
Privacy-Preserving MembershipQueries for
Federated Anomaly Detection

Jelle Vos

Delft University of Technology

Delft, The Netherlands

J.V.Vos@tudelft.nl

Sikha Pentyala

University of Washington Tacoma

Tacoma, Washington, USA

sikha@uw.edu

Steven Golob

University of Washington Tacoma

Tacoma, Washington, USA

golobs@uw.edu

Ricardo Maia

University of Brasília

Brasília, Brazil

ricardo.jmm@gmail.com

Dean Kelley

University of Washington Tacoma

Tacoma, Washington, USA

deanak@uw.edu

Zekeriya Erkin

Delft University of Technology

Delft, The Netherlands

Z.Erkin@tudelft.nl

Martine De Cock

University of Washington Tacoma

Tacoma, Washington, USA

Ghent University

Ghent, Belgium

mdecock@uw.edu

Anderson Nascimento

University of Washington Tacoma

Tacoma, Washington, USA

andclay@uw.edu

ABSTRACT
In this work, we propose a new privacy-preserving membership

query protocol that lets a centralized entity privately query datasets

held by one or more other parties to check if they contain a given

element. This protocol, based on elliptic curve-based ElGamal and

oblivious key-value stores, ensures that those ‘data-augmenting’

parties only have to send their encrypted data to the centralized

entity once, making the protocol particularly efficient when the

centralized entity repeatedly queries the same sets of data. We ap-

ply this protocol to detect anomalies in cross-silo federations. Data

anomalies across such cross-silo federations are challenging to de-

tect because (1) the centralized entities have little knowledge of the

actual users, (2) the data-augmenting entities do not have a global

view of the system, and (3) privacy concerns and regulations prevent

pooling all the data. Our protocol allows for anomaly detection even

in strongly separated distributed systems while protecting users’

privacy. Specifically, we propose a cross-silo federated architecture

in which a centralized entity (the backbone) has labeled data to

train a machine learning model for detecting anomalous instances.

The other entities in the federation are data-augmenting clients
(the user-facing entities) who collaborate with the centralized en-

tity to extract feature values to improve the utility of the model.

These feature values are computed using our privacy-preserving

membership query protocol. The model can be trained with an

off-the-shelf machine learning algorithm that provides differential

privacy to prevent it from memorizing instances from the training

data, thereby providing output privacy. However, it is not straight-
forward to also efficiently provide input privacy, which ensures that

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(3), 186–201
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0074

none of the entities in the federation ever see the data of other en-

tities in an unencrypted form. We demonstrate the effectiveness of

our approach in the financial domain, motivated by the PETs Prize

Challenge, which is a collaborative effort between the US and UK

governments to combat international fraudulent transactions. We

show that the private queries significantly increase the precision

and recall of the otherwise centralized system and argue that this

improvement translates to other use cases as well.

KEYWORDS
federated learning, anomaly detection, ElGamal encryption, oblivi-

ous key-value stores, differential privacy

1 INTRODUCTION
Privacy-preserving membership query protocols allow a central-

ized entity S to find out whether a given element is contained in

the data sets of other parties P1, . . . ,P𝑛 without learning anything

about the other elements in those sets. In the multi-party case, such

a membership query will only return positively when the queried

element is contained in the set of each other party. This work pro-

poses a protocol to perform privacy-preservingmembership queries

that is particularly efficient when performing multiple parallel and

sequential queries on the same sets. We refer to such queries as

repeated membership queries. The key to making this efficient is to

use encrypted membership query filters (EMQFs), see Section 5.1.

Repeated privacy-preserving membership queries occur in large-

scale systems, which are often comprised of many user-facing enti-

ties and one or a few centralized entities serving as the backbone.

Such federations arise for various reasons: to increase scalability,

for political and operational reasons, or simply because that is

how these systems functioned historically, and reorganizations are

costly. Examples include (1) financial systems such as the global

payment system orchestrated by SWIFT and distributed among

banks, (2) governmental systems such as tax authorities controlled

186

https://orcid.org/0000-0002-3979-9740
https://orcid.org/0000-0001-7486-6016
https://orcid.org/0009-0008-4442-2762
https://orcid.org/0000-0001-7748-8161
https://orcid.org/0000-0001-8932-4703
https://orcid.org/0000-0001-7917-0771
https://orcid.org/0000-0002-8298-6250
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0074

Privacy-Preserving MembershipQueries for Federated Anomaly Detection Proceedings on Privacy Enhancing Technologies 2024(3)

by national governments but supported by states or municipalities,

and (3) health care guided by insurers while provided by many

medical institutions. All these systems are prone to fraud because

the centralized entities have little knowledge of the users, while

the other entities do not have a global view of the system. Typical

approaches that address fraud in such a federated setting come

at the cost of the users’ privacy, and not addressing it is not an

option due to its high societal cost. Privacy-preserving membership

queries allow us to address fraud while preserving users’ privacy.

We demonstrate the effectiveness of our solution in the financial

domain. As illustrated in Fig. 1, we assume a cross-silo federated

architecture in which a centralized entity (the backbone) has la-

beled data to train a machine learning (ML) model for detecting

anomalous instances. The other entities in the federation are data-
augmenting entities (the user-facing entities), which collaborate

with the centralized entity to extract feature values to improve the

utility of the model. In the financial domain, the centralized en-

tity would, for instance, be a payment network system like SWIFT

that holds information about financial transactions, and the data-

augmenting entities are partner banks that hold additional infor-

mation about the ordering and beneficiary accounts appearing in

financial transactions. The task is to use the sensitive information

residing with all the entities, e.g. the payment network system and

the banks, to train a ML model to detect anomalies. A large body of

research has already studied ways to train such a model with output
privacy guarantees: by training the model using differential privacy

(DP) techniques, any inferences made with the model can be made

public while guaranteeing plausible deniability about the existence

of any specific instance in the training data. The challenge is to also

provide input privacy, which guarantees that the information held

by any data-augmenting entities and the information held by any

centralized entity is not disclosed to any other entity. We propose

a new cryptographic protocol tailored to this setting to efficiently

and privately extract a Boolean feature indicating whether the data

relating to a specific instance is consistent between the centralized

entity and that of one or more data-augmenting entities.

Throughout this paper, we use S to denote the centralized entity

and P1, . . . ,P𝑛 to denote the data-augmenting entities. We assume

that S has a training dataset in which each instance is labeled

with a value denoting whether it is anomalous or not. To provide

output privacy, S can train a ML M over its data with any of

a variety of supervised DP model training algorithms that have

been proposed in the literature, including for logistic regression,

tree ensembles, and neural networks [3, 17, 18, 25]. We note that

this choice of model is completely free, and we do not expand on

it in this work. The emphasis in this paper is on improving the

utility ofM by extracting feature values that represent whether

information held by S is consistent with information held by one or

more of the P𝑖 ’s, e.g. whether the information about the ordering

and beneficiary accounts listed in a transaction known to a payment

network system is consistent with the information known by the

respective sending and receiving banks.

From a technical point of view, our private feature extraction

protocol is built on top of a novel private set membership proto-

col that is especially efficient when performing many sequential

queries. To make the protocol efficient, we instantiated the cryp-

tosystem over an elliptic curve and implemented it in Rust (with

a Python wrapper). The resulting protocol has low computational

and communication demands. Moreover, typical protocols for pri-

vate set membership or private set intersection based on oblivious

key-value stores [29] and built using OT extension protocols [6]

reveal the protocol’s output in the clear. This is problematic when

the result of the protocol needs to be used in other private computa-

tions. We provide an extension of our protocol that overcomes this

limitation by outputting ElGamal encryptions of the data and using

a custom private equality test that uses its homomorphic properties.

We are not aware of similar constructions in the literature.

Motivated by the 2023 PETs prize challenge,
1
which is a collabo-

rative effort of the US and UK governments, we demonstrate the

effectiveness of our approach in the financial domain. We show that

the private queries significantly increase the precision and recall of

the otherwise centralized system and argue that this improvement

translates to other use cases as well.

Our contributions can be summarized as follows:

• We propose a new multi-party private set membership protocol

that is also of independent interest (e.g., for multi-party private

set intersections), in which we formalize the concept of an EMQF.

• We propose a secure equality protocol over elliptic curve-based

ElGamal ciphertexts, also of independent interest.

• To the best of our knowledge, we discuss the first concretely

efficient distributed anomaly detection system in a federated star

topology that preserves both input and output privacy.

After describing related work in Sec. 2 and preliminaries in Sec. 3,

we provide a high level description of our solution in Sec. 4. We

follow up with a detailed description for private consistency queries

in Sec. 5 and a privacy proof in Sec. 6. In Sec. 7 we document

experiments that demonstrate the utility and scalability of our

method, which was a prize finalist in the 2023 PETs prize challenge.

2 RELATEDWORK
We go over previous works that tackle similar (sub-)problems. First,

we discuss previous works for performing private membership

queries by studying private set intersection protocols. After that, we

analyze solutions related to our application in the field of privacy-

preserving federated learning, which also tackle learning in federa-

tions while providing privacy guarantees.

2.1 Private Membership Queries
Private membership queries form the basis of private set intersec-

tion protocols, which have been studied extensively. In this work,

we are interested in the multi-party case, where a querier can check

the membership of an element with multiple parties at once and

only receive a positive result if each set contains the element. We

briefly provide an overview of some of the most recent work on

these protocols. We distinguish between multi-party private mem-

bership queries and multi-party private set intersections (MPSI).

In the latter case, we discuss two categories: protocols based on

multiple instances of two-party computation (2PC) and protocols

based on homomorphic encryption (HE). Note that while some of

the protocols discussed here are efficient when it comes to compu-

tation and communication, each individual query has a large cost

1
https://www.drivendata.org/competitions/group/nist-federated-learning/

187

https://www.drivendata.org/competitions/group/nist-federated-learning/

Proceedings on Privacy Enhancing Technologies 2024(3) Vos et al.

PrS Ps

[z(qr + qs)]

[z zr (qr + qs)]

[z (zr + zs) (qr + qs)] [z (zr + zs) (qr + qs)]

Answer

Query [qr] , [qs]

[z zs (qr + qs)]

[z (zr + zs) (qr + qs)]

.
 .

 .

(a) Federated Setup.
One time setup for creation of EMQF

(Protocol 1)

P2

Pn

P5

P4

P1

P3

S

(b) Inference Phase.
Privacy-preserving membership queries

(Protocol 2)

pkn, Dn

 pk5, D5

 pk4, D4
 pk3, D3

 pk2, D2

pk1, D1

Privacy-Preserving Feature Extraction for Federated Anomaly Detection

pki - public key of Pi
Di - EMQF of Pi
qr - query result from the EMQF for Pr
qs - query result from the EMQF for Ps
z - randomness from S
zi - randomness from Pi
 private communication channel

 private database of the entity

S - centralized entity

Pi - ith data-augmenting entity

Ps - The entity to be queried for membership

Pr - The entity to be queried for membership

[z(qr + qs)]

[z (zr + zs) (qr + qs)] [z (zr + zs) (qr + qs)]

z (zr + zs) (qr + qs) = 0?

Figure 1: (a) Architecture diagram of the federation; (b) A private consistency check involving two data-augmenting clients

associated to it. In other words, these protocols are not concretely

efficient for performing many queries in parallel or sequentially.

Private set intersections using 2PC. This type of MPSI protocols

combines multiple executions of two-party computations that in-

herently perform membership queries to find the intersection of

all separate sets. This closely resembles our protocol, except these

protocols do not rely on homomorphic encryption. The most recent

protocol in this category is that by Nevo et al. [46]. This protocol

uses OKVSs encoding secret shares in combination with oblivious

transfers to perform the membership checks. A similar approach

was proposed before that by Garimella et al. [29]. These proto-

cols are among the most efficient for multi-party private set in-

tersections over large sets. Another protocol in this category is

by Kavousi et al. [40], which relies on oblivious pseudo-random

functions (OPRFs) as the two-party computation and functions

strictly in the star topology. In this work, each party encodes their

set as a garbled Bloom filter. Since OPRFs are efficient building

blocks, the Bloom filter can have many bins before computations

become prohibitively expensive. Note that in all three works, the

party receiving the final output must perform computation and

communication with the other parties scaling linearly with their

set size every time the protocol is executed.

Private set intersections using HE. We discuss the three of the

most recent MPSI protocols based on homomorphic encryption.

All three protocols function in the star topology, which makes

them suitable for in a federation, where there is a centralized entity

and multiple other entities. The protocol by Bay et al. [8], and

subsequently by Vos et al. [58] uses encrypted Bloom filters to

perform one membership query for each of the elements in the

centralized entity’s set. While the former uses Paillier encryption,

the latter uses elliptic curve-based ElGamal, similar to this work.

These protocols are concretely efficient for small set sizes, but they

are less efficient than the 2PC-based MPSI protocols as the set size

grows. Hazay et al. [34] present a different protocol, in which each

party other than the centralized entity represents their set as the

roots of an encrypted polynomial. Performing the membership

query then involves privately evaluating this polynomial on the

queried element. In these three works, the centralized entity may

keep the encrypted Bloom filters or encrypted polynomials locally

to speed up future queries, but these methods remain efficient. For

Bloom filters, this is the case because the filters must be large in size

not to introduce false positives, which makes them prohibitively

expensive for larger set sizes. For encrypted polynomials, each

invocation requires cryptographic operations on every encrypted

coefficient, which requires a great deal of computation.

Private membership queries. The protocol by Chielle et al. [19]

is similar to many HE-based MPSI protocols as it is based on en-

crypted Bloom filters. However, Bloom filters typically need to grow

large in size in order to press the false positive rate. As a result,

precise queries involve a large amount of cryptographic operations.

This paper uses the BFV leveled-homomorphic encryption scheme.

Unfortunately, the protocol leaks information as it exposes all bits

of the Bloom filter selected by the hash functions (see [58], Sec-

tion 6.2). Ramezanian et al. [51] propose a more complex protocol

that decreases this cost by using Cuckoo filters, which are also more

common in MPSI protocols. The most recent custom protocol for

performing private membership queries is that by Garg et al. [28].

This protocol provides stronger security than regular membership

queries because it is hard for the party holding the queried set to

fool the other party of a positive query result. However, this proto-

col is restricted to two parties.

In this work, we are interested in performing multiple sequential

queries on the same sets. We refer to a protocol that is designed

for this case as a privacy-preserving repeated membership query

protocol. MPSI protocols can be naively turned into such repeated

membership query protocols, but this is highly inefficient: While an

MPSI protocol allows performing multiple membership queries in

parallel, they are not necessarily efficient for performing multiple

queries sequentially. We provide an overview incorporating the

number of sequential queries as 𝑞 in Table 1. Here, 𝑘 represents the

maximum size of the parties’ sets and 𝑛 is the number of involved

188

Privacy-Preserving MembershipQueries for Federated Anomaly Detection Proceedings on Privacy Enhancing Technologies 2024(3)

parties. We also use 𝑡 to denote the number of parties that can

collude before the security guarantees no longer hold, and ℎ to

denote the number of hash functions in a Bloom filter.

In Table 1, we give two examples of MPSI protocols (Hazay et

al. [34] and Vos et al. [58]) that can be easily adapted (indicated

with an asterisk) so that parties only have to encode and send their

set once. Their asymptotic communication complexities are iden-

tical to the protocol presented in this work. In fact, these adapted

protocols can all be seen as instantiations of our protocol with a

different EMQF. However, encrypted polynomials and Bloom filters

are significantly larger in size and require orders of magnitude more

computations to both encode and decode. We provide a concrete

comparison of this in Sec. 7. Note that the extra factor 𝑛 incurred in

the computation of an assistant is because our work uses a different

setup; the involved parties do not share a single public key.

Our solution enjoys the benefits of the HE-based MPSI protocols

we discussed, running in the star topology and not having to re-

compute the set representation at every invocation, along with the

benefits of the 2PC-based MPSI protocols, which scale well with the

size of the sets. By using elliptic curve-based ElGamal rather than

a partially homomorphic encryption scheme such as Paillier, the

size of the OKVS stays compact, the cryptographic operations are

fast to execute, and the bandwidth cost in subsequent membership

queries decreases by an order of magnitude.

Table 1: Comparison of our privacy-preserving membership
query protocol when expressed as a repeated multi-party
private set intersection, derived from [59].

Work Communication Computation
Authors Leader Assistant Rounds Leader Assistant

Hazay [34] 𝑂 (𝑞𝑛𝑘) 𝑂 (𝑞𝑘) 4𝑞 𝑂 (𝑞𝑛𝑘) 𝑂 (𝑞𝑘)
Inbar [36] 𝑂 (𝑞𝑛𝑘ℎ) 𝑂 (𝑞𝑛𝑘ℎ) 3𝑞 𝑂 (𝑞𝑛𝑘ℎ) 𝑂 (𝑞𝑛𝑘ℎ)
Ghosh [30] 𝑂 (𝑞𝑛𝑘) 𝑂 (𝑞𝑘) 6𝑞 𝑂 (𝑞𝑛𝑘) 𝑂 (𝑞𝑘)
Chandran [15] 𝑂 (𝑞𝑛𝑘) 𝑂 (𝑞𝑘) 8𝑞 𝑂 (𝑞𝑛𝑘) 𝑂 (𝑞𝑘)
Garimella [29] 𝑂 (𝑞𝑛𝑘) 𝑂 (𝑞𝑘) 4𝑞 𝑂 (𝑞𝑘) 𝑂 (𝑞𝑛𝑘)
Gordon [31] 𝑂 (𝑞𝑛𝑘 + 𝑞𝑛𝑡) — 5𝑞 — —

Vos [58] 𝑂 (𝑞𝑡𝑘) 𝑂 (𝑞𝑘) 3𝑞 𝑂 (𝑞𝑛𝑘ℎ) 𝑂 (𝑞𝑘)
Hazay* [34] 𝑂 (𝑞𝑡) 𝑂 (𝑘 + 𝑞) 1 + 2𝑞 𝑂 (𝑞𝑛𝑘) 𝑂 (𝑞𝑘)
Vos* [58] 𝑂 (𝑞𝑡) 𝑂 (𝑘 + 𝑞) 1 + 2𝑞 𝑂 (𝑞𝑛𝑘ℎ) 𝑂 (𝑞𝑘)
This work 𝑂 (𝑞𝑡) 𝑂 (𝑘 + 𝑞) 1 + 2𝑞 𝑂 (𝑞𝑛𝑘) 𝑂 (𝑞𝑛𝑘)

2.2 Privacy-preserving federated learning
Federated learning (FL) [44] has emerged as a popular paradigm

to train global machine learning models over data held by multi-

ple entities, which are typically referred to as clients. Nearly all

state-of-the-art FL algorithms and applications assume scenarios

in which the data is horizontally partitioned, i.e. each client holds

one or more instances. In the cross-silo federated architecture that

we consider (see Fig. 1), the data is split both horizontally and ver-

tically, making the mainstream FL paradigm difficult to use and

analyze [39]. Orthogonal to this, it is also well understood that FL is

not privacy-preserving by default, as information about the clients’

training data may leak from the gradients or model parameters

(see e.g. [12, 24, 39, 53]). Existing works that use a combination

of privacy-enhancing technologies in the context of FL to provide

end-to-end privacy address, to the best of our knowledge, only the

scenario of horizontally distributed data [13, 16, 32, 37, 47, 56].

A relevant technique for cross-silo FL is secure multi-party com-

putation (MPC), an umbrella term for cryptographic approaches

that allow two or more parties to jointly compute a specified output

from their private information in a distributed fashion without

revealing this private information to each other [21]. While MPC

typically comes with a substantial computation and communica-

tion overhead, a major advantage is that it can be readily applied to

scenarios where the data is partitioned horizontally, vertically, or

in any other mixed way. Nearly all of the MPC protocols proposed

in the literature for model training (e.g. [4, 5, 22, 33, 41, 45, 60])

however only protect input privacy, i.e. they enable training of a

model over data that is distributed among data holders without

requiring those data holders to disclose the data. In isolation, these

approaches do not provide sufficient protection if the trained model

is to be made publicly known, or even if it is only made available for

black-box query access, because information about the model and

its training data is leaked through the ability to query the model

(see e.g. [14, 26, 54, 55]). Formal privacy guarantees, in this case, can

be provided by differential privacy [23]. It is, however, well known

that local differential privacy, where each client adds noise to their

data before sending it out, causes severe utility loss. In contrast,

global differential privacy, where each client sends its data to a

trusted curator responsible for adding the noise, introduces a single

point of failure (namely the curator) and violates input privacy.

Input and output privacy can simultaneously be achieved in

FL by combining MPC with differential privacy by replacing the

trusted curator from the global DP paradigm with an MPC proto-

col (run across multiple mutually distrustful parties) to generate

noise to perturb the model parameters, providing differential pri-

vacy guarantees. Existing methods leveraging this idea can handle

data that is arbitrarily partitioned. However, such solutions are not

directly applicable to our scenario because they assume that all

feature values are readily available in the federation [49]. In our

case, however, some features carry a high signal but have yet to

be constructed by combining information from the centralized and

data-augmenting entities.

While using a general-purpose MPC protocol for such joint

feature extraction provides the necessary privacy guarantees, it

requires significant computation and communication since MPC

generic solutions for such tasks heavily depend on the circuit size

(which is very high for our specific joint feature extraction task).

This work proposes a custom cryptographic protocol based on

elliptic curve-based homomorphic ElGamal and oblivious key-value

stores (OKVS) [29]. With almost all of the attention in the privacy-

preserving machine learning (PPML) literature going to the model

training phase, our proposal fills a critical gap concerning data

preprocessing, namely private feature extraction. A recent work by

Kadhe et al. [38] uses generic MPC and specifically avoids this pri-

vate feature extraction step. This makes their protocol significantly

more expensive in computation and communication.

We discuss three more recent works that tackle similar prob-

lems. Asif et al. [7] use a similar method to ours, where S performs

189

Proceedings on Privacy Enhancing Technologies 2024(3) Vos et al.

membership queries on P𝑖 ’s data, but the data is encoded as un-

encrypted Bloom filters. The authors wrongfully assume that this

provides privacy to the users whose data is encoded. This form of

information leakage is discussed in the work by Vos et al. ([58],

Sec. 4.2.1). The work titled HyFL [61] solves the same problem but

in a weaker threat model, where data is only encrypted against

outside attackers, but S decrypts P𝑖 ’s data and trains on it in plain

text. Finally, a recent work titled Starlit [1] extracts a similar fea-

ture as in our work, except that it is computed by performing a

one-time private set intersection between the S’s data and P𝑠 and
P𝑟 ’s data. This reveals significantly more private information than

our protocol: S learns the result of performing membership queries

with each row in their dataset on each individual P𝑖 ’s dataset. This
is essentially the worst-case leakage of our protocol.

3 PRELIMINARIES
We briefly discuss cryptographic primitives used in our protocols

and introduce the definition of differential privacy.

Oblivious key-value stores. Conceptually, an OKVS is a dictionary
that outputs a random-looking value for each key. If the key was

encoded in the OKVS, then the value always corresponds to the

value that went with it. We choose to work with the PaXoS [50]

OKVS with the xxh3 statistical hash function [20]. Note that this

hash function does not have to be cryptographically secure, as the

security of OKVSs only relies on the statistical indistinguishability

of the encoded values. The OKVS function decode(𝐷,𝑞) returns
the value corresponding to the key 𝑞 in OKVS 𝐷 . Regardless if the

key was encoded in the OKVS, the properties of the OKVS ensure

that the returned value is indistinguishable from randomness.

Curve25519. In our protocols, we work over Curve25519 [9]. We

denote the identity by O, the scalar group by Z𝑞 , and the curve

group by 𝐸 (Z𝑞). Here, 𝑞 = 2
255 − 19 and |𝐸 (Z𝑞) | > 2

252
.

All parties have access to a generator 𝐺 . While Curve25519 is

defined as a Montgomery curve, it is birationally equivalent to a

twisted Edwards curve. Unless specified, we use the twisted Ed-

wards model. We also introduce two functions ToMontgomery(𝑥)
and ToEdwards(𝑥, 𝑠), which switch 𝑥 between the two curve mod-

els. Here, 𝑠 denotes the sign of the twisted Edwards point, as the

Montgomery point only contains the 𝑋 -coordinate of the point.

Elligator maps. The main challenge when encoding curve points

in an OKVS is that the OKVS requires those points to be indistin-

guishable from random bits. The typical compressed representation

of curve points certainly does not satisfy this requirement. For

example a compressed Montgomery point is simply its 𝑋 coordi-

nate, which must satisfy the strict curve equation. As a result, not

every set of random bits is interpretable as the scalar representa-

tion of 𝑋 . Instead, we use the Elligator2 map [10] to map between

random-looking bits and curve points. Consequently, we work over

Montgomery and twisted Edwards curves. We use the Montgomery

model to apply the Elligator2 map given by the function𝜓 : Z𝑞 ↦→
𝐸 (Z𝑞) and its inverse𝜓−1. The inverse only returns a representative
for half of the points in 𝐸 (Z𝑞); otherwise, it returns ⊥.

Differential privacy. A randomized algorithm F provides (𝜖, 𝛿)-
DP if for all pairs of neighboring datasets 𝐷 and 𝐷 ′ (i.e. datasets

that differ in one entity), and for all subsets 𝑆 of F ’s range:

P(F (𝐷) ∈ 𝑆) ≤ 𝑒𝜖 · P(F (𝐷 ′) ∈ 𝑆) + 𝛿 [23]. (1)

The parameter 𝜖 ≥ 0 denotes the privacy budget or privacy loss,

while 𝛿 ≥ 0 denotes the probability of violation of privacy, with

smaller values indicating stronger privacy guarantees in both cases.

In our context, 𝐷 and 𝐷 ′ are datasets with instances, and F is an

algorithm to induce an ML model from a dataset, or a method to

compute a statistic (like the mean) over a dataset. An DP algorithm

F is usually created out of an algorithm F ∗ by adding noise that

is proportional to the sensitivity of F ∗, in which the sensitivity

measures the maximum impact a change in the underlying dataset

can have on the output of F ∗.

4 SOLUTION OUTLINE
4.1 Threat model
We model all parties as polynomial-time Turing machines (PPT).

For the elliptic curve cryptography, we assume the decisional

Diffie-Helman problem to hold over Curve25519 [9] and Elliga-

tor2 [10] to be statistically indistinguishable from randomness.

We implement authenticated and private communication chan-

nels between the centralized entity S and the data-augmenting

clients P1, . . . ,P𝑛 by using the authenticated encryption mode

of operation EAX and AES, which we treat as a pseudorandom

function. To do so, we predistribute symmetric keys among the

respective parties. Alternatively, the parties can run Diffie-Helman

key exchange protocols to establish such common keys.

We assume the adversaries to be honest-but-curious. That means

they follow the protocol specifications, but try to obtain as much

information as possible about private information from their in-

puts, messages exchanged, and internal randomness. Our protocols

(Sec. 4.3) are designed to prevent adversaries from learning such

information (see Sec. 6 for the proofs). We work with static ad-

versaries. Our solutions can be generalized to stronger adversarial

models (fully malicious/active adversaries) at the cost of having

reduced efficiency. See Appendix B for an initial discussion.

In our solution, the centralized entity S’s training data never

leavesS, not even in encrypted form. The privacy of the centralized

entity’s data is guaranteed even if the result of the classification

(the predicted probability that an instance is anomalous) is made

public. This privacy guarantee follows directly from the fact that

the model is generated from the data with an algorithm that pro-

vides differential privacy (DP) guarantees (Sec. 4.2). This means

that the probability that the algorithm generates a specific model

from the data is very similar to the probability of generating that

model if a particular instance had been left out of the data. The

latter implies that what the model has memorized about individual

instances is negligible. Obviously, if the result of the classification

is not made public by S, no information whatsoever leaks about

the centralized entity’s data (a result that follows from our secure

distributed feature extraction protocol in Sec. 5).

In our solution, data never leaves the data-augmenting clients in

plaintext form. In the feature extraction protocol in Sec. 5, the data-

augmenting clients encrypt their data as ElGamal ciphertexts and

encode the ciphertexts in oblivious key-value stores (OKVS), which

they send to S. The centralized entity S and the data-augmenting

190

Privacy-Preserving MembershipQueries for Federated Anomaly Detection Proceedings on Privacy Enhancing Technologies 2024(3)

clients perform computations over this data while it is stays en-

crypted. At the end of the protocol, (1) the centralized entity and

the data-augmenting clients can jointly decrypt the result (Sec. 4.3)

and open it to S, or (2) use a protocol extension to compute linear

functions (such as generalized linear machine learning models) on

the encrypted data. We use the former approach, so S learns one

bit of information, which is 1 if any inconsistency is detected.

We do not consider side channel attacks in our proposal, but Pro-

tocols 1 and 3 have been designed using constant-time primitives,

and the only variable-time operations do not reveal information

about the inputs. However, we do not investigate the security of

our solution against these attacks, and give no guarantees about

our current implementation’s resistance to them.

Moreover, our threat model does not take into account model

inversion attacks. We perceive this as a separate issue, requiring its

own countermeasures, as highlighted by [26].

4.2 Model training
We recall that the entities in our solution are the centralized entity

S, and the data-augmenting entities P1, . . . ,P𝑛 . S has a training

dataset in which each instance is labeled whether it is an anomalous

instance or not. S trains a classifierM over this training data. For

a query instance 𝒙 , i.e. a new instance that needs to be classified

as anomalous or not, the modelM outputs a predicted probability

M(𝒙) ∈ [0, 1] that the instance is anomalous.

To prevent leakage of information from the predicted probabili-

ties about the instances in the training data, we use an ML model

training algorithm that provides differential privacy. In this way,

our solution provides formal guarantees that the trained modelM,

and hence predictions made withM, are negligibly affected by the

inclusion of any particular instance in the training data, thereby

offering output privacy through plausible deniability [23]. A vari-

ety of (𝜖, 𝛿)-DP ML model training algorithms have been proposed

in the literature, including for logistic regression, tree ensembles,

and neural networks [3, 17, 18, 25]. Our overall solution is general

enough to allow for any (𝜖, 𝛿)-DP ML model training algorithm

to be used by S to train its modelM. In Sec. 7, we compare the

performance of several DP model training algorithms.

4.3 Inference
During inference, S has to infer the probability to which each new

instance 𝒙 is anomalous. Our solution leverages information held

by the data-augmenting entities P1, . . . ,P𝑛 to improve the accuracy

of the predictions made by modelM. To this end, S and the data-

augmenting entities work together to perform a consistency check

that yields 𝐵(𝒙) = 1 if there is any inconsistency between fields

from 𝑥 as known to S versus as known by the data-augmenting

entities, and 𝐵(𝒙) = 0 if everything is consistent.

In the financial domain, S could be a payment network system

interactingwith banksP1, . . . ,P𝑛 to check the validity of a financial

transaction 𝒙 . The consistency check in this case would involve

verifying that the names and addresses of the sender and receiver

accounts in the transaction 𝒙 as known to S match the names

and addresses of the account holders as known by the sending

bank P𝑠 and receiving bank P𝑟 . In Sec. 5 we describe a protocol for

performing such a consistency check without requiringS,P𝑠 , orP𝑟

to disclose their data to each other in an unencryptedmanner. At the

end of the protocol, we open the value of 𝐵(𝒙) to S. We note that in

this way, S learns only whether there was an inconsistency or not,

and not fromwhich field in 𝒙 or fromwhich data-augmenting client

an inconsistency originated. We also note that the protocol in Sec. 5

is generic and supports any number of data-augmenting entities

in a single query and not just two as illustrated in the example

above. Moreover, the protocol in Sec. 5 supports any disjunction of

equality constraints, i.e. it applies to any situation where one must

check whether a database contains an entry (such as a single field

or a combination of fields) that matches exactly.

The final inference result for 𝒙 is computed by S asmax(M(𝒙),
𝐵(𝒙)), in which M(𝒙) denotes the probability predicted by the

model trained by a DP algorithm (see Sec. 4.2) and 𝐵(𝒙) denotes
the Boolean consistency feature jointly extracted by S and the

data-augmenting clients. In the next section, we explain how to

compute 𝐵(𝒙) in a privacy-preserving manner.

5 PRIVATE CONSISTENCY QUERIES
The underlying functionality of the private consistency queries is

that of a private membership query. After all, we are testingwhether

each involved data-augmenting entity has a row in their dataset that

matches our query. Suppose first that such a consistency query only

involves the centralized entity S and one data-augmenting entity

P𝑖 . It is easy to see that we can perform private consistency queries

if we can realize a protocol that returns an encryption of zero (or

rather the additive identity O) if the membership check passes and

randomness otherwise. We refer to this primitive as an encrypted

membership query filter. The key insight in our protocol is that we

can let each data-augmenting entity perform an expensive one-time

setup that scales linearly with the size of their dataset, after which

queries take a significantly shorter time.

5.1 Encrypted membership query filters
We introduce encrypted membership query filters (EMQFs), which

are non-interactive encrypted filters for querying set membership.

When queried, with high likelihood, an EMQF only returns an

encryption of the identity when the element is encoded in it. It

implements and satisfies the following functions and properties:

• Build(pk, 𝑅) ↦→ EMQF: Constructs an EMQF encoding 𝑅

using encryption key pk.
• Query(EMQF, 𝑞) ↦→ 𝐶: Queries the EMQF on element 𝑞

returning a ciphertext.

Correctness Pr[Dec(Query(EMQF, 𝑞), sk) ≠ O | 𝑞 ∈ 𝑅] ≤ ` and

Pr[Dec(Query(EMQF, 𝑞), sk) = O | 𝑞 ∉ 𝑅] ≤ `, where sk is

the secret key for the pk used to build the EMQF.

Privacy Build(pk, 𝑅) 𝑐≡ Build(pk, 𝑅′) given |𝑅 | = |𝑅′ |.
A naiveway to instantiate an EMQF using partially-homomorphic

encryption is to encrypt every row of the set. Then, for a query,

privately subtract every row with the query. However, this requires

returning more than one ciphertext. Hazay et al. [34] implicitly

provide an instantiation by encoding set elements as the roots of

a compact but expensive-to-query encrypted polynomial and Vos

et al. [58] encode the set as a large but cheap-to-query encrypted

inverted Bloom filter. Both use partially-homomorphic encryption.

191

Proceedings on Privacy Enhancing Technologies 2024(3) Vos et al.

The idea of our paper is to encode a set as an oblivious key-value

store (OKVS), which is both compact and cheap to query.We choose

to work over an elliptic curve group to speed up computation,

decrease the key size, and to minimize the size of the OKVS. As

explained next, encoding these ciphertexts is not straightforward.

5.2 Encoding ciphertexts in the OKVS
The security of the oblivious key-value stores depends entirely on

the requirement that its values are computationally indistinguish-

able from randomness. Note, however, that elliptic curve points

by default are easily distinguishable from a uniformly random bit-

string by checking whether it conforms to the curve equations.

Instead, we rely on the Elligator2 map denoted by𝜓 to encode and

decode curve points. In Algorithm 1 and 2 we show how to use this

mapping to represent a point as a bitstring and vice versa. We refer

to Sec. 3 for a description of the building blocks.

Algorithm 1 Encodes a twisted Edwards point 𝑝 in 32 bytes indis-

tinguishable from randomness.

1: procedure ToBytes(𝑝)
2: 𝑝E ← ToMontgomery(𝑝)
3: 𝑠 ∈𝑅 {+,−} ⊲ Choose + or - representative for 𝑝

4: 𝐵 ∈ 𝜓−1 (𝑝E , 𝑠)
5: if 𝐵 = ⊥ then return ⊥
6: if FromBytes(𝐵) = 𝑝 then return 𝐵

7: 𝐵 [31] ← 𝐵 ∨ 128 ⊲ Encode the sign in the MSB

8: return 𝐵

Algorithm 2 Decodes a twisted Edwards point from 32 bytes 𝐵.

1: procedure FromBytes(𝐵)
2: 𝑠 ← 𝐵 [31] ≫ 7 ⊲ Extract the sign from the MSB

3: return ToEdwards(𝜓 (𝐵), 𝑠)

A data-augmenting entity can now safely generate an OKVS that

realizes an EMQF using Protocol 1, where steps 2 and 3 represent

the Build(pk, 𝑅) function. The EMQF’s privacy is implied by the

OKVS’s obliviousness property. This protocol also generates a key

pair. After that, the data-augmenting entity sends the OKVS and

the public key to S. The centralized entity generates a keypair in

the same way, but it does not need to generate an OKVS.

5.3 Performing a query
Next, we explain how the centralized entity can perform a mem-

bership query with multiple data-augmenting entities. We present

this in Protocol 2 for the case where each query involves two data-

augmenting entities, but we note that the protocol can easily be

extended to an arbitrary number of entities. This case involving

one centralized entity and two data-augmenting entities resembles

that of a federation where the centralized entity routes transactions

between two data-augmenting entities.

Protocol 2 uses a variant of ElGamal ciphertexts to perform

arithmetic under encryption. The goal of this protocol is for the

centralized party to learn whether element 𝑞𝑖 is included in both

the sender’s and receiver’s EMQF. Putting encryption aside, the

Input: Set 𝑅𝑖 containing the rows of P𝑖 ’s database.
Output: Public key pk𝑖 ∈ 𝐸 (Z𝑞) , secret key sk𝑖 ∈ Z𝑞 , OKVS 𝐷𝑖 .

(1) P𝑖 randomly generates sk𝑖 ∈𝑅 Z𝑞 and computes pk𝑖 ←
sk𝑖 𝐺 ∈ 𝐸 (Z𝑞) .

(2) P𝑖 generates 𝑣𝑗 ← ToBytes(𝑟 𝑗 𝐺) | | ToBytes(𝑟 𝑗 pk𝑖) where
𝑟 𝑗 ∈𝑅 Z𝑞 for 𝑗 = 1, . . . , |𝑅𝑖 |. If ToBytes returns ⊥, resample.

(3) P𝑖 encodes OKVS 𝐷𝑖 where the keys are the rows in 𝑅𝑖 , and

the values are 𝑣𝑗 for 𝑗 = 1, . . . , |𝑅𝑖 |.
(4) P𝑖 sends pk𝑖 and 𝐷𝑖 to S.

Protocol 1: One-time setup for each data-augmenting
entity: generating keys and an OKVS.

protocol starts by querying the sender’s P𝑠 and receiver’s P𝑟 EMQF

on 𝑞𝑖 , which is as simple as decoding and calling FromBytes on
the OKVS in our OKVS-based EMQF. The EMQF of P𝑖 outputs an
encryption of the identity O when the query matches a row in P𝑖 ’s
database, otherwise the resulting ciphertext encrypts a random

curve point. In steps 2–4 of the protocol, the centralized entity S
computes the sum of the OKVS outputs, lets P𝑠 and P𝑟 multiply the

result by a random scalar, and then sums those results again. Note

that if both OKVS output encrypted the identity O, then the result

of these steps is still O. In steps 5–6, the entities collaboratively

decrypt the result such that only S receives the output.

Protocol 2 does not use standard ElGamal ciphertexts, as each

EMQF encodes ciphertexts related to different secret keys. Instead,

in step 2, S creates a threshold ciphertext (𝑎, 𝑏, 𝑐, 𝑑) that keeps
separate terms for each of those secret keys. To decrypt, P𝑠 must

multiply 𝑎 by sk𝑠 , P𝑟 must do so for 𝑏, and S for 𝑐 . Next to that, the

OKVS encode pairs of curve points in Montgomery form, while the

operations in this protocol require them to be in twisted Edwards

form. For these reasons, we present the protocol in terms of curve

points rather than ElGamal ciphertexts. We note that whenever

curve points are sent between the entities, they can be compressed

to a single 𝑋 coordinate for space efficiency.

Our OKVS-based EMQF is correct because the OKVS always

returns an encryption of the identity for elements in the set. In the

case where the element is not in the set, ` ≈ 2
−252

as explained

in Sec. 6.1. This protocol, however, can be understood without

consideration of the specific instantiation of the EMQF or the OKVS.

In Sec. 7.4, we consider the aforementioned alternatives for EMQFs

and compare them to our OKVS-based EMQF using PaXoS [50].

5.4 Keeping the output encrypted
In the protocol above,S receives the Boolean result of the computed

feature, revealing whether an inconsistency was detected. While

in Sec. 6 we provide an argument why the leaked Boolean feature

is permissible with regard to the privacy of a data-augmenting

entity and the users they are serving, in this section we propose an

extension of our approach to further minimize the leakage. We note,

however, that the extended approach does not allow our inference

step (see Sec. 4.3) to output a probability score between 0 and 1.

Instead, with the adjusted method, our inference step outputs 0 or

1. This is an inherent limitation of the functionality.

192

Privacy-Preserving MembershipQueries for Federated Anomaly Detection Proceedings on Privacy Enhancing Technologies 2024(3)

Input: EMQFs 𝐷𝑖 relating to 𝑅𝑖 and queries 𝑞𝑖 for 𝑖 ∈ {𝑠, 𝑟 }.
Output: True if [𝑞𝑠 ∈ 𝑅𝑠] ∧ [𝑞𝑟 ∈ 𝑅𝑟], or false (high probability).

(1) S computes𝑥𝑖 | | �̂�𝑖 ← decode(𝐷𝑖 , 𝑞𝑖) for 𝑖 ∈ {𝑠, 𝑟 }. It trans-
forms them into a set of Edwards points:

𝑥𝑠 ← FromBytes(𝑥𝑠) , 𝑦𝑠 ← FromBytes(�̂�𝑠) ,
𝑥𝑟 ← FromBytes(𝑥𝑟) , 𝑦𝑟 ← FromBytes(�̂�𝑟) .

(2) S generates 𝑧 ∈𝑅 Z𝑞 and computes:

𝑎 ← 𝑧𝑥𝑠 , 𝑏 ← 𝑧𝑥𝑟 , 𝑐 ← 𝑧𝐺 , 𝑑 ← 𝑧 (𝑦𝑠 + 𝑦𝑟 + pkS) .
It sends (𝑎,𝑏, 𝑐,𝑑) to all entities P𝑖 for 𝑖 ∈ {𝑠, 𝑟 }.

(3) P𝑖 for 𝑖 ∈ {𝑠, 𝑟 } generates 𝑧𝑖 ∈𝑅 Z𝑞 and computes:

𝑎𝑖 ← 𝑧𝑖𝑎 , ˆ𝑏𝑖 ← 𝑧𝑖𝑏 , 𝑐𝑖 ← 𝑧𝑖𝑐 , ˆ𝑑𝑖 ← 𝑧𝑖𝑑 .

They then send (𝑎𝑖 , ˆ𝑏𝑖 , 𝑐𝑖 , ˆ𝑑𝑖) to S.
(4) S computes:

𝛼 ← 𝑎𝑠 + 𝑎𝑟 , 𝛽 ← ˆ𝑏𝑠 + ˆ𝑏𝑟 , 𝛾 ← 𝑐𝑠 + 𝑐𝑟 , 𝛿 ← ˆ𝑑𝑠 + ˆ𝑑𝑟 .

It sends 𝛼 to P𝑠 and 𝛽 to P𝑟 .
(5) P𝑠 computes 𝛼 ← sk𝑠𝛼 , P𝑟 computes

ˆ𝛽 ← sk𝑟 𝛽 , and they

send 𝛼 and
ˆ𝛽 to S.

(6) S checks if 𝛿
?

= 𝛼 + ˆ𝛽 + skS 𝛾 .

Protocol 2: Checks a record’s consistency between S
and two data-augmenting entities P𝑠 and P𝑟 .

In the extended approach, we change the inference computation

frommax(M(𝒙), 𝐵(𝒙)) to (M(𝒙) ≥ 𝑡)∨𝐵(𝒙) for some pre-defined

threshold 𝑡 . Apart fromM(𝒙) ≥ 𝑡 , the inference can be entirely

computed under encryption by simply addingM(𝒙) ≥ 𝑡 in en-

crypted form to the ElGamal ciphertext in step 2 of Protocol 2.

S can also perform inference entirely in the encrypted domain

by training a DP model on both the Boolean feature and some other

features. It would do so by omitting steps 5–6 of Protocol 2 and

instead performing a secure equality operation that checks if the

ElGamal ciphertext encrypts the identity O, returning a ciphertext

encrypting O in the positive case and 𝐺 otherwise.. We present

a custom secure equality protocol for this purpose in Protocol 3.

Unlike typical equality protocols, it does not require full decryptions

(we only check if the decryption is the identity) and no conversions

to secret shares. It functions in the multi-party setting and scales

linearly with the number of parties. After running this protocol,

S can run any quantized linear model over the resulting ElGamal

ciphertext (linear over the Boolean feature, the other features are

plaintexts). Alternatively, S can collaborate with the other parties

to evaluate a non-linear model by introducing more interactions.

The three parties proceed to finish the protocol using steps 5–6 in

Protocol 2 to decrypt the final result.

The intuitive understanding of the above protocol is that each

party either adds an even or odd number of encryptions of O to the

set 𝐶 . So long as one party does not collude, it is not clear from the

decrypted ciphertexts whether the remaining party added an even

or odd number of identity encryptions. The security is determined

by the number of ciphertexts 𝑘 that each party adds. Let us look

at a toy-sized example with two parties and 𝑘 = 5. We disregard

encryption and instead work with coins. Party P1 creates collection

Input: Ciphertext 𝑐 encrypting either the identity O or another

point in 𝐸 (Z𝑞) .
Output: Ciphertext 𝑐′ encrypting O if 𝑐 encrypted O, otherwise
𝑐′ encrypts𝐺 .

(1) The first party P1 creates a set𝐶 ← {𝑐 } and ciphertexts 𝑐0

and 𝑐1 encrypting O and𝐺 , respectively.

(2) Each party P𝑖 for 𝑖 = 1, . . . , 𝑝 , in turn, does the following:

• It flips 𝑘 coins 𝑟𝑖,𝑗 ∈𝑅 {0, 1}.
• It swaps and randomizes 𝑐0 and 𝑐1 if 𝑟𝑖 =

∑𝑘
𝑗=1 𝑟𝑖,𝑗 = 1

(mod 2) , setting 𝑐0 ← 𝑐𝑟𝑖 and 𝑐1 ← 𝑐1−𝑟𝑖 .
• For 𝑗 = 1, . . . , 𝑘 , it appends a ciphertext encrypting O to

𝐶 if 𝑟𝑖,𝑗 = 0. Else, a ciphertext encrypting randomness.

• It multiplies each ciphertext in𝐶 by some random scalar

from Z𝑞 .

• It shuffles set𝐶 and sends the elements to party P𝑖+1.
(3) Parties P1, . . . , P𝑝 collaboratively decrypt the ciphertexts in

𝐶 and count the number of non-identity elements as 𝑡 .

(4) The first party P1 outputs ciphertext 𝑐′ ← 𝑐𝑡 (mod 2) (with-
out decrypting it).

Protocol 3: Secure equality protocol betweenmultiple
parties P1, . . . ,P𝑝 for threshold additively homomor-
phic encryptions of points in 𝐸 (Z𝑞) .

𝐶 ← {𝑐}, containing coin 𝑐 , of which we do not know if it is head

or tails, which we wish to find out. Let 𝑐0 and 𝑐1 be coins that

we know to be head 𝐻 and tails 𝑇 , respectively. Now, P1 flips 𝑘
random coins that it can observe. If there is an odd number of tails,

it switches 𝑐0 and 𝑐1, otherwise it leaves them be. Next, P1 adds the
coins to 𝐶 . At this point, 𝐶 may contain {𝐻,𝑇 , 𝑐,𝑇 ,𝑇 , 𝐻 }, 𝑐0 = 𝑇 ,

and 𝑐1 = 𝐻 . Party P2 performs the same process, after which we

may have 𝐶 = {𝑇,𝑇 , 𝐻, 𝐻,𝑇 , 𝐻,𝑇 , 𝐻, 𝑐,𝑇 , 𝐻 }, and 𝑐0 and 𝑐1 remain

unchanged because P2 rolled an even number of tails. When all

parties are finished, P1 inspects 𝐶 , counting the number of tails

𝑡 . It returns coin 𝑐𝑡 (mod 2) . If 𝑐 = 𝐻 , 𝑡 = 5 in our example, so P1
returns coin 𝑐1 = 𝐻 . If 𝑐 = 𝑇 , 𝑡 = 6, and P1 returns 𝑐0 = 𝑇 .

We explain the correctness of this protocol inmore detail in Sec. 6,

along with our choice of 𝑘 and its impact on the protocol’s security.

The key idea here is that if 𝑘 is large enough, the set of ‘coins’

looks uniform, regardless of how 𝑐 is distributed. Note that unlike

in Protocol 2, this protocol becomes significantly slower when the

number of involved entities grows. The reason is that the set of

ciphertexts grows by 𝑘 ciphertexts for each entity. For applications

such as verifying bank transactions this is not a problem as they

only involve three entities in the equality protocol.

6 PRIVACY ANALYSIS
At the core of feature extraction is Protocol 2. We note that, in

practice, this protocol can performmultiple queries in parallel. Here,

we first provide a proof of correctness of this protocol and then

show that it is secure in the semi-honest model. We also provide a

short security argument for the secure equality operation presented

in Protocol 3. We focus on our OKVS-based EMQF but the analysis

works similarly for any other EMQF.

193

Proceedings on Privacy Enhancing Technologies 2024(3) Vos et al.

6.1 Proof of correctness
Claim 1. Protocol 2 returns true when 𝑞𝑠 ∈ 𝑅𝑠 ∧ 𝑞𝑟 ∈ 𝑅𝑟 .

Proof. Working backwards through the protocol:

𝛿 = sk𝑠𝛼 + sk𝑟 𝛽 + skS𝛾 ,

ˆ𝑑𝑠 + ˆ𝑑𝑟 = sk𝑠 (𝑎𝑠 + 𝑎𝑟) + sk𝑟 (ˆ𝑏𝑠 + ˆ𝑏𝑟) + skS (𝑐𝑠 + 𝑐𝑟) ,

����(𝑧𝑠 + 𝑧𝑟)𝑑 = sk𝑠����(𝑧𝑠 + 𝑧𝑟)𝑎 + sk𝑟����(𝑧𝑠 + 𝑧𝑟)𝑏 + skS����(𝑧𝑠 + 𝑧𝑟)𝑐 ,

�𝑧 (𝑦𝑠 + 𝑦𝑟 + pkS) = sk𝑠�𝑧𝑥𝑠 + sk𝑟�𝑧𝑥𝑟 + skS�𝑧𝐺 .

Since 𝑞𝑠 ∈ 𝑅𝑠 and 𝑞𝑟 ∈ 𝑅𝑟 , then 𝑦𝑠 = sk𝑠𝑥𝑠 and 𝑦𝑟 = sk𝑟𝑥𝑟 by the

functionality of an OKVS. Moreover, the setup implies pkS = skS𝐺 :

𝑦𝑠 + 𝑦𝑟 + pkS = sk𝑠𝑥𝑠 + sk𝑟𝑥𝑟 + skS𝐺 , (2)

𝑦𝑠 + 𝑦𝑟 + pkS = 𝑦𝑠 + 𝑦𝑟 + pkS . (3)

Claim 2. Protocol 2 returns false with overwhelming probability
when 𝑞𝑠 ∉ 𝑅𝑠 ∨ 𝑞𝑟 ∉ 𝑅𝑟 .

Proof. From (2) it follows that:

𝑦𝑠 + 𝑦𝑟 + pkS ≠ sk𝑠𝑥𝑠 + sk𝑟𝑥𝑟 + skS𝐺 ,

must hold with overwhelming probability. Let us assume that 𝑞𝑠 ∉

𝑅𝑠 (the argument follows the same when 𝑞𝑟 ∉ 𝑅𝑟). Then, 𝑥𝑠 ≠ sk𝑠𝑎
with probability 1 − |𝐸 (Z𝑞) |−1, where |𝐸 (Z𝑞) | > 2

252
. As a result,

(3) only holds with negligible probability. □

6.2 Proof of privacy
In Protocol 1 the banks only encode an OKVS and generate an ElGa-

mal keypair. The security of this keypair, which S also generates,

is implied by the decisional Diffie-Hellman assumption (or more

precisely, by the discrete log problem). The security of the OKVS is

defined by its indistinguishability from randomness. We achieve

this by encoding curve points as strings that are indistinguishable

from random bytes, as proposed in Algs. 1 and 2.

Given that Protocol 2 is correct (see above) and the ideal func-

tionality is deterministic, what remains is to show that the proto-

col privately computes the ideal functionality in the semi-honest

model [43]. We do so by showing that there exists a simulator

that given the input and output can replicate the view of a party

without having access to the data of other parties. To be precise,

the family of simulated views is computationally indistinguishable

from those of actual protocol executions. Our protocol relies on the

Diffie-Hellman assumption:

Lemma 1. The decisional Diffie-Hellman assumption implies that,
for a generator point 𝐺 , unknown scalars 𝑎, 𝑏 ∈𝑅 Z𝑞 , and random

point 𝐶 ∈𝑅 𝐸 (Z𝑞): (𝑎𝐺,𝑏 𝐺, 𝑎𝑏 𝐺)
𝑐≡ (𝑎𝐺,𝑏 𝐺,𝐶).

We provide two privacy proofs: one that proves S’s view viewS
to be simulatable and one for a P𝑖 ’s view viewP . We keep these

proofs short. We direct the reader to the work by Vos et al. [58] for a

more detailed proof of a comparable protocol. To simplify notation,

we do not explicitly pass the source of randomness as an input

to the simulator. For the purpose of our arguments, we consider

the OKVSs 𝐷𝑖 for 𝑖 ∈ 𝑄 to be public. Given that their contents

are statistically indistinguishable from randomness, this only leaks

their size. This first proof shows that the protocol remains private

when S is corrupted.

Claim 3. There exists a simulator SimS for PNS in Protocol 2, s.t.:

{SimS (1_, 𝑞𝑠 , 𝑞𝑟 , 𝑜)}𝑞𝑠 ∈𝑄,𝑞𝑟 ∈𝑄,𝑜∈{0,1}
𝑐≡

{viewS (𝑞𝑠 , 𝑞𝑟 , _)}𝑞𝑠 ∈𝑄,𝑞𝑟 ∈𝑄,𝑜∈{0,1} ,

for security parameter _ = 128, queries 𝑞𝑠 and 𝑞𝑟 from query space
𝑄 , and output 𝑜 .

Proof. Function viewS returns inputs 𝑞𝑠 and 𝑞𝑟 , output 𝑜 , and

all incoming messages . Simulator SimS generates an indistinguish-

able view by outputting the inputs and output, and randomly sam-

pling messages 𝑎𝑠 , ˆ𝑏𝑠 , 𝑐𝑠 , ˆ𝑑𝑠 , 𝑎𝑟 , ˆ𝑏𝑟 , 𝑐𝑟 , ˆ𝑑𝑟 , 𝛼, ˆ𝛽 ∈𝑅 𝐸 (Z𝑞). These mes-

sages are indistinguishable from those received in actual executions:

• In step 3, 𝑎𝑖 = 𝑧𝑖𝑎 = 𝑧𝑖𝑝𝑎𝐺 for some 𝑝𝑎 unknown to S. Given
Lemma 1, 𝑎𝑖 is computationally indistinguishable from random-

ness, even when given 𝑎 = 𝑝𝑎𝐺 and 𝑧𝑖𝐺 (the latter is not actually

given). The same argument applies to
ˆ𝑏𝑖 , 𝑐𝑖 , and ˆ𝑑𝑖 .

• In step 5, S receives 𝛼 = sk𝑠𝛼 = sk𝑠𝑝𝛼𝐺 and
ˆ𝛽 = sk𝑟 𝛽 = sk𝑟𝑝𝛽𝐺 .

Given Lemma 1, 𝛼 is computationally indistinguishable from

randomness, even when given pk𝑟 = sk𝑟𝐺 and 𝛽 = 𝑝𝛽𝐺 . The

same argument applies to
ˆ𝛽 . □

Next, we prove that the protocol remains private when a data-

augmenting entity is corrupted.

Claim 4. There exists a simulator SimP for P𝑠 in Protocol 2, s.t.:

{SimP (1_)}
𝑐≡ {viewP𝑖 (_)} ,

for security parameter _ = 128 (the data-augmenting entities do not
output anything).

Proof. Function viewP𝑖 returns all incoming messages of bank

P𝑖 . Simulator SimP generates an indistinguishable view by ran-

domly sampling messages 𝑎, 𝑏, 𝑐, 𝑑, 𝛼 ∈𝑅 𝐸 (Z𝑞). These messages

are indistinguishable from those received in actual executions:

• In step 2, P𝑖 receives 𝑎 = 𝑧𝑥𝑠 = 𝑧𝑝𝑎𝐺 , 𝑏 = 𝑧𝑥𝑟 = 𝑧𝑝𝑏𝐺 , 𝑐 = 𝑧𝐺 ,

and 𝑑 = 𝑧 (𝑦𝑠 + 𝑦𝑟 + pkS) = 𝑧𝑝𝑑𝐺 . Given Lemma 1, 𝑎 is compu-

tationally indistinguishable from randomness, even when given

𝑐 = 𝑧𝐺 and 𝑝𝑎𝐺 (which may be guessed by P𝑖). The same argu-

ment applies to 𝑏 and 𝑑 . Since 𝑧 is random, 𝑐 = 𝑧𝐺 is statistically

indistinguishable from randomness.

• In step 4, P𝑖 receives 𝛼 = 𝑎𝑠 +𝑎𝑟 , which is indistinguishable from

randomness since 𝑎𝑟 is unknown to P𝑖 given that the queried

banks are not colluding. □

We note that one might also give a proof that proves that the

protocol remains private when two of the three parties collude.

This would require a more sophisticated simulator, which looks

similar to that in the work by Vos et al. [58].

6.3 Security of the equality protocol
Finally, we prove the security of our secure equality protocol 3.

Claim 5. Protocol 3 correctly and privately computes an equality.

Proof. Verifying correctness of the secure equality protocol

(Protocol 3) comes down to verifying its behavior depending on

whether a party’s coin tosses come out to an even or odd number

of 1s. We study the case where there is one party, but the argument

extends trivially to multiple parties.

194

Privacy-Preserving MembershipQueries for Federated Anomaly Detection Proceedings on Privacy Enhancing Technologies 2024(3)

• If 𝑟1 = 0, then 𝑐0 encrypts O and 𝑐1 encrypts 𝐺 . If 𝑐 encrypts O,
then 𝑐 ′ = 𝑐0. Otherwise, 𝑐

′ = 𝑐1. Both are correct.

• If party P𝑖 has 𝑟𝑖 = 1, then 𝑐0 encrypts 𝐺 and 𝑐1 encrypts O. If 𝑐
encrypts O, then 𝑐 ′ = 𝑐1. Otherwise, 𝑐

′ = 𝑐0. Both are correct.

Next, we analyze the security of Protocol 3. We do not consider

the security of the ElGamal scheme, which we discussed previously.

In the protocol, each party randomizes and shuffles the set of ci-

phertexts 𝐶 . As a result, the only meaningful information that is

revealed when the set is decrypted is the number of identity points.

We refer to the number of non-identity points as 𝑡 .

If a party would only perform random coin flips, the number

of non-identity points 𝑡 is given by 𝑃 (𝒕 = 𝑡) =
(𝑘
𝑡

)
0.5𝑘 . However,

since we are inserting ciphertext 𝑐 , this changes to 𝑃 (𝒕 = 𝑡) =
𝑃 (𝑐 = O)

(𝑘−1
𝑡

)
0.5𝑘−1 + 𝑃 (𝑐 ≠ O)

(𝑘−1
𝑡−1

)
0.5𝑘−1, where we use 𝑐 ≠ O

to denote that 𝑐 does not encrypt O. Using this, we derive the

posterior probability that 𝑐 ≠ O given the number of points 𝑡 .

𝑃 (𝑐 ≠O|𝒕 = 𝑡) = 𝑃 (𝒕 = 𝑡 |𝑐 ≠ O)𝑃 (𝑐 ≠ O)
𝑃 (𝒕 = 𝑡) ,

=

(𝑘−1
𝑡−1

)
���
0.5𝑘−1𝑃 (𝑐 ≠ O)

(1−𝑃 (𝑐 ≠O))
(𝑘−1
𝑡

)
���
0.5𝑘−1+𝑃 (𝑐 ≠O)

(𝑘−1
𝑡−1

)
���
0.5𝑘−1

,

=

(𝑘−1
𝑡−1

)
𝑃 (𝑐 ≠ O)

(1 − 𝑃 (𝑐 ≠ O))
(𝑘−1
𝑡

)
+ 𝑃 (𝑐 ≠ O)

(𝑘−1
𝑡−1

) .

The strongest attack is to guess 𝑐 = O when 𝑃 (𝑐 ≠ O|𝒕 = 𝑡) < 1

2

and 𝑐 ≠ O otherwise. The expected guessing chance is then:

𝑘∑︁
𝑡=0

𝑃 (𝒕 = 𝑡)
(
1

2

+
����1
2

− 𝑃 (𝑐 ≠ O|𝑡 = 𝑡)
����)︸ ︷︷ ︸

Guess based on the posterior

. (4)

An adversary who does not have access to the protocol’s result

can only guess using its knowledge about the prior probability of

𝑐 , so it will succeed with probability
1

2
+

�� 1
2
− 𝑃 (𝑐 = O)

��
. Using (4),

we formulate the advantage of an adversary using our Protocol 3,

and restrict it to 2
−40

, which we deem negligible:(
𝑘∑︁
𝑡=0

𝑃 (𝒕 = 𝑡)
(
1

2

+
����1
2

−𝑃 (𝑥 =1|𝑡 = 𝑡)
����)) − (

1

2

+
����1
2

−𝑃 (𝑐 ≠O)
����) ≤ 2−40 .

(5)

The choice of 𝑘 then depends on the probability of anomalies oc-

curring. Let us consider 𝑃 (𝑐 ≠ O) ≤ 0.05 as an example. Then, the

first 𝑘 for which (5) holds is 𝑘 = 44. □

7 PERFORMANCE ANALYSIS
We empirically evaluated the utility and scalability of our solution

for the detection of anomalies among millions of financial trans-

actions in a federated setup with a payment network system (the

centralized entity) and partner banks (the data-augmenting clients).

To this end, we implemented our solution in Flower, a well-known
framework for federated learning [11]. Flower assumes a star topol-

ogy in which all data holders, including our centralized entity S
and the data-augmenting clients, are connected to an aggregator

that can only perform simple tasks like averaging and message pass-

ing. Since it does not support client peer-to-peer communication,

we route all communication between S and the data-augmenting

clients through the aggregator. We note that this is an implementa-

tion detail rather than a requirement originating from our protocol.

We implemented Protocol 2 in Rust (with a Python wrapper).
2

7.1 Experimental setup
Data. We use synthetic data provided by SWIFT to participants

in the 2023 PETs prize challenge.
3
The data consists of two parts:

(1) Transaction data held byS (payment network system): a dataset

of financial transactions that are labeled as anomalous (positive)

or not. This dataset is split into a train dataset with 2,990,349

negative and 3,521 positive instances, and a test dataset with

1,002,395 negative and 1,279 positive instances. Each transac-

tion known to S has, apart from other information, details of

the ordering and beneficiary accounts, and the financial in-

stitutions involved in making the transaction. These financial

institutions are the centralized entity’s partner banks which

hold information about the ordering and beneficiary accounts.

(2) Bank account data held by the data-augmenting clients P1, . . . ,
P𝑛 : information about bank accounts. To test scalability, we

distribute this data among a varying number of clients.

Features for model training by S. We train modelM (see Sec. 4.2)

on the following features that are held by S:
• Unexpected currency. Most transactions in the train data have

the same InstructedCurrency and SettlementCurrency. The few

transactions that involve two different currencies are all anoma-

lous. We include SameCurrency as a feature.
• Unusual timestamps. We found the Timestamp and the Settle-

mentDate to be strong indicators of anomalous transactions in

the training data.We encode this as a feature InterimTimewhich
is the Timestamp subtracted from the SettlementDate.

Consistency checks for Boolean feature extraction by S and the
banks. We assume that S has a list of unique IDs pertaining to

P1, . . . ,P𝑛 . In our implementation, S receives this information

from the clients in a setup phase. For a transaction 𝒙 involving a

valid sending bankP𝑠 and receiving bankP𝑟 (i.e.,S holds their IDs),

S and the banks engage in a cryptographic protocol to compute a

Boolean feature 𝐵(𝒙) derived from:

• Information from sending bank P𝑠 indicating...
– whether the account ID of the ordering entity as listed in the

transaction 𝒙 is a valid ID known to the ordering bank.

– whether the name of the ordering entity as listed in the trans-

action 𝒙 is the same as the name known to the ordering bank.

– whether the street address of the ordering entity as listed in 𝒙
is the same as the street address known to the ordering bank.

– whether the country/city/zip of the ordering entity as listed in

𝒙 is the same as that known to the ordering bank.

– whether the ordering bank has flagged the ordering entity’s

account for any reason (e.g. account closed, account frozen,. . .).

• Information from receiving bank P𝑟 indicating the same as above,

but for the account of the beneficiary entity.

The Boolean feature 𝐵(𝒙) is 0 if the account information appears

correct and 1 if there is any indication of inconsistency or unusual

account information in either the sender or the receiver account.

2
The code can be found at: https://github.com/steveng9/PETsChallenge.

3
https://www.drivendata.org/competitions/group/nist-federated-learning/

195

https://github.com/steveng9/PETsChallenge
https://www.drivendata.org/competitions/group/nist-federated-learning/

Proceedings on Privacy Enhancing Technologies 2024(3) Vos et al.

Table 2: Utility-privacy tradeoff of models augmented with
the consistency feature extracted jointly by S and the banks,
averaged over 5 runs. Higher 𝜖 implies less privacy. The
AUPRC results are independent of the number of clients.
Anomaly detection consistently improves the AUPRC, even
when the base model was already performing well.

Model 𝜖 = 0.5 𝜖 = 1.0 𝜖 = 5.0 𝜖 = ∞
RF 0.648 0.645 0.669 0.963

RFEMQF 0.716 0.727 0.743 0.979

LR 0.869 0.908 0.915 0.943

LREMQF 0.892 0.925 0.935 0.964

with DP (𝜖 < ∞):

− RF-DP: Fletcher et al. [25]

− LR-DP: DP-SGD [3]

without DP (𝜖 = ∞):

− RF, LR: sklearn [48]

During the setup phase, each data-augmenting client sets up a

single OKVS and key pair using Protocol 1. This protocol gener-

alizes to any type of data as its only requirement is that the data

is hashable. In our implementation, we let bank P𝑖 encode 𝑅𝑖 in
the OKVS, which contains the ["Account", "Name", "Street",
"CountryCityZip"] columns. The bank omits any flagged entries

from 𝑅𝑖 (that is, where flag != "0"). S performs a different setup,

only generating a single key pair.

During inference, S must check whether the ordering bank’s

dataset contains a row for the ordering user, and whether the benefi-

ciary bank contains a row for the beneficiary. It does so using one in-

vocation of Protocol 2. The selected fields are ["OrderingAccount",
"OrderingName", "OrderingStreet", "OrderingCountryCity-
Zip"] and ["BeneficiaryAccount", "BeneficiaryName", "Be-
neficiaryStreet", "BeneficiaryCountryCityZip"].

7.2 Utility-privacy tradeoffs
The utility results in Tab. 2 are obtained by fitting models on the

train dataset and evaluating them on the test dataset in terms

of AUPRC (area under the precision-recall curve). We compare

two kinds of models: Random Forest (RF) and Logistic Regression

(LR). The models in Tab. 2 are trained on the feature set consist-

ing of SameCurrency and InterimTime. However, the LR uses a

discretized version of the InterimTime feature, as we explain in

more detail below. In Tab. 2, we provide predictions made by all

the models themselves, as well as when they are augmented with

the Boolean feature representing the consistency check with the

data-augmenting clients, denoted <model>𝑜𝑘𝑣𝑠 (Sec. 4.3).

The models are trained with algorithms that provide DP guar-

antees, under varying privacy budgets 𝜖 , corresponding to the dif-

ferent columns in Tab. 2. For comparison, in the last column we

include results for models trained with an infinite privacy budget,

i.e. with no DP guarantee at all. These models are trained with

sklearn [48], using default values for the hyperparameters, with

the exception of the use of 20 trees and max_depth = 10 for RF.

For ease of reference, in the text below we denote the models

that we trained with a DP algorithm by appending “-DP” to indicate

that they are differentially private. To train the RF-DP models in

Tab. 2 we used the diffprivlib library [35], while for LR-DP we used

the implementation of DP-SGD in TensorFlow Privacy [2]. Similar

to the non-private setting ("𝜖 = ∞") from the last column in Tab. 2,

the RF-DP models are trained with 20 trees and max_depth = 10.

The way in which trees are constructed in this RF-DP approach

[25] is quite different from the standard RF algorithm in sklearn

that we used in the non-private approach. While in the standard RF

algorithm each node in each tree is selected by evaluating it against

the data, in the RF-DP approach, intermediate nodes and threshold

values for these nodes are generated at random, to limit the number

of queries needed against the data and stretch the privacy budget

further. While in the non-private setting we obtained our best

results with RF, this was no longer the case with RF-DP because the

InterimTime feature only really pays off for well chosen thresholds.

As mentioned earlier, the RF algorithm in the non-private setting

was able to find and pick up those thresholds, while the RF-DP

approach with all its random guessing of thresholds was not. As a

result, in the federated setting, the LR-DP (on DP-SGD [3]) approach

took over in terms of better utility, and, as we observed, was most

stable across different runs.

DP discretization of InterimTime. Weobserved the InterimTime
to be crucial for identifying anomalous transactions. Based on our

observations in the non-private setting (the last column in Tab. 2),

non-DP RF yields high AUPRC because the underlying decision tree

learning algorithm has a built-in technique to find good thresholds

for dynamic discretization of the InterimTime feature during tree

construction. The DP training algorithms cannot detect such thresh-

olds with the same ease. To mitigate this, we statically discretize

the InterimTime feature into bins. We replace the InterimTime
feature in each transaction with its corresponding bin number and

one-hot-encode the bin numbers in the training set. In Appendix A,

we explain how to achieve this while satisfying differential privacy.

Utility of consistency checks. As demonstrated in Tab. 2, there is

a clear boost in accuracy when augmenting the centralized entity’s

model with the EMQF-based feature extraction protocol. The lower

the accuracy of the model trained by S, the greater the benefit

of the data-augmenting feature extraction. Predicting anomalous

instances solely from the feature extraction protocol (i.e. without

training on the centralized entity’s data) yielded an AUPRC of .294.

7.3 Efficiency and scalability
We performed efficiency and scalability experiments on a desktop

Intel i7 6700k at 4.2GHz, 64GB memory, and GTX1080 GPU. The

results in Tab. 3 are based on training a model, and running the

consistency checks using three different client partitioning scenar-

ios. In these scenarios, the average number of accounts per client is

561,935; 280,968; and 124,874; respectively. The runtimes, memory

usages, and communication costs for S and clients change with the

partition. Included in these metrics is the federated set-up, done in

a privacy-preserving manner with the protocols from Sec. 4.3.

It can be seen in Tab. 3 that as the number of clients increases,

the efficiency of the S decreases. This is expected since S’s compu-

tation cost is largely dependent on the number of sender-receiver

client pairs, which grows superlinearly with the amount of clients.

However, the results also show that the total client runtime and

memory resources remain fairly constant, and are mostly a function

of the amount of client data rather than number of partitions. This

can be explained by the fact that each clients’ computational load is

proportional to its data size. The total clients’ communication cost

196

Privacy-Preserving MembershipQueries for Federated Anomaly Detection Proceedings on Privacy Enhancing Technologies 2024(3)

Table 3: Efficiency and scalability results on development
data. The efficiency of the clients stays consistent as the
partitions change, while S’s efficiency increases. The client
communication cost grows superlinearly as communication
depends on the number of client pairs in our experiments.

Time Memory Communication

Total S P𝑖 S P𝑖 S P𝑖
S + 2 clients 1596s 1198s 228s 3.50GB 1.95GB 1052B 1584B

S + 4 clients 1581s 1173s 234s 3.92GB 2.01GB 1200B 3168B

S + 9 clients 2701s 2215s 243s 4.36GB 1.85GB 2236B 7128B

214 215 216 217 218

Bank's dataset size

0

20

40

60

80

100

R
un

 ti
m

e
(s

)

Figure 2: Time required for a bank to generate the OKVS
using 8 threads on an M1 processor. Averaged over 10 runs,
the error bars indicate the standard deviation. The run time
scales linearly with the size of the bank’s dataset.

on the other hand scales superlinearly with the amount of clients,

since in our experiments, like in S, this computation depends more

on the amount of sender-receiver pairs.

Computational cost of the setup. We evaluated the run time of

the setup by measuring how long it takes for a bank to create an

OKVS. Since many parts of the PaXoS [50] OKVS algorithm can

be parallelized, we ran this experiment on 8 threads. We present

the results in Fig. 2. The run time scales linearly with the bank’s

dataset size. We note that while it takes approximately 90 seconds

to generate an OKVS for 250,000 rows, this operation has to be

computed only once (or whenever the dataset needs to change).

Cost of consistency checks. We also evaluated the run time of

performing 128 consistency checks, split by the entities that take

part in the protocol.We present the results in Fig. 3, where solid bars

represent the measured computation time averaged over 10 runs,

and transparent bars represent the time that a party would spend

waiting to receive messages. This figure assumes that the latency

is 100ms and we do not consider throughput constraints, given

that all entities only exchange a small amount of compressed curve

points which are made up of 32 bytes each. The run time for the

centralized entity here scales linearly, while the data-augmenting

entities perform a constant amount of work. Even at more than

250,000 rows, the centralized entity only spends 80 ms per query.

7.4 Comparison with other EMQFs
In Sec. 5.2 we discussed how there are multiple potential instantia-

tions for a primitive that only returns encryptions of the identity

when queried on elements in the set that it represents. Such a

214 215 216 217 218

Bank's dataset size

10ms

100ms

1s

10s

R
un

 ti
m

e,
 lo

ga
rit

hm
ic

Payment network system
Individual bank

Figure 3: Time required for each party to complete 128 consis-
tency checks on an M1 processor with one thread. Averaged
over 10 runs, the error bars indicate the standard deviation.
The run time is constant for the data-augmenting entities
and scales linearly for the centralized entity. The transparent
bars indicate time spent waiting for messages to arrive when
the latency is 100ms, ignoring throughput constraints.

primitive allows moving a large fraction of computation and com-

munication to a one-time (or each time that the set is updated) setup.

We now compare the PaXoS OKVS with two alternatives that are

used in MPSI protocols. Specifically, we compare PaXoS with the

encrypted polynomials in the protocol by Hazay et al. [34] and the

encrypted Bloom filters in the protocol by Vos et al. [58]. For all

schemes, we use the same elliptic curve-based ElGamal ciphertexts.

We measure the average time it takes to encode a set, to decode

(query on an element), and the size of the OKVS or set representa-

tion. We present the results in Table 4 for a moderately-sized set of

𝑘 = 2
14 = 16, 384 elements over 10 runs.

Notice how encrypted polynomials are the most compact but

take the longest to encode. In fact, their size is optimal because

the representation is exactly as large as the number of elements it

contains multiplied by the size of a single ciphertext. Encrypted

Bloom filters are significantly larger, even for large false positive

probabilities `. For the other schemes, the probability of a query

returning a false positive is negligible. Finally, the PaXoS OKVS is

efficient to encode and differs only a factor of 2.4 with the encrypted

polynomial in terms of its size. This factor can be further reduced

by increasing the number of hash functions [29]. One can also

consider other OKVSs to instantiate our EMQF, e.g. trading off

size and the time that it takes to encode or decode. Van Baarsen &

Lu [57] provide another way of encoding curve points in an OKVS.

Table 4: Comparing EMQFs with 𝑘 = 2
14 over 10 runs.

EMQF Encode Decode Size

Encrypted polynomial 22.2s 1.03s 1 MB

Encrypted BF, ` = 0.1% 7.79s 0.02ms 18.8 MB

Encrypted BF, ` = 1% 5.19s 0.01ms 12.6 MB

PaXoS with ciphertexts 2.25s 0.03ms 2.4 MB

197

Proceedings on Privacy Enhancing Technologies 2024(3) Vos et al.

Table 5: Efficiency when performing 𝑝 parallel queries

𝑘 = 2
16 𝑘 = 2

18

Time P𝑖 sent S sent Time P𝑖 sent S sent

Ours, 𝑝 = 1 2.1 s 160 B 320 B 8.3 s 160 B 320 B

Ours, 𝑝 = 128 2.7 s 20 kB 40 kB 8.9 s 20 kB 40 kB

Ours, 𝑝 = 512 4.7 s 80 kB 160 kB 11.0 s 80 kB 160 kB

Kolesnikov et al. 79.6 s 956 MB 665 MB 327.2 s 3.84 GB 2.67 GB

7.5 Comparison with MPSI protocols
Standard MPSI protocols are not designed to be more efficient when

some sets are fixed. We show that our work outperforms even fast

MPSI protocols like the one by Kolesnikov et al. [42] by orders of

magnitude. We use the popsicle library by Galois Inc. [27], which

implements this protocol using the same elliptic curve library as in

our implementation, assigning 1 thread per party. We report total

run time, including setup time, and the bytes sent by P𝑖 and S after

setup. The implementation requires S’s set to have the same size as

the others’ (same in the original), so the run time does not change

whether the server queries 𝑝 = 1 or 𝑝 = 𝑘 elements in parallel. We

report the cost per sequential query on an M1 processor.

Note that in [42], run time would be twice as low since each

party has 2 threads. Their actual numbers are significantly lower,

but even using their Table 3, the communication cost is 3 orders of

magnitude higher than ours, while the run times are similar. Also,

their protocol requires a full-mesh topology, incurring additional

delays when communication is routed through a central entity.

8 LIMITATIONS
Protocol 2 discloses a single bit of private data from the data-

augmenting entities to the central entity. This bit signals inconsis-

tencies between data held by S and the data from data-augmenting

entities P𝑖 . The implications of this single bit of information can

be substantial depending on the nature of the data set held by S. A
zero bit immediately implies that the data entry held by S aligns

with the data held by P𝑖 . In the case the leaked bit is one, there

is also the potential for information leakage. within the specific

context of the PETS prize, there exist multiple transactions with

identical names (or addresses or banks). S can utilize the private

set membership protocol results for these transactions with over-

lapping data to discern inconsistencies in these specific fields and

recover them. For example, if two queries are made with the same

name but the result of the query is different for both, then S will

learn that the other fields are causing the discrepancy. Whether this

release of information is acceptable depends on the particular appli-

cation of our proposed protocols and needs a case-by-case analysis.

The leakage of this information needs to be weighed against the

societal cost of not detecting anomalous data.

The scenario described above is not unique to our proposed

solution. It can occur in any situation where S trains a model with

features sourced from P𝑖 and where anomalies strongly correlate

with data discrepancies betweenS and P𝑖 . In that case, learning the
classification outcome of a transaction (anomalous or not) already

provides significant insight regarding any potential data mismatch,

exactly as in the case of our disclosed bit. For this reason, we loosely

define the following requirements to decide whether our protocol

can be applied in a given use case:

• There is a centralized entity with a global view of the system,

but whose view can be enriched by incorporating data from

data-augmenting entities.

• Data-augmenting entities only update their data at a low

frequency, ensuring that OKVSs can be reused.

• All involved parties have an incentive to act semi-honestly.

E.g., through legal obligations or financial incentives.

• The output of a private membership query may be revealed

to the centralized entity. Or, when using Protocol 3, the

output of the computation that follows it.

The release of information described above can be prevented by

having the banks locally randomize their information and obtain-

ing local differential privacy guarantees at the cost of reducing the

utility of the final model. In the case the same query is repeated

multiple times by S, the privacy budget needs to be adjusted ac-

cordingly by using differential privacy’s sequential composition

property. This approach will typically not work, however, given

that anomalies only make up a small proportion of the entire set

of data. The reason is that the randomization will make the signal

very noisy, significantly increasing the number of false positives.

Finally, we want to briefly state that while our protocol solves

this specific privacy aspect, in practice one must take into account

the wider context in which the protocol is deployed. One should be

cautious about applying automated anomaly detection in general,

as there are issues beside potential privacy violations that may neg-

atively impact users. Nevertheless, our protocol fills an important

gap in situations where anomaly detection is applied in federations.

9 CONCLUSION
Motivated by the PETS prize challenge, we propose an efficient so-

lution for federated anomaly detection. Unlike traditional federated

learning scenarios, our solution works for a case where the data is

horizontally and vertically partitioned. Moreover, our solution is

based on an efficient private feature extraction protocol - where

features used in the training of a machine learning model are com-

puted based on information distributed across different parties. Our

proposed framework has applications beyond the specific scenario

presented in the PETS competition. It proves valuable in any sit-

uation where inconsistencies across distributed data sets serve as

important information for anomaly detection and does so while

preserving privacy.

Despite the extensive literature on privacy-preserving machine

learning focusing on protocols for private training of machine

learning models over distributed datasets, our approach addresses

a commonly neglected issue: privacy-preserving feature extraction.

We privately compute features calculated over the distributed data

set and subsequently use these features for training ML models.

To accomplish this, we introduce an innovative private set mem-

bership protocol, combining the efficiency of oblivious key-value

stores with inputs encrypted using elliptic curve-based ElGamal.

By combining these two building blocks, the entities can perform

membership queries with low computational overhead and band-

width costs, while the only communication happens between the

centralized entity and the involved data-augmenting entities.

198

Privacy-Preserving MembershipQueries for Federated Anomaly Detection Proceedings on Privacy Enhancing Technologies 2024(3)

ACKNOWLEDGMENTS
S. Golob and S. Pentyala are Carwein-Andrews Distinguished Fel-

lows. S. Golob is supported by an NSF CSGrad4US fellowship.

S. Pentyala is supported by the UW Global Innovation Fund and

by a JP Morgan Chase PhD fellowship. M. De Cock and Z. Erkin

thank the organizers of Dagstuhl seminar 22342 for jumpstarting

the international collaboration that led to this paper. We would like

to thank the reviewers and the shepherd for their helpful comments,

and the organizers of the 2023 PETS prize challenge for the original

motivation behind this work.

REFERENCES
[1] Aydin Abadi, Bradley Doyle, Francesco Gini, Kieron Guinamard, Sasi Kumar

Murakonda, Jack Liddell, Paul Mellor, Steven J. Murdoch, Mohammad Naseri,

Hector Page, George Theodorakopoulos, and Suzanne Weller. 2024. Starlit:

Privacy-Preserving Federated Learning to Enhance Financial Fraud Detection.

IACR Cryptol. ePrint Arch. (2024), 90. https://eprint.iacr.org/2024/090

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-

lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2021. Tensor-

Flow Privacy. https://www.tensorflow.org/responsible_ai/privacy/guide.

[3] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl, Stefan

Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.).

ACM, 308–318. https://doi.org/10.1145/2976749.2978318

[4] Samuel Adams, Chaitali Choudhary, Martine De Cock, Rafael Dowsley, David

Melanson, Anderson Nascimento, Davis Railsback, and Jianwei Shen. 2022.

Privacy-preserving training of tree ensembles over continuous data. Proceedings
on Privacy Enhancing Technologies 2 (2022), 205–226.

[5] Anisha Agarwal, Rafael Dowsley, Nicholas D. McKinney, Dongrui Wu, Chin-Teng

Lin, Martine De Cock, and Anderson C. A. Nascimento. 2019. Protecting Privacy

of Users in Brain-Computer Interface Applications. IEEE Transactions on Neural
Systems and Rehabilitation Engineering 27, 8 (2019), 1546–1555.

[6] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2017.

More efficient oblivious transfer extensions. Journal of Cryptology 30, 3 (2017),

805–858.

[7] Hafiz Asif, Sitao Min, Xinyue Wang, and Jaideep Vaidya. 2023. Anomaly Detection
via Privacy-Enhanced Two-Step Federated Learning. Technical Report. Rutgers
University. https://rutgers.app.box.com/s/q84zjo3edv5d1e1eu67ypihiw8cb2djq

[8] Aslí Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona Samardjiska, and Jelle

Vos. 2022. Practical Multi-Party Private Set Intersection Protocols. IEEE Trans.
Inf. Forensics Secur. 17 (2022), 1–15. https://doi.org/10.1109/TIFS.2021.3118879

[9] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In

9th International Conference on Theory and Practice of Public-Key Cryptography
(PKC 2006) (Lecture Notes in Computer Science, Vol. 3958). Springer, 207–228.
https://doi.org/10.1007/11745853_14

[10] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. 2013.

Elligator: elliptic-curve points indistinguishable from uniform random strings.

In 2013 ACM SIGSAC Conference on Computer and Communications Security.
967–980. https://doi.org/10.1145/2508859.2516734

[11] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and

Nicholas D. Lane. 2020. Flower: A Friendly Federated Learning Research Frame-

work. CoRR abs/2007.14390 (2020). arXiv:2007.14390 https://arxiv.org/abs/2007.

14390

[12] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia

Shumailov, and Nicolas Papernot. 2021. When the curious abandon honesty:

Federated learning is not private. arXiv preprint arXiv:2112.02918 (2021).
[13] David Byrd and Antigoni Polychroniadou. 2020. Differentially private secure

multi-party computation for federated learning in financial applications. In ICAIF
’20: The First ACM International Conference on AI in Finance, New York, NY, USA,
October 15-16, 2020, Tucker Balch (Ed.). ACM, 16:1–16:9. https://doi.org/10.1145/

3383455.3422562

[14] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. 2019.

The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural

Networks. In 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara,
CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX

Association, 267–284. https://www.usenix.org/conference/usenixsecurity19/

presentation/carlini

[15] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana Ob-

battu, Sruthi Sekar, and Akash Shah. 2021. Efficient Linear Multiparty PSI and

Extensions to Circuit/Quorum PSI. In CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of Korea, Novem-
ber 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.).

ACM, 1182–1204. https://doi.org/10.1145/3460120.3484591

[16] Melissa Chase, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, and Peter Rindal.

2017. Private collaborative neural network learning. Cryptology ePrint Archive
(2017).

[17] Kamalika Chaudhuri and Claire Monteleoni. 2008. Privacy-preserving logis-

tic regression. In Advances in Neural Information Processing Systems 21, Pro-
ceedings of the Twenty-Second Annual Conference on Neural Information Pro-
cessing Systems, Vancouver, British Columbia, Canada, December 8-11, 2008,
Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou (Eds.). Cur-

ran Associates, Inc., 289–296. https://proceedings.neurips.cc/paper/2008/hash/

8065d07da4a77621450aa84fee5656d9-Abstract.html

[18] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. 2011. Differ-

entially Private Empirical Risk Minimization. J. Mach. Learn. Res. 12 (2011),

1069–1109. https://doi.org/10.5555/1953048.2021036

[19] Eduardo Chielle, Homer Gamil, and Michail Maniatakos. 2021. Real-time Private

Membership Test using Homomorphic Encryption. In Design, Automation & Test
in Europe Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5,
2021. IEEE, 1282–1287. https://doi.org/10.23919/DATE51398.2021.9473968

[20] Yann Collet. 2021. xxHash – Extremely fast non-cryptographic hash algorithm.

https://cyan4973.github.io/xxHash/.

[21] Ronald Cramer, Ivan Damgard, and Jesper Nielsen. 2015. Secure Multiparty
Computation and Secret Sharing. Cambridge University Press Print, New York.

[22] Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, Davis Railsback,

Jianwei Shen, and Ariel Todoki. 2021. High performance logistic regression for

privacy-preserving genome analysis. BMC Medical Genomics 14(23) (2021).
[23] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differen-

tial privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),
211–407.

[24] Ahmed Roushdy Elkordy, Jiang Zhang, Yahya H Ezzeldin, Konstantinos Psounis,

and Salman Avestimehr. 2022. How Much Privacy Does Federated Learning with

Secure Aggregation Guarantee? arXiv preprint arXiv:2208.02304 (2022).
[25] Sam Fletcher andMd Zahidul Islam. 2017. Differentially Private RandomDecision

Forests using Smooth Sensitivity. Expert Systems with Applications 78 (2017),

16–31.

[26] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion

attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 1322–1333.

[27] Galois, Inc. 2019. swanky: A suite of rust libraries for secure computation.

https://github.com/GaloisInc/swanky.

[28] Sanjam Garg, Mohammad Hajiabadi, Abhishek Jain, Zhengzhong Jin, Omkant

Pandey, and Sina Shiehian. 2023. Credibility in Private Set Membership. In Public-
Key Cryptography - PKC 2023 - 26th IACR International Conference on Practice and
Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023, Proceedings,
Part II (Lecture Notes in Computer Science, Vol. 13941), Alexandra Boldyreva and
Vladimir Kolesnikov (Eds.). Springer, 159–189. https://doi.org/10.1007/978-3-

031-31371-4_6

[29] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.

2021. Oblivious Key-Value Stores and Amplification for Private Set Intersection.

In Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part
II (Lecture Notes in Computer Science, Vol. 12826), Tal Malkin and Chris Peikert

(Eds.). Springer, 395–425. https://doi.org/10.1007/978-3-030-84245-1_14

[30] Satrajit Ghosh and Tobias Nilges. 2019. An Algebraic Approach to Maliciously

Secure Private Set Intersection. In Advances in Cryptology - EUROCRYPT 2019 -
38th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III
(Lecture Notes in Computer Science, Vol. 11478), Yuval Ishai and Vincent Rijmen

(Eds.). Springer, 154–185. https://doi.org/10.1007/978-3-030-17659-4_6

[31] S. Dov Gordon, Carmit Hazay, and Phi Hung Le. 2022. Fully Secure PSI via

MPC-in-the-Head. Proc. Priv. Enhancing Technol. 2022, 3 (2022), 291–313. https:

//doi.org/10.56553/POPETS-2022-0073

[32] Xiaolan Gu, Ming Li, and Li Xiong. 2021. PRECAD: Privacy-Preserving and

Robust Federated Learning via Crypto-Aided Differential Privacy. arXiv preprint
arXiv:2110.11578 (2021).

[33] Chuan Guo, Awni Hannun, Brian Knott, Laurens van der Maaten, Mark Tygert,

and Ruiyu Zhu. 2020. Securemultiparty computations in floating-point arithmetic.

arXiv:2001.03192 (2020).
[34] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. 2017. Scalable

Multi-party Private Set-Intersection. In Public-Key Cryptography - PKC 2017 - 20th
IACR International Conference on Practice and Theory in Public-Key Cryptography,

199

https://eprint.iacr.org/2024/090
https://www.tensorflow.org/responsible_ai/privacy/guide
https://doi.org/10.1145/2976749.2978318
https://rutgers.app.box.com/s/q84zjo3edv5d1e1eu67ypihiw8cb2djq
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1007/11745853_14
https://doi.org/10.1145/2508859.2516734
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://doi.org/10.1145/3383455.3422562
https://doi.org/10.1145/3383455.3422562
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://doi.org/10.1145/3460120.3484591
https://proceedings.neurips.cc/paper/2008/hash/8065d07da4a77621450aa84fee5656d9-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/8065d07da4a77621450aa84fee5656d9-Abstract.html
https://doi.org/10.5555/1953048.2021036
https://doi.org/10.23919/DATE51398.2021.9473968
https://github.com/GaloisInc/swanky
https://doi.org/10.1007/978-3-031-31371-4_6
https://doi.org/10.1007/978-3-031-31371-4_6
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.56553/POPETS-2022-0073
https://doi.org/10.56553/POPETS-2022-0073

Proceedings on Privacy Enhancing Technologies 2024(3) Vos et al.

Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 10174), Serge Fehr (Ed.). Springer, 175–203. https:

//doi.org/10.1007/978-3-662-54365-8_8

[35] Naoise Holohan, Stefano Braghin, Pól Mac Aonghusa, and Killian Levacher. 2019.

Diffprivlib: the IBM differential privacy library. ArXiv e-prints 1907.02444 [cs.CR]
(July 2019).

[36] Roi Inbar, Eran Omri, and Benny Pinkas. 2018. Efficient Scalable Multiparty

Private Set-Intersection via Garbled Bloom Filters. In Security and Cryptography
for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7,
2018, Proceedings (Lecture Notes in Computer Science, Vol. 11035), Dario Catalano

and Roberto De Prisco (Eds.). Springer, 235–252. https://doi.org/10.1007/978-3-

319-98113-0_13

[37] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. 2018. Dis-

tributed learning without distress: privacy-preserving empirical risk minimiza-

tion. In Advances in Neural Information Processing Systems 31. 6346–6357.
[38] Swanand Ravindra Kadhe, Heiko Ludwig, Nathalie Baracaldo, Alan King, Yi Zhou,

Keith Houck, Ambrish Rawat, Mark Purcell, Naoise Holohan, Mikio Takeuchi,

Ryo Kawahara, Nir Drucker, Hayim Shaul, Eyal Kushnir, and Omri Soceanu.

2023. Privacy-Preserving Federated Learning over Vertically and Horizontally

Partitioned Data for Financial Anomaly Detection. CoRR abs/2310.19304 (2023).

https://doi.org/10.48550/ARXIV.2310.19304 arXiv:2310.19304

[39] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-

nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, et al. 2021. Advances and open problems in federated learning.

Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[40] Alireza Kavousi, Javad Mohajeri, and Mahmoud Salmasizadeh. 2021. Efficient

Scalable Multi-party Private Set Intersection Using Oblivious PRF. In Security and
Trust Management - 17th International Workshop, STM 2021, Darmstadt, Germany,
October 8, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 13075), Rodrigo
Roman and Jianying Zhou (Eds.). Springer, 81–99. https://doi.org/10.1007/978-3-

030-91859-0_5

[41] Marcel Keller and Ke Sun. 2022. Secure quantized training for deep learning. In

International Conference on Machine Learning. 10912–10938.
[42] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.

2017. Practical Multi-party Private Set Intersection from Symmetric-Key Tech-

niques. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM, 1257–1272. https://doi.org/10.1145/3133956.3134065

[43] Yehuda Lindell. 2017. How to Simulate It - A Tutorial on the Simulation Proof

Technique. In Tutorials on the Foundations of Cryptography, Yehuda Lindell (Ed.).
Springer International Publishing, 277–346. https://doi.org/10.1007/978-3-319-

57048-8_6

[44] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In AISTATS. 1273–1282.
[45] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable

privacy-preserving machine learning. In IEEE Symposium on Security and Privacy
(SP). 19–38.

[46] Ofri Nevo, Ni Trieu, and Avishay Yanai. 2021. Simple, Fast Malicious Multiparty

Private Set Intersection. In CCS ’21: 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,

1151–1165. https://doi.org/10.1145/3460120.3484772

[47] Manas A Pathak, Shantanu Rane, and Bhiksha Raj. 2010. Multiparty Differential

Privacy via Aggregation of Locally Trained Classifiers. In Advances in Neural
Information Processing Systems 23. 1876–1884.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[49] Sikha Pentyala, Davis Railsback, Ricardo Maia, Rafael Dowsley, David Melanson,

Anderson Nascimento, andMartine De Cock. 2022. Training Differentially Private

Models with Secure Multiparty Computation. Cryptology ePrint Archive, Report

2022/146. https://ia.cr/2022/146.

[50] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:

Fast, Malicious Private Set Intersection. In 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Proceedings, Part
II (Lecture Notes in Computer Science, Vol. 12106). Springer, 739–767. https:

//doi.org/10.1007/978-3-030-45724-2_25

[51] Sara Ramezanian, Tommi Meskanen, Masoud Naderpour, Ville Junnila, and

Valtteri Niemi. 2020. Private membership test protocol with low communi-

cation complexity. Digit. Commun. Networks 6, 3 (2020), 321–332. https:

//doi.org/10.1016/j.dcan.2019.05.002

[52] Adam Smith. 2011. Privacy-preserving statistical estimation with optimal con-

vergence rates. In Proceedings of the 43th Annual ACM symposium on Theory of
Computing. 813–822.

[53] Jinhyun So, Ramy E Ali, Basak Guler, Jiantao Jiao, and Salman Avestimehr. 2021.

Securing secure aggregation: Mitigating multi-round privacy leakage in federated

learning. arXiv preprint arXiv:2106.03328 (2021).
[54] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. 2017. Machine

learning models that remember too much. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 587–601.

[55] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.

2016. Stealing machine learning models via prediction APIs. In 25th USENIX
Security Symposium. 601–618.

[56] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui

Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-preserving federated

learning. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and
Security. 1–11.

[57] Aron van Baarsen and Sihang Pu. 2024. Fuzzy Private Set Intersection with Large

Hyperballs. Cryptology ePrint Archive, Paper 2024/330. https://eprint.iacr.org/

2024/330 https://eprint.iacr.org/2024/330.

[58] Jelle Vos, Mauro Conti, and Zekeriya Erkin. 2022. Fast Multi-party Private Set

Operations in the Star Topology from Secure ANDs and ORs. IACR Cryptol.
ePrint Arch. (2022), 721. https://eprint.iacr.org/2022/721

[59] Jelle Vos, Mauro Conti, and Zekeriya Erkin. 2024. SoK: Collusion-resistant Multi-

party Private Set Intersections in the Semi-honest Model. In 2024 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA.

https://doi.org/10.1109/SP54263.2024.00079

[60] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party

Secure Computation for Neural Network Training. Proceedings on Privacy Enhanc-
ing Technologies 2019, 3 (2019), 26–49. https://doi.org/10.2478/popets-2019-0035

[61] Haobo Zhang, Junyuan Hong, Fan Dong, Steve Drew, Liangjie Xue, and Jiayu

Zhou. 2023. A Privacy-Preserving Hybrid Federated Learning Framework for

Financial Crime Detection. arXiv:2302.03654 [cs.LG]

A DIFFERENTIALLY-PRIVATE
DISCRETIZATION OF THE INTERIMTIME
FEATURE

To avoid any privacy leakage, we make the process of binning

the InterimTime feature differentially private. To do so, we first

compute the DP mean of the InterimTime feature for benign trans-

actions.
4
A privacy budget of 𝜖1 is spent towards such computation.

We then split the feature value range into two regions based on

the above computed mean. Each region contains a distinct peak

of benign samples. For each region, we compute the DP min and

max value (percentile) of the InterimTime feature for the benign
transactions and then generate 100 uniformly distributed bins for

each percentile. The privacy of computation of percentile is due

to [52] and a privacy budget of 𝜖2 is spent for computation of one

percentile. Once the bins are generated for both the regions, these

are one-hot-encoded. Each value of the feature InterimTime is

then mapped to the corresponding one-hot-encoded bin number

that it falls into.

The total privacy spent for computation of DP statistics for the

binning process is (𝜖1 + 2 · 𝜖2) which follows from sequential com-

position of DP. In order to keep the privacy budget equal to 𝜖 , we

divide it between 𝜖1, 𝜖2, and 𝜖𝑚 , where 𝜖𝑚 is used in training the

model with discretized bins. The total 𝜖 is allocated as 𝜖1 = 𝜖 · 1/50,
𝜖2 = 𝜖 · 9/100, and 𝜖𝑚 = 𝜖 · 4/5, thus 𝜖 = 𝜖1 + 2 · 𝜖2 + 𝜖𝑚 .

B CHANGES IN THE MALICIOUS MODEL
In the semi-honest model, the parties always follow the protocol

specification. In the malicious model, a party is allowed to divert

from this behavior. In the financial fraud detection application, one

possible attack that is not addressed in our protocol might be for the

data-augmenting entities involved in a transaction to collude with

4
We use diffprivlib [35] to compute DP mean, min, and max, and we provide bounds

for clipping that are independent of the data and depend on the given problem.

200

https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.48550/ARXIV.2310.19304
https://arxiv.org/abs/2310.19304
https://doi.org/10.1007/978-3-030-91859-0_5
https://doi.org/10.1007/978-3-030-91859-0_5
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1145/3460120.3484772
https://ia.cr/2022/146
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1016/j.dcan.2019.05.002
https://doi.org/10.1016/j.dcan.2019.05.002
https://eprint.iacr.org/2024/330
https://eprint.iacr.org/2024/330
https://eprint.iacr.org/2024/330
https://eprint.iacr.org/2022/721
https://doi.org/10.1109/SP54263.2024.00079
https://doi.org/10.2478/popets-2019-0035
https://arxiv.org/abs/2302.03654

Privacy-Preserving MembershipQueries for Federated Anomaly Detection Proceedings on Privacy Enhancing Technologies 2024(3)

a user who makes a fraudulent transaction, covering their tracks

by returning a fresh encryption of zero instead of randomizing the

ciphertext sent by the centralized entity. One can prevent this attack

by letting the data-augmenting entities provide a zero-knowledge

proof that proves that the randomization is performed correctly.

Note, however, that data-augmenting entities can also perform this

attack by encoding the fraudulent data into the OKVS to begin

with. This is not covered in the malicious model, as a party is free

to choose their own inputs.

We may also assume that the centralized entity acts maliciously.

For example, it could ask the data-augmenting entities to decrypt a

different ciphertext than the one originating from the previous steps

in the protocol execution. This too can be prevented using zero-

knowledge proofs, where the centralized entity proves to the data-

augmenting entities that the ciphertext they are asked to decrypt

indeed corresponds to the randomized sum that they expect.

Beyond this, one can argue that the centralized entity should be

limited in the number of queries that it makes: if it can perform

arbitrarily many queries, then it can learn the data-augmenting

entity’s entire datasets. This can easily be done by data-augmenting

entities, who can keep count of the number of protocol executions.

Note, however, that this ‘leakage’ can also be seen as deliberate. For

example, when it comes to the financial fraud detection application,

the centralized entity must query a large number of transactions,

potentially querying the same row multiple times. These all con-

stitute valid transactions, and so the centralized entity is expected

to learn whether these entities are in the datasets; the leakage is

inherent to this use case.

201

	Abstract
	1 Introduction
	2 Related work
	2.1 Private Membership Queries
	2.2 Privacy-preserving federated learning

	3 Preliminaries
	4 Solution outline
	4.1 Threat model
	4.2 Model training
	4.3 Inference

	5 Private consistency queries
	5.1 Encrypted membership query filters
	5.2 Encoding ciphertexts in the OKVS
	5.3 Performing a query
	5.4 Keeping the output encrypted

	6 Privacy analysis
	6.1 Proof of correctness
	6.2 Proof of privacy
	6.3 Security of the equality protocol

	7 Performance analysis
	7.1 Experimental setup
	7.2 Utility-privacy tradeoffs
	7.3 Efficiency and scalability
	7.4 Comparison with other EMQFs
	7.5 Comparison with MPSI protocols

	8 Limitations
	9 Conclusion
	Acknowledgments
	References
	A Differentially-private discretization of the InterimTime feature
	B Changes in the malicious model

