
Edge Private Graph Neural Networks with Singular Value
Perturbation

Tingting Tang*

University of Southern California

Los Angeles, California, USA

tangting@usc.edu

Yue Niu*

University of Southern California

Los Angeles, California, USA

yueniu@usc.edu

Salman Avestimehr

University of Southern California

Los Angeles, California, USA

avestime@usc.edu

Murali Annavaram

University of Southern California

Los Angeles, California, USA

annavara@usc.edu

ABSTRACT
Graph neural networks (GNNs) play a key role in learning repre-

sentations from graph-structured data and are demonstrated to be

useful in many applications. However, the GNN training pipeline

has been shown to be vulnerable to node feature leakage and edge

extraction attacks. This paper investigates a scenario where an

attacker aims to recover private edge information from a trained

GNN model. Previous studies have employed differential privacy

(DP) to add noise directly to the adjacency matrix or a compact

graph representation. The added perturbations cause the graph

structure to be substantially morphed, reducing the model utility.

We propose a new privacy-preserving GNN training algorithm,

Eclipse, that maintains good model utility while providing strong

privacy protection on edges. Eclipse is based on two key observa-

tions. First, adjacency matrices in graph structures exhibit low-rank

behavior. Thus, Eclipse trains GNNs with a low-rank format of

the graph via singular values decomposition (SVD), rather than

the original graph. Using the low-rank format, Eclipse preserves

the primary graph topology and removes the remaining residual

edges. Eclipse adds noise to the low-rank singular values instead

of the entire graph, thereby preserving the graph privacy while

still maintaining enough of the graph structure to maintain model

utility. We theoretically show Eclipse provide formal DP guar-

antee on edges. Experiments on benchmark graph datasets show

that Eclipse achieves significantly better privacy-utility tradeoff

compared to existing privacy-preserving GNN training methods.

In particular, under strong privacy constraints (𝜖 < 4), Eclipse
shows significant gains in the model utility by up to 46%. We fur-

ther demonstrate that Eclipse also has better resilience against

common edge attacks (e.g., LPA), lowering the attack AUC by up

to 5% compared to other state-of-the-art baselines.

KEYWORDS
Graph Neural Networks, Differential Privacy, Singular Value De-

composition, Node Classification, Edge Privacy Attack

* These authors contributed equally to this work

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(3), 391–406
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0084

1 INTRODUCTION
Graph-structured data are ubiquitous in the real world, such as

social networks [10], molecules [11], and transportation networks

[5]. Graph Neural Networks (GNNs) are a family of powerful neural

networks that learn representations from such relational data and

have achieved state-of-art performance in learning tasks, mainly

node classification [20], link prediction [47] and graph classification

[42]. Due to the good performance, GNNs have been deployed

in various applications, such as recommender systems [44], drug

discovery [27], and traffic flow prediction [35].

Meanwhile, several works have found that GNNs are vulnerable

to privacy attacks [14, 40], where edges or node features used in

training a GNN can be revealed via interaction with the trained

GNN during inference. An attacker can send a series of seem-

ingly innocuous inference requests to a trained model and use

the model outputs to infer the structure of the graph used to train

the GNN [40], or to extract the node features in the graph [6]. While

both the node features and graph structure (often represented by

an adjacency matrix) can be sensitive information, in this work

we focus on the setting where the node features are public but

the graph structure needs to be private. For instance, in a social

network a node representation such as the person’s education level

and city may be public, while that person’s social network is private.

In general, graph edges usually encode sensitive information, such

as private social relationships among users of a social network,

molecular structure of a drug under trade secret, or private user-

item interaction history of a user in a recommender system [39].

Therefore, designing privacy-preserving GNNs to protect private,

sensitive edges against such attacks is critical.

Differential privacy (DP) is a well-known solution to protect

against privacy attacks. This technique applies noise to the data

while still enabling usage of the perturbed data. In particular, DP

has been widely used in machine learning models to protect data

and the model. One pioneering work, DP-SGD [1], applies DP-noise

to the gradients during the training process. However, the stan-

dard DP-SGD algorithm requires gradients of different inputs to be

independent. For GNNs with graph data, gradients of each node

are affected by its neighboring nodes through node aggregation

(See Sec 3.1), making the standard DP-SGD not applicable to GNN

settings [2, 3]. Recent works have tailored DP to GNN settings

[4, 21, 30, 40]. Specifically, to protect graph edges from being leaked

via trained models, several edge-level DP algorithms have been

391

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0084

Proceedings on Privacy Enhancing Technologies 2024(3) Tang et al.

proposed [21, 30, 40]. For instance, DPGCN [40] directly adds noise

to the adjacency matrix and hence the true edge connectivity in-

formation is protected. By adding DP noise to the whole adjacency

matrix and reconstructing the graph, DPGCN changes the graph

structure and reduces the correlation between the true edges in

the graph and the graph used during the training process. DPGCN

however has lower privacy-utility tradeoff. The reason for the de-

graded performance is that binary values in the adjacency matrix

(1: edge, 0: non-edge) are very sensitive to noise. The perturbed

graph structure can be drastically different from the original graph,

even for a moderate privacy budget (See more analysis on Sec 3.3).

Rather than applying noise to the whole adjacency matrix, LPGNet

[21] uses a compact representation of the graph structure called

cluster degree vector and applies DP-noise only to this structure. It

further tailors the model architecture to exploit the compact graph

information. The graph compaction algorithm along with the ac-

companied modifications to the model architecture enable LPGNet

to be more resilient to noise when applying DP, leading to a better

model performance with the same privacy constraints. However,

the cluster degree vector preserves only coarse-grain information

about the graph, namely the number of neighbors in each cluster

for a given node, and fully discards information of graph connectiv-

ity. Thus the model utility is significantly lower compared to GNN

trained with a full adjacency matrix. Furthermore, LPGNet requires

a change to the model architecture. In summary, current edge-level

DPmethods reduce the model utility (F1 score) significantly in favor

of privacy and/or require GNN model architecture modifications.

To address the above limitations, we propose Eclipse, a privacy-
preserving training methodology for training graph neural net-

works that utilizes the graph structure to improve the model utility.

However, our approach applies DP-noise to the low-rank format of

a graph, rather than the adjacency matrix of the graph. In particular,

the DP-noise is added to the singular values of the matrix obtained

via singular value decomposition (SVD). Hence, the dimension to

be considered when applying DP is reduced from 𝑛2 to 𝑛 (𝑛 : num-

ber of nodes in the graph). Furthermore, as has been observed in

prior work [51], adjacency matrices in real-world graph data ex-

hibit low-rank structures. That is, most information in the graph

can be compressed into a low-dimensional representation. Hence,

the DP-noise addition can be limited to just a few ranks. This key

insight allows Eclipse to further reduce the dimension that needs

to be perturbed by focusing only on a low-rank version of the graph

when training GNNs. Unlike LPGNet, Eclipse attains the compact

format of the graph while still preserving most information, leading

to a better privacy-utility tradeoff.

In terms of privacy Eclipse protects privacy in two ways. First,

with a low-rank graph, Eclipse only uses a subset of edges in

training, and decorrelates the GNN with the rest of the edges. Then,

Eclipse further perturbs low-rank singular values and feeds the

GNN with a perturbed low-rank reconstruction of the graph during

model training, leading to DP on edges in the low-rank graph.

Furthermore, Eclipse acts as a plug-in module compatible with

existing GNN architectures and only needs to replace the original

adjacency matrix input with a perturbed low-rank format. Hence,

there is no need to change the model architecture.

We empirically evaluate Eclipse on 6 datasets under transduc-

tive settings (i.e., different nodes from the same graph are used for

training and testing), and 1 dataset under inductive settings(i.e., the

nodes in the testing graph are unseen during training). In trans-

ductive settings, Eclipse enjoys much-improved privacy-utility

tradeoff over the state-of-the-art baselines, including DPGCN and

LPGNet. In particular, under strong privacy constraints (𝜖 < 4),

Eclipse achieves up to 46% higher model utility (F1 score) com-

pared to DPGCN and LPGNet. Even under extreme privacy con-

straints (𝜖 < 1), Eclipse still attains up to 5% higher model utility

compared to training with node features only (MLP).

We further evaluate Eclipse’s resilience against two common

edge attacks: LPA [14] and LINKTELLER [40]. Under LPA attacks,

Eclipse shows better attack resilience compared to DPGCN and

LPGNet. Specifically, with comparablemodel utility among Eclipse
and other baselines, the trained model using Eclipse results in

lower Area Under Receiver Operating Curve (AUC), a well known

metric for measuring attack performance (lower AUC means better

attack resilience). For instance, on the Cora dataset, with a model

utility of around 65%, Eclipse lowers the attack AUC by 5% com-

pared to LPGNet and DPGCN. Further, attack AUC on Eclipse is at
most 5% higher compared to MLP, while the attack AUC on LPGNet

and DPGCN can go up to 12.5% and 16% higher than MLP, respec-

tively. We also provide insights on privacy protection of Eclipse
on different parts of the graph, including protection on low-degree

and high-degree nodes.

2 RELATEDWORK
In this section, we discuss related works on privacy attacks on

GNNs, privacy protection using DP, and graph decomposition.

Privacy Attacks on GNNs. Recent studies have demonstrated

that GNNs are vulnerable to privacy attacks on different compo-

nents of a graph, such as nodes, edges, and graph properties (e.g.,

graph density) [15, 40, 48]. In particular, attacks that recover edges

in a graph have been demonstrated. Zhang et al. [49] presents the

first model inversion attack on GNNs that reconstructs private

edges via white-box access to node attributes, edge density, and

the target model parameters. He et al. [14] show black-box link-

stealing attacks that can infer the existence of a link between any

pair of nodes in the graph with some prior knowledge, such as

the target node attributes, extra datasets, etc. LINKTELLER [40]

is another important work that proposes a black-box link-stealing

attack in a more practical setting based on node influence analysis.

And the attack does not require node features when performing

attacks. More recently, Olatunji et al. [26] analyze the informa-

tion leakage based on empirical observation with graph structure

reconstruction attacks. They show that additional knowledge of

post-hoc feature explanations substantially increases the success

rate of these attacks. These works expose the privacy risks of GNNs

that use sensitive graph edges during training, and call for effective

defense mechanisms to protect the private edges.

Differentially Private GNNs. Differential Privacy (DP) aims

to provide formal privacy guarantees for general dataset analysis

tasks, and has been widely used in machine learning tasks. It uses a

randomized mechanism to perturb the target object and generate in-

distinguishable outputs for neighboring data. For neural networks,

DP-SGD [1] acts as a general privacy-preserving training frame-

work that protects models against model inversion or membership

392

Edge Private Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(3)

inference attacks. It injects noise into gradients during training,

and therefore reduces correlations between the final model and the

input data. However, the standard DP-SGD algorithm requires gra-

dients of different inputs to be independent. For GCNs with graph

data, gradients of each node are affected by its neighboring nodes

through node aggregation (See Sec 3.1), making the standard DP-

SGD not applicable to GCN settings [2, 3]. In the GNN domain, DP

is instead tailored to two scenarios: edge-level DP, which protects

the existence of an edge [18], and node-level DP, which protects

the presence of a node and all the edges connected to it [19].

In the edge-DP setting, Wu et al. [40] propose DPGCN, that di-

rectly applies DP on the input graph and uses the perturbed graph to

train GNNs. As noise is added to the raw graph data, model perfor-

mance is affected, particularly under stronger privacy constraints.

In contrast to directly perturbing graphs, Kolluri et al. [21] propose

LPGNet that adapts a GNN architecture to a low-dimensional graph

representation, called cluster degree vectors. These vectors are then
perturbed via the Laplace mechanism to ensure edge-level privacy.

Owing to the reduced dimension when performing DP, LPGNet

enjoys better privacy-utility compared to DPGCN. However, model

accuracy using LPGNet is capped compared to standard GNNs since

limited information is encoded in the degree vectors. Compared to

these approaches, our proposed technique attains a compact format

of the graph structure and preserves most information about the

graph structure at the same time.

In the node-DP setting, Daigavane et al. [4] trains GNNs with

node-level DP guarantee by extending the standard DP-SGD al-

gorithm and applying privacy amplification by subsampling on

bounded-degree graph data. However, this approach requires large

privacy budgets to achieve reasonablemodel accuracy. Sajadmanesh

et al. [30] consider both node-level and edge-level DP, and propose

a new GNN architecture GAP to protect both node features and

edges. In GAP, node embedding aggregation is decoupled from the

standard GNN architecture. They apply noise to the output of the

node embedding aggregation (with the adjacency matrix), therefore

achieving both edge-level and node-level DP.

There are alternative approaches to protect data privacy dur-

ing training and inference, such as Secure Multi-Party Computing

(MPC) [36–38], Coded Computing [33, 45], and Trusted Execution

Environment (TEE) [13, 22, 34]. However, these approaches target

different settings from ours, and cannot protect against edge at-

tacks exploiting correlations among model outputs. Thus, in this

work, we do not consider these approaches and instead focus on

the DP-based approach to provide edge privacy.

Applying SVD on GNNs. Singular value decomposition (SVD)

is a commonly used technique in data processing. By encoding the

most important information into a low-dimensional space, it shows

significant benefits in reducing complexity in DNNs [16, 17, 23–25].

Recent endeavors have also shown its potential in graph tasks, es-

pecially for defending against adversarial attacks on graph data.

Entezari et al. [9] demonstrated that small perturbation by an ad-

versarial attack is only reflected on high-rank residual components,

whereas the low-rank approximation is minimally affected. They

exploit this observation to enable GNN training with a low-rank

graph, which is more immune to adversarial attacks. Xu et al. [41]

aim to speed up robust structure learning, which is another method

to improve the robustness of GNNs against adversarial attacks.

Their approach exploits the low-rank property of the adjacency

matrix of a graph as prior knowledge, and decouples the adjacency

matrix into a low-rank component and a sparse one, and learns by

minimizing matrix rank. Despite the promising applications of SVD

demonstrated in improving the robustness of GNNs, it is rarely

seen employing SVD in the privacy domain when training GNNs.

In this work, we aim to use SVD to study the graph structure and

exploit its potential in privacy-preserving GCN training.

3 PRELIMINARIES
3.1 Graph Neural Networks
GNNs learn a node embedding for each node by distilling the high-

dimensional information about a node’s graph neighborhood into

a low-dimensional embedding. The learned node embeddings can

then aid downstream graph learning tasks, such as node classifica-

tion, link prediction, and clustering. In this work, we focus on graph

convolutional neural network (GCN), a prominent GNN type widely

used for semi-supervised graph classification tasks on graphs. Con-

sider an unweighted graph G = (V, E), whereV denotes the set

of nodes (𝑛 = |V|), and E the set of edges which can be represented

by an adjacency matrix 𝐴 ∈ {0, 1}𝑛×𝑛 , with 𝐴𝑖 𝑗 = 1 indicating the

presence of an edge between node 𝑖 and node 𝑗 . GCN takes as input

the adjacency matrix 𝐴 and the node feature matrix 𝑋 ∈ R𝑁×𝑑
,

where each row of 𝑋 corresponds to a 𝑑-dimensional feature vector

of a node inV . A 𝑘-layer GCN consists of a sequence of 𝑘 graph

convolutional layers. To obtain a new embedding for each node

in the graph, each hidden layer aggregates the embeddings of the

node’s neighbors output by the previous layer. The 𝑙-th layer can

be formally described as:

𝐻 𝑙+1 = 𝜎 (�̃�𝐻 𝑙𝑊 𝑙), (1)

where �̃� is normalized adjacency matrix, 𝜎 is the nonlinear acti-

vation function such as ReLU, 𝐻 𝑙
is the node embeddings in the

𝑙-th layer where 𝐻0 = 𝑋 is the initial node feature, and𝑊 𝑙
is the

learnable weight parameters. �̃�𝐻 𝑙
denotes the feature aggregation

step. The normalized �̃� can be calculated as

FirstOrderGCN: �̃� = 𝐼 + 𝐷−0.5 · 𝐴 · 𝐷−0.5, (2)

or

AugNormAdj: �̃� = (𝐷 + 𝐼)−0.5 · 𝐴 · (𝐷 + 𝐼)−0.5, (3)

where 𝐷 = Diag(𝑑0, 𝑑1, · · · , 𝑑 |𝑉 |−1), 𝑑𝑖 denotes degree of 𝑖-th node.

Depending on datasets and models, different methods may prefer

different normalization methods.

Node embeddings from the last layer are transformed into prob-

ability scores via a softmax layer for the node classification task. A

typical 2-layer GCN is illustrated in Figure 1.

Node-level classification can occur in two settings: transductive
and inductive settings. In the transductive setting, the training and

testing are performed on the same graph but with different nodes.

While in the inductive setting, the graph in testing is distinct from

the one in training.

393

Proceedings on Privacy Enhancing Technologies 2024(3) Tang et al.

adj. matrix

𝐴

feature

𝑋
GCN layer

GCN:𝐻𝑙+1 = 𝜎 (�̃� ·𝐻𝑙 ·𝑊)

GCN layer out
𝐻𝑙 𝐻𝑙+1

Figure 1: A typical 2-layer GCN. Each GCN layer takes as input node embedding, 𝐻 𝑙 , and performs aggregation �̃� · 𝐻 𝑙 with
normalized adjacency matrix �̃�. Then, a weight matrix𝑊 is applied to the aggregated embeddings.

3.2 Differential Privacy
Differential privacy (DP) has been known as a rigorous privacy-

preserving methodology and has been widely adopted in privacy-

sensitive applications [7].

Definition 1. (𝜖, 𝛿)-DP: A randomized mechanismM : D→ R
satisfies (𝜖, 𝛿)-DP if for any two adjacent inputs 𝑥, 𝑥 ′ ∈ D and any
output S ⊆ R, it holds that

𝑃 [M(𝑥) ∈ S] ≤ 𝑒𝜖 · 𝑃 [M(𝑥 ′) ∈ S] + 𝛿 .

Depending on the applications, the concept of adjacent data

varies. In our case, we target adjacency matrix protection of undi-

rected unweighted graphs in graph neural networks. We define ad-

jacent matrices𝐴,𝐴′
if they only differ in one edge. That is, the graph

represented by 𝐴′
is obtained by adding/removing one edge in the

graph represented by 𝐴. Specifically, if two graphs differ on one

edge between node 𝑖 and node 𝑗 , for the symmetric adjacency matri-

ces 𝐴 and 𝐴′
, they differ at (𝑖, 𝑗) and (𝑗, 𝑖) (i.e., 𝐴(𝑖, 𝑗) = 𝐴(𝑗, 𝑖) = 1,

𝐴′(𝑖, 𝑗) = 𝐴′(𝑗, 𝑖) = 0). By replacing 𝑥 with 𝐴 in Def 1, we define

edge-level DP as follows.

Definition 2. (𝜖, 𝛿)-edge DP: A randomized mechanism M sat-
isfies (𝜖, 𝛿)-edge DP if for any two adjacent graphs 𝐴,𝐴′ and any
output S ⊆ R(range ofM), it holds that

𝑃 [M(𝐴) ∈ S] ≤ 𝑒𝜖 · 𝑃 [M(𝐴′) ∈ S] + 𝛿 .

However, DP often sacrifices performance for strong privacy

constraints (small 𝜖). Balancing model performance and privacy of

the adjacency matrix is a challenge when working with GNNs.

3.3 Edge-Level DP on GNN
In this section, we describe two typical approaches to edge-level

DP on GNN: DPGCN and LPGNet.

DPGCN [40] directly adds noise to the adjacency matrix 𝐴 and

reconstructs the graph as

𝐴 = binary(𝐴 + Laplacian(0, 𝜎)),

where 𝜎 controls the variance of a Laplacian noise matrix that has

the same dimension as 𝐴. The noise added is determined by the 𝜖

value selected. The smaller the 𝜖 larger is the noise. The binary op

simply sorts values in 𝐴 and sets the first |E | (number of edges in

A) to 1 and zeros to other values. Therefore, the perturbed graph

𝐴 still has similar sparsity as the original 𝐴, but with different

connections. Since 𝐴 consists only of binary values, the resulting 𝐴

can be drastically different with a certain level of noise added. That

is the main reason that DPGCN’s performance quickly drops when

the privacy budget decreases.

LPGNet mitigates the issue by extracting a much-compressed

representation of the graph called cluster degree vectors, 𝐷 . Specifi-

cally, for each node, LPGNet computes the number of its neighbors

on each cluster (i.e., nodes with the same label), and perturbs the

degree vectors as

�̂� = 𝐷 + Laplacian(0, 𝜎),

where each row in 𝐷 ∈ Z𝑛×𝐿 denotes the number of the node’s

neighbors in each cluster, 𝐿 indicates the number of clusters/labels,

𝜎 controls the variance of the Laplacian noise matrix that has the

same dimension as 𝐷 . By using the compressed representation,

LPGNet discards detailed connection information and sacrifices

model performance with an improved privacy guarantee.

4 PROBLEM SETTINGS AND THREAT MODEL
Problem Settings. We target a node classification problem over

a graph when node features are public and edges are private. The

problem arises in real scenarios where edges may represent sen-

sitive social or financial relationships. Such relational data can

significantly enhance GNNs to learn representations and relations

from public node features [21, 50]. For instance, social networks

such as LinkedIn and Twitter allow users to hide their connections

for strong privacy protection (edges), while still maintaining a pub-

lic profile (node features). In these scenarios, private connections

may contain sensitive information not present in node features.

The entity with node features trains GNNs with additional in-

formation from the graph provider. After training, the model is

deployed, and receives queries for classifying certain nodes (e.g.,

identifying user groups). However, even if the GNNmodel is trained

using a private adjacency matrix, it is possible that the adjacency in-

formation can be leaked by interacting with the model. For instance,

well-known attack methods such as LPA [14] and LINKTELLER [40]

can effectively estimate the graph edges by sending a series of in-

ference queries and analyzing the model’s outputs.

Therefore, this work aims to train a GCN model with good utility
using private graph data, while still maintaining strong protection on
the graph during/after training.

Threat Model. We assume an adversary has access to node

features and models’ API. It learns certain prior knowledge about a

target graph through node features. It can also query models with

node features with an unlimited number of queries. However, the

adversary has no access to the private graph structure 𝐴.

5 PROPOSED METHOD
Based on the data shown in prior works [40], it is best to avoid

applying DP noise to the adjacency matrix𝐴, as the noise alters the

394

Edge Private Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(3)

graph structure significantly leading to performance drop. On the

other hand ignoring the graph structure entirely is also unaccept-

able. In fact, prior works have demonstrated that using a distilled

version of a graph [21] improves model performance. However,

the performance gap is still high compared to a non-private GCN

training approach. The reason is that very limited information is

preserved when converting the graph into a compact format as

in [21]. Based on these observations this work presents a new ap-

proach called Eclipse that trains a GCN with a low-rank format

of a graph. The low-rank format preserves as much information

about a graph as possible but with a low-dimensional format.

We first demonstrate that the difference between 𝐴 and 𝐴′
, mea-

sured as 𝑙2 norm, can be transferred to their singular values, there-

fore reducing the dimension of DP-noise from 𝑛2 to 𝑛. Thus the

amount of noise added for a given 𝜖 privacy budget can be reduced.

Furthermore, we observe that high-rank singular values differ more

compared to the low-rank part. With the observation, Eclipse
trains GCNs with a low-rank approximation of 𝐴. To achieve DP,

Eclipse only needs to add noise to the low-rank singular values.

Owing to the reduced dimension, Eclipse achieves high accuracy

while maintaining strong privacy protection.

5.1 Graph Decomposition
In this section, we describe the graph decomposition that we use in

our scheme. The essence of the graph decomposition in Eclipse is

to reduce dimensions for applying DP noise, therefore leading to

better privacy-utility trade-offs when applying DP. We then demon-

strate how the l2 norm difference between 𝐴 and 𝐴′
adjacency

matrices is reflected in their singular values.

Given graph 𝐴 ∈ {0, 1}𝑛×𝑛 and 𝐴′ ∈ {0, 1}𝑛×𝑛 (with one edge

removed from 𝐴), we first decompose 𝐴 as

𝐴
𝑆𝑉𝐷−−−−→ 𝑈 · Diag(𝑠) ·𝑉 , (4)

where 𝑆 = Diag(𝑠) maps singular values 𝑠 to a 2-D diagonal matrix,

𝑈 ,𝑉 denotes the principal components of𝐴. In general, for a matrix,

SVD finds a set of orthogonal basis vectors,𝑈 ,𝑉 , to represent the

matrix. The singular values obtained from SVD reflect the amount

of information of the matrix contained along corresponding basis

vectors. With this notion, we apply SVD to the adjacency matrix 𝐴,

and analyze its bases and each basis vector’s importance.

Decomposition on 𝐴′. If performing a normal SVD on 𝐴′
as

in Eq(4), it ends with three matrices that may be different from

the ones obtained from 𝐴. Hence applying DP to protect graph

connectivity requires adding noise to all the three corresponding

matrices, 𝑈 ,𝑉 , and 𝑆 , which goes against our objective of applying

noise to a reduced dimension graph information.

One important observation is that given 𝐴′
and 𝐴 only differ at

one edge, their principal bases (i.e., 𝑈 ,𝑉) after the SVD operation

tend to be similar. Specifically, we randomly remove one edge in 𝐴,

and compute the cosine similarity of every principal basis between

𝐴 and 𝐴′
as

sim𝑈 =

〈
𝑈𝑖 ,𝑈

′
𝑖

〉
∥𝑈𝑖 ∥ ·

𝑈 ′
𝑖

 , sim𝑉 =

〈
𝑉𝑖 ,𝑉

′
𝑖

〉
∥𝑈𝑖 ∥ ·

𝑈 ′
𝑖

 ,
where 𝑈 ′,𝑉 ′

are the principal bases from 𝐴′
via normal SVD,

𝑈𝑖 = 𝑈 (:, 𝑖),𝑉𝑖 = 𝑉 (:, 𝑖), so as 𝑈 ′
𝑖
,𝑉 ′

𝑖
. Large similarity indicates

two vectors are close. For a graph 𝐴, we denote a 𝐴′
the worst case

if it has the smallest average cosine similarity to 𝐴 across all princi-

pal components. For instance, Figure 2 shows the cosine similarity

of the top 20 principal basis vectors on the Chameleon dataset [31].

Owing to the closeness of 𝐴 and 𝐴′
, their principal components

have cosine similarity close to 1. The difference between 𝐴 and

𝐴′
is mainly on their singular values. More empirical evidence on

other datasets is shown in Appendix B. This observation motivates

us to apply DP only to the singular values, rather than 𝑛2 elements

in the original graph, and leave the principal basis untouched. Our

privacy analysis in Section 6.2.2 discusses the implication of privacy

protection beyond this assumption.

1 5 10 15 20

0.5

1

Index

Si
m
ila
ri
ty

𝑈

𝑉

Figure 2: Cosine similarity of principal basis vectors in the
Chameleon dataset.

Therefore, we can let 𝐴′
be anchored to the principal basis of A

as

𝐴′ → 𝑈 · 𝑆 ′ ·𝑉 (5)

The essence of Eq(5) is to show that𝐴 and𝐴′
can share the same

basis, while their difference is reflected only in their singular value

matrices via proper decomposition. Then we can obtain 𝑆 ′ as

𝑆 ′ = 𝑈𝑇 · 𝐴′ ·𝑉𝑇 . (6)

Low-Rank Structure. We further observe that graph matrix A

exhibits a low-rank structure, with singular values decaying quickly

at the beginning as shown in Figure 3. The low-rank structure is

rooted in real-world observations. For instance, in social networks,

users close to each other tend to have similar connections, leading

to highly correlated vectors in the adjacency matrix.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

normalized rank

no
rm

al
iz
ed

𝑠

Cora Chameleon

Citeseer Facebook

Twitch-ES

Figure 3: Distribution of singular values (normalized) in typi-
cal graph data. Singular values decay quickly, indicating that
the graph matrix exhibits a highly low-rank structure.

With such an observation, we can approximate graph 𝐴 with a

low-rank version 𝐴
lr
as

𝐴
lr
= 𝑈 (:, 1 : 𝑟) · Diag(𝑠 (1 : 𝑟)) ·𝑉 (1 : 𝑟, :), (7)

where𝑈 (:, 1 : 𝑟),𝑉 (1 : 𝑟, :) denotes the first 𝑟 columns and rows in

𝑈 ,𝑉 .

395

Proceedings on Privacy Enhancing Technologies 2024(3) Tang et al.

According to Eq(5), we can also write the low-rank version of

𝐴′
as

𝐴′
lr
= 𝑈 (:, 1 : 𝑟) · Diag(𝑠 ′(1 : 𝑟)) ·𝑉 (1 : 𝑟, :), (8)

with the same basis as in 𝐴, 𝑠 ′ denote the diagonal elements in 𝑆 ′.
Approximating the graph with a low-rank format is beneficial

in two aspects. First, with a low-rank graph, many edges from the

original graph are removed. Therefore, training GCNs with the low-

rank graph de-correlates the final model from these edges. Second,

with the low-rank approximation, we further reduce the dimension

to be considered and only need to perturb the first 𝑟 singular values

when applying DP.

5.2 DP on Singular Values
With the notation that 𝐴 and 𝐴′

can share principal bases while

differing in their singular values, we use a ℓ2-sensitivity to define

the difference between 𝐴 and 𝐴′
as

Δ = max

𝐴,𝐴′

𝑠 (1 : 𝑟) − 𝑠 ′(1 : 𝑟)

𝐹

(9)

With the ℓ2-sensitivity, we apply a standard Gaussianmechanism

to perturb the singular values as follows:

Gaussian Mechanism on Singular Values. For a low-rank approx-

imation 𝐴
lr
with 𝑟 bases, a noise vector 𝑔 ∈ R𝑟 following normal

distribution is generated as 𝑔 ∼ Normal(0, 𝜎). Then the noise vector
𝑔 is added to the singular values as 𝑠 = 𝑠 + 𝑔.

The noise parameter 𝜎 depends on privacy constraint 𝜖 and

sensitivity Δ. The following lemma shows the sensitivity, Δ, is
well-bounded given 𝐴 and 𝐴′

share the same principal bases.

Lemma 1. Let 𝑠 = Diag(𝑈𝑇 ·𝐴 ·𝑉𝑇) and 𝑠 ′ = Diag(𝑈𝑇 ·𝐴′ ·𝑉𝑇),
where𝑈 and 𝑉 are principal bases obtained from SVD. Given 𝐴 and
𝐴′ share principal bases, we have Δ ≤

√
2.

Proof. Knowing that 𝐴 and 𝐴′
differ in one edge,𝐴 −𝐴′

2
=
√
2.

The goal is to bound the following quantity:𝑠 (1 : 𝑟) − 𝑠 ′(1 : 𝑟)

𝐹
.

Given 𝐴 and 𝐴′
share principal bases 𝑈 , 𝑉 , and 𝑈 , 𝑉 are unitary

matrices,𝑠 (1 : 𝑟) − 𝑠 ′(1 : 𝑟)

𝐹
=

√√
𝑟∑︁
𝑖=1

(𝑠 (𝑖) − 𝑠 ′(𝑖))2

≤

√√
𝑛∑︁
𝑖=1

(𝑠 (𝑖) − 𝑠 ′(𝑖))2 =
𝑠 − 𝑠 ′

𝐹

=
𝑈 · Diag(𝑠 − 𝑠 ′) ·𝑉

𝐹
=
𝐴 −𝐴′

𝐹

=
√
2,

which concludes the proof. □

Then we can compute 𝜎 given a privacy budget 𝜖 (See Privacy

Analysis in Sec 6). A high privacy constraint (small 𝜖) or higher

sensitivity requires large noise (high 𝜎) for singular values.

5.3 GCN Training and Testing
Eclipse follows the same procedure as standard GCNs, except

that a perturbed low-rank adjacency matrix is fed to the model. As

shown in Figure 4, during GCN training, we first obtain a perturbed

low-rank format,𝐴
lr
. Since the adjacency matrix is used as an input

and does not change during training, we only need to perturb it

once and fix it throughout the whole training period. To avoid

additional overhead when performing SVD, we compute 𝐴
lr
offline

so that it does not affect the training time.

Considering the original adjacency matrix 𝐴 only consists of

binary values, we further align 𝐴
lr
with the standard format by

binary quantization. Specifically, given the number of edges, |E |,
in the original graph, we sort elements in 𝐴

lr
and set the first |E |

largest values to 1, and zero other values in order to preserve the

sparsity of the adjacency matrix. The resulting adjacency matrix

is denoted as 𝐴
plr
. In addition, we further consider perturbing the

number of total edges 𝐸. To that end, we distribute the privacy

budget into 𝜖𝑒 and 𝜖
lr
, where 𝜖𝑒 is for the number of edges, and 𝜖

lr

is for the low-rank adjacency matrix. By the composition rule of

DP, the total privacy budget on the graph edges is still 𝜖 . Algorithm

1 summarizes the perturbation mechanism in our method Eclipse.

Algorithm 1 Perturbation mechanism in Eclipse

Require: Graph G = (V, E) as symmetric adjacency matrix 𝐴,

rank 𝑟 , privacy parameters 𝜖, 𝛿 , sensitivity Δ =
√
2, randomiza-

tion generator

Ensure: the perturbed low rank outcome 𝐴
plr

1: 𝜖𝑒 = 0.01𝜖

2: // Distribute privacy budget

3: 𝜖
lr
= 𝜖 − 𝜖𝑒

4: 𝐸 = |E |
5: 𝐸 = 𝐸 + Laplacian(0, 1

𝜖𝑒
)

6: 𝐸 = ⌊𝐸⌋
7: 𝑈 , Diag(𝑠),𝑉 = 𝑆𝑉𝐷 (𝐴)
8: for 𝑖 = 1, · · · , 𝑟 do
9: 𝑠 (𝑖) = 𝑠 (𝑖) + Normal(0, Δ

√
2 ln(1.25/𝛿)

𝜖lr
)

10: end for
11: 𝐴

lr
= 𝑈 (:, 1 : 𝑟) · Diag(𝑠 (1 : 𝑟)) ·𝑉 (1 : 𝑟, :)

12: 𝐴tr = UppTriMatrix(𝐴
lr
, 1)

13: // Upper triangular matrix on 1
𝑠𝑡

superdiagonal

14: top_indices = argmax(𝐴tr, 𝐸)

15: // Get the indices of top 𝐸 values

16: 𝐴tr [top_indices] = 1, 𝐴tr [¬top_indices] = 0

17: 𝐴
plr

= 𝐴tr +𝐴𝑇
tr

18: return 𝐴
plr

Transductive Settings. In a transductive setting, as the same

graph is used in training and testing, we only need to apply the

SVD and DP offline process once and obtain 𝐴
lr
for both training

and testing. That is, given nodes chosen in training and testing, we

extract the edge information from 𝐴
lr
that covers the chosen nodes.

Inductive Settings. In an inductive setting, we apply the SVD

and DP offline process separately on the training and testing graph

and obtain two perturbed low-rank graphs.

396

Edge Private Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(3)

adj. matrix

𝐴
SVD basis

𝑠DP

𝐴lr sort & binarize

feature

𝑋
GCN layer

GCN:𝐻𝑙+1 = 𝜎 (𝐴lr ·𝐻𝑙 ·𝑊)

· · · GCN layer out

offline process!

𝐻𝑙 𝐻𝑙+1

Figure 4: GCN with low-rank graph. Eclipse first applies SVD to obtain singular values of a graph, and perturbs singular values
with Gaussian noise. Eclipse then reconstructs a low-rank version of 𝐴 by only keeping most principal components. To align
with original format of the adjacency matrix, Eclipse applies a binary quantization before feeding 𝐴lr to a GCN.

6 PRIVACY ANALYSIS
In this section, we analyze privacy protection using Eclipse from

two aspects: formal privacy analysis with DP and additional privacy

protection via low-rank decomposition. We further discuss the

effectiveness of Eclipse in real-world scenarios.

6.1 Formal DP Analysis
Based on the observations on real-world datasets (e.g. Figure 2), it

is reasonable to assume that two adjacent graphs share the same

principal bases. The formal privacy analysis is built based on this

assumption. We also discuss the implication of privacy protection

beyond this assumption in Sec 6.2.

Given an adjacency matrix 𝐴, Eclipse decomposes 𝐴 into prin-

cipal bases𝑈 ,𝑉 , and singular values 𝑠 (See Eq(4)). As the principal

bases are shared with its neighboring graph 𝐴′
, Eclipse achieves

(𝜖, 𝛿)− edge DP by only perturbing singular values.

Theorem 1. Given 𝐴 and 𝐴′ share the same principal bases, with
Gaussian noise,

Normal
(
0,Δ

√︁
2 ln(1.25/𝛿)/𝜖lr

)
,

added to singular values; and Laplacian noise,
Laplacian (0, 1/𝜖e),

added to the edge count, the perturbed low-rank 𝐴plr using Eclipse
satisfies (𝜖, 𝛿)-edge DP with 𝜖 = 𝜖lr + 𝜖e.

The proof follows the standard Gaussian mechanism, the com-

position theorem, and the post-processing rule of DP algorithm [8].

The detailed proof is given in Appendix A.

Corollary 1. Given node features and the adjacency matrix with
independent distributions, the GCN model trained by Algorithm 1
is (𝜖, 𝛿)-edge DP if the perturbation mechanism in Eclipse is (𝜖, 𝛿)-
edge DP.

Proof. Given that the Eclipse ensure (𝜖, 𝛿)-edge DP, DP guar-

antee of the trained GCN model with the perturbed adjacency

matrix directly follows the post-processing rule [8].

As we assume node features and the adjacency matrix have inde-

pendent distributions, node features will not contain the adjacency

information. According to the post-processing rule, any function

with the adjacency matrix as input will not increase privacy leak-

age. Therefore, by regarding the trained GCN model as a function,

output from the model still ensure (𝜖, 𝛿)-edge DP. □

Remark 1. Inference Privacy. In transductive settings, the model
is fed with a sub-graph from the same graph as in the training stage.

Therefore, Algorithm 1 is (𝜖, 𝛿)-edge DP during inference. In inductive
settings, as the model is fed with a graph different from the one in the
training stage, Eclipse applies the same perturbation as in Algorithm
1. Therefore, Eclipse still ensures (𝜖, 𝛿)-edge DP.

6.2 Privacy Protection in Practice
6.2.1 Privacy Protection via Low-Rank Decomposition. Besides the
DP guarantee by perturbing singular values, Eclipse provides

additional empirical protection via low-rank decomposition. As

stated in Sec 5.1, Eclipse trains GNNs using a low-rank graph,

𝐴
lr
, which only consists of the first 𝑟 principal components in the

original graph. As a result,𝐴
lr
only consists of the primary topology,

while discarding the rest of the connections (See more empirical

studies in Sec 7.3.2). Owing to such a low-rank decomposition, it is

intuitive to observe that Eclipse protects connections that are not

included in the low-rank graph,𝐴
lr
. Meanwhile, Eclipse leverages

the primary topology in 𝐴
lr
to train GNNs.

6.2.2 Privacy Protection beyond Assumption. The establishment of

Theorem 1 relies on the assumption that 𝐴 and 𝐴′
share principal

bases. In practice, the effectiveness of the DP guarantee is condi-

tioned by how closely the assumption aligns with the characteristics

of real datasets.

To determine if a graph aligns with the assumption, we can get

the singular value matrix, 𝑆 ′, from 𝐴′
using the projection in Eq(6),

and compare the magnitude of off-diagonal values in 𝑆 ′ with its

diagonal values. We can further adopt the Monte Carlo method to

randomly delete/add one edge in𝐴 for better computation efficiency.

In the worst case among all𝐴′
, if the diagonal values are larger than

the off-diagonals by several orders of magnitude, the graph and

its adjacent will share very similar principal bases. Eclipse will

provide strong privacy protection by using top 𝑟 principal bases

and perturbing the corresponding singular values.

The assumption may fail in extreme cases (See Appendix D for

one extreme example of this case). In such a scenario, the DP guar-

antee may not hold. For real-world datasets used in this paper, such

extreme cases, that adding/deleting one edge results in completely

different principal bases, were non-existent.

Remark 2. Prior work [32] provides theoretical bounds on the
difference in singular values and principal bases (Theorem 2 and 4)
given small perturbation on a matrix. In Eclipse, adjacency matrices
only differ at one edge. Hence, the actual difference in singular values
and principal bases is within the bound established in [32]. We leave
theoretical justification on the assumption of invariance of principal
bases for future work.

397

Proceedings on Privacy Enhancing Technologies 2024(3) Tang et al.

Table 1: Overview of dataset statistics.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6

Chameleon 2,277 36,101 2,325 5

PubMed 19,717 44,338 500 3

Facebook 22,470 171,002 128 4

‘

Dataset Nodes Edges Features Classes

Twitch-ES 4,648 59,382 3,170 2

Twitch-RU 4,385 37,304 3,170 2

Twitch-DE 9,498 153,138 3,170 2

Twitch-FR 6,549 112,666 3,170 2

Twitch-ENGB 7,126 35,324 3,170 2

Twitch-PTBR 1,912 31,299 3,170 2

7 EMPIRICAL EVALUATION
7.1 Evaluation Setup
Datasets. We use 6 standard datasets for the node classification

task used in prior work [20, 29, 40]. In the transductive setting, we

use Cora, Citeseer, Pubmed [31], Chameleon, and Facebook [29]

datasets. Facebook is a social network where nodes represent Face-

book pages (sites) and the links represent mutual likes between

sites. Node features are extracted from the page descriptions pro-

vided by the site owners. Cora, Citeseer, Pubmed, and Chameleon

are citation networks where the nodes are documents and the edges

are citations. The features represent the existence/non-existence of

certain keywords. In the inductive setting, we use Twitch dataset

[29] which is a collection of 6 disjoint social networks. In Twitch

dataset, nodes represent Twitch streamers from different coun-

tries and edges represent their mutual friendships. The features for

each streamer are based on the games played and streaming habits.

Across all graphs, the node features have the same dimension and

semantic meaning. The task is to classify whether a node (streamer)

uses explicit language. We train GNNs on the graph corresponding

to Spain and use other graphs for testing as done previously. Table

1 summarizes the statistics of the datasets. We follow the same data

splits for training for Cora, Citeseer, Chameleon, and Facebook as

considered by the previous works [20, 43]. For Cora, Citeseer, and

Facebook, the training set consists of randomly chosen 20 labels

per class, the test set consists of 1000 nodes and the validation set

consists of 500 labeled examples. Chameleon comes with 10 ran-

dom splits of the nodes with 48% of them used for training, 32% for

validation, and 20% for testing. The entire graph structure is used

for training. For Twitch we do not use any validation set, instead,

we use the models with the lowest training loss.

Model Architectures. We have 4 model types for all our exper-

iments: GCN (without any privacy as a roofline for model perfor-

mance), DPGCN, MLP, LPGNet, and Eclipse. For GCN, we adopt
the standard architecture as described in Section 3.1 along with

ReLU activation and dropout for regularization in every hidden

layer. For MLP, we use a fully-connected neural network with ReLU

activation and dropout in every hidden layer. MLP is by design an

edge privacy preserving model since MLP does not use adjacency

matrix in the training process and instead relies purely on learn-

ing from node features. For LPGNet, we use the same model as in

LPGNet [40] and choose the LPGNet-2 variant which uses 2 hidden

layers and shows higher model accuracy; dropout rate and size

of the hidden layers are hyperparameters that can be tuned. For

Eclipse, we adopt the same architecture as GCN with the adja-

cency matrix perturbed according to procedures as described in

Section 5.3. Specifically, we set rank equal to 20, and further inves-

tigate the effect of rank in Section 7.4. We also compare Eclipse
with the most recent differentially private graph synthesis method

PrivGraph, and the results are deferred to Appendix C. We find

the right hyperparameters by performing a grid search over a set

of possible values in the non-DP setting. We choose the following

values for hyperparameter tuning for all models.

• Learning rate: [0.001, 0.005, 0.01, 0.05]

• Hidden layer size: [16, 64, 256]

• # Hidden layers: [2, 3] for GCN, Eclipse and all MLPs.

• Dropout: [0.1, 0.3, 0.5, 0.8]

Further, we use two kinds of normalization methods of adjacency

matrices for GCN. For Twitch, we use the First Order GCN nor-

malization technique similar to previous works [28](See Eq(2)). For

all other datasets, we use the Augmented Normalized Adjacency

technique (See Eq(3)).

In theDP setting, we evaluate using the optimal hyper-parameters

obtained from the non-DP setting.

Training and Evaluation Details. We adopt cross-entropy

loss and optimize using Adam’s optimizer with weight decay. For

all datasets (except Twitch), we train the models, for 500 epochs

and pick the checkpoint that gives the best performance on the

validation set during training. This helps us measure the privacy

leakage for the model with the best utility. For Twitch, we follow the

same training procedure as in LINKTELLER paper[40] and LPGNet

paper [21] with 200 epochs. We evaluate the node classification

performance using the micro-averaged F1 score following previous

works [12, 46] for all datasets except Twitch. During inference,

node features of a set of test nodes and the adjacency matrix of the

test graph (which is the same as the training graph in transductive

setting, or different from the training graph in inductive setting) are

input into the trained model. The model then outputs the prediction

probability vector and selects the class with the highest probability

as the predicted label for each test node. The accuracy (F1 score)

is computed by comparing the predicted label against the ground-

truth label of the test nodes. For the Twitch dataset, as proposed

by the LINKTELLER paper, a modified F1 score is used, which

computes the F1 score for the rare class due to significant class

imbalance in the dataset. As the task on Twitch dataset is binary

classification, we identify the class with fewer data samples as the

rare class and consider the rare class as the positive class when

calculating the F1 score. We run the training for 5 seeds for all

models and report the averaged results.

Attack Overview.We evaluate Eclipse’s resilience against two
attacks: LINKTELLER [40] and LPA [14]. LINKTELLER establishes

that predictions of two connected nodes are more easily influenced

by changes in one node’s features, compared to the nodes that are

398

Edge Private Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(3)

0.1 0.2 0.5 1 2 4 6 8

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Privacy parameter 𝜖

F1
sc
or
e

(a) Cora

0.1 0.2 0.5 1 2 4 6 8

0.4

0.5

0.6

0.7

Privacy parameter 𝜖

(b) Citeseer

0.1 0.2 0.5 1 2 4 6 8
0.2

0.3

0.4

0.5

0.6

Privacy parameter 𝜖

(c) Chameleon

0.1 0.2 0.5 1 2 4 6 8
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Privacy parameter 𝜖

(d) Facebook

0.1 0.2 0.5 1 2 4 6 8
0.5

0.6

0.7

0.8

Privacy parameter 𝜖

(e) PubMed

MLP GCN DPGCN Eclipse LPGNet

Figure 5: Model utility in transductive setting for various 𝜖. Eclipse achieves much better model utility under high privacy
constraints (𝜖 < 6) compared to DPGCN and LPGNet. Even under strong privacy constraints with 𝜖 < 1, Eclipse still achieves
better performance compared to MLP without using adjacency matrices during training.

0.1 0.2 0.5 1 2 4 6 8

0.4

0.5

0.6

Privacy parameter 𝜖

F1
sc
or
e

(a) Twitch-DE

0.1 0.2 0.5 1 2 4 6 8

0.59

0.6

0.61

0.62

Privacy parameter 𝜖

(b) Twitch-ENGB

0.1 0.2 0.5 1 2 4 6 8
0.2

0.3

0.4

0.5

0.6

Privacy parameter 𝜖

(c) Twitch-FR

0.1 0.2 0.5 1 2 4 6 8
0.2

0.3

0.4

0.5

0.6

Privacy parameter 𝜖

(d) Twitch-PTBR

0.1 0.2 0.5 1 2 4 6 8
0.2

0.25

0.3

0.35

0.4

Privacy parameter 𝜖

(e) Twitch-RU
MLP GCN DPGCN Eclipse LPGNet

Figure 6: Model utility in inductive setting for various 𝜖. Eclipse gives consistent performance under different privacy budgets.
In contrast, on the Twitch-DE dataset1, DPGCN’s performance collapses under strong privacy constraints. LPGNet also shows
poor performance in inductive setting, even under moderate privacy constraints.

not connected. The attacker has access to a set of node features

and their labels which are required during training. The attacker’s

capability also includes the query access to a blackbox GNN model

and the obtained prediction probability for a set of nodes during

inference. The attacker then computes the influence by perturb-

ing the features of a target node and observing the changes in the

prediction probability vector of all other nodes from the GNN’s

outputs. With the influence on all nodes, LINKTELLER can reveal

the exact edges of the graph used during inference. As a result,

GCNs and other GNN architectures that use graph edges as input

are vulnerable to LINKTELLER attacks, that capture the influence

propagated through the edges of the graph for such GCNs.

Another attack we consider is LPA. LPA is a more powerful attack

that makes use of node features and node embedding correlations

to conduct the attack [14] and infer the target graph structure. It

is based on the assumption that nodes with more similar features

tend to be connected, which is true for homophily graphs. LPA has

several different types of attacks based on the knowledge acces-

sible to the attackers, such as node attributes, partial graphs, and

a shadow dataset. In our settings where node features are public

while the graph structure is completely private, we adopt the LPA

attack mode that infers node connections solely based on node

features. Specifically, the LPA attack queries the target model with

the known node features and computes the distance between pos-

teriors (i.e., model output probability vectors). Detailed distance

metrics can be found in Table 13 in [14]. A smaller distance between

two nodes’ posteriors indicates a higher likelihood of having an

edge between them. We follow the protocols of both attacks and

reproduce them in our experiment.

Attack Settings.We follow the same attack procedures set by

LPA and LINKTELLER. For transductive settings, we evaluate the

attacks by how well they can classify existing edges and non-edges

from a randomly sampled sub-graph. Specifically, we construct a

balanced set by sampling an equal number of edges and non-edges

(500 in our experiments). For inductive settings, we sample a set of

500 inference nodes that are not seen previously during training,

and create a subgraph. We then evaluate the attacks on all the edges

and non-edges in the subgraph. Note that the number of edges and

non-edges can be different in the inductive setting. To understand

their attack on node degree distribution, as done in LINKTELLER,

we also break down the attack performance into low-degree and

high-degree nodes and report the results in Section 7.3.

We use Area Under Receiver Operating Curve (AUC) to measure the

attack performance, which is used in LPA and LINKTELLER works.

For graph-structured data, the current methods measure AUC by

how well an attack can separate a randomly sampled edge from a

non-edge. Higher AUC indicates that the attack has a higher success

rate of identifying the edges used by the model, or equivalently,

the model has lower resilience to the attack. We report the average

performance of each attack across 5 runs with different seeds.

7.2 Privacy-Utility Tradeoff of Eclipse
Wefirst show the privacy-utility tradeoff of Eclipse in transductive
and inductive settings. We train GCN models with different privacy

budgets 𝜖 , ranging from 0.1 to 8. Small 𝜖 indicates strong privacy

constraints. Besides the baseline methods (i.e., DPGCN, LPGNet),

1
On Twitch-DE, utility of MLP and GCN are the same and close to that of LPGNet.

399

Proceedings on Privacy Enhancing Technologies 2024(3) Tang et al.

we also train GCNs with the original adjacency matrix, and MLPs

without using the adjacency information at all.

7.2.1 Transductive Setting. Figure 5 shows model utility (F1 score)

versus privacy budget (𝜖) in transductive setting. We observe that

(1) Compared to DPGCN and LPGNet, Eclipse achieves much

better model utility under strong privacy constraints. For in-

stance, given 𝜖 < 1, both DPGCN and LPGNet suffer drastic

performance drops on all datasets (except Facebook). How-

ever, Eclipse’s performance is not significantly affected.

(2) Under strong privacy constraints with 𝜖 < 1, Eclipse still
achieves better model utility compared to MLP that does

not use adjacency information during training. The obser-

vations indicate that Eclipse is very effective in preserving

graph information under high privacy constraints, leading

to overall performance improvement.

(3) When the epsilon value is large (𝜖 ≥ 8), DPGCN achieves

better model utility than Eclipse. However, prior works like
LPGNet [21] (Sec 3) demonstrate that the graph in DPGCN

is barely perturbed with large epsilons and essentially the

same as the original graph. Thus large epsilons offer lit-

tle privacy protection in the case of DPGCN. In contrast,

Eclipse protects privacy by low-rank decomposition and

DP noise on singular values. With large epsilons, DP noise

fades. However, low-rank decomposition perturbs the graph,

and the final model performance is capped at accuracy using

a low-rank graph without DP.

Note that for the Facebook dataset, since it is a high homophily

graph, nodes with similar features tend to be connected. Therefore,

all privacy-preserving training methods give marginal performance

improvement by using the edge information from the adjacency

matrix. Similar observations also hold on PubMed. Even with the

full adjacency matrix, the model utility is marginally improved

compared to MLP without using the adjacency matrix. Methods

like LPGNet, though, also give slightly better model utility, and

significantly compromise protections on edges. On the other hand,

Eclipse can bring much-improved privacy protection, with only

slightly affecting the model utility, which is more useful in practice.

7.2.2 Inductive Setting. Figure 6 showsmodel utility versus privacy

budget in inductive setting. Eclipse gives a consistent performance

under different privacy budgets, which is similar to its performance

in transductive setting. However, for LPGNet, due to the highly

compressed graph representation, its performance is capped even

under moderate privacy constraints, different from that in transduc-

tive setting. Surprisingly, the accuracy of DPGCN is stable when

privacy budget varies, and even, for Twitch-FR, the accuracy in-

creases when privacy budget becomes smaller, which is in sharp

contrast to its performance in transductive setting. This may hap-

pen because adding noise to edges may generalize models better for

DPGCN. We believe Twitch-FR benefitted from this noise. However,

Twitch-DE is an exception where DPGCN’s performance quickly

collapses with decreasing 𝜖 . In addition, note that the utility dip at

𝜖 = 6 is observed on Twitch-ENGB/FR/PTBR in inductive setting

except for Twitch-DE dataset. Similar observations are also present

in DPGCN [40] (Fig 3(a)). Eclipse targets a setting where edge

information is private during training and testing. We also measure

accuracy when models are trained using Eclipse but test graphs
are unperturbed, and provide the detailed results in Appendix E.

7.3 Resilience Against Privacy Attacks
We further evaluate Eclipse against two link stealing attacks: LPA

and LINKTELLER attacks in both transductive and inductive set-

tings. To investigate themodel utility versus the attack performance,

we adjust the privacy parameter 𝜖 and respectively evaluate the

model’s utility and the attacker’s performance.

7.3.1 Transductive Setting. For LPA attack, the top row in Figure 7

shows the model utility versus the LPA attack performance in trans-

ductive setting. We choose LPA because it infers edges based on the

correlation of node features. Note that different edge perturbations

can affect LPA result, because LPA uses similarity of posterior rather

than raw node features, to analyze potential edges. The posterior is

affected by node features, and aggregation operation in GCN model

given edge information. Hence, LPA’s results depend on the model

and perturbation methods on edges. We also perform edge attack

using raw node feature similarity, and provide the detailed results

in Appendix F. As shown in the top row in Figure 7, the LPA attack

gives an AUC higher than 0.5 (i.e. random guess) for MLP which

does not use adjacency matrix at all. It indicates that node features

and edges share certain common graph information. Therefore,

certain connectivity can be inferred via node features. Nevertheless,

Eclipse, as well as the baseline methods, aim to protect additional

information in the adjacency matrix.

Importantly, Eclipse shows stronger resilience against LPA at-

tacks compared to DPGCN and LPGNet. Specifically, we observe

that Eclipse gives a lower AUC under the same F1 score compared

to other baselines. On the other hand, if restricting the attack AUC,

Eclipse also achieves a higher F1 score. For instance, on the Cora

dataset, with an attack AUC of 0.8, Eclipse improves the model

utility by 9% compared to DPGCN, and 4% compared to LPGNet.

Note that for the Facebook dataset, due to its high homophily

property, the LPA attack recovers most edges by analyzing node

features. This indicates that the adjacency matrix of the Facebook

graph only encodes common information about the graph, as can

be inferred from node features. That is, the adjacency matrix pro-

vides little additional private information about the graph. For the

PubMed dataset, as even the full adjacency matrix provides lim-

ited performance gains, we mainly focus on edge protection while

slightly trading off model utility.

For LINKTELLER attack, the bottom row in Figure 7 shows the

model utility versus the LINKTELLER attack performance. Com-

pared to DPGCN, Eclipse improves resilience against the LINK-

TELLER attack while maintaining the model utility. On the other

hand, LPGNet seems immune to LINKTELLER attack due to no raw

graph information used in the model training. However, it does not

indicate that LPGNet is effective in protecting the graph informa-

tion. On the contrary, it is due to the fact that the LINKTELLER

attack is limited as opposed to other attacks, such as the LPA attack,

that fully explore node features to improve the attack performance.

As shown in the top row, with additional knowledge from node

features, LPGNet quickly loses its capability of protecting the graph.

400

Edge Private Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(3)
LP

A

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.6

0.7

0.8

0.9

F1 score

A
U
C

(a) Cora

0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

F1 score

(b) Citeseer

0.2 0.3 0.4 0.5

0.5

0.6

0.7

F1 score

(c) Chameleon

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

F1 score

(d) Facebook

0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

F1 score

(e) PubMed

LI
N
K
TE

LL
ER

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.6
0.7
0.8
0.9
1

F1 score

A
U
C

(f) Cora

0.4 0.5 0.6 0.7

0.6
0.7
0.8
0.9
1

F1 score

(g) Citeseer

0.2 0.3 0.4 0.5

0.6

0.7

0.8

0.9

F1 score

(h) Chameleon

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.6
0.7
0.8
0.9
1

F1 score

(i) Facebook

0.5 0.6 0.7 0.8

0.5
0.6
0.7
0.8
0.9
1

F1 score

(j) PubMed

AUC of MLP AUC of GCN F1 of MLP F1 of GCN DPGCN Eclipse LPGNet

Figure 7: Attack AUC vs. Utility F1 score. in transductive setting. The top row shows LPA attacks, while the bottom row shows
LINKTELLER attacks. For LPA attacks, Eclipse achieves better model performance with the same attack AUC compared to
other baselines. On the other hand, with the same model performance, Eclipse shows more resiliency against LPA attacks.

0.1 0.2 0.4 0.6 0.8 0.9

0100

500

1000

percent of degree changes

#n
od

es

(a) low degree nodes

0.1 0.2 0.4 0.6 0.8 0.9

0
100

300

500

percent of degree changes

(b) high degree nodes

Figure 8: Node degree change on Cora dataset (1621 low de-
gree nodes, 1087 high degree nodes). Close to 80% of low-
degree nodes have their node degreemodified by 95% ormore,
while only around 54% of high-degree nodes have their node
degree changed by at least 95%.

7.3.2 Attack Performance Breakdown in terms of Low-Degree and
High-Degree Nodes. We analyze the effect of low-rank decomposi-

tion on nodes with different degrees. Following prior works, low

(or high) degree nodes refer to nodes with node degree no larger

than (or no smaller than) a threshold value 𝑑
low

(or 𝑑
high

). The

values 𝑑
low

and 𝑑
high

are chosen empirically based on the graph.

We take Cora dataset as an example and follow the threshold values

set for Cora in prior works, where 𝑑
low

= 3 and 𝑑
high

= 4. Based

on these threshold values, 1621 out of 2708 nodes in Cora are low-

degree nodes, and the remaining 1087 nodes are high-degree nodes.

Figure 8 shows the histogram of node degree change for nodes

with different node degrees on the Cora dataset. The percentage

change in node degree is plotted on the x-axis, and the number

of nodes in each bin is shown on the y-axis. With the low-rank

decomposition, 80% of low-degree nodes have their node degree re-

duced by 95% or more, while only around 54% of high-degree nodes

are highly affected. Therefore, the low-rank reconstruction already

removes substantial number of edges before the DP perturbation.

Importantly, it causes more impact on low-degree nodes. Figure

9 shows a detailed LPA attack performance on nodes of different

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.6

0.7

0.8

0.9

F1 score

A
U
C

(a) high degree nodes

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.6

0.7

0.8

0.9

F1 score

(b) low degree nodes
AUC of MLP AUC of GCN F1 of MLP F1 of GCN

DPGCN LPGNet Eclipse w/ low-rank only

Figure 9: LPA Attack AUC vs. Utility F1 score. in transductive
setting breakdown for low and high degree nodes in the Cora
dataset.

node degrees. We only show LPA attack performance because it is

a stronger attack on edges than LINKTELLER attack as discussed

in Sec. 7.3.1. First, Eclipse with only a low-rank graph (no DP

perturbation) already provides edge protection. Importantly, for

low- and high-degree nodes, Eclipse without DP achieves better

model utility than other baselines given the same attack AUC. The

reason is that the low-rank decomposition in Eclipse preserves the
primary topology for better model utility and removes secondary

edges in graphs for edge protection. We further observe that LPA at-

tack performs better on high-degree nodes as expected, as a higher

percentage of edges from high-degree nodes are preserved in the

low-rank adjacency matrix. However, for low-degree nodes, the

attack performance is close to the performance of MLP, which does

not use the adjacency matrix during training. Therefore, the results

show Eclipse provides stronger protection on low-degree nodes.

For real-world graph data, a high-degree node denotes a centroid

in a graph, like a well-known person in social networks. Common

DP mechanisms are usually effective in protecting the connectiv-

ity of high-degree nodes. However, low-degree nodes are hard to

401

Proceedings on Privacy Enhancing Technologies 2024(3) Tang et al.
LP

A

0.4 0.5 0.6

0.5

0.6

F1 score

A
U
C

(a) Twitch-DE

0.58 0.6 0.62

0.5

0.6

F1 score

(b) Twitch-ENGB

0.3 0.4 0.5
0.4

0.5

0.6

F1 score

(c) Twitch-FR

0.3 0.4 0.5
0.45

0.5

0.55

0.6

F1 score

(d) Twitch-PTBR

0.2 0.25 0.3
0.4

0.5

0.6

F1 score

(e) Twitch-RU

LI
N
K
TE

LL
ER

0.4 0.5 0.6

0.5
0.6
0.7
0.8
0.9
1

F1 score

A
U
C

(f) Twitch-DE

0.58 0.6 0.62

0.5
0.6
0.7
0.8
0.9
1

F1 score

(g) Twitch-ENGB

0.3 0.4 0.5

0.5
0.6
0.7
0.8
0.9
1

F1 score

(h) Twitch-FR

0.3 0.4 0.5

0.5
0.6
0.7
0.8
0.9
1

F1 score

(i) Twitch-PTBR

0.2 0.25 0.3

0.5
0.6
0.7
0.8
0.9
1

F1 score

(j) Twitch-RU

AUC of MLP AUC of GCN F1 of MLP F1 of GCN DPGCN Eclipse LPGNet

Figure 10: Attack AUC vs. Utility F1 score. in inductive setting for low degree nodes.

LP
A

0.6 0.7 0.8
0.7

0.8

0.9

F1 score

A
U
C

(a) Cora

0.55 0.6 0.65 0.7 0.75
0.7

0.8

0.9

F1 score

(b) Citeseer

0.4 0.5 0.6
0.5

0.6

0.7

F1 score

(c) Chameleon

LI
N
K
TE

LL
ER

0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

1

F1 score

A
U
C

(d) Cora

0.55 0.6 0.65 0.7 0.75

0.5

0.6

0.7

0.8

0.9

1

F1 score

(e) Citeseer

0.4 0.5 0.6

0.5

0.6

0.7

0.8

0.9

F1 score

(f) Chameleon
AUC of MLP AUC of GCN F1 of MLP F1 of GCN Rank =10 Rank =20 Rank =50 Rank =200

Figure 11: Effect of the rank on Attack AUC vs. F1 score.

protect [30]. Eclipse fills this gap by filtering out connections of

low-degree nodes with low-rank reconstruction.

7.3.3 Inductive Setting. Figure 10 shows the attack performance

on low-degree nodes in inductive setting. We observe that for most

datasets, Eclipse achieves much better model utility while still

maintaining similar resilience against LPA and LINTELLER attacks.

Specifically, compared to DPGCN, Eclipse archives comparable

model utility but with much lower attack AUC, indicating that

Eclipse achieves a much better tradeoff between model perfor-

mance and edge privacy leakage. Unlike LPGNet, which sacrifices

significant model performance with low AUC, model performance

using Eclipse reaches close to that of GCN with the original adja-

cency matrix. However, Twitch-RU is an exception where model

utility of Eclipse is lower than both DPGCN and LPGNet given

similar attack AUC. This may happen because Twitch-RU graph

has lower node degree(1-3 edges on average) than other graphs.

The low rank clipped many edges causing the graph to lose some

topology and thus lower the model utility.

7.4 Effect of Rank
In this experiment, we investigate how changing the rank affects the

accuracy/privacy performance of our proposed method Eclipse.
We vary rank from 10 to 200 and report attack AUC vs. F1 score

under 5 different privacy budgets 𝜖 ∈ {0.1, 0.5, 1, 5, 10}. We run

the target model and the attack model for 5 seeds. The results are

shown in Figure 11. We observe that as rank increases, model utility

improves. On the other hand, the AUC of LPA and LINKTELLER

attack also increases across all three datasets in transductive setting.

The reason is that, as we increment rank, more edges are included in

402

Edge Private Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(3)

the low-rank graph, leading to potential leakage after DP perturba-

tion. Specifically, during training, more true edges will be involved,

resulting in an increasing number of edges in the original graph

being reconstructed. As a result, model utility is improved. How-

ever, more true edges, that are included in the perturbed adjacency

matrix, further reveal the node influence and node feature correla-

tions during training and inference, which compromises the trained

model’s resilience against attacks. We also observed that while the

attack AUC increases with the rank of the perturbed graph, the

attack accuracy never exceeds that of a non-private GCN model,

meaning that the low-rank reconstruction still removes some of

the information in the original graph effectively.

Based on the observation above, we suggest a practical approach

for selecting the appropriate rank to train models using Eclipse
with reasonable attack AUC. For instance, we set an upper threshold

(e.g., 0.65) for the attack AUC (e.g., LINKTELLER attack), select the

largest possible rank (e.g., 20 for Cora dataset), and train the target

model that satisfies the privacy constraint measured by the attack

AUC. Then, we evaluate the model utility under the selected rank.

8 CONCLUSION
In this paper, we presented Eclipse, a new privacy-preserving

GNN training algorithm that ensures edge-level differential privacy

for sensitive graph edges. Eclipse achieves better privacy-utility
tradeoff compared to current state-of-the-art privacy-preserving

GNN training methods. Eclipse trains GNNs with a low-rank for-

mat of the graph via singular value decomposition. The low-rank

graph removes many edges from the original graph, while still

maintaining enough of the graph structure for better model utility.

We further use Gaussian mechanism on the low-rank singular val-

ues of the graph’s adjacency matrix to protect edges in the low-rank

graph. Extensive experiments on real-world graph datasets show

that our method achieves good model utility while providing strong

privacy protection on edges and outperforms existing methods. We

also explored and evaluated the impact of node degree distribution

and rank on the attack resilience of our method.

In future work, we will explore providing theoretical justification

on the assumption of invariance of principal bases. We will also

consider a more adaptive rank selection scheme to further improve

privacy-utility tradeoffs when training GNNs. While Eclipse targets

scenarios where edge information is private, commonly seen in

real-world applications [21, 40], we believe that privacy protection

using low-rank decomposition can be extended to node attributes,

by exploiting potential low-rank properties in node attributes.

ACKNOWLEDGMENTS
This material is based upon work supported by Defense Advanced

Research Projects Agency (DARPA) under Contract Nos.

HR001120C0088, NSF award number 2224319, REAL@USC-Meta

center, and VMware gift. The views, opinions, and/or findings ex-

pressed are those of the author(s) and should not be interpreted

as representing the official views or policies of the Department of

Defense or the U.S. Government.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

ACM SIGSAC conference on computer and communications security. ACM, Vienna,

308–318.

[2] Morgane Ayle, Jan Schuchardt, Lukas Gosch, Daniel Zügner, and Stephan Gün-

nemann. 2023. Training Differentially Private Graph Neural Networks with

Random Walk Sampling. arXiv:2301.00738 [cs.LG]

[3] Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta,

Gaurav Aggarwal, and Prateek Jain. 2022. Node-Level Differentially Private

Graph Neural Networks. arXiv:2111.15521 [cs.LG]

[4] Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta,

Gaurav Aggarwal, and Prateek Jain. 2022. Node-Level Differentially Private

Graph Neural Networks. arXiv:2111.15521 [cs.LG]

[5] Zulong Diao, Xin Wang, Dafang Zhang, Yingru Liu, Kun Xie, and Shaoyao He.

2019. Dynamic Spatial-Temporal Graph Convolutional Neural Networks for

Traffic Forecasting. Proceedings of the AAAI Conference on Artificial Intelligence
33, 01 (Jul. 2019), 890–897. https://doi.org/10.1609/aaai.v33i01.3301890

[6] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. 2021. Quantifying Privacy

Leakage in Graph Embedding. In MobiQuitous 2020 - 17th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
(Darmstadt, Germany) (MobiQuitous ’20). Association for Computing Machinery,

New York, NY, USA, 76–85. https://doi.org/10.1145/3448891.3448939

[7] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-

ing Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography, Shai
Halevi and Tal Rabin (Eds.). Springer, Berlin, Heidelberg, 265–284.

[8] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[9] Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E.

Papalexakis. 2020. All You Need Is Low (Rank): Defending Against Adversarial At-

tacks on Graphs. In Proceedings of the 13th International Conference on Web Search
and DataMining (Houston, TX, USA) (WSDM ’20). Association for ComputingMa-

chinery, New York, NY, USA, 169–177. https://doi.org/10.1145/3336191.3371789

[10] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In The world wide web
conference. Association for Computing Machinery, New York, 417–426.

[11] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, PMLR, Sydney, 1263–1272.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017), 1025–1035.

[13] Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. 2021. DarKnight: An

Accelerated Framework for Privacy and Integrity Preserving Deep Learning

Using Trusted Hardware. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture (Virtual Event, Greece) (MICRO ’21). Association
for Computing Machinery, New York, NY, USA, 212–224. https://doi.org/10.

1145/3466752.3480112

[14] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and Yang Zhang.

2021. Stealing links from graph neural networks. In 30th USENIX Security Sym-
posium (USENIX Security 21). USENIX, Virtual, 2669–2686.

[15] Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun Shen, and Yang Zhang. 2021.

Node-Level Membership Inference Attacks Against Graph Neural Networks.

arXiv:2102.05429 [cs.CR]

[16] Yani Ioannou, Duncan P. Robertson, Jamie Shotton, Roberto Cipolla, and Anto-

nio Criminisi. 2016. Training CNNs with Low-Rank Filters for Efficient Image

Classification. In 4th International Conference on Learning Representations, ICLR,
Yoshua Bengio and Yann LeCun (Eds.). OpenReview.net, San Juan, Puerto Rico,

16 pages. http://arxiv.org/abs/1511.06744

[17] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up

convolutional neural networks with low rank expansions. British Machine Vision
Conference (BMVC) 20, 4 (2014), 12 pages.

[18] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev.

2014. Private Analysis of Graph Structure. ACM Trans. Database Syst. 39, 3,
Article 22 (oct 2014), 33 pages. https://doi.org/10.1145/2611523

[19] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam

Smith. 2013. Analyzing Graphs with Node Differential Privacy. In Theory of
Cryptography, Amit Sahai (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

457–476.

[20] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, Toulon, 14 pages. https://openreview.net/forum?

id=SJU4ayYgl

[21] Aashish Kolluri, Teodora Baluta, Bryan Hooi, and Prateek Saxena. 2022. LPGNet:

Link Private Graph Networks for Node Classification. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security (Los Angeles,

CA, USA) (CCS ’22). Association for Computing Machinery, New York, NY, USA,

1813–1827. https://doi.org/10.1145/3548606.3560705

403

https://arxiv.org/abs/2301.00738
https://arxiv.org/abs/2111.15521
https://arxiv.org/abs/2111.15521
https://doi.org/10.1609/aaai.v33i01.3301890
https://doi.org/10.1145/3448891.3448939
https://doi.org/10.1145/3336191.3371789
https://doi.org/10.1145/3466752.3480112
https://doi.org/10.1145/3466752.3480112
https://arxiv.org/abs/2102.05429
http://arxiv.org/abs/1511.06744
https://doi.org/10.1145/2611523
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3548606.3560705

Proceedings on Privacy Enhancing Technologies 2024(3) Tang et al.

[22] Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav Balasubramanian, and

Murali Annavaram. 2021. Origami Inference: Private Inference Using Hardware

Enclaves. In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD).
78–84. https://doi.org/10.1109/CLOUD53861.2021.00021

[23] YueNiu, Ramy E. Ali, and SalmanAvestimehr. 2022. 3LegRace: Privacy-Preserving

DNN Training over TEEs and GPUs. Proc. Priv. Enhancing Technol. 2022, 4 (2022),
183–203. https://doi.org/10.56553/popets-2022-0105

[24] Yue Niu, Ramy E. Ali, Saurav Prakash, and Salman Avestimehr. 2023.

All Rivers Run to the Sea: Private Learning with Asymmetric Flows.

arXiv:2312.05264 [cs.CR]

[25] Yue Niu, Saurav Prakash, Souvik Kundu, Sunwoo Lee, and Salman Avestimehr.

2023. Federated Learning of Large Models at the Edge via Principal Sub-Model

Training. arXiv:2208.13141 [cs.LG]

[26] Iyiola E Olatunji, Mandeep Rathee, Thorben Funke, and M. Khosla. 2023. Private

Graph Extraction via Feature Explanations. In Proceedings on Privacy Enhancing
Technologies 2023(2). PETs, Lausanne, Switzerland, 59–78. 23rd Privacy Enhancing
Technologies Symposium, PETS 2023 ; Conference date: 10-07-2023 Through

15-07-2023.

[27] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,

and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale

molecular data. Advances in Neural Information Processing Systems 33 (2020),

12559–12571.

[28] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropE-

dge: Towards Deep Graph Convolutional Networks on Node Classification.

arXiv:1907.10903 [cs.LG]

[29] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed

node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.
[30] Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-

Perez. 2023. GAP: Differentially Private GraphNeural Networkswith Aggregation

Perturbation. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX
Association, Anaheim, CA, 3223–3240. https://www.usenix.org/conference/

usenixsecurity23/presentation/sajadmanesh

[31] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[32] G. W. Stewart. 1990. Perturbation theory for the singular value decomposition.
Technical Report. University of Maryland, College Park, USA.

[33] Tingting Tang, Ramy E. Ali, Hanieh Hashemi, Tynan Gangwani, Salman Aves-

timehr, and Murali Annavaram. 2022. Adaptive Verifiable Coded Computing:

Towards Fast, Secure and Private Distributed Machine Learning. In 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 628–638.
https://doi.org/10.1109/IPDPS53621.2022.00067

[34] Florian Tramèr and Dan Boneh. 2019. Slalom: Fast, Verifiable and Private Execu-

tion of Neural Networks in Trusted Hardware. arXiv preprint arXiv:1806.03287.

In International Conference on Learning Representations (ICLR). https://arxiv.org/

abs/1806.03287

[35] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia,

and Jian Yu. 2020. Traffic Flow Prediction via Spatial Temporal Graph Neural

Network. In Proceedings of The Web Conference 2020 (Taipei, Taiwan) (WWW
’20). Association for Computing Machinery, New York, NY, USA, 1082–1092.

https://doi.org/10.1145/3366423.3380186

[36] Yongqin Wang, Rachit Rajat, and Murali Annavaram. 2022. MPC-Pipe: an Ef-

ficient Pipeline Scheme for Secure Multi-party Machine Learning Inference.

arXiv:2209.13643 [cs.CR]

[37] Yongqin Wang, Pratik Sarkar, Nishat Koti, Arpita Patra, and Murali Annavaram.

2023. CompactTag: Minimizing Computation Overheads in Actively-Secure MPC

for Deep Neural Networks. arXiv:2311.04406 [cs.CR]

[38] Yongqin Wang, G. Edward Suh, Wenjie Xiong, Benjamin Lefaudeux, Brian Knott,

Murali Annavaram, and Hsein-Hsin S. Lee. 2022. Characterization of MPC-

based Private Inference for Transformer-based Models. In 2022 IEEE International
Symposium on Performance Analysis of Systems and Software. IEEE Computer

Society, Los Alamitos, CA, USA, 187–197. https://doi.org/10.1109/ISPASS55109.

2022.00025

[39] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Tao Qi, Yongfeng Huang, and Xing

Xie. 2022. A federated graph neural network framework for privacy-preserving

personalization. Nature Communications 13, 1 (June 2022), 10 pages. https:

//doi.org/10.1038/s41467-022-30714-9

[40] Fan Wu, Yunhui Long, Ce Zhang, and Bo Li. 2022. LINKTELLER: Recovering

Private Edges from Graph Neural Networks via Influence Analysis. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, SAN FRANCISCO, 2005–2024.

https://doi.org/10.1109/SP46214.2022.9833806

[41] Hui Xu, Liyao Xiang, Jiahao Yu, Anqi Cao, and Xinbing Wang. 2021. Speedup

Robust Graph Structure Learning with Low-Rank Information. In Proceedings of
the 30th ACM International Conference on Information & Knowledge Management
(Virtual Event, Queensland, Australia) (CIKM ’21). Association for Computing

Machinery, New York, NY, USA, 2241–2250. https://doi.org/10.1145/3459637.

3482299

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
New Orleans, 17 pages. https://openreview.net/forum?id=ryGs6iA5Km

[43] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, PMLR, New York, 40–48.

[44] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,

and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (London, United Kingdom)

(KDD ’18). Association for Computing Machinery, New York, NY, USA, 974–983.

https://doi.org/10.1145/3219819.3219890

[45] Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi Kalan, Mahdi

Soltanolkotabi, and Salman A Avestimehr. 2019. Lagrange coded computing:

Optimal design for resiliency, security, and privacy. In The 22nd International
Conference on Artificial Intelligence and Statistics. PMLR, 1215–1225.

[46] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning Method.

arXiv:1907.04931 [cs.LG]

[47] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural

Networks. In Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red

Hook, NY, USA, 5171–5181.

[48] Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. 2022. Infer-

ence attacks against graph neural networks. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX, Boston, 4543–4560.

[49] Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu,

and Enhong Chen. 2021. GraphMI: Extracting Private Graph Data from Graph

Neural Networks. In Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21. IJCAI, Virtual, 3749–3755. https://doi.org/10.

24963/ijcai.2021/516

[50] Chen Zhe and Aixin Sun. 2021. DP-GCN: Node Classification Based on Both

Connectivity and Topology Structure Convolutions for Risky Seller Detection.

arXiv:2112.04757 [cs.SI]

[51] Ke Zhou, Hongyuan Zha, and Le Song. 2013. Learning Social Infectivity in Sparse

Low-rank Networks Using Multi-dimensional Hawkes Processes. In Proceedings
of the Sixteenth International Conference on Artificial Intelligence and Statistics,
Carlos M. Carvalho and Pradeep Ravikumar (Eds.), Vol. 31. PMLR, Scottsdale,

Arizona, 641–649. https://proceedings.mlr.press/v31/zhou13a.html

A PROOF OF THEOREM 1
Theorem 1. Given 𝐴 and 𝐴′ share the same principal bases, with

Gaussian noise,

Normal
(
0,Δ

√︁
2 ln(1.25/𝛿)/𝜖lr

)
,

added to singular values; and Laplacian noise,

Laplacian (0, 1/𝜖e),
added to the edge count, the perturbed low-rank 𝐴plr using Eclipse
satisfies (𝜖, 𝛿)-edge DP with 𝜖 = 𝜖lr + 𝜖e.

Proof. The proof follows the standard Gaussian mechanism and

the post-processing and composition rule of the difference privacy

[8]. Eclipse consists of two randomized mechanisms: A Gauss-

ian mechanism on singular values and a Laplacian mechanism on

the edge count. First, we show that perturbed singular values 𝑠 is

(𝜖𝑙𝑟 , 𝛿)-edge differentially private.

Given sensitivity Δ, with Gaussian noise Normal(0, Δ
√
2 ln(1.25/𝛿)

𝜖𝑙𝑟
)

adding to singular values, 𝑠 (line 9 in Algorithm 1) is (𝜖𝑙𝑟 , 𝛿)-edge
differentially private based on the standard Gaussian mechanism.

When obtaining a low-rank 𝐴
lr
(line 11 in Algorithm 1), as it is

the post-processing given 𝑠 and shared principal bases, it does not

change the differential privacy budget. Hence, the low-rank recon-

struction follows the same privacy budget as 𝑠 .

Then, for the Laplacian mechanism on the edge count (line 5 in

Algorithm 1), 𝐸 satisfied (𝜖𝑒 , 0)-edge differentially private.

404

https://doi.org/10.1109/CLOUD53861.2021.00021
https://doi.org/10.56553/popets-2022-0105
https://arxiv.org/abs/2312.05264
https://arxiv.org/abs/2208.13141
https://arxiv.org/abs/1907.10903
https://www.usenix.org/conference/usenixsecurity23/presentation/sajadmanesh
https://www.usenix.org/conference/usenixsecurity23/presentation/sajadmanesh
https://doi.org/10.1109/IPDPS53621.2022.00067
https://arxiv.org/abs/1806.03287
https://arxiv.org/abs/1806.03287
https://doi.org/10.1145/3366423.3380186
https://arxiv.org/abs/2209.13643
https://arxiv.org/abs/2311.04406
https://doi.org/10.1109/ISPASS55109.2022.00025
https://doi.org/10.1109/ISPASS55109.2022.00025
https://doi.org/10.1038/s41467-022-30714-9
https://doi.org/10.1038/s41467-022-30714-9
https://doi.org/10.1109/SP46214.2022.9833806
https://doi.org/10.1145/3459637.3482299
https://doi.org/10.1145/3459637.3482299
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3219819.3219890
https://arxiv.org/abs/1907.04931
https://doi.org/10.24963/ijcai.2021/516
https://doi.org/10.24963/ijcai.2021/516
https://arxiv.org/abs/2112.04757
https://proceedings.mlr.press/v31/zhou13a.html

Edge Private Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(3)

Given a low-rank𝐴
lr
and the edge count 𝐸, we apply binary quanti-

zation (line 16 in Algorithm 1) to obtain the final low-rank adjacency

matrix 𝐴
plr
. By the composition theorem and the post-processing

rule of differential privacy, we obtain the final privacy guarantee

𝜖 = 𝜖𝑙𝑟 + 𝜖𝑒 , 𝛿 = 𝛿 + 0.

Hence, the perturbed low-rank 𝐴
plr

using Eclipse guarantees

(𝜖, 𝛿)-edge differential privacy. □

B COSINE SIMILARITY OF PRINCIPAL BASES
FOR OTHER DATASETS

Figure 12 show the cosine similarity of principal bases between

adjacent graphs on the larger Facebook dataset. Similar as Figure 2,

principal bases between adjacent graphs are almost the same.

1 5 10 15 20

0.5

1

Index

Si
m
ila
ri
ty

𝑈

𝑉

Figure 12: Cosine similarity of principal basis vectors in the
Facebook dataset.

C PRIVACY-UTILITY TRADEOFF COMPARED
WITH PRIVGRAPH

PrivGraph is a graph synthesis algorithm that exploits community

information to publish a synthetic graph under DP guarantee. Priv-

Graph aims to reduce the perturbation noise to the adjacencymatrix

while limiting the information loss during encoding the graph data,

which is similar to the goal of Eclipse. To compare Eclipse’s
perturbation method to PrivGraph, we follow PrivGraph’s pro-

cedure to generate a synthetic graph and use it to train a GCN

model on Chameleon (the common dataset used in Eclipse and

PrivGraph). We try 4 different privacy budgets 𝜖 ∈ {0.5, 1, 2, 3}
following PrivGraph’s experimental setup, and report the GCN

model’s test accuracy in Figure 13. We found that PrivGraph out-

performs DPGCN which perturbs the adjacency matrix directly.

However, given the same privacy budget, PrivGraph achieves lower

test accuracy than Eclipse. One reason is that PrivGraph relies

on community information when reconstructing edges. However,

Chameleon is considered a heterophilous dataset where the fea-

tures and edges do not correlate well with the ground-truth labels

(clusters/communities). The community detection algorithm used

in PrivGraph cannot effectively capture connection information

for such heterophilous graph. On the other hand, Eclipse uses the
low-rank method to preserve the primary topology, which is inde-

pendent of how closely edges and community information correlate.

D WHENWILL THE ASSUMPTION FAIL?
Consider a fully connected graph 𝐺𝐹 consisting of 3 nodes only,

with its adjacency matrix denoted as 𝐴𝐹 . Upon SVD, we obtain the

0.5 1 2 3

0.2

0.3

0.4

0.5

0.6

Privacy parameter 𝜖

MLP

GCN

DPGCN

Eclipse

LPGNet

PrivGraph

Figure 13: Model utility on Chameleon dataset. Eclipse
achieves higher accuracy compared to DPGCN, LPGNet, and
PrivGraph, while PrivGraph performs better than DPGCN.

singular vectors and singular values as shown below. To obtain

its neighboring graph 𝐺 ′
𝐹
, we remove the edge between node 1

and node 2, the resulting adjacency matrix 𝐴′
𝐹
and its singular

vectors and singular values can be found as shown below. We can

see that 𝐺𝐹 and 𝐺 ′
𝐹
do not share principal bases. However, such

extreme cases, where adding/deleting one edge results in completely

different principal bases, are not observed in real-world datasets

used in this paper.

𝐴𝐹
𝑆𝑉𝐷−−−−→ 𝑈𝐹 · 𝑆𝐹 ·𝑉𝐹

0 1 1

1 0 1

1 1 0

 𝑆𝑉𝐷−−−−→

0.58 −0.71 −0.41
0.58 0.71 −0.41
0.58 0 0.82

 ·

2 0 0

0 1 0

0 0 1

 ·

0.58 0.71 −0.41
0.58 −0.71 −0.41
0.58 0 −0.82

𝐴′
𝐹

𝑆𝑉𝐷−−−−→ 𝑈 ′
𝐹 · 𝑆 ′𝐹 ·𝑉 ′

𝐹

0 0 1

0 0 1

1 1 0

 𝑆𝑉𝐷−−−−→

0.71 0 −0.71
0.71 0 0.71

0 1 0

 ·

1.41 0 0

0 1.41 0

0 0 0

 ·

0 0.71 −0.71
0 0.71 0.71

1 0 0

E UNPERTURBED TEST GRAPH
Eclipse targets a setting where edge information is private during

training and testing, commonly seen in edge-DP literature [21, 40].

We also measure accuracy when models are trained using Eclipse
but test graphs are unperturbed and report the test accuracy in Table

2. We use Twitch dataset for inductive settings where training and

test graphs differ. We observe that Eclipse is generally robust to

test graph perturbations. Both unperturbed and perturbed graphs

provide similar performance.

F ATTACK USING NODE FEATURE
SIMILARITY

We perform edge attack using raw node feature similarity and

report the attack AUC as well as the AUC drop compared to LPA in

Table 3. Not surprisingly using only node features, attack AUC is

405

Proceedings on Privacy Enhancing Technologies 2024(3) Tang et al.

generally lower than that achieved with LPA (brown-dashed lines

Figure 7), using model output similarity.

Table 2: Test Accuracy when test graphs are unperturbed and
perturbed.

Dataset 𝜖 Acc. w/o perturbation Acc. w/ perturbation

TwitchDE 0.1 0.567 0.55

0.2 0.571 0.552

0.5 0.569 0.555

1 0.567 0.554

2 0.567 0.556

4 0.567 0.556

6 0.567 0.556

8 0.568 0.555

TwitchFR 0.1 0.379 0.395

0.2 0.378 0.397

0.5 0.375 0.398

1 0.374 0.386

2 0.35 0.369

4 0.354 0.372

6 0.349 0.373

8 0.348 0.374

TwitchRU 0.1 0.226 0.245

0.2 0.224 0.24

0.5 0.229 0.232

1 0.223 0.238

2 0.221 0.233

4 0.223 0.237

6 0.224 0.237

8 0.227 0.241

TwitchENGB 0.1 0.618 0.609

0.2 0.618 0.609

0.5 0.619 0.61

1 0.619 0.611

2 0.619 0.612

4 0.619 0.612

6 0.619 0.612

8 0.619 0.613

TwitchPTBR 0.1 0.395 0.45

0.2 0.396 0.455

0.5 0.381 0.448

1 0.363 0.443

2 0.369 0.439

4 0.372 0.436

6 0.374 0.442

8 0.387 0.439

Table 3: Attack AUC using node feature similarity.

Dataset AUC AUC drop v.s. LPA

Cora 0.821 -0.12

Citeseer 0.902 -0.06

Chameleon 0.571 -0.19

PubMed 0.902 0.04

Facebook 0.636 -0.24

406

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Graph Neural Networks
	3.2 Differential Privacy
	3.3 Edge-Level DP on GNN

	4 Problem Settings and Threat Model
	5 Proposed Method
	5.1 Graph Decomposition
	5.2 DP on Singular Values
	5.3 GCN Training and Testing

	6 Privacy Analysis
	6.1 Formal DP Analysis
	6.2 Privacy Protection in Practice

	7 Empirical Evaluation
	7.1 Evaluation Setup
	7.2 Privacy-Utility Tradeoff of Eclipse
	7.3 Resilience Against Privacy Attacks
	7.4 Effect of Rank

	8 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 1
	B Cosine Similarity of Principal Bases for Other Datasets
	C Privacy-Utility Tradeoff compared with PrivGraph
	D When will the assumption fail?
	E Unperturbed Test Graph
	F Attack using Node Feature Similarity

