.

4.3.3 VPN entry IP and exit IP. ATIP, connection inference, port
scan, and port-forward overwrite attacks require that the VPN servers
targeted do not deploy a “multi-hop” architecture. Crucial to these
attacks is the requirement that the VPN’s entry IP must be the same
as the exit IP of the decapsulated packets. We analyzed measurement
data collected from the VPNalyzer project [43] to determine how
prevalent this deployment configuration is. VPNalyzer collects the
exit IP of a VPN connection through IP lookup and the entry IP
via client-side packet capture. Out of 569 valid measurements, 313
of them from 54 unique VPN providers suggest that the entry and
exit share the same IP. Furthermore, we tested the top 10 VPNs and
found half of them use this configuration [45]. An attacker could
target the offending VPN providers and successfully execute ATIP
or one of the other attacks covered.

5 FORMAL MODEL
We built a formal model in TLA+ [35] based on our analysis and
relevant RFCs to explore the root cause of the vulnerabilities, imple-
ment, and validate proposed mitigations. Our analysis focuses on the
degree to which connection tracking frameworks enforce process iso-
lation. We test process isolation by reframing the problem in terms
of a non-interference property and use model checking to verify
whether or not non-interference holds. The model implements the
network topology depicted in Figure 9. We implement two models,
which include the VPN server, N, and three hosts, A and B, C, in
the “public” network. The first design is consistent with the vulnera-
bilities we identified and we verify that non-interference is violated
in those cases. After identifying root causes, we then develop and

4Or “recommended”, “smart location”, or “USA”/“New York” if a location needs to be
specified.

implement mitigations. Finally, we verify that non-interference holds
in the fixed cases.

N can execute four actions, Connect, Disconnect, PublicToPri-
vate, and PrivateToPublic. A and B are identified by host marker
variables, H1 and H2, associated with hosts A and B, respectively
and are independent of the IP addresses. They are moved between the
FreeHosts and UsedHosts lists based on whether Connect or Discon-
nect is called. The model saves the variables A−Marker = H1 and
B−Marker = H2 which facilitate tracking information flow between
hosts. The model tracks two possible private IP addresses, A′ and B′,
in the FreeIPs and UsedIPs variables. The model stores associations
between host marker and private IP using the Connections map.
Connections are tracked in T . Each entry stores the outgoing packet
4-tuple information in the origin variable, the incoming packet’s
4-tuple information in the reply variable, and the host marker in the
host_marker variable which is set to the host marker of the host who
created the entry. § A includes the model pseudo-code.

Connect creates an association between private IP and host marker
by removing an IP from the FreeIPs list and storing it in the UsedIPs
list. The host marker is moved from the FreeHosts to UsedHosts
in the same way. The IP-host_marker association is stored in the
Connections map. The model uses the host marker to track informa-
tion flow by identifying when a host receives a packet that should
go to a different host.

Disconnect removes the private IP-host_marker association by
deleting the mapping from the Connection map, removing the IP
from UsedIPs and storing it in FreeIPs and removing the host_marker
from UsedHosts and storing it in FreeHosts.

PrivateToPublic models outgoing NAT behavior. It generates an
outgoing packet, updates T based on the packet’s fields, and places a
response in SendQueue. T ’s entries store orig and reply information
and a host_marker set to the packet’s host_marker. Evictions are
modeled here because only outgoing packets can create entries and
a FIFO eviction policy is applied.

PublicToPrivate models public-to-private NAT by popping a
packet from SendQueue and either using T to test whether the packet
is routable or checks for a connection to its listening port. It per-
forms a correctness check to see whether the packet’s host_marker
matches the entry’s host_marker. If it does then non-interference
holds, otherwise, the response packet will be routed to a host other
than origin who elicited the incoming response.

5.1 Correctness
We define a correct connection tracking framework as one that en-
forces process isolation. We define a non-interference property us-
ing two invariants based on the two host markers, A−Marker and
B−Marker as follows:

A−Marker = H1∧B−Marker = H2

The invariant fails if either A or B’s marker ever changes, indicating
incorrect routing. This violates process isolation because one host
will receive packets that should be routed to a different host.

5.1.1 Model Checking. We perform bounded model checking using
up to 2,000,000 state transitions to test whether the non-interference
property holds. We verify that it does not in the first model and that
it does in the second model.

119

Proceedings on Privacy Enhancing Technologies 2024(3) Mixon-Baca et al.

Figure 9 in the § A.2 shows when non-interference is violated
for the ATIP, connection inference, and port-forwarding overwrite
attacks. A sends a packet ⟨A′ : L,B : b⟩ to B and N adds an entry
to T . B then sends {B : b,N : L} to establish a VPN connection.
N routes B’s packet to A′ instead of processing it directly because
PublicToPrivate processes the packet before the code to associate
it with a private IP. This causes A−Marker to change from H1
to H2. This highlights two shared resources, the port space in the
“public” IP address space, and the public IP address used by A′ and
B. If we select a new source port for A′ when it attempts to use
an allocated port, then A−Marker remains unchanged and non-
interference holds.

For the eviction reroute attack, B′ sends a packet to S and ex-
pects a response as usual. A′ triggers an eviction in T , causing B′’s
translation to be evicted before S sends its response. When N does
receive the response it incorrectly routes it to A′ instead of to B′.
This attack highlights the shared public and private IP address space.
Because A′ replaces B′’s entry, the mapping between hosts changes.
The host-marker in the entry is copied to the incoming packet which
ultimately changes A−Marker, violating non-interference. Evic-
tions are necessary to prevent the table from filling up and to allow
new connections to be created. If evictions do not occur, then a
denial-of-service will happen. If we limit the number of connections
per-host, then the eviction does not happen and non-interference
holds.

For the port scanning attack, when A′ sends packets to C in step 1,
N creates a connection tracking entry. In step 2, A′ disconnects, then
B connects to N in step 3, and is assigned A’s private IP address, A′,
in step 4. When C sends packets to N matching the entry created
in step 1, they are routed to A′, which maps to B. Because A, not
B, created the mapping that permits this routing, B’s host-marker is
changed, violating non-interference. Removing entries from T after
a host disconnects mitigates this attack.

Decapsulation occurs because B′’s routing subsystem forwards
the outgoing packet directly to N instead of first performing encap-
sulation. This violates process isolation because connections within
the tunnel are separate from connections in the public Internet. We
mitigate this attack by forcing packets to be processed by the encap-
sulation code first.

6 MITIGATIONS
Table 2 summarizes the six attack scenarios presented (rows), their
corresponding root causes (columns two-five), and mitigations (col-
umn six; M1, M2, M3, M4, M5, M6). The vulnerabilities identified
demonstrate how connection tracking frameworks are ineffective
at enforcing process isolation for VPNs. The primary factors we
identified are the following five shared, limited resources within
connection tracking frameworks: The ephemeral port space on the
public side of the network; the private IP addresses assigned to
VPN clients in the private network; the connection tracking table;
the public IP address of the VPN server; and, the specific 5-tuple
used to track a connection (source and destination IPs and ports,
and transport layer protocol). The fifth shared resource is subtle,
because this tuple, which defines a process, is a consequence of the
VPN’s shared public IP address and ports. It would not otherwise be
a shared resource leading to a failure of process isolation except for

the fact that every connection has a direction based on who initiated
the connection. Connections in opposite directions for the same tuple
contend for this resource, leading to Directional Ambiguity. We now
discuss the five mitigations we implemented and tested in our model.

M1. Allocated Port Restriction. Ports associated with services
on the VPN can be overwritten if the connection tracking frame-
work does not coordinate with the operating system. Process iso-
lation is violated because a host can receive packets for connec-
tions it did not initiate. Using a rule such as, # iptables -t nat
-A POSTROUTING -p udp -o enp0s8 –sport 1194 -j SNAT
–to-source 192.168.2.254:32768-60999, mitigates ATIP. A sys-
tematic fix involves properly coordinating port allocation between
the network stack in the kernel and the connection tracking frame-
work mitigates this issue, though this would break modularity. It is
not sufficient to mitigate connection inference though because an
attacker can still infer ports in use. Placing a range bound on the
source ports, as done in PF and IPFILTER, partially resolves this
problem unless the listening/forwarded port is in the range. In the
case of IPFILTER in FreeBSD, the default behavior is to restrict the
source port space to well outside the privileged port space (10,000).
They also randomized the source port, unlike IPFW and natd, mak-
ing it more secure by default. It is possible to redefine the port space
to include the ephemeral range and disable randomized source port
selection but the admin would have to go out of their way to do this.

M2. Static Private IP Assignment. Port scanning occurs because
the private IP address can be assigned to two different hosts over
time. If T contains stale entries and a host is assigned a private IP
associated with one of them, any incoming packets matching the
entry will be routed to that host, violating process isolation. Stati-
cally assigning private IP addresses mitigates this attack. In practice,
OpenVPN’s ifconfig-pool-persist option can aid in mitigation.
This is not a complete mitigation though because the number of
private IP addresses is finite, so it is likely the connection tracking
framework will have to use a hash function or similar random pro-
cess to manage and assign private IP addresses which introduces
other security implications that are out of scope for this work. Port
scanning will not work if the VPN strictly controls the association
between private IP addresses and logical hosts. For WireGuard be-
cause the private IP address is configured in the client’s script, an
attacker may be able to enumerate the private IP address more easily
than if they are assigned dynamically as in OpenVPN or OpenCon-
nect. Using namespaces, which mitigates the decapsulation attack,
does not mitigate the port scan attack, though it is restricted for TCP
as the incoming attacker packet illicits an RST from the target.

M3. Per-host Connection Limit. Eviction rerouting is possible
when the attacker can fill the table either to capacity or to when
evictions begin. This violates process isolation because one host
can affect how the connection tracking framework routes packets
to others. Limiting the number of concurrent connections per host
makes these attacks more expensive but an attacker with enough IP
addresses or VPN accounts may still succeed.

M4. Orphan Entry Flush. Port scanning occurs because entries
in T can persist after the host who created them disconnects from the
VPN. Removing a host’s entries after they disconnect from the VPN
mitigates this attack because there is no route back to the host. This
can be accomplished by running the command $ sudo conntrack
-D –src=PRIVATE_IP after a client disconnects.

120

Attacking Connection Tracking Frameworks as used by Virtual Private Networks Proceedings on Privacy Enhancing Technologies 2024(3)

Shared
Public
Port

Shared
Private IP
Address

Shared
Table

Shared
Public IP
Address

Directional
Ambiguity Mitigation

ATIP ✓ ✓ ✓ M1, M6
Connection
Inference ✓ ✓ ✓ M1, M6

Port Forward
Overwrite ✓ ✓ ✓ M1, M6

Decapsulation ✓ M5
Eviction
Reroute ✓ ✓ ✓ M3

Port Scan ✓ ✓ ✓ M2, M4

Table 2: Root causes for each attack. ✓indicates the specified
root cause (column) contributes to the specified attack (row). The
last column represents one of the six mitigations: M1 Allocated
port restriction, M2 Static Private IP Assignment, M3 Per-host
Connection Limit, M4 Orphan Entry Flush, M5 Routing Prece-
dent, and M6 Public IP Management.

M5. Routing Precedent. When the client’s network stack routes
packets, it consults the routing table to determine where to forward
the packet. If the route is very specific, as is the case with many
VPNs, the routing code is invoked instead of passing the packet to the
VPN process. This violates process isolation because the inner packet
represents a distinct connection. Sending outgoing packets to the
VPN process first eliminates this attack. Using network namespaces,
such as namespaced-openvpn [5], mitigates this attack.

M6. Public IP Management The port shadow is possible when
the entry and exit IP addresses of the VPN server are the same.
RFC [26] briefly mentions problems with public and private IP
and port management in NAT, but we did not encounter any “best
practices” during this work. This includes during the disclosure
processes where, during discussions, no specific changes to our
configuration were suggested to us. To fix this, instead of using a
simple MASQUARADE rule in iptables, we configure a SNAT rule for all
VPN packets leaving the network to have an IP of a second network
interface on the VPN server. # iptables -t nat -A POSTROUTING
-o enp0s8 -s 10.0.0.0/8 -j SNAT –to-source 192.168.1.133.
This mitigates the ATIP attack and connection inference attacks.

7 RELATED WORK
Previous work has investigated VPN security, focusing mostly on
the encryption, protocol, software, and commercial ecosystem. Ap-
plebaum et al. [12] studied VPNs from an adversary’s perspective
and pointed out that cryptographic security must be considered in
the presence of routing. They observe the security critical nature of
maintaining a secure routing table. They do not mention the con-
nection tracking framework as used by most modern VPNs which
reinforces the subtle issues arising from retrofitting systems with
different threat models. While they consider multiple attack scenar-
ios, they do not consider a hostile, adjacent VPN client which, as we
have shown, is a significant threat. Researchers have also looked into
VPN apps, finding evidence of traffic redirection, manipulation, and
privacy leaks in VPN apps on mobile devices [28, 31, 40, 43, 52].

NAT security researchers have passively estimated the number of
hosts behind a NAT using either IPIDs [13], ephemeral ports [38],
or clock skews [34]. Gilad et al. [20] showed that IP fragmenta-
tion can be exploited to launch DoS or interception attacks against

victims behind NAT. Qian et al. [41] presented multiple attacks on
network firewalls with varying threat models, including malware on
the victim’s machine.

To demonstrate our ATIP attack, we employed the attack pre-
sented by Tolley et al. [44]. They demonstrated that blind in/on-path
attackers can learn the IP a host behind a VPN is communicating
with and hijack connections supposedly protected by the tunnel. Our
ATIP attack enables an attacker to escalate to blind in-path from an
initially off-path position. Research that violates process isolation in
a purely off-path manner [14, 21, 24, 25, 37] is both inspiration for
and complementary to our own work.

Xue et al.’s “tunnelcrack” attack [51] and the Perfect Privacy’s
Port Fail attack [7] are related to Appelbaum et al.’s attack against
routing rules [12] that causes the VPN client to send packets directly
to the VPN server. This is similar to our decapsulation attack. How-
ever, the difference between our attack and theirs is that they can
only target one server for which traffic is sent unencrypted while our
decapsulation attack can target multiple servers.

Researchers have found process isolation weaknesses, such as
injecting untrusted data from the data plane to the control plane in
SDNs[46, 47, 50]. By contrast, our attacks focus on the broad impact
that design flaws between VPNs and stateful connection tracking
have on process isolation.

8 ETHICAL DISCLOSURE
We followed a conservative ethical disclosure process aligned with
US-CERT. We notified OpenVPN 45 days before disclosing our
initially successful exploits against it. We notified WireGuard ini-
tially of our OpenVPN findings at the same time and indicated
they might be vulnerable. We confirmed the attacks worked against
WireGuard and that eviction reroute works against OpenVPN and
WireGuard prior to submission of this work and notified them of this
result. This work received CVE-2021-3773 [8]. We did not develop
proof-of-concept exploits for other VPN server implementations
(e.g., strongSwan or SoftEther) because they are not used by major
VPN vendors and the problems we identified are fundamental to
how connection tracking and network address translation are defined
in RFCs and not any specific VPN server implementation’s code.

9 CONCLUSION
Connection tracking frameworks were not originally designed with
the same threat model as VPNs, and the consequences of their use
in VPNs was an open question before this work. Our attacks were
motivated by this knowledge gap. The four attacks we developed
and the case studies demonstrate how an attacker can use simple port
and IP collisions to build a powerful exploit primitive with broad
security implications for VPNs.

Using our first model, we identified five shared, limited resources
that contribute to violations of process isolation. We validated this by
testing a non-interference property based on how information flows
between hosts through the connection tracking framework. We used
these insights to design and validate six mitigations in the second
model. We found that the mitigations address most, but not all, of
the weaknesses. This analysis revealed the challenges, trade-offs,
and fundamental limitations that connection tracking frameworks
have when enforcing process isolation in VPNs.

121

Proceedings on Privacy Enhancing Technologies 2024(3) Mixon-Baca et al.

ACKNOWLEDGMENTS
The authors would like to thank Esther Rodriguez for her work
reverse engineering android apps that gave us insights about attacker
capabilities. We thank Beau Kujath and William Tolley for the many
discussions about VPN configuration, attacks, and these NATs, as
well as for helping with the ethical disclosure process. We would
also like to thank Antonio Espinoza for his feedback during the
drafting process. This material is based upon work supported by the
National Science Foundation under Grant Numbers CNS-2237552,
CNS-2141512, CNS-2007741, and CNS-2141547; and, the Defense
Advanced Research Projects Agency (DARPA) under Agreement
HR00112190127, and the Open Technology Fund’s Information
Controls Fellowship Program and Internet Freedom Fund. Finally,
we would like to thank the anonymous reviewers for their helpful
feedback.

REFERENCES
[1] 1980. User Datagram Protocol. RFC 768. https://doi.org/10.17487/RFC0768
[2] 1981. Transmission Control Protocol. RFC 793. https://doi.org/10.17487/

RFC0793
[3] 2020. How to set up and configure an Openvpn server on Ubuntu 20-

04. https://www.digitalocean.com/community/tutorials/how-to-set-up-and-
configure-an-openvpn-server-on-ubuntu-20-04

[4] 2024. How To Set Up WireGuard on Ubuntu 20.04. https://www.digitalocean.
com/community/tutorials/how-to-set-up-wireguard-on-ubuntu-20-04

[5] 2024. namespaced-openvpn. https://github.com/slingamn/namespaced-openvpn
[6] 2024. OpenVPN How-To: Quick Start. https://openvpn.net/community-resources/

how-to/#openvpn-quickstart
[7] 2024. Port Fail. https://www.perfect-privacy.com/en/blog/ip-leak-vulnerability-

affecting-vpn-providers-with-port-forwarding
[8] 2024. Port Shadow. https://nvd.nist.gov/vuln/detail/CVE-2021-3773
[9] 2024. Recipes for Openconnect VPN. https://ocserv.openconnect-vpn.net/recipes.

html
[10] 2024. Set Up OpenConnect VPN Server (ocserv) on Ubuntu 20.04 with Let’s

Encrypt. https://www.linuxbabe.com/ubuntu/openconnect-vpn-server-ocserv-
ubuntu-20-04-lets-encrypt

[11] 2024. WireGuard: Quick Start. https://www.wireguard.com/quickstart/
[12] Jacob Appelbaum, Marsh Ray, Karl Koscher, and Ian Finder. 2012. vpwns: Virtual

pwned networks. In 2nd USENIX Workshop on Free and Open Communications
on the Internet. USENIX Association.

[13] Steven M Bellovin. 2002. A technique for counting NATted hosts. In Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet Measurment. 267–272.

[14] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V Krishnamurthy,
and Lisa M Marvel. 2018. Off-Path TCP Exploits of the Challenge ACK Global
Rate Limit. IEEE/ACM Transactions on Networking 26, 2 (2018), 765–778.

[15] Edmund Clarke, Orna Grumberg, and Doron Peled. 2001. Model Checking. MIT
Press.

[16] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie
Bursztein, Michael Bailey, J. Halderman, and Vern Paxson. 2017. The Security
Impact of HTTPS Interception. https://doi.org/10.14722/ndss.2017.23456

[17] Kjeld Borch Egevang and Paul Francis. 1994. The IP Network Address Translator
(NAT). RFC 1631. https://doi.org/10.17487/RFC1631

[18] Kjeld Borch Egevang and Pyda Srisuresh. 2001. Traditional IP Network Address
Translator (Traditional NAT). RFC 3022. https://doi.org/10.17487/RFC3022

[19] Bryan Ford, Saikat Guha, Kaushik Biswas, Senthil Sivakumar, and Pyda Srisuresh.
2008. NAT Behavioral Requirements for TCP. RFC 5382. https://doi.org/10.
17487/RFC5382

[20] Yossi Gilad and Amir Herzberg. 2013. Fragmentation Considered Vulnerable.
ACM Trans. Inf. Syst. Secur. 15, 4, Article 16 (apr 2013), 31 pages. https:
//doi.org/10.1145/2445566.2445568

[21] Yossi Gilad, Amir Herzberg, and Haya Shulman. 2014. Off-Path Hacking: The
Illusion of Challenge-Response Authentication. IEEE Security & Privacy 12, 5
(2014), 68–77. https://doi.org/10.1109/MSP.2013.130

[22] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In
1982 IEEE Symposium on Security and Privacy. 11–11. https://doi.org/10.1109/
SP.1982.10014

[23] Tony L. Hain. 2000. Architectural Implications of NAT. RFC 2993. https:
//doi.org/10.17487/RFC2993

[24] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous,
or: One-domain-to-rule-them-all.org. In 2013 IEEE Conference on Communica-
tions and Network Security (CNS). 224–232. https://doi.org/10.1109/CNS.2013.

6682711
[25] Amir Herzberg and Haya Shulman. 2013. Socket Overloading for Fun and

Cache-Poisoning. In Proceedings of the 29th Annual Computer Security Ap-
plications Conference (New Orleans, Louisiana, USA) (ACSAC ’13). Asso-
ciation for Computing Machinery, New York, NY, USA, 189–198. https:
//doi.org/10.1145/2523649.2523662

[26] Matt Holdrege and Pyda Srisuresh. 1999. IP Network Address Translator (NAT)
Terminology and Considerations. RFC 2663. https://doi.org/10.17487/RFC2663

[27] Matt Holdrege and Pyda Srisuresh. 2001. Protocol Complications with the IP
Network Address Translator. RFC 3027. https://doi.org/10.17487/RFC3027

[28] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne, Mohamed Ali
Kaafar, and Vern Paxson. 2016. An analysis of the privacy and security risks
of android vpn permission-enabled apps. In Proceedings of the 2016 internet
measurement conference. 349–364.

[29] Cullen Jennings and Francois Audet. 2007. Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP. RFC 4787. https://doi.org/10.17487/
RFC4787

[30] Jan Just Keijser. 2011. OpenVPN 2 Cookbook. Packt.
[31] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M Voelker, Alex C Snoeren,

Chris Kanich, and Narseo Vallina-Rodriguez. 2018. An empirical analysis of
the commercial vpn ecosystem. In Proceedings of the Internet Measurement
Conference 2018. 443–456.

[32] Jeffrey Knockel, Zoë Reichert, and Mona Wang. 2023. “Please do not make
it public”: Vulnerabilities in Sogou Keyboard encryption expose keypresses to
network eavesdropping. Technical Report.

[33] Jeffrey Knockel, Adam Senft, and Ronald Deibert. 2016. Privacy and Secu-
rity Issues in BAT Web Browsers. In 6th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 16).

[34] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. 2005. Remote physical
device fingerprinting. IEEE Transactions on Dependable and Secure Computing
2, 2 (2005), 93–108.

[35] Leslie Lamport. 1994. The Temporal Logic of Actions. ACM Trans. Program.
Lang. Syst. 16, 3 (May 1994), 872–923. https://doi.org/10.1145/177492.177726

[36] Dr. Arthur Y. Lin, Andrew G. Malis, Dr. Juha Heinanen, Bryan Gleeson, and
Dr. Grenville Armitage. 2000. A Framework for IP Based Virtual Private Networks.
RFC 2764. https://doi.org/10.17487/RFC2764

[37] Bill Marczak and John Scott-Railton. 2016. The million dollar dissident: NSO
group’s iPhone zero-days used against a UAE human rights defender. Technical
Report. Citizen Lab.

[38] Sophon Mongkolluksamee, Kensuke Fukuda, and Panita Pongpaibool. 2012.
Counting NATted hosts by observing TCP/IP field behaviors. In 2012 IEEE
International Conference on Communications (ICC). IEEE, 1265–1270.

[39] Robert Moskowitz, Daniel Karrenberg, Yakov Rekhter, Eliot Lear, and Geert Jan
de Groot. 1996. Address Allocation for Private Internets. RFC 1918. https:
//doi.org/10.17487/RFC1918

[40] Vasile C. Perta, Marco V. Barbera, Gareth Tyson, Hamed Haddadi, and Alessan-
dro Mei. 2015. A Glance through the VPN Looking Glass: IPv6 Leakage and
DNS Hijacking in Commercial VPN clients. Proceedings on Privacy Enhancing
Technologies 2015, 1 (2015), 77–91. https://doi.org/10.1515/popets-2015-0006

[41] Zhiyun Qian and Z Morley Mao. 2012. Off-path TCP sequence number inference
attack-how firewall middleboxes reduce security. In 2012 IEEE Symposium on
Security and Privacy. IEEE, 347–361.

[42] Ram Sundara Raman, Leonid Evdokimov, Eric Wurstrow, J Alex Halderman, and
Roya Ensafi. 2020. Investigating large scale HTTPS interception in Kazakhstan.
In Proceedings of the ACM Internet Measurement Conference. 125–132.

[43] Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and Roya Ensafi. 2022. VPNa-
lyzer: Systematic Investigation of the VPN Ecosystem. In Network and Distributed
System Security.

[44] William J. Tolley, Beau Kujath, Mohammad Taha Khan, Narseo Vallina-Rodriguez,
and Jedidiah R. Crandall. 2021. Blind In/On-Path Attacks and Applications to
VPNs. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association. https://www.usenix.org/conference/usenixsecurity21/presentation/
tolley

[45] top10 2023. Top10VPN: VPN Reviews. https://www.top10vpn.com/.
[46] Benjamin E Ujcich, Samuel Jero, Anne Edmundson, Qi Wang, Richard Skowyra,

James Landry, Adam Bates, William H Sanders, Cristina Nita-Rotaru, and Hamed
Okhravi. 2018. Cross-app poisoning in software-defined networking. In Proceed-
ings of the 2018 ACM SIGSAC conference on computer and communications
security. 648–663.

[47] Benjamin E Ujcich, Samuel Jero, Richard Skowyra, Steven R Gomez, Adam Bates,
William H Sanders, and Hamed Okhravi. 2020. Automated discovery of cross-
plane event-based vulnerabilities in software-defined networking. In Network and
Distributed System Security Symposium.

[48] ValdikSS. 2023. Encrypted traffic interception on Hetzner and Linode targeting
the largest Russian XMPP (Jabber) messaging service. (2023).

[49] Eline Vanrykel, Gunes Acar, Michael Herrmann, and Claudia Diaz. 2017. Leaky
birds: Exploiting mobile application traffic for surveillance. In Financial Cryptog-
raphy and Data Security: 20th International Conference, FC 2016, Christ Church,

122

https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0793
https://www.digitalocean.com/community/tutorials/how-to-set-up-and-configure-an-openvpn-server-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-and-configure-an-openvpn-server-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-wireguard-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-wireguard-on-ubuntu-20-04
https://github.com/slingamn/namespaced-openvpn
https://openvpn.net/community-resources/how-to/#openvpn-quickstart
https://openvpn.net/community-resources/how-to/#openvpn-quickstart
https://www.perfect-privacy.com/en/blog/ip-leak-vulnerability-affecting-vpn-providers-with-port-forwarding
https://www.perfect-privacy.com/en/blog/ip-leak-vulnerability-affecting-vpn-providers-with-port-forwarding
https://nvd.nist.gov/vuln/detail/CVE-2021-3773
https://ocserv.openconnect-vpn.net/recipes.html
https://ocserv.openconnect-vpn.net/recipes.html
https://www.linuxbabe.com/ubuntu/openconnect-vpn-server-ocserv-ubuntu-20-04-lets-encrypt
https://www.linuxbabe.com/ubuntu/openconnect-vpn-server-ocserv-ubuntu-20-04-lets-encrypt
https://www.wireguard.com/quickstart/
https://doi.org/10.14722/ndss.2017.23456
https://doi.org/10.17487/RFC1631
https://doi.org/10.17487/RFC3022
https://doi.org/10.17487/RFC5382
https://doi.org/10.17487/RFC5382
https://doi.org/10.1145/2445566.2445568
https://doi.org/10.1145/2445566.2445568
https://doi.org/10.1109/MSP.2013.130
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.17487/RFC2993
https://doi.org/10.17487/RFC2993
https://doi.org/10.1109/CNS.2013.6682711
https://doi.org/10.1109/CNS.2013.6682711
https://doi.org/10.1145/2523649.2523662
https://doi.org/10.1145/2523649.2523662
https://doi.org/10.17487/RFC2663
https://doi.org/10.17487/RFC3027
https://doi.org/10.17487/RFC4787
https://doi.org/10.17487/RFC4787
https://doi.org/10.1145/177492.177726
https://doi.org/10.17487/RFC2764
https://doi.org/10.17487/RFC1918
https://doi.org/10.17487/RFC1918
https://doi.org/10.1515/popets-2015-0006
https://www.usenix.org/conference/usenixsecurity21/presentation/tolley
https://www.usenix.org/conference/usenixsecurity21/presentation/tolley
https://www.top10vpn.com/

Attacking Connection Tracking Frameworks as used by Virtual Private Networks Proceedings on Privacy Enhancing Technologies 2024(3)

Barbados, February 22–26, 2016, Revised Selected Papers 20. Springer, 367–384.
[50] Feng Xiao, Jinquan Zhang, Jianwei Huang, Guofei Gu, Dinghao Wu, and Peng

Liu. 2020. Unexpected data dependency creation and chaining: A new attack to
SDN. In 2020 IEEE symposium on security and privacy (SP). IEEE, 1512–1526.

[51] Nian Xue, Yashaswi Malla, Zihang Xia, Christina Pöpper, and Mathy Vanhoef.
2023. Bypassing Tunnels: Leaking VPN Client Traffic by Abusing Routing Tables.
In 32nd USENIX Security Symposium (USENIX Security 23). 5719–5736.

[52] Qi Zhang, Juanru Li, Yuanyuan Zhang, Hui Wang, and Dawu Gu. 2017. Oh-
Pwn-VPN! security analysis of OpenVPN-based Android apps. In International
Conference on Cryptology and Network Security. Springer, 373–389.

A APPENDIX
A.1 Attacks
Figure 8, described in § 3, depicts N’s connection tracking table
when B connects to N before A. The porting collision causes N to
select a new source port for A. A exploits the fact that the port space
is a shared resource in this context to infer the existence of the (B,
N) VPN connection. Other connections between N and other hosts
can be inferred using a similar process.

VPN Connection Tracking Table
Orig Reply

{1.1.1.1 : 100, 2.2.2.2: 1194} {2.2.2.2:1194, 1.1.1.1:100}

{2.2.2.2:1194, 3.3.3:300}{3.3.3.3 : 300, 2.2.2.2: 1194}

{ 3.3.3.3:111, 2.2.2.2:1194 }{10.0.0.2 : 1194, 3.3.3.3: 300}

1. B's VPN Connection

2. A's VPN Connection

3. A's entry that collides with
B's VPN connection

Figure 8: N’s connection tracking table for the connection in-
ference. 1. B’s VPN connection, 2. A’s VPN connection. 3. A’s
packet that collides with B’s VPN connection.

A.2 Formal Model
Figure 9 depicts the model state before and after the ATIP attack is
run.

A = H1 (Attacker) <A'> B = H2 (Target) N (VPN Server)

Orig Reply

{A' : L, B : b} {B:b, N : L}

T
(VPN Server Connection Tracking Table)

Attacker's 1st Tunnel

Port Shadow: Attacker overwrites VPN
listening port for B

<A' : L, B : b, Marker=H1>

{B: b, N : L, Marker=H2}2

Host Markers

B-marker = H2

A-marker = H1 B-marker = H2

1

A-marker = H22

1

{A : a, N : L} {N : L, A : a}

Orig
{A : a, N : L}

Reply
{N : L, A : a}

Figure 9: Adjacent-to-in-path attack represented in the formal
model.

A.2.1 Model Pseudocode. The following code listings are our model’s
pseudocode. The code was originally written in PlusCal, a wrapper
for the TLA+ modeling language. The first four functions are the
pseudo code for the vulnerable VPN scenario. The second four func-
tions are pseudocode for the fixed versions of the same functions.

Algorithm 1 Connect(host, ip)

if LenFreeIPs > 0∧LenFreeHosts > 0 then
FreeIPs := SelectSeq(FreeIPs,

LAMBDA e: (e≠ip));
UsedIPs := Append(UsedIPs, ip);
FreeHosts := SelectSeq(FreeHosts,

LAMBDA e: (e≠host));
UsedHosts := Append(UsedHosts, host);
Connections := Append(Connections, << ip,host >>);

end if
return

Algorithm 2 Disconnect(host, ip)

if LenUsedIPs > 0 then
Connections := SelectSeq(Connections,

LAMBDA c: (Head(c)≠ip));
UsedIPs := SelectSeq(UsedIPs, LAMBDA c: (c≠ip));
FreeIPs := Append(FreeIPs, ip);
FreeHosts := Append(FreeHosts, host);
UsedHosts := SelectSeq(UsedHosts,

LAMBDA a: (a≠host));
end if
return

123

Proceedings on Privacy Enhancing Technologies 2024(3) Mixon-Baca et al.

Algorithm 3 PrivateToPublic(depth)

call EventSequence(depth);
if LenConnections > 0 then

sourcePort ∈ Ports
conn ∈ Connections
destPort ∈ Ports
daddr ∈ hosts
hostMarker := Head(Tail(conn))
pkt := [saddr → Head(conn), sport → sourcePort,

daddr → daddr, dport → destPort,
host_marker → hostMarker]

entry := [host_marker → hostMarker,
orig → [saddr → pkt.saddr, sport → pkt.sport,

daddr → pkt.daddr, dport → pkt.dport],
reply → [saddr → pkt.daddr, sport → pkt.dport,

daddr → N, dport → pkt.sport]];
otherEntry := SelectSeq(T,

LAMBDA k: k.reply.saddr=pkt.daddr ∧
k.reply.sport=pkt.dport ∧
k.reply.daddr=N ∧ k.reply.dport=pkt.sport);

if LenotherEntry > 0 then
T := SelectSeq(T,

LAMBDA e: ¬(e.reply.saddr=pkt.daddr ∧
e.reply.sport=pkt.dport ∧
e.reply.daddr=N ∧ e.reply.dport=pkt.sport));

end if
T := Append(T, entry);
pkt := [saddr →pkt.daddr, sport → pkt.dport,

daddr → N, dport → pkt.sport,
host_marker → hostMarker];

SendQueue := Append(SendQueue, pkt);
return

end if

Algorithm 4 PublicToPrivate()

if LenSendQueue > 0 then
pkt := Head(SendQueue);
SendQueue := Tail(SendQueue);
if LenT > 0 then

entry := SelectSeq(T, LAMBDA e:
e.reply.saddr=pkt.saddr ∧
e.reply.sport=pkt.sport ∧
e.reply.daddr=pkt.daddr ∧
e.reply.dport=pkt.dport);

if Lenentry <= 0 then
assert(FALSE);

end if
entry := Head(entry);
if entry.host_marker= pkt.host_marker then

assert(entry.host_marker/=pkt.host_marker);
end if
conn := SelectSeq(Connections, LAMBDA c:

entry.orig.saddr = Head(c));
if Lenconn > 0 then

conn := Head(conn);
hostMarker := conn[2];
assert(hostMarker = entry.host_marker);

end if
end if

end if
return

Algorithm 5 ConnectFixed(depth)

call EventSequence(depth);
if LenFreeHosts > 0 then

host_idx := DOMAIN FreeHosts;
hidx := CHOOSE h ∈ host_idx : TRUE;
host := FreeHosts[hidx];
FreeHosts := SelectSeq(FreeHosts,

LAMBDA a: a ≠ host);
UsedHosts := Append(UsedHosts, host);
port_idx := DOMAIN Ports;
pidx := CHOOSE p ∈ port_idx : TRUE;
pkt := [saddr → host, sport → Ports[pidx],

daddr → N, dport → N,
cmd → CmdConnect,
host_marker → host];

SendQueue := Append(SendQueue, pkt);
end if
return;

124

Attacking Connection Tracking Frameworks as used by Virtual Private Networks Proceedings on Privacy Enhancing Technologies 2024(3)

Algorithm 6 DisconnectFixed(depth)

call EventSequence(depth);
if LenConnections > 0 then

connDomain := DOMAIN Connections
cidx := CHOOSE c ∈ connDomain : TRUE
conn := Connections[cidx]
ip := conn[1]
host := conn[2]
Connections := SelectSeq(Connections,

LAMBDA cc: Head(cc)≠ip)
UsedIPs := SelectSeq(UsedIPs,

LAMBDA ccc: ccc≠ip)
FreeIPs := Append(FreeIPs, ip)
disconnectPurgeOrphans1: T := SelectSeq(T,

LAMBDA e: e.orig.saddr ≠ ip)
disconnectPurgeOrphans2: T := SelectSeq(T,

LAMBDA e: e.orig.saddr ≠ host)
if host = H1 then PortMap1 := <<>>
else PortMap2 := <<>>
end if
FreeHosts := Append(FreeHosts, host)
UsedHosts := SelectSeq(UsedHosts,

LAMBDA m: m ≠ host)
end if
return

Algorithm 7 PublicToPrivateFixed(depth)

call EventSequence(depth);
if LenSendQueue > 0 then

pkt := Head(SendQueue);
SendQueue := Tail(SendQueue);
entry := SelectSeq(T,

LAMBDA e: e.reply.saddr=pkt.saddr ∧
e.reply.sport=pkt.sport ∧
e.reply.daddr=pkt.daddr ∧
e.reply.dport=pkt.dport)

if Lenentry <= 0 then
if pkt.dport = N then

if LenFreeIPs > 0 then
ip ∈ FreeIPs
FreeIPs := SelectSeq(FreeIPs, LAMBDA d: d ≠

ip)
UsedIPs := Append(UsedIPs, ip)
host := pkt.saddr
Connections := Append(Connections,

<< ip,host >>)
end if

end if
else

entry := Head(entry);
if entry.host_marker≠pkt.host_marker then

(* EvictionReroute *)
if pkt.host_marker = H1 then Marker1 := en-

try.host_marker
else Marker2 := entry.host_marker
end if

end if
(* PortScan *)
conn := SelectSeq(Connections,

LAMBDA e: entry.orig.saddr = Head(e));
if Lenconn > 0 then

conn := Head(conn);
hostMarker := conn[2];
if hostMarker = H1 then Marker1 := en-

try.host_marker;
else Marker2 := entry.host_marker;
end if

end if
end if

end if
return ;

125

Proceedings on Privacy Enhancing Technologies 2024(3) Mixon-Baca et al.

Algorithm 8 PrivateToPublicFixed(depth)

call EventSequence(depth);
if LenConnections > 0 then

sourcePort ∈ Ports
conn ∈ Connections
destPort ∈ Ports
daddr ∈ DOMAIN hosts
hostMarker := Head(Tail(conn))
if hostMarker=H1 then

if LenPortMap1 >= MaxPorts then return;
else PortMap1 := Append(PortMap1, sourcePort)
end if

else
if LenPortMap2 >= MaxPorts then return
else PortMap2 := Append(PortMap2, sourcePort)
end if

end if
if sourcePort=N then

if hostMarker=H1 then sourcePort := EP1
else sourcePort := EP2
end if

end if
pkt := [saddr→Head(conn), sport→sourcePort,

daddr→ daddr, dport→destPort,
host_marker→ hostMarker]

entry := [host_marker→hostMarker,
orig→[saddr→pkt.saddr, sport → pkt.sport,

daddr→pkt.daddr, dport → pkt.dport],
reply → [saddr → pkt.daddr, sport → pkt.dport,

daddr → N, dport → pkt.sport]];
otherEntry := SelectSeq(T, LAMBDA k:

k.reply.saddr=pkt.daddr ∧ k.reply.sport=pkt.dport∧
k.reply.daddr=N

∧ k.reply.dport=pkt.sport ∧ k.hostMarker ≠ host-
Marker);

if LenotherEntry > 0 then
if LenExtraPorts > 0 then

new_sport := Head(ExtraPorts);
ExtraPorts := Tail(ExtraPorts);
entry.reply.dport := new_sport
pkt.sport := new_sport

else PortSpaceFull := TRUE
end if

end if
T:= Append(T, entry)
if LenT >= MaxTableSize then TableFull := TRUE
end if
pkt := [saddr →pkt.daddr, sport → pkt.dport,

daddr → N, dport → pkt.sport,
host_marker → hostMarker]

SendQueue := Append(SendQueue, pkt)
end if
return

126

	Abstract
	1 Introduction
	2 Background
	2.1 Virtual Private Networks
	2.2 Connection Tracking Framework
	2.3 Model Checking
	2.4 Threat Model

	3 Attacks
	3.1 Adjacent-to-In-Path (ATIP)
	3.2 Decapsulation
	3.3 Eviction Reroute
	3.4 Port Scan

	4 Case Studies
	4.1 Testing Environments
	4.2 Attack Results
	4.3 Attack Assumption Tests

	5 Formal Model
	5.1 Correctness

	6 Mitigations
	7 Related Work
	8 Ethical Disclosure
	9 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Attacks
	A.2 Formal Model

