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Abstract
In the past decade, we have witnessed an exponential growth of
deep learning models, platforms, and applications. While existing
DL applications and Machine Learning as a service (MLaaS) frame-
works assume fully trusted models, the need for privacy-preserving
DNN evaluation arises. In a secure multi-party computation sce-
nario, both the model and the data are considered proprietary, i.e.,
the model owner does not want to reveal the highly valuable DL
model to the user, while the user does not wish to disclose their
private data samples either. Conventional privacy-preserving deep
learning solutions ask the users to send encrypted samples to the
model owners, who must handle the heavy lifting of ciphertext-
domain computation with homomorphic encryption. In this paper,
we present a novel solution, namely, PrivDNN, which (1) offloads
the computation to the user side by sharing an encrypted deep
learning model with them, (2) significantly improves the efficiency
of DNN evaluation using partial DNN encryption, (3) ensures model
accuracy and model privacy using a core neuron selection and en-
cryption scheme. Experimental results show that PrivDNN reduces
privacy-preserving DNN inference time and memory requirement
by up to 97% while maintaining model performance and privacy.
Codes can be found at https://github.com/LiangqinRen/PrivDNN
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1 Introduction
In the past decade, machine learning, especially deep learning [76],
has empowered various applications, including image classification
[53], object detection [83], and image segmentation [58], amongst
others. Deep learning relies on complex models, such as deep neural
networks (DNNs), that capture specific features from input data
to perform these tasks. However, developing a large/complex, and
highly accurate network requires enormous training data and com-
puting resources. While smaller organizations, such as regional
hospitals and local schools, cannot afford to train their models, they
expect to use the advanced models the big companies provide as
a service. When it applies to sensitive information such as public

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(3), 477–494
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0089

security [29], medical data [46, 73, 74], self-driving [60], manufac-
turing [77], or financial data [64], we face a privacy dilemma in that
the user data must be revealed to the entity that evaluates with the
model, or the model itself must be revealed to the user to evaluate
locally. In these applications with sensitive data, we should protect
data and DNN model privacy while making accurate predictions,
which can be treated as a secure two-party computation problem.

Homomorphic encryption (HE) is a modern cryptographic tech-
nique based on lattices [3]. Fully homomorphic encryption (FHE)
is the cryptosystem that supports addition and multiplication op-
erations over encrypted data. Therefore, it is adopted in privacy-
preserving outsourced storage and computation. Several works in
past years introduced homomorphic encryption into deep neural
networks, e.g., CryptoNets [26]. In privacy-preserving DNN model
evaluation, users employ FHE to encrypt the data feed to the neural
network so that themodel owners perform inference over encrypted
data, i.e., the plaintext raw data is hidden from the model owners.
On the other hand, deep learning models trained from very large
amounts of proprietary and potentially sensitive data also deserve
protection. [4] is the first work that considers the protection of the
model, and [43] is the first work that protects convolutional neural
networks. They employ the same mechanism for data protection
to protect the models, i.e., use FHE to encrypt the model and feed
the encrypted model with plaintext data, which will be converted
into the ciphertext domain during DNN evaluation. As a result, the
evaluation result is encrypted with homomorphic encryption, and
only the authorized user with the key (i.e., the model owner in this
case) can decrypt it and recover the plain result.

However, the homomorphic operations are extremely inefficient
compared with operations in the plaintext domain. Computational
overhead became the main obstacle that limits its wide deployment.
For example, CryptoNets requires 250 seconds to evaluate a small
self-defined FHE-friendly model on encrypted samples from the
MNIST dataset with an accuracy of 99%. Therefore, many works
focus on improving the homomorphic encryption performance to
make it more practical, such as [1, 7, 36].

In the applications where DNN models, instead of testing sam-
ples, are being protected, i.e., when the DNN models are shipped
to the data owners to be executed locally, we do not necessarily
have to encrypt the entire model. In this paper, we present the
PrivDNN framework for DNN model protection, in which we en-
crypt a subset of the neurons/filters to ensure that the DNN would
not provide a satisfactory performance without those protected
neurons. In particular, the PrivDNN scheme identifies and protects
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(encrypts) those “important” attributes that significantly contribute
to the performance of the target DNN. At the inference time, since
the majority of the neurons that remain in the plaintext domain do
not need to be evaluated with homomorphic operations, we expect
to accelerate the evaluation speed dramatically. Moreover, we do
not need to use the FHE-compatible activation functions for those
plaintext attributes, which will also increase the model accuracy
in comparison with the approaches that employ FHE-friendly ac-
tivation functions for the entire model. In this paper, we present
the design of the PrivDNN framework, with the algorithms for
core neuron selection, i.e., to identify a small subset of neurons that
ensures high performance for authorized DNN evaluation while
significantly reducing DNN performance when it is evaluated with-
out the contribution of the core neurons. Experiments with five
popular benchmarking datasets and various DNN structures show
that PrivDNN achieves the usability and security objectives while
reducing private DNN evaluation time by order of magnitude com-
pared to full-network-encryption approaches. Finally, we would
like to highlight that the key idea of PrivDNN, to reduce the FHE
operations in DNN evaluation through partial DNN encryption,
does not rely on any specific homomorphic encryption algorithms,
homomorphic operations, or DNN architecture. Therefore, it could
be adopted in any FHE-enabled DNN model encryption scheme to
significantly improve its efficiency. In summary, the main contribu-
tions of this paper are three-fold.
(1) We articulate the different models for privacy-preserving DNN

evaluation and elaborate on the necessity for the model encryp-
tion approaches.

(2) We present the first practical system PrivDNN that protects
deep neural network models with homomorphic encryption,
which achieves sufficient protection while dramatically reduc-
ing the computation to enable efficient privacy-preserving DNN
evaluation over large DNN models.

(3) We design and compare three different schemes for core neu-
ron selection. We further demonstrate the effectiveness of the
PrivDNN approach through extensive experiments.
The rest of the paper is organized as follows: We introduce the

background and preliminaries in Section 2, followed by the formal
problem statement and threat model in Section 3. We present the
technical details of PrivDNN, the experimental results, and the
security analysis in Sections 4, 5, and 6. We summarize the literature
in Section 7 and finally conclude the paper in Section 8.

2 Preliminaries
SMC and Homomorphic Encryption. Secure multiparty compu-
tation (SMC) enables mutually untrusted parties to jointly perform
computing tasks without disclosing their private inputs [21]. SMC
was first introduced by Yao in The Millionaires’ problem [79]. More
recently, it has been introduced to new applications such as secure
cloud computing and secure machine learning [82].

Homomorphic encryption (HE) allows users to perform compu-
tations on encrypted data without first decrypting it. It has been
adopted in SMC applications, including privacy-preservingmachine
learning (PPML) [2]. HE schemes are roughly categorized into: par-
tial homomorphic encryption, somewhat or leveled homomorphic
encryption, and fully homomorphic encryption (FHE). FHE [25, 69]

supports unlimited additions and multiplications in the ciphertext
domain but requires excessive computation. There are three popu-
lar FHE schemes: Brakerski/Fan-Vercauteren (BFV) [24], Brakerski-
Gentry-Vaikuntanathan (BGV) [6] and Cheon, Kim, Kim and Song
(CKKS) [12]. BFV and BGV support accurate calculations over inte-
gers, while CKKS supports calculations over floats with errors.
Deep Learning. A typical DNN includes an input, output, and
several hidden layers, such as:
(1) The convolution layer multiplies the input by a vector of weights
and sums the results. The weights are calculated during training.
The operations in the convolution layers are supported in FHE.
(2) The pooling layer performs downsampling by dividing the input
into pooling regions and computing each region’s maximum or av-
erage value. Since homomorphic encryption only supports addition
and multiplication operations, the FHE-supported DNNs always
use average pooling instead of maximum pooling.
(3) The activation layer contains nonlinear functions to enable DNNs
to learn complex patterns. The common activation functions include
Sigmoid [30], Tanh [45], ReLU [27], and Swish [67]. To implement
non-linear activation in FHE, we can use polynomial substitution
[26], precompute function for discrete values [5, 15], use low-degree
polynomials to approximate the non-linear functions [9, 13, 36, 61],
or implement nonlinear functions through sign function [51].
(4) The batch normal (BN) layer reduces internal covariate shift by
performing the normalization for each training mini-batch to allow
higher learning rates. The BN layer supports FHE by using the
average and variance calculated in the training process [41].

A large DL model may have millions of parameters that require
excessive computing power, memory, and storage [19]. Network
pruning [50] has been identified as an effective technique to im-
prove efficiency. A typical pruning process includes three steps:
train a large over-parameterized model, prune the model, and fine-
tune the pruned model to regain the lost performance [35]. Pruning
can be categorized into unstructured pruning [31], which removes
specific weights of neural networks to achieve a high compression
rate, and structured pruning [52] pruning, which removes entire
filters to accelerate with standard hardware and libraries.

3 Problem Statement and Attack Model
3.1 Background and SMC Models for

Privacy-preserving DNN Evaluation
We assume a typical client-server scenario for DNN evaluation. The
Server, S, is the owner of a proprietary DNN, which is trained on
private data belonging to S. The Client, C, is the user who has
private data samples that need to be evaluated by S’s DNN. In the
conventional client-server DNN evaluation scenario, as shown in
Figure 1 (A), C ships her raw data to S, who performs inference
in cleartext. While this approach is the most efficient, it reveals
the client’s data to the server, which could be undesirable or im-
possible in specific applications due to business, ethical, or legal
considerations. For instance, consider a small regional hospital that
wants to employ deep learning to predict patients’ cancer categories
to prepare for subsequent treatment. Due to its limited samples,
it is impractical for the hospital to train its own DL model. The
hospital may employ high-performance models trained by large
organizations, such as Merative. However, the hospital may not be
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Figure 1: Approaches for privacy-preserving DNN evaluation: (A) clear text approach (no privacy protection); (B) trusted third
party approach; (C) data encryption approach; and (D) model encryption approach.

able to ship raw data samples to the service provider due to legal
requirements regarding the confidentiality of the patient, such as
HIPAA [22]. Meanwhile, the owner of the large DL models is un-
willing to freely share the trained model with the community due to
its business interests: the models are trained with large amounts of
proprietary data and extensive computing resources, both of which
could be highly valuable. In this scenario, a secure multi-party com-
puting (SMC) mechanism is desired, and two types of privacy are
considered: DNN model privacy and data privacy.
• DNN Model Privacy. From the model owners’ perspective, they
would like to maintain the ownership of the high-performance DL
model. That is, the users should not be able to replicate or use the
model without the owners’ permission.
• Data Privacy. From the users’ perspective, they will not reveal
the raw data to the model owners or any (untrusted) third parties.

As shown in Figure 1, there exist four approaches for the client-
server DNN evaluation problem. Here, we briefly describe each
approach and discuss its advantages and disadvantages.
1. The Clear Text Approach. As shown in Figure 1 (A), C sends
the plaintext data to S, who performs inference in plaintext. Advan-
tages: This approach preserves DNN model privacy since the model
never leaves its owner. It is very efficient since all computations
are in plaintext. Disadvantages: This approach does not preserve
the users’ data privacy, i.e., all data samples are revealed to S. An
alternate approach is to send the model to C to perform inference,
which preserves the user’s data but not the owner’s DNN model.
2. The Trusted Third-Party Approach. As shown in Figure 1 (B),
instead of having S and C trusting each other, they identify a third
party that is trusted by both of them. The DNN model and the data
are shipped in plaintext to the third party, who performs inference.
Advantages: This approach is easy to implement and fast since the
inference phase is performed in plaintext. Disadvantages: Identify-
ing a trusted third party could be challenging or even impractical
due to legal requirements.
3. The Data Encryption Approach. Privacy-preserving DNN
evaluationmechanisms have been proposed to perform inference on
encrypted data [26]. As shown in Figure 1 (C),C encrypts her testing
samples using homomorphic encryption and ships the encrypted
data to S, who performs inference in the ciphertext. The model
output is returned to the user in ciphertext, who decrypts the data
to retrieve the label. Advantage: S and C do not trust each other
while both model privacy and data privacy are preserved. Privacy

protection is enforced by cryptographic properties rather than trust.
Disadvantage: The computation overhead is significant since the
inference is performed in the ciphertext. Moreover, all the excessive
ciphertext computations are performed by S, who may not have
the incentive to do so since the primary beneficiary is C.
4. The Model Encryption Approach. As shown in Figure 1 (D),
S encrypts the plaintext model with homomorphic encryption and
sends the encrypted model to C, who performs model evaluation in
the ciphertext domain. The encryptedmodel output is returned toS,
which decrypts the data and returns the cleartext label. Advantages:
Both DNN model privacy and data privacy are perfectly preserved
through cryptography (like the data encryption approach). The
heavy-lifting computation is moved to C, who should be willing
to handle the overhead while enjoying the benefit of data privacy.
Disadvantages: The computation overhead is significant. Compared
with the data encryption approach, an additional one-way network
transmission is required for each inference.

3.2 The Threat Model
We adopt the model encryption approach (Figure 1 (D)) for privacy-
preserving DNN evaluation. Our scenario involves two parties: the
model owner (serverS) and the data owner (client C).We assume all
participants to follow the honest-but-curious (semi-honest) model
[20, 28], i.e., they precisely follow the protocol (honest), while they
also actively attempt to obtain or infer knowledge about others
(curious). In particular, we make the following assumptions:
1. The data owner C knows the architecture of the model and a
portion of the parameters transmitted to her in plaintext.
2. The data owner cannot break the encryption to learn the en-
crypted parameters of the DNN model. We employ a SOTA FHE
scheme, CKKS [12], to encrypt DNN parameters. We assume that
both the CKKS scheme and its implementation are secure. That is,
only the model owner S is capable of decrypting any ciphertext.
3. The data owner does not have S’s proprietary data used to train
the model. Otherwise, she could train her model from scratch.
4. The security of the computing platforms and the communication
channels are considered outside of the scope of this work.

Finally, the PrivDNN framework is designed to be adaptable for
all models and FHE-encryption algorithms. That is, its functionality
does not rely on any specific feature of a deep learning model, e.g.,
it does not assume the existence of a certain type of neurons, nor
does it prohibit any neurons in the target DNN model.
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Figure 2: An overview of the PrivDNN approach.

4 The PrivDNN Approach
4.1 PrivDNN Overview
An overview of the proposed PrivDNN approach is shown in Fig-
ure 2. As we have described in the system model, the privacy-
preserving DNN evaluation system involves two parties: the model
owner (S) and the data owner (C). PrivDNN contains two stages:
the initialization phase and the evaluation phase.

The initialization phase is a one-time process, which includes
model training and protection: (A1) The model owner S designs an
FHE-friendly DNN and trains it with her proprietary data. The
model owner may also convert a pre-trained DNN to an FHE-
friendly version with a small performance penalty. (A2) S identifies
a set of core neurons that are essential to the performance of the
network (to be articulated in Section 4.4). (A3) S employs a homo-
morphic encryption scheme to encrypt the core neurons. Finally,
(A4) the partially encrypted DNN, which contains both plaintext
and ciphertext neurons, is sent to the data owner C.

The evaluation phase is invoked each time a batch of testing
samples is evaluated by the private DNN: (B1) The data owner C
evaluates the testing samples through the partially encrypted layers.
Evaluation with the unencrypted neurons is performed in plaintext.
In contrast, computation with the encrypted core neurons is per-
formed in ciphertext using FHE. (B2) The output from the encrypted
neurons will be obfuscated (multiplied by a random value), shipped
to S for decryption, sent back to C, and deobfuscated. (B3) With
the output from the plaintext neurons and the decrypted output
from the core neurons, C continues to evaluate the testing sample
with the remaining plaintext layers of the DNN, to obtain the final
output, i.e., the label for the testing sample.

In this section, we describe each component in both the initializa-
tion and the evaluation phases and articulate the technical details of
the core neuron selection and partial DNN encryption mechanisms.

Notations. A pre-trained DNN model has a set of 𝐿 convolutional
layers and 𝑁 neurons, among which 𝐿𝑖 is the 𝑖-th convolutional
layer and 𝑁𝑒 is the number of encrypted neurons/filters. The model
accuracy is 𝐴𝑜 . The parameters in 𝐿𝑖 can be represented as a set
of 4-D filters1𝑊𝐿𝑖 = {𝑊 𝑖

1 ,𝑊
𝑖
2 , ...,𝑊

𝑖
𝑛𝑖
} ∈ R𝑛𝑖−1×𝑛𝑖×𝑘𝑖×𝑘 𝑗 , where the

1In this paper, we use filters and convolution layer neurons interchangeably.

𝑗-th filter is𝑤𝑖
𝑗
∈ R𝑛𝑖−1×𝑘𝑖×𝑘 𝑗 . 𝑛𝑖 is the number of filters in 𝐿𝑖 . 𝑘𝑖×𝑘 𝑗

represents the kernel size (usually 𝑘𝑖=𝑘 𝑗 ). The output of the filters,
i.e., feature maps, are denoted as 𝑂𝑖 = {𝑜𝑖1, 𝑜

𝑖
2, ..., 𝑜

𝑖
𝑛𝑖

}, where the
𝑗-th feature map 𝑜𝑖

𝑗
∈ R𝑐×ℎ𝑖×𝑤𝑗 is generated by𝑤𝑖

𝑗
. 𝑐 is the channel

of input images. ℎ𝑖 and𝑤𝑖 are the height and width of the feature
map. In PrivDNN, we propose to encrypt a subset of the filters in
the model to accelerate the ciphertext evaluation. Therefore,𝑊𝐿𝑖

could be split into two groups, i.e., a subset to be encrypted 𝐸𝐿𝑖

= {𝑤𝑖

𝐸𝑖1
,𝑤𝑖

𝐸𝑖2
, ...,𝑤𝑖

𝐸𝑖𝑛𝑖1
} and a subset in plaintext 𝑃𝐿𝑖 = {𝑤𝑖

𝑃𝑖
1
,𝑤𝑖

𝑃𝑖
2
, ...,

𝑤𝑖

𝑃𝑖
𝑛𝑖2

}, where 𝐸𝑖
𝑗
and 𝑃𝑖

𝑗
together represent the 𝑗-th filter.

4.2 FHE-Friendly DNN Design
The inference of PrivDNN requires computation in the cipher-
text domain. Therefore, the operations involved in the encrypted
neurons must be FHE-friendly. Existing works on FHE-friendly ac-
tivation functions could be roughly grouped into three categories:
(1) using a polynomial substitution [26], (2) precomputing function
for discrete values [15], and (3) using low-degree polynomials to
approximate the non-linear functions[13, 42, 61].

To partially mitigate the requirement of FHE-friendly activation
functions, PrivDNN only requires the subset of neurons selected
to be encrypted to be FHE-friendly. For example, when only the
neurons from the first two convolutional layers are selected as the
core neurons, we only need one linear activation function for the
pooling layer because the data owner could decrypt the output
from the second convolution layer.

4.3 Partial DNN Encryption: Motivation and
Objectives

In PrivDNN, our core idea is to select a subset of core neurons to be
protected (encrypted) so that: (1) the accuracy of the deep neural
network will decrease significantly if the core neurons are removed
from the network, (2) only a small set of neurons are selected as core
neurons so that themajority of the computation for DNN evaluation
is still in plaintext. Meanwhile, since the output of an encrypted
neuron will be ciphertext, we cannot feed it into a plaintext neuron
unless it is decrypted. Otherwise, the neuron must be converted to
ciphertext for FHE computation. Therefore, PrivDNN generates a
partially encrypted DNN with the core neurons in the ciphertext
world and the other neurons in the plaintext world.

An example of the PrivDNN approach is shown in Figure 3.
Figure 3 (A) demonstrates an original deep neural network, whose
accuracy is denoted as 𝐴𝑜 . As shown in Figure 3 (B) and (C), we
consider two operation modes for a partially encrypted DNN:
(1) Authorized DNN evaluation. The FHE-encrypted neurons
take inputs from both unencrypted neurons and other FHE-encrypted
neurons. Inputs from unencrypted neurons will be encrypted to
participate in cipher-domain computations. Since the output of
FHE-encrypted neurons is all in the ciphertext domain, they cannot
serve as input to unencrypted neurons. Therefore, as shown in Fig-
ure 3 (B), the execution of the DNN is naturally separated into the
cleartext world (white) and the ciphertext world (red). Computation
in the cleartext world is the same as regular DNN evaluation, except
that it does not take input from the ciphertext world. FHE supports
computation in the ciphertext world. It takes input from both the
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Figure 3: The partial DNN encryption approach.

ciphertext world and the cleartext world, but it does not generate
output to the cleartext world until the very last layer, where the
ciphertext outputs are decrypted by S (shown in green in Figure 3
(B)). We denote the accuracy of authorized DNN evaluation as 𝐴𝑠 .
Since the connections from FHE neurons to unencrypted neurons
are eliminated, we expect 𝐴𝑠 to be slightly lower than 𝐴𝑜 .
(2) Unauthorized DNN evaluation. As shown in Figure 3 (C),
an unauthorized user who obtained the partially encrypted DNN
cannot decrypt the final output from the ciphertext world and
join it with the plaintext world. Therefore, the FHE neurons are
practically removed from the DNN. We denote the testing accuracy
of the unauthorized execution as 𝐴𝑟 . Again, 𝐴𝑟 is expected to be
much lower than 𝐴𝑜 due to the elimination of the neurons.

Therefore, the primary challenge of the PrivDNN framework
is to designate a subset of neurons in the target DNN as the core
neurons so that the following design objectives are satisfied:
G1. The Usability Goal: Maximize the Authorized Evaluation
Accuracy. The partially encrypted DNN should maintain high
accuracy so that it is usable to authorized clients, i.e., the accuracy
for authorized users, 𝐴𝑠 , should be very close to the accuracy of
the original model 𝐴𝑜 . That is, 𝐴𝑜 −𝐴𝑠 should be close to 0.
G2. The Security Goal: Minimize the Unauthorized Evalua-
tion Accuracy. The partially encrypted network is well protected
against unauthorized users so that the model owner’s valuable in-
formation is preserved. The model accuracy without the protected
core neurons, 𝐴𝑟 , should be significantly lower than the authorized
evaluation accuracy 𝐴𝑠 , i.e., 𝐴𝑠 −𝐴𝑟 should be large.
G3. The Performance Goal: Minimize the Number of FHE-
Encrypted Neurons. The ciphertext operations are significantly
slower than plaintext operations. Hence, we want to identify a
relatively smaller set of core neurons so as to reduce the amount

of ciphertext operations. For instance, for a CNN with 𝑁 convolu-
tion neurons (filters), if we identify 𝑁𝑒 filters to be encrypted, the
computation of the partially encrypted model is roughly 𝑁𝑒/𝑁 of
a full-model-encryption solution. In PrivDNN, we define 𝑁𝑒 as a
computation budget preset by the model owner. If the model owner
has an estimation of the cost of full model encryption and chooses
to accept 10% of its cost, she would designate 𝑁𝑒 ≃ 0.1𝑁 (please
see Section 5.3 for more discussions on computation).

With a preset 𝑁𝑒 , core neuron selection aims to maximize𝐴𝑠 and
minimize 𝐴𝑟 simultaneously. To evaluate whether/how a selection
scheme satisfies the design objectives, we define the core set quality
score 𝑠 to measure the quality of the selected core neuron set:

𝑠 = −𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐴𝑜 −𝐴𝑠 ) + 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐴𝑠 −𝐴𝑟

𝛼
) (1)

The first component denotes a penalty when the model accuracy
decreases for authorized DNN evaluation, where −1 < 𝐴𝑜 −𝐴𝑠 <

𝐴𝑜 < 1. We pick the sigmoid function (𝑦 = 1/(1 + 𝑒−𝑥 )) to enforce
a substantial penalty even for a small value of 𝐴𝑜 −𝐴𝑠 . The second
component denotes a benefit when themodel accuracy decreases for
unauthorized evaluation. A higher score 𝑠 indicates a high-quality
selection of the core neurons, i.e., a small𝐴𝑜 −𝐴𝑠 forG1 and a large
𝐴𝑠 −𝐴𝑟 for G2. In contrast, a negative 𝑠 indicates that the model
performs badly for authorized users (large 𝐴𝑜 −𝐴𝑠 that outweighs
the benefit of model protection). Since 𝐴𝑜 −𝐴𝑠 and 𝐴𝑠 −𝐴𝑟 have
different ranges, we use a coefficient 𝛼 as a normalization factor. In
the experiments, we use an empirically selected value 𝛼 = 5.

4.4 Core Neuron Selection in PrivDNN
We present the following four algorithms for core neuron selection.
In all following algorithms, we assume that the core neurons are
selected from 𝑙 consecutive convolutional layers, where 𝑛𝑖1 neurons
are to be selected at layer 𝑖 , while 𝑛𝑖2 neurons at layer 𝑖 remain in
the cleartext domain. 𝑛𝑖 denotes the total number of neurons at this
layer so that 𝑛𝑖 = 𝑛𝑖1 +𝑛𝑖2. Note that 𝑛𝑖1 and 𝑛𝑖2 are pre-selected by
the model owner S to balance the trade-off between model security
and efficiency (please see Section 6.4 for more discussion).

For a target DNN model with 𝑁 convolution neurons, an exhaus-
tive search of 𝑁𝑒 core neurons will involve testing 𝐴𝑠 and 𝐴𝑟 on(𝑁
𝑁𝑒

)
different settings. While this may be feasible for small DNNs,

it is impractical for any complex network. Therefore, we introduce
the random selection approach as the baseline.
Baseline: Random Selection. Starting from a pre-selected layer,
e.g., Layer 1, we randomly identify 𝑛𝑖1 neurons from layer 𝑖 as core
neurons. The algorithm is presented in Algorithm 1. The random
approach does not optimize the selection process toward the selec-
tion objectives. We introduce it as a reference to demonstrate the
optimization performance of the next three approaches.
The Greedy Approach. We aim to select core neurons that max-
imize 𝑠 as defined in Equation (1). We design a greedy algorithm
(Algorithm 2) to select the neurons layer-by-layer. In layer 𝑖 , we first
temporarily add each neuron 𝑗 to the core neuron set (denoted as
𝐸𝐿𝑖 ) and then evaluate the DNN performance𝐴𝑟 and𝐴𝑠 to calculate
the core set quality score 𝑠 𝑗 . We select the neuron that produces
the best 𝑠 𝑗 and permanently add it to core neurons. We repeat the
process for this layer until 𝑛𝑖1 neurons are added to the core set.
We then move to the next layer until we finish all 𝑙 layers.
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Algorithm 1: The Algorithm for Random Selection
Data: well-trained model𝑀 with 𝐿 layers
Result: selected core neuron set 𝐸𝐿
𝑖 ← 𝐺𝑒𝑡𝐹𝑖𝑟𝑠𝑡𝐿𝑎𝑦𝑒𝑟𝐼𝑛𝑑𝑒𝑥 (𝑀);
𝑙 ← 𝐺𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀);
for 𝑖 ← 𝑖 to 𝑖 + 𝑙 do

𝑛𝑖1 ← 𝐺𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀, 𝑖) ;
𝑛𝑖 ← 𝐺𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀, 𝑖) ;
𝐸𝐿𝑖 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑠 (𝑛𝑖 , 𝑛𝑖1) ;

end

Algorithm 2: The Algorithm for Greedy Selection
Data: well-trained model𝑀 with 𝐿 layers
Result: selected core neuron set 𝐸𝐿
𝑖 ← 𝐺𝑒𝑡𝐹𝑖𝑟𝑠𝑡𝐿𝑎𝑦𝑒𝑟𝐼𝑛𝑑𝑒𝑥 (𝑀);
𝑙 ← 𝐺𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀);
for 𝑖 ← 𝑖 to 𝑖 + 𝑙 do

𝑛𝑖1 ← 𝐺𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑢𝑟𝑜𝑛𝐶𝑜𝑢𝑛𝑡 (𝑀, 𝑖) ;
𝑃𝐿𝑖 ← 𝐺𝑒𝑡𝐴𝑙𝑙𝑁𝑒𝑢𝑟𝑜𝑛𝑠 (𝑀, 𝑖) ;
𝐸𝐿𝑖 ← {} ;
while 𝑐𝑜𝑢𝑛𝑡 (𝐸𝐿𝑖 ) < 𝑛𝑖1 do

foreach 𝑓 in 𝑃𝐿𝑖 do
𝑠 [𝑓 ] ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝑀, 𝐸𝐿, 𝑓 ) ;

end
𝑚 ← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑠 [𝑓 ]) ; /* “best” (one) neuron */

if 𝑠 [𝑚] ≤ 𝑠 [𝐸𝐿𝑖 [−1]] then
break ; /* optional */

end
𝐸𝐿𝑖 ← 𝐸𝐿𝑖 ∪ {𝑚} ;
𝑃𝐿𝑖 ← 𝑃𝐿𝑖 − {𝑚} ;

end
end

The greedy selection is a dynamic evaluation approach in which
the accuracy of the target DNN (both 𝐴𝑠 and 𝐴𝑟 ) is evaluated for
different core neuron selections. Therefore, the greedy approach is
computationally more expensive than static analysis, in which the
core neurons are selected by analyzing the architecture and weights
of the target neural network. Moreover, the greedy selection may
reach a local but not the global optimum. In the experiments, we
show that the greedy approach slightly compromises selection
efficiency to achieve a high quality of the core neuron set.
The Pruning-based Approach. Research on DNN pruning aims
to remove redundant filters in a DNN to produce sparse models
for performance acceleration and model compression. The neu-
rons/filters left after the pruning are supposed to be the ones that
contribute the most to the model’s performance. Therefore, our
application may adopt the pruning algorithms in the literature for
core neuron selection. As shown in Algorithm 3, we assume that an
arbitrary pruning function 𝑃𝑟𝑢𝑛𝑒 (𝑀, 𝑖, 𝑛𝑖2) is employed to identify
𝑛𝑖2 neurons in the 𝑖th layer of DNN model 𝑀 to be pruned. The
remaining 𝑛𝑖1 unselected neurons are added to the core neuron set.
Note that we do not perform the actual pruning operation, i.e., the
“pruned” neurons are left intact in the model.

Algorithm 3: The Algorithm for Pruning-based Selection
Data: well-trained model𝑀 with 𝐿 layers
Result: selected core neuron set 𝐸𝐿
𝑖 ← 𝐺𝑒𝑡𝐹𝑖𝑟𝑠𝑡𝐿𝑎𝑦𝑒𝑟𝐼𝑛𝑑𝑒𝑥 (𝑀);
𝑙 ← 𝐺𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀);
for 𝑖 ← 𝑖 to 𝑖 + 𝑙 do

𝑛𝑖1 ← 𝐺𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀, 𝑖) ;
𝑛𝑖 ← 𝐺𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀, 𝑖) ;
𝑃𝐿𝑖 ← 𝐺𝑒𝑡𝐴𝑙𝑙𝑁𝑒𝑢𝑟𝑜𝑛𝑠 (𝑀, 𝑖) ;
𝐸𝐿𝑖 ← 𝑃𝐿𝑖 − 𝑃𝑟𝑢𝑛𝑒 (𝑀, 𝑖, 𝑛𝑖 − 𝑛𝑖1) ;

end

PrivDNN requires the following for the pruning algorithm: (1)
The algorithm should be structured pruning. Limited by FHE prop-
erties, our protection is based on the neurons (filters) rather than
weights. Therefore, we can only employ structured pruning, not
weight pruning. (2) The algorithm must prune a pre-trained model
instead of establishing a new, smaller model from scratch [40, 56].
(3) The algorithm should be one-shot rather than progressive [8, 70]
because we cannot modify the model. (4) The algorithm should
generate a static rather than a dynamic selection that changes based
on the input. In PrivDNN, the model owner S will share a partially
encrypted model with the data owner C. Since the model owner
does not know any information about the dataset at the down-
stream user C, we must use algorithms that can generate static
selections rather than the dynamic pruning algorithms that change
the selection based on the testing data [33, 54].

Considering the above four limitations, we select four classic
pruning algorithms: PFEC [52], FPGM [34], HRank [55], and GFS
[80]. The first two are weight-dependent algorithms, and the other
two are not. PFEC[52] proposes to prune filters based on their 𝑙-
norm values. When a filter with smaller 𝑙-norm values multiplies
the input, its output is also more likely to be smaller, i.e., its output
is more likely to fail to pass sectional activation functions like ReLU.
It does not contribute to the next layer. Therefore, there is unlikely
any harm in pruning this filter. FPGM [34] argues that the norm-
based criterion may not be accurate when the norm deviation is
too small or the minimum norm of filters is not small. Therefore,
it prunes filters with redundant information, i.e., the filters can be
replaced with other filters. HRank [55] suggests that filters with
a higher rank should have more information. At the same time,
the rank of a specific filter is relatively stable with different inputs.
Therefore, HRank calculates filters’ ranks with a small data set,
and prunes filter with smaller ranks. GFS [80] is a forward greedy
algorithm. Most pruning algorithms will start with the complete
model and remove filters based on their strategies. GFS removes all
filters at the beginning and adds filters back individually. During
this process, GFS calculates the loss that adding back a filter will
decrease and selects the filter that decreases the most loss.
The Pruning+Greedy Approach. Both pruning and greedy strate-
gies have advantages and disadvantages. The greedy algorithm
provides solid selection performance (will elaborate in Section 5),
but it is less efficient since it requires on-the-fly evaluation of DNN
models in the selection process. The static-analysis-based pruning
approaches are very fast, however, they select a subset of neu-
rons that do not provide optimal accuracy for authorized users.
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Algorithm 4: Pruning+Greedy Selection
Data: well-trained model𝑀 with 𝐿 layers
Result: selected core neuron set 𝐸𝐿
𝑖 ← 𝐺𝑒𝑡𝐹𝑖𝑟𝑠𝑡𝐿𝑎𝑦𝑒𝑟𝐼𝑛𝑑𝑒𝑥 (𝑀);
𝑙 ← 𝐺𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑎𝑦𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀);
for 𝑖 ← 𝑖 to 𝑖 + 𝑙 do

𝑛𝑖1 ← 𝐺𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀, 𝑖) ;
𝑛𝑖 ← 𝐺𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 (𝑀, 𝑖) ;
𝑃𝐿𝑖 ← 𝐺𝑒𝑡𝐴𝑙𝑙𝑁𝑒𝑢𝑟𝑜𝑛𝑠 (𝑀, 𝑖) ;
while 𝑐𝑜𝑢𝑛𝑡 (𝐸𝐿𝑖 ) < 𝑛𝑖1 do

foreach 𝑓 in 𝑃𝐿𝑖 − 𝑃𝑟𝑢𝑛𝑒 (𝑀, 𝑖, (𝑛𝑖 − 𝑛𝑖1) × 𝑝) do
𝑠 [𝑓 ] ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝑀, 𝐸𝐿, 𝑓 ) ;

end
𝑚 ← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑠 [𝑓 ]) ; /* “best” (one) neuron */

if 𝑠 [𝑚] ≤ 𝑠 [𝐸𝐿𝑖 [−1]] then
break ; /* optional */

end
𝐸𝐿𝑖 ← 𝐸𝐿𝑖 ∪ {𝑚} ;

end
end

Table 1: Datasets and models used in the experiments.

M E G C T
Train size 60000 124800 39209 50000 100000
Test size 5000 10400 6315 5000 10000

DNN Model LeNet-5 LeNet-5 AlexNet VGG16 ResNet18
Accuracy(𝐴𝑜 ) 99.36% 93.08% 93.51% 90.22% 72.00%
1. M: MNIST [18], E: EMNIST [14], G: GTSRB [38], C: CIFAR10 [47], T:
Tiny-ImageNet [59] 2. We adopt top-5 accuracy for Tiny-ImageNet.

Therefore, we propose integrating these two strategies as shown in
Algorithm 4. We first employ the pruning algorithm to exclude the
clearly redundant neurons, i.e., to reduce the size of the selection
pool for the subsequent greedy algorithm. In practice, we create a
greedy selection pool whose size is 𝑝 times the target core set size
(we empirically set 𝑝 = 2 in our experiments). Then, we use the
greedy strategy to select filters from the pool.

5 Experiments
5.1 Settings
We implement the PrivDNN framework with all three core neuron
selection approaches (presented in Section 4.4) using Python 3.10.13,
PyTorch 2.1.0, and CUDA 12.1. All the experiments presented in
this section are performed on a desktop computer with Ubuntu
22.04 LTS running on AMD Ryzen 7 3700X eight-core CPU, NVIDIA
3090 GPU, and 64 GB memory. To support DNN evaluation in the
ciphertext domain, we adopt the CKKS [12] scheme as implemented
in Microsoft SEAL 4.1.1 [72] library. As shown in Table 1, we adopt
five popular benchmarking datasets (See Appendix C for details).

As discussed in Section 4.2, PrivDNN, as well as all FHE-based
privacy-preserving DNN evaluation schemes in the literature, re-
quires FHE-friendly DNN models. We use the FHE-friendly square
function as the ciphertext-domain activation function. In practice,
PrivDNN may train the FHE-friendly DNN from scratch or protect
a pre-trained DNN. We convert the activations to FHE-friendly

Figure 4: The distribution of {𝐴𝑠 , 𝐴𝑟 } for all possible core
neuron set selections for MNIST/LeNet-5 (𝑛1,1 = 2, 𝑛2,1 = 6).

for pre-trained models and tune the modified model. In the exper-
iments, we train all the models from scratch. As shown in Table
1, the FHE-friendly models for MNIST, EMNIST, GTSRB, CIFAR10,
and Tiny-ImageNet get the accuracy (𝐴𝑜 ) of 99.36%, 93.08%, 93.51%,
90.22%, and 72.00%. We focus on protecting the model rather than
increasing the model’s training performance or accuracy. Hence,
we use the same parameters for the scheduler, batch size (128), and
epochs (128) in all models.

5.2 Core Neuron Selection
Ground Truth. As discussed in Section 4.4, we should perform an
exhaustive search to learn the quality of all possible core neuron sets.
For instance, to encrypt 𝑛𝑖1 neurons out of 𝑛𝑖 neurons from layer
𝑖 , there are

(𝑛𝑖
𝑛𝑖1

)
different selections to be evaluated. Assume that

30% of the neurons from the models’ first two convolution layers
are selected to be encrypted. Examples of possible combinations
for exhaustive searches are calculated as follows:

𝐶LeNet-5(MNIST) =

(
6
2

)
×
(
16
5

)
= 6.522 × 104

𝐶VGG16 =

(
64
20

)
×
(
64
20

)
= 3.849 × 1032

(2)

We run exhaustive searches for all possible core neuron selec-
tions for the following scenarios: (1) when up to 2 neurons in the
first layer and up to 6 neurons in the second layer of the LeNet-5
model for MNIST are selected to be encrypted; (2) when up to 2
neurons in the first layer and up to 4 neurons in the second layer
of the modified LeNet-5 model for EMNIST are selected. For each
{𝑛11, 𝑛21} pair, we present the number of possible selections in
Table 2. For each core neuron selection, we evaluate the classifi-
cation accuracy of authorized and unauthorized DNN evaluation
(𝐴𝑠 and 𝐴𝑟 ). The best-case and the worst-case performances (in
𝐴𝑠 , 𝐴𝑟 , and 𝑠) are also reported in Table 2. For example, when 2 and
6 neurons from the first two convolution layers are selected for
MNIST, there exist 120,120 possible selections. The best selection
achieves a 99.26% accuracy for authorized DNN evaluation, i.e., a
0.1% performance drop. Meanwhile, it achieves a 77.32% accuracy
for unauthorized DNN evaluation, i.e., a 22.04% performance drop.
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Table 2: Ground truth of LeNet-5.

𝑛1,1, 𝑛2,1 Count Best Worst
𝑠 𝐴𝑠 𝐴𝑟 𝑠 𝐴𝑠 𝐴𝑟

M
N
IS
T
[1
8]

1, 1 96 0.16 99.30 95.66 -0.63 93.36 96.14
1, 2 720 0.37 99.30 89.30 -0.65 92.12 95.16
1, 3 3360 0.41 99.28 86.04 -0.65 91.32 94.40
1, 4 10920 0.44 99.30 83.98 -0.64 92.16 95.02
1, 5 26208 0.47 99.32 80.86 -0.60 92.12 94.18
1, 6 48048 0.48 99.34 76.64 -0.56 91.74 92.86
2, 2 1800 0.24 98.66 87.32 -0.69 89.74 93.80
2, 3 8400 0.31 98.86 85.36 -0.70 89.50 93.76
2, 4 27300 0.39 99.06 82.24 -0.66 89.84 93.08
2, 5 65520 0.42 99.18 82.32 -0.60 90.44 92.52
2, 6 120120 0.46 99.26 77.32 -0.56 92.12 93.42

EM
N
IS
T
[1
4]

1, 1 200 0.17 93.02 89.12 -0.52 83.26 83.75
1, 2 1900 0.40 93.02 81.37 -0.48 83.85 83.38
1, 3 11400 0.47 93.03 71.62 -0.43 84.39 83.01
1, 4 48450 0.49 93.08 68.24 -0.36 84.55 81.78
2, 2 8550 0.36 92.86 80.91 -0.70 60.01 64.13
2, 3 51300 0.43 92.85 70.85 -0.65 59.60 62.76
2, 4 218025 0.46 92.94 69.22 -0.55 68.87 69.92

Notes: 1. 𝐴𝑜 of MNIST and EMNIST are 99.36% and 93.08%, respectively. 2.
Count: the number of possible combinations with given {𝑛11, 𝑛21 } pair.

For each {𝑛11, 𝑛21} pair in the ground truth dataset, we rank all
the core neuron set selections by their quality score 𝑠 and use it as a
reference for future experiments. We have plotted the distribution
of all 120,120 {𝐴𝑠 , 𝐴𝑟 } pairs for (𝑛1,1 = 2, 𝑛2,1 = 6) for the MNIST
dataset and LeNet-5 model, as shown in Figure 4. Since we assign a
higher weight to𝐴𝑠 in the calculation of 𝑠 , the top-ranked selections
are mostly located on the right side of the plot, i.e., with higher
𝐴𝑠 . A good selection algorithm is expected to find a highly ranked
selection with significantly less computation than an exhaustive
search. Note that we do not have the ground truth data for complex
models, i.e., AlexNet, VGG16, and ResNet18, due to the excessive
computation required for exhaustive searches.
Random and Greedy Selection. For the datasets with ground
truth selection performance, we run the random selection (Algo-
rithm 1) and the greedy selection (Algorithm 2) algorithms and
report their performance in Table 3. For the greedy approach, we
report the rank of the selected core neuron set as referenced to
the ground truth results. We also report the time (in seconds) to
complete the selection. As shown in the table, the greedy approach
identifies the best core neuron sets in 13 out of 18 {𝑛11, 𝑛21} pairs,
while the selections are very close to the best in the other five cases,
e.g., ranked 3rd out of 10,920 selections (top 0.027%).

For each {𝑛11, 𝑛21} pair, we run the random selection algorithm
for the same length of time that was used by the greedy approach,
e.g., 22 seconds for {1, 1} in MNIST.We pick the highest rank among
all the random selections. We repeat this experiment 1000 times
and report the average highest rank in Table 3. Moreover, we also
keep the random selection experiments running and evaluate how
much time it takes for random selection to identify a core set that
ranks as high as the greedy approach. The result is reported as𝑇𝑔 in
the table. As shown in the table, the greedy algorithm significantly
outperforms the random selection approach.

Table 3: Random and greedy selections for LeNet-5.

𝑛1,1, 𝑛2,1 Count Greedy Random
# T Avg(BestRank) 𝑇𝑔

M
N
IS
T
[1
8]

1, 1 96 1 22 8.12 186.21
1, 2 720 1 37 38.45 1495.43
1, 3 3360 1 51 123.53 6235.05
1, 4 10920 3 63 323.82 7260.88
1, 5 26208 2 76 599.03 26699.64
1, 6 48048 1 86 1052.65 101480.30
2, 2 1800 1 39 79.19 3503.58
2, 3 8400 1 53 292.28 17008.22
2, 4 27300 1 66 750.19 58058.85
2, 5 65520 1 78 1508.16 131966.71
2, 6 120120 7 90 2488.02 34123.24

EM
N
IS
T
[1
4]

1, 1 200 1 56 7.38 400.06
1, 2 1900 1 94 41.40 3801.20
1, 3 11400 1 133 165.04 24079.23
1, 4 48450 3 169 566.97 31171.86
2, 2 8550 1 105 153.07 16653.40
2, 3 51300 1 142 683.22 99558.56
2, 4 218025 6 176 2519.70 69996.76

Pruning-based Selection. We run the pruning-based selection
algorithms for the datasets with ground truth selection performance
and show their performance in Table 4. For each {𝑛11, 𝑛21} pair,
we run four pruning algorithms and report the quality score 𝑠 of
each selected core neuron set, the rank of each selection (based on
the ground truth in Table 2), the efficiency (𝑇 , in seconds) of the
selection process, and the 𝐴𝑠 and 𝐴𝑟 of the protected DNN. For
instance, when we designate one neuron from each of the first two
convolution layers to be FHE-encrypted and use PFEC pruning to
select these neurons, the network achieves 98.50% 𝐴𝑠 (moderate
performance) and 98.46% 𝐴𝑟 (bad protection). The corresponding 𝑠
score of -0.20 ranked 48 out of all 96 possible selections.

As shown in the table, the two static pruning methods, PFEC
and FPGM, are extremely fast, while the dynamic pruning methods,
HRank and GFS, are slow. The core neuron sets selected by all four
algorithms demonstrate solid 𝐴𝑠 in most cases, while 𝐴𝑟 appears
too high to provide enough protection. Since the dynamic pruning
algorithms are significantly slower while they do not provide better
selections, we do not consider them in the rest of the paper.
Pruning+Greedy Selection. Finally, we evaluate the performance
of the Pruning+Greedy approach (Algorithm 4) using PFEC [52]
and FPGM [34] pruning methods and compare the performance
with the greedy approach. The performance on the smaller MNIST
and EMNIST datasets is shown in Table 5. From the results, we
have the following observations:
• 1. The accuracy of authorized DNN evaluation, 𝐴𝑠 , remains high
(very close to 𝐴𝑜 ) for almost all {𝑛11, 𝑛21} pairs. The usability goal
defined in Section 4.3 is always satisfied.
• 2. The accuracy of unauthorized DNN evaluation, 𝐴𝑟 , could be
high when only a small number of neurons are encrypted. With the
increase of 𝑛11 and 𝑛21 (i.e., more neurons in the first two convolu-
tion layers are protected), 𝐴𝑟 decreases accordingly. In general, the
unauthorized user only gets approximately 70% accuracy when five
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Table 4: Performance of pruning-based selection algorithms for LeNet-5.

𝑛1,1, PFEC [52] FPGM [34] HRank [55] GFS [80]
𝑛2,1 # 𝑠 T 𝐴𝑠 𝐴𝑟 # 𝑠 T 𝐴𝑠 𝐴𝑟 # 𝑠 T 𝐴𝑠 𝐴𝑟 # 𝑠 T 𝐴𝑠 𝐴𝑟

M
N
IS
T
[1
8]

1,1 48 -0.20 3 98.50 98.46 44 -0.19 2 98.48 98.18 16 -0.03 384 99.24 99.16 50 -0.20 76 98.34 97.70
1,2 229 -0.06 3 99.00 98.32 237 -0.06 2 98.88 97.72 172 -0.01 384 99.26 99.00 526 -0.21 128 98.28 97.48
1,3 1531 -0.03 3 99.04 98.02 1273 0.00 2 99.02 97.36 1221 0.00 385 99.28 98.82 2670 -0.17 176 98.22 96.40
1,4 6541 0.00 3 99.10 97.74 1936 0.16 2 99.12 94.40 6066 0.02 386 99.28 98.54 8239 -0.06 220 98.54 95.80
1,5 15858 0.08 3 99.08 96.04 3301 0.28 2 99.26 92.22 14714 0.09 382 99.26 96.86 23347 -0.06 260 98.56 96.00
1,6 27933 0.17 3 99.18 94.54 3146 0.37 2 99.24 88.14 29319 0.16 387 99.26 95.36 28929 0.16 295 98.50 89.14
2,2 461 -0.13 3 98.04 94.64 313 -0.08 2 98.70 97.10 1127 -0.26 383 98.04 97.44 1247 -0.29 147 95.74 91.98
2,3 2189 -0.03 3 98.16 93.02 1607 -0.01 2 98.90 96.76 5854 -0.19 384 98.26 97.00 5224 -0.16 191 95.68 88.12
2,4 8576 0.02 3 98.26 92.34 1937 0.14 2 98.90 93.36 17152 -0.07 384 98.52 95.80 21766 -0.14 236 95.60 87.40
2,5 11840 0.15 3 98.44 89.14 3934 0.23 2 98.96 90.92 16661 0.11 383 98.74 92.84 58709 -0.12 278 95.84 87.02
2,6 27822 0.20 3 98.46 86.54 3966 0.33 2 98.94 86.10 20026 0.24 384 99.04 91.62 92539 0.01 312 95.82 75.02

EM
N
IS
T
[1
4]

1,1 121 -0.28 3 91.71 91.35 64 -0.15 2 92.26 91.46 19 0.03 1105 92.78 90.75 25 0.20 213 93.02 92.35
1,2 1071 -0.13 3 91.98 89.59 938 -0.11 2 92.27 90.51 434 0.03 1111 92.76 90.48 253 0.10 347 93.00 90.58
1,3 4160 0.04 3 92.17 86.49 4963 0.01 2 92.36 88.62 3290 0.09 1101 92.80 89.50 597 0.28 479 92.97 85.64
1,4 5885 0.30 3 92.35 74.88 8458 0.25 2 92.43 80.90 17987 0.13 1110 92.83 88.86 3919 0.34 601 93.02 84.32
2,2 5408 -0.21 3 91.46 88.88 6540 -0.26 2 91.27 89.35 2179 -0.08 1108 92.22 89.62 5621 -0.22 408 85.30 78.94
2,3 7320 0.01 3 91.65 84.28 41379 -0.12 2 91.48 86.93 24419 -0.06 1130 92.16 88.85 16559 -0.03 537 86.78 68.88
2,4 4823 0.27 3 92.19 73.17 16401 0.16 2 91.80 77.82 118606 -0.02 1118 92.17 88.04 122706 -0.02 656 86.38 67.17

neurons from the first two convolution layers (30 neurons in total)
of the LeNet-5 model for EMNIST are encrypted. The security goal
defined in Section 4.3 is also satisfied.
• 3. The Pruning+Greedy mechanism saves core neuron selection
time (𝑇 ) significantly when 𝑛𝑖1 << 𝑛𝑖 , i.e., when a relatively small
number of neurons in a layer will be encrypted. However, the
improved efficiency comes at the cost of selection performance.
Meanwhile, there does not exist any obvious differences in the
performance of PFEC and FPGM.

Finally, we report the performance of greedy and pruning+greedy
approaches on the three complex datasets, GTSRB, CIFAR10, and
Tiny-ImageNet. We evaluate these algorithms when 15% to 75% of
the neurons in the first two convolution layers are selected to be
encrypted. Since we do not have the ground truth (ranking) for all
possible core neuron sets, we only report 𝐴𝑠 , 𝐴𝑟 , and 𝑇 in Table 6.
As shown, even if we select 25% neurons from the first two convolu-
tional layers, all the models’ usability and security goals are clearly
satisfied. Since we use 𝑝 = 2 for pruning+greedy, when 50% or more
of the neurons are to be encrypted, there is no need for pruning.
The pruning+greedy approach provides slightly worse selections
while being more efficient. In summary, the pruning+greedy ap-
proach balances selection efficiency and performance compared to
the greedy algorithm. However, since neuron selection is a one-time
process, the model owner may want to employ the greedy approach
to obtain better performance while accepting the overhead.

5.3 Computation for DNN Evaluation
The essential advantage of employing partial DNN encryption in
PrivDNN is to reduce the heavy-lifting ciphertext operations. In-
stead of encrypting the full network and performing the entire DNN
evaluation process using FHE in ciphertext, PrivDNN only protects
the core of the target DNN, i.e., the neurons that are essential to the
performance. Only a subset of the neurons are encrypted, and the
corresponding operations are performed in the ciphertext domain,

Table 5: Performance of the Pruning+Greedy approach for
MNIST and EMNIST.

𝑛1,1,
𝑛2,1

Greedy Pruning+Greedy
PFEC [52] FPGM [34]

# T 𝐴𝑠 𝐴𝑟 # T 𝐴𝑠 𝐴𝑟 # T 𝐴𝑠 𝐴𝑟

MNIST [18]
1,1 1 22 99.30 95.66 9 5 99.26 98.84 5 6 99.28 98.68
1,2 1 37 99.30 89.30 84 10 99.32 98.54 48 11 99.34 97.92
1,3 1 51 99.28 86.04 437 18 99.36 97.34 322 19 99.34 96.46
1,4 3 63 99.22 81.12 1430 29 99.32 94.98 1430 30 99.32 94.98
1,5 2 76 99.26 77.66 824 43 99.24 88.88 824 44 99.24 88.88
1,6 1 86 99.34 76.64 2296 60 99.22 87.02 2296 61 99.22 87.02
2,2 1 39 98.66 87.32 282 12 98.50 95.76 262 14 98.62 96.28
2,3 1 53 98.86 85.36 754 20 98.60 94.00 417 22 98.62 93.18
2,4 1 66 99.06 82.24 906 31 98.92 92.04 833 32 98.78 90.62
2,5 1 78 99.18 82.32 147 46 99.12 87.44 147 46 99.12 87.44
2,6 7 90 99.22 80.82 59 63 99.12 80.80 59 63 99.12 80.80

EMNIST [14]
1,1 1 56 93.02 89.21 16 9 93.04 92.04 20 11 93.02 92.21
1,2 1 94 93.02 81.37 3 20 93.00 83.57 15 21 93.03 86.23
1,3 1 133 93.03 71.62 7 37 93.04 77.58 3 38 93.03 73.92
1,4 3 169 93.06 66.23 64 59 93.04 73.64 5 60 93.05 67.06
2,2 1 105 92.86 80.91 6 25 92.79 83.35 11 26 92.91 85.64
2,3 1 142 92.85 70.85 36 42 92.76 77.12 2 43 92.88 73.33
2,4 6 176 92.88 63.81 343 65 92.77 72.99 6 65 92.88 63.81

while the majority of the neurons and the corresponding operations
are kept intact in the plaintext domain.

We define the DNN encryption ratio 𝐸𝑅 =
𝑁𝑒

𝑁
, i.e., the proportion

of core neurons out of all neurons in the DNN. We also define the
encryption ratio of addition and multiplication operations as 𝐸𝑅+
and 𝐸𝑅∗, denoting the proportion of ciphertext addition and multi-
plication operations out of all operations, respectively. Compared
to FHE operations, the computation costs of plaintext operations
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Table 6: Performance of the Pruning+Greedy approach for
GTSRB, CIFAR10, and Tiny-ImageNet.

𝑛𝑖,1
(%)

Greedy Pruning+Greedy
PFEC [52] FPGM [34]

T 𝐴𝑠 𝐴𝑟 T 𝐴𝑠 𝐴𝑟 T 𝐴𝑠 𝐴𝑟

GTSRB [38]
15 35703 94.05 89.33 8656 93.90 86.94 8798 93.94 86.33
25 56082 94.17 79.90 24665 94.06 79.16 24560 94.00 77.83
50 104842 94.27 68.95 - - - -
75 121636 94.25 37.96 - - - -

CIFAR10 [47]
15 2924 90.90 64.20 679 89.82 53.36 686 90.14 53.20
25 4899 91.18 60.34 2121 90.32 66.72 2144 90.32 66.72
50 8336 90.78 55.90 - - - -
75 10479 90.52 24.90 - - - -

Tiny-ImageNet [59]
15 3954 72.10 44.84 911 71.10 39.06 920 70.96 37.94
25 6626 72.16 43.18 2842 71.48 39.30 2889 71.18 42.52
50 11388 72.02 45.66 - - - -
75 14289 72.04 26.76 - - - -

Notes: 1. 𝐴𝑜 of GTSRB and CIFAR10 are 93.24% and 90.22%, respectively.

Figure 5: Distribution of addition (+) and multiplication (×)
operations in the ciphertext and plaintext domains.

are negligible. Meanwhile, the multiplication operations (usually
followed by a rescale operation), cost more than ten times time than
the addition operations. Therefore, the inference time of PrivDNN is
almost linear to 𝐸𝑅∗, which is mostly determined by 𝐸𝑅.

In Figure 5, we demonstrate the distribution of operations (ad-
dition and multiplication) in the ciphertext and plaintext domains.
For MNIST and EMNIST, we use {𝑛1,1 = 1, 𝑛2,1 = 3}. For the larger
models, we encrypt 50% of the neurons in the first two convolu-
tion layers. As shown in Figure 5, PrivDNN only places a very
small portion of the operations in the ciphertext domain, while
the majority of the operations remain in plaintext. Therefore, com-
pared with the full DNN encryption approaches in the literature,
e.g., [26], PrivDNN saves 85% to 98% of the cipher computation.
Besides, the traditional full DNN encryption approach requires a
higher HE noise budget, slowing down all cipher operations. For
example, when we implement LeNet-5 on the MNIST dataset, the
PrivDNN inference for a batch of 5,000 testing images costs 190
seconds with the selection of {𝑛1,1 = 1, 𝑛2,1 = 4}. In comparison,

the full DNN encryption approach takes 5,647 seconds. That is,
PrivDNN achieves a 29.7x speedup with 𝐸𝑅∗ = 18.75%.

Besides the efficiency benefits, PrivDNN also saves a significant
amount of memory so that the deployment of FHE-based inference
for large-scale DNN models becomes practical for commodity desk-
top computers. The traditional full DNN encryption approach needs
a higher noise budget to support ciphertext operations along all the
DNN layers, which causes the cipher to take up more memory for
each ciphertext value. For example, the ciphertext weights of the
first fully connected layer of LeNet-5/MNIST take 151 GB, which is
beyond the capacity of most PCs. On the contrary, PrivDNN uses
approximately 2.5 GB of memory with {𝑛1,1 = 1, 𝑛2,1 = 3}, and
5 GB with {𝑛1,1 = 2, 𝑛2,1 = 6}. Therefore, PrivDNN dramatically
reduces the memory utilization for FHE-based DNN inference and
consequently enables the deployment of secure DNN inference for
resource-constrained users such as small businesses.

Summary of Experimental Results. From the experiments, we
conclude that: (1) The greedy algorithm effectively identifies a core
neuron set that achieves high accuracy for authorized DNN execu-
tion and low accuracy for unauthorized execution. (2) Encrypting
approximately 15% to 25% of the neurons in the first two convolu-
tion layers of a large DNN effectively reduces its accuracy by 20%
for unauthorized users, i.e., the DNN becomes practically unusable
for them. (3) With the partial DNN encryption scheme, only a few
DNN evaluation operations are conducted in ciphertext. Compared
with the full-DNN encryption scheme, PrivDNN saves the cipher
operations by 85% to 98%, reduces the inference time and memory
usage by 97% on smaller models and much more on larger models.

6 Security Analysis
Wediscuss the security/privacy guarantees of the proposed PrivDNN
framework. We consider two aspects of privacy: the model owners
would like to protect their proprietary deep-learning models, while
the data owners would like to protect their testing samples.

6.1 Model Privacy
Privacy Expectations. The downstream user, i.e., the data owner
C, should not be able to utilize the partially encrypted DNN to
reconstruct a model to achieve comparable accuracy to the original
model. We discuss the following aspects: (1) information that is dis-
closed to the data owner C, (2) the capability of honest data owners,
(3) the capability of curious data owners, and (4) the capability of
dishonest data owners and the potential defense.
Structure and Parameters. PrivDNN allows C to run some infer-
ence operations in the plaintext domain to avoid expensive cipher
domain operations. Therefore, S must share the model structure
and the non-core parameters in plaintext with C. S also shared the
core parameters in ciphertext with C.
The Honest Data Owners. C receives the core neuron weights
in ciphertext. As explained in Section 3.2, the confidentiality of
the encrypted weights is guaranteed by the security of the FHE
algorithm CKKS. It is proved that the security CKKS relies on the
hardness of Ring-LWE, which indicates that if there is an adversary
who can break CKKS, it can be used to tackle the RLWE problem.
It is believed that there is only a negligible probability of this. In
this regard, C cannot break the encryption to learn the weights,
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and hence, it could only achieve 𝐴𝑟 with the non-core parameters.
The core neuron selection algorithms ensure that 𝐴𝑟 is always
much lower than 𝐴𝑠 (accuracy for the authorized users). This is
also demonstrated by experiments in Tables 5 and 6.
The Curious Data Owners and the Model Recovery Attack.
A curious data owner (C) precisely follows the SMC protocol in
model execution, but she still attempts to infer knowledge about
the protected model from the information she received and the
intermediate results. We define the model recovery attack as fol-
lows: the attacker (curious data owner) knows the target model’s
architecture and a subset of plaintext weights, while the remaining
weights are encrypted. According to the threat model (Section 3.2),
the attacker cannot break the encryption, nor does she have the
model owner’s proprietary data to train the model. The attacker
uses a small number of labeled samples to retrain the model in an
attempt to recover the unknown weights and restore the model.
In particular, to get the model with comparable accuracy to the
original model, the attacker executes the model recovery attack as
follows: (1) The attacker removes all the encrypted weights from
the protected DNN and reset them. (2) With her local samples, the
attacker tunes the entire model or freezes the plaintext parameters
and only trains the missing weights. Our experiments prove that
the first scenario is always better, so we adapt the first scenario.

To evaluate the attacker’s ability, we run the experiments with
two settings: [Setting I] Only a smaller amount of neurons are
encrypted to provide less protection with high efficiency: 𝑛1,1 =

1, 𝑛2,1 = 2 for MNIST and EMNIST, 50% of the neurons in the
first two convolution layers for GTSRB and CIFAR10. [Setting II]
More neurons are encrypted for better protection: 𝑛1,1 = 2, 𝑛2,1 =
4 for MNIST and EMNIST, 75% of the neurons in the first two
convolution layers for GTSRB and CIFAR10. (still only 2.27% of
all convolution neurons for CIFAR10). To tune the model, we use
the same parameters as the original training process except for a
one-tenth learning rate for the selected neurons and 64 epochs.

The experimental results for the recovery attacks are presented
in Table 7, where𝐴𝑟𝑒𝑐 denotes the accuracy of the recoveredmodels.
Results show that DNNs protected by PrivDNN are relatively re-
silient against recovery attacks. In particular: (1) In most cases, the
models recovered from partially encrypted DNNs perform notice-
ably worse than the protected models. Note that, model accuracy
does not linearly increase with training resources/efforts. Training
a moderately accurate model from a modest amount of data is rela-
tively easy, while it is exponentially more challenging to improve
the accuracy for another 5% or even 3% from a (publicly available)
modest model. Therefore, a small accuracy drop of the recovered
models dramatically reduces their values. (2) In some cases, the
recovered models perform worse than models trained from scratch
with 1,000 samples (𝐴𝑡 ). As discussed in the threat model, the data
owners are not expected to have too many samples for the model re-
covery attack. Otherwise, they could train the model by themselves.
(3) Large models are more valuable to protect in real-world practice.
For large models such as VGG16 for CIFAR10, PrivDNN could en-
crypt a relatively larger portion of the first two convolution layers,
making it highly challenging for the data owners to recover the
network. Meanwhile, since the networks are deep and complex,
most of the computations are still in plaintext, even when the first
two convolution layers are mostly encrypted.

Table 7: Recover attack by curious data owners.

Model recovery from partially encrypted DNN
Setting 1 Setting 2

𝐴𝑠 𝐴𝑟
𝐴𝑟𝑒𝑐

𝐴𝑠 𝐴𝑟
𝐴𝑟𝑒𝑐

100 250 500 1000 100 250 500 1000
M 99.3 89.3 89.1 89.2 89.5 90.5 99.1 82.2 92.8 93.0 93.3 94.4
E 93.0 81.4 81.5 84.9 88.7 89.8 92.9 63.8 66.1 74.9 83.9 86.1
G 94.3 69.0 86.1 89.7 91.8 92.7 94.3 38.0 68.7 79.7 86.1 90.4
C 90.8 55.9 73.4 78.9 80.6 83.6 90.5 24.9 21.8 19.7 48.2 58.2

𝐴𝑡

100 250 500 1000 100 250 500 1000
M 59.8 78.3 85.9 91.8 E 29.4 44.7 58.6 68.5
G 27.6 49.9 72.5 91.5 C 23.5 31.2 39.5 49.9

Notes: 1. 100, 250, 500, and 1000: the number of pictures to train the model
to recover encrypted weights. 2. 𝐴𝑟𝑒𝑐 : accuracy of the recovered model. 3.
𝐴𝑡 : accuracy of training from scratch.

Figure 6: PrivDNN with a server-side obfuscation layer.

6.2 Data Privacy
Privacy Expectations. The model owner, S, should not be able
to reconstruct the raw pixels of any testing image or to recover
the visual features of any testing image. We discuss the following
aspects: (1) information that is (not) disclosed to the model owner,
(2) the capability of the honest-but-curious model owners, and (3)
the capability of dishonest model owners and the potential defense.
Raw Testing Samples. In the design of PrivDNN, most inference
operations are executed on the data owner (C) side. Therefore, the
raw pixel space representations of the testing samples never leave
C, and they are considered secure.
The Curious Model Owners and the Sample Inference At-
tack.When C sends the encrypted output of the core neurons to S
for decryption, S learns the decrypted values of the intermediate
DNN outputs. A curious S will attempt to utilize the intermedi-
ate outputs to infer features of the data samples. This is highly
challenging, if not impossible, since (1) she only sees a subset of
outputs from the last partially encrypted layer, and (2) C will follow
the protocol to obfuscate the intermediate results before sending
them for decryption. In particular, we have adopted two DNN input
sample recovery attacks in the literature, split learning [23] and
autoencoder [11], in an attempt to recover C’s samples from the
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obfuscated plaintext output of the core neurons. As shown in Figure
8 and 9, the attacks could not succeed even when 100% of the Layer
2 output (obfuscated) is known to S.

6.3 The Dishonest Participants

The Threat Model Revisited. We would like to note that the
honest-but-curious model is adopted in this explorative project on
SMC for deep learning. However, the honest assumption could be
too strong for real-world adoption. Here, we attempt to relax this
assumption to explore the simple attacks from malicious parties
and propose corresponding controls. We acknowledge that more
research efforts need to be devoted to further investigating the
complex attacks and defenses to fully relax the honest assumption.
The Dishonest Data Owners and the Weight-Stealing Attack.
A malicious C may break the honest-but-curious assumption to
launch a weight-stealing attack: it sends the encrypted and obfus-
cated model parameters to S, who decrypts and returns the weighs.
Hence, C will get the whole plaintext model.

To defend against the attack, we infuse a server-side obfuscation
layer after the last partially encrypted layer, as shown in Figure 6.
The obfuscation layer is a convolutional layer (5×5 kernels) with
only one input and output channel. The weights for the neurons
directly succeeding the encrypted core neurons are kept with S,
while the weights for the other neurons in this layer are shared
in plaintext with C. This layer is used to obfuscate the decryption
results before returning them to C, that is, S decrypts the interme-
diate results, performs convolution operations with the server-side
obfuscation neurons, and returns the obfuscated results to C. Since
C does not have the parameters of the obfuscation neurons, even if
she sends the encrypted model weights to S, C cannot recover such
weights after server-side obfuscation. More importantly, the obfus-
cation layer is polymorphic, i.e., when we freeze the entire network,
reset and retrain the obfuscation neurons (the green neurons in
Figure 6), we obtain a different set of the obfuscation parameters
in each retrain. The polymorphism feature makes it impossible for
a malicious C to reverse engineer the parameters of the obfusca-
tion neurons. Note that the computation of the obfuscation layer is
negligible since it is only a convolution layer in plaintext. In our
experiments, this polymorphic obfuscation layer only decreases
the model’s accuracy by no more than 0.1%. Server-side obfusca-
tion is also compatible with client-side obfuscation. In client-side
obfuscation, C multiplies all the encrypted values from the same
channel by a random value 𝜎 before sending them to S. Since the
operations in the server-side obfuscation (convolution) layer are
all linear, C could de-obfuscate the results by multiplying by 1/𝜎 .
Dishonest Model Owner. A malicious S may use engineered
core weights (e.g., using all 1s and 0s) to obtain (partial) plaintext
input that was sent into the core neurons. This is prevented by
data obfuscation. Besides, with the malicious core weights, 𝐴𝑠 will
dramatically decrease, and C easily detects the malicious model.

6.4 The Performance-Security Trade-off
In PrivDNN, S has full control of the selection of the core neurons.
In practice, S identifies 𝑛𝑖,1, which is the number of core neurons to
be selected from layer 𝑖 . PrivDNN then selects the (near) optimal set

of core neurons that achieve the best performance for authorized
users (𝐴𝑠 ) and the least performance for unauthorized users (𝐴𝑟 ).
On the other hand, the choice of parameters 𝑛𝑖,1 implies a trade-off
between performance and security. If S chooses to encrypt fewer
core neurons (smaller 𝑛𝑖,1), it saves computation at C but provides
weaker protection, i.e., a higher𝐴𝑟 and potentially more vulnerable
against the model recovery attack (higher𝐴𝑟𝑒𝑐 ). On the contrary, if
S encrypts more core neurons, it will require higher computation
at C but provide better protection for S’s model.

To demonstrate the performance-security trade-off, we evaluate
PrivDNN on three datasets: CIFAR10+VGG16, GTSRB+AlexNet, and
Tiny-ImageNet+ResNet18. We protect 50% to 100% of the neurons
from the first two convolution layers. The results are shown in
Figure 7. We can observe the following: (1) we achieve consistently
high𝐴𝑠 (accuracy for authorizedmodel evaluation), which is always
very close to the original model accuracy (𝐴𝑜 ). (2) 𝐴𝑟 (accuracy for
unauthorized evaluation) decreases with the increased number of
encrypted neurons, i.e., from 55.90% to 9.78% for CIFAR10, from
68.95% to 1.01% for GTSRB, and from 45.66% to 2.50% for Tiny-
ImageNet. (3) Completely retraining the model with 1000 samples
achieves subpar accuracy (𝐴𝑡 ): 49.94% for CIFAR, 91.45% for GTSRB,
and 10.14% for Tiny-ImageNet. (4) The effectiveness of the model
recovery attack also decreases, especially when ∼100% of the first
two layer neurons are protected. When 50%, 75%, and 100% of the
first two layers are encrypted, the accuracy of the model recovered
with 1,000 samples (𝐴𝑟𝑒𝑐 ) decreases from 83.60%, 58.20% to 30.18%
for CIFAR-10, from 92.70%, 90.40%, to 5.42% for GTSRB, from 66.16%,
61.88% to 4.20% for Tiny-ImageNet. (5) 𝐴𝑟𝑒𝑐 almost always stays in
between 𝐴𝑠 and 𝐴𝑟 , i.e., the model recovery attack could improve
the performance of the broken models by tuning them with 1,000
samples. However, they cannot reach the accuracy of the original
model, and they fail badly when a relatively larger proportion of the
first two layer neurons are protected. (6) The model recovery attack
appears more effective on GTSRB. This is explained by the fact that
GTSRB has highly similar images in each class, so a classifier could
easily achieve high accuracy with only a small number of training
samples. As shown in Figure 7 (B), 𝐴𝑡 is very high (approximately
3% below 𝐴𝑜 ), and 𝐴𝑟𝑒𝑐 stays lower than 𝐴𝑡 , i.e., with the same
number of labeled samples, it is easier to train a model from scratch
than to recover a protected model.

Last, the DNN inference time increases linearly with the number
of core neurons, which is consistent with the discussions in Section
5.3. Note that invoking an FHE-based full-model encryption scheme
for a large model like VGG16 is extremely expensive. Hence, the
overhead for PrivDNN is still considered very acceptable.

To balance the efficiency (for C) and model security (for S), the
model owner could invoke PrivDNN to evaluate the model with
different 𝑛𝑖,1 settings and empirically pick the one that satisfies
her privacy goals while requires reasonable computation for C.
Finally, we acknowledge that more effective model recovery attacks
may emerge in the future as part of the cat-and-mouse nature of
attacks and defenses in cybersecurity. A possible mitigation is to
further increase the proportion of the protected neurons. For large
models, such as VGG16 and ResNet18, the first two convolution
layers contain less than 5% of all model weights. Encrypting all of
them would significantly reduce 𝐴𝑟𝑒𝑐 while still maintaining a low
DNN encryption ratio (𝐸𝑅), i.e., maintaining high efficiency.
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Figure 7: The performance-security trade-off: the distribution of 𝐴𝑠 , 𝐴𝑟 when 50% to 100% neurons are encrypted. The corre-
sponding 𝐴𝑟𝑒𝑐 and 𝐴𝑡 when 1,000 samples are used for model recovery attacks or train the model for (A) CIFAR10+VGG16, (B)
GTSRB+AlexNet, and (C) Tiny-ImageNet+ResNet18. (D): Model evaluation time (𝑇 ) for a batch of up to 8192 testing samples.

7 Related Works
Privacy-preserving DNN Evaluation with Data Encryption.
Machine learning applications usually involve two steps: training
the model from labeled data and inference for unlabeled samples
using the trained model. Most of the existing secure ML works
focus on protecting the data, i.e., the data owner wants to evaluate
the testing samples while not leaking the data to the untrusted
model owner. Hence, the data owner encrypts the testing samples
using FHE before sending them to the model owner.

CryptoNets [26] is the first work to apply FHE to secure DNN
evaluation. It takes 250 seconds to evaluate a batch of encrypted
MNIST images. Later works attempted to improve the efficiency
of secure DNN evaluation and support more complex models with
higher accuracy. LoLa [7] encrypts entire layers and changes data
representations throughout the computation to get an 11.2× speedup
on CIFAR10. Faster CryptoNets [13] improved performance over
CryptoNets by leveraging sparsity properties. CHET [16] provided
an optimizing compiler for FHE DNN inference to offer a high-level
user framework to automate parameter tuning. Recently, more ef-
forts have been devoted to improving the activation functions. Cryp-
toDL [36] explored more common activations besides the square
function. FHE–DiNN [5] use a precomputed table to process the
cipher activation whose complexity is strictly linear in the depth
of the network and whose parameters can be set beforehand. How-
ever, it can only be applied to integer ciphers, which means its
accuracy is still limited. More works try to use low-degree poly-
nomials to approximate the non-linear activation functions. [9]
combine CryptoNets and batch normalization principle. It normal-
izes the convolutional output before activation and uses different
degrees of polynomials to imitate ReLU. [61] examines the contri-
bution of different properties, such as differentiable, continuous,
monotonic, etc., to guide the selection of polynomial functions. [51]
selects optimal composite polynomials for the sign function and
uses the sign function to implement ReLU.
Privacy-preserving DNN Evaluation with Model Encryption.
Compared with data protection, fewer works focus on model pro-
tection. [4] first studied the protection of the private DNN models,
while [43] focused on the protection of CNNs. They adopt the same
data protection schemes for DNN model protection, i.e., they en-
crypt all the parameters in the model and feed the encrypted model
with plaintext or ciphertext data to perform DNN evaluation en-
tirely in ciphertext. Unlike these approaches, PrivDNN is the first
to observe and utilize a key feature in DNNmodel protection that is

unnecessary to protect all the parameters in a large DNN. Therefore,
PrivDNN is able to achieve a significant boost in the efficiency of
privacy-preserving DNN evaluation by only encrypting a subset of
essential neurons of the entire DL model.
DNN Model Recovery Attacks.Model recovery (stealing or ex-
traction) attacks aim to obtain model hyperparameters, architecture,
or trained weights, [10, 62, 78]. The weight-stealing attacks are the
most similar to our model recovery attacks. They can be grouped
into two categories: (1) stealing exact properties and (2) stealing ap-
proximate behavior [62]. [57] proposes the first exact model weight
stealing attack on a binary classifier. [68] extended the idea and pre-
sented an equation-solving attack for support vector regression. In
outsourced DNN execution, weights could be stolen from the com-
puting platforms or the communication channel [37, 39, 78]. Such
attacks are not applicable in PrivDNN, since the cryptography prim-
itives are assumed to be unbreakable to the attacker. Meanwhile,
in query-based approximate model stealing, the attacker queries
the target model with input images to learn the predictions and
then trains a local model with learned image-prediction pairs [63].
Optimization techniques, such as active learning, reinforcement
learning, and evolutionary algorithms, are employed to save query
budgets [10, 65, 66]. However, those attacks still need significantly
more labeled samples than our model recovery attack. For exam-
ple, [71] stole a ResNet18 model (original accuracy is 78.52%) and
achieved 72.83% clone accuracy with the entire CIFAR10 dataset
(50K samples) as a proxy, or 43.56% with synthetic fake data. [68]
stole a VGG16model and achieved 93.7 - 98.6% clone accuracy of the
original model accuracy with over 3M natural pictures. [44] stole a
GTSRB[38] classifying model and achieved 97.9% clone accuracy of
the original model accuracy with 102K synthetic samples.

8 Conclusion
We present PrivDNN, a practical framework to protect DNN mod-
els in privacy-preserving DNN evaluation. With the novel partial
DNN encryption scheme, the authorized DNN evaluation accu-
racy remains very close to the original DNN accuracy, while the
unauthorized users get significantly decreased accuracy. We design
and implement three algorithms to identify the core neurons from
DNN models for effective protection. As shown in extensive exper-
iments on five popular benchmarking datasets and DNN models,
PrivDNN reduces the inference time by up to 29.7x in privacy-
preserving model evaluation while keeping the model safe. We
share the code at: https://github.com/LiangqinRen/PrivDNN.
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A Glossary
The following table summarizes the notations used in the paper.

Table 8: Notations used in the paper.

Symbol Notation

𝐴𝑜
The classification accuracy of the original deep learn-
ing model. First defined in Section 4.1.

𝐴𝑠

The classification accuracy for authorized clients, who
can get decrypted FHE neuron outputs (demonstrated
in Figure 3 (b)). First defined in Section 4.3.

𝐴𝑟

The classification accuracy for unauthorized clients
who cannot obtain decrypted FHE neuron outputs
(Figure 3 (c)). First defined in Section 4.3.

𝐴𝑟𝑒𝑐

The classification accuracy achieved by the curious
clients in a model recovery attack. First defined in
Section 6.1.

𝐴𝑡
The classification accuracy for models trained from
scratch with 1000 samples. First defined in Section 6.1.

𝑠
The quality of the core set selection. First defined in
Section 4.3, Equation 1.

𝑇 Model execution time for a batch of input samples.

𝑛𝑖,1
The number of core neurons (with encrypted weights)
in the 𝑖th convolution layer. Defined in Section 4.4.

𝑛𝑖,2

The number of non-core neurons (with plaintext
weights) in the 𝑖th convolution layer. Defined in Sec-
tion 4.4.

𝑁𝑒
The total number of core neurons (with encrypted
weights). First defined in Section 4.1.

𝑁
The total number of convolution neurons in the DNN.
First defined in Section 4.1.

𝐸𝑅

The DNN encryption ratio, i.e., the proportion of core
neurons out of all convolution neurons in the DNN.
First defined in Section 5.3.
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B Sample Recovery Attack
We adopt two mechanisms, split learning [23] and autoencoder
[11], to recover the raw pixels of the input images from the output
of the intermediate layers of the network. We evaluate an extreme
case where all the outputs from layer 2 are known to the attacker,
i.e., the curious model owner. Note that such outputs are obfuscated
(multiplied by a random value 𝜖). To fully mimic the server’s capac-
ity that she has the full training samples, we assume the server will
attempt to rescale the obfuscated intermediate results, based on
her knowledge of her own training samples, to break the client’s
obfuscation.

In Figure 8, we show the original input images (first row) and the
recovery attack results of split learning (second row). As shown, the
malicious model owner could not recover any meaningful image.

Figure 8: The model owner’s sample recovery attack with
split learning [23] when selecting 100% neurons.

In Figure 9, we show the original input images (first row), im-
ages recovered by the autoencoder (second row) from unobfuscated
intermediate results, and the recovery attack results of the autoen-
coder (third row) from obfuscated intermediate results. Even with a
well-trained autoencoder, the server cannot recover any meaning-
ful image due to the protection of obfuscation. We also like to note
that, in real-world attacks, the model owner is unlikely to have the
entire layer 2 encrypted, hence, her capability is even weaker than
the example attacks in this section.

Figure 9: The model owner’s sample recovery attack with an
autoencoder [11] when selecting 100% neurons.

C Datasets and Model Structures
We adopt five popular benchmarking datasets for machine learning
applications, as summarized in Table 9. They are briefly introduced
as follows:

Table 9: Datasets and models used in the experiments.

M E G C T
Complexity Low Medium Medium High High
Image size 28×28 28×28 32×32 32×32 64×64
Categories 10 26 43 10 200
Train size 60000 124800 39209 50000 100000
Test size 5000 10400 6315 5000 10000

DNN Model LeNet-5 LeNet-5 AlexNet VGG16 ResNet18
Optimizer Adam Adam SGD SGD SGD

Learning rate 1e-3 3e-3 5e-2 5e-2 5e-2
Scheduler CosineAnnealingLR

Accuracy(𝐴𝑜 ) 99.36% 93.08% 93.51% 90.22% 72.00%
1. M: MNIST [18], E: EMNIST [14], G: GTSRB [38], C: CIFAR10 [47], T:
Tiny-ImageNet [59] 2. We adopt top-5 accuracy for Tiny-ImageNet.

Table 10: The structure of the LeNet-5 classifier for MNIST.

Layer Type Output Kernel Padding Activation
1 Conv 6 5×5 0 -
2 AvePool 6 2×2 - Square
3 Conv 16 5×5 0 -
4 AvePool 16 2×2 - Square
5 FC 120 - - ReLU/Square
6 FC 84 - - ReLU/Square
7 Softmax 10 - - -

Table 11: The structure of the LeNet-5 classifier for EMNIST.

Layer Type Output Kernel Padding Activation
1 Conv 10 5×5 0 -
2 AvePool 10 2×2 - Square
3 Conv 20 5×5 0 -
4 AvePool 20 2×2 - Square
5 FC 120 - - ReLU
6 FC 84 - - ReLU
7 Softmax 27 - - -

• MNIST. The MNIST dataset [18] contains grayscale images of
handwritten digits from 0 to 9. It is a classic dataset for handwritten
character recognition. MNIST was derived from a larger dataset,
NIST Special DB 19, which also contains uppercase and lowercase
letters. We adopt the classic LeNet-5 classifier [49] for MNIST.
• EMNIST. The Extended MNIST (EMNIST) [14] is a NIST variant
for challenging classification tasks while sharing the same image
structure and parameters as MNIST. We use the EMNIST Letters
dataset, which contains 26 balanced classes of English letters. To
get better accuracy, we modify LeNet-5 by increasing the first layer
channels from 6 to 10 and the second layer channels from 16 to 20.
• GTSRB. The German Traffic Sign Recognition Benchmark [38]
is an RGB dataset with 43 different types of traffic signs. We resize
all the images to 32×32 pixels in size. We adopt the AlexNet model
[48] and follow the solution in [81] to reduce the kernel size to 5
and 3 for the first two layers, respectively, to fit GTSRB.
• CIFAR10. The Canadian Institute For Advanced Research 10
(CIFAR10) dataset [47] is an RGB image dataset with 10 classes,
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Table 12: The structure of the modified AlexNet for the GT-
SRB dataset.

Layer Type Output Kernel Padding Activation
1 Conv 96 5×5 1 -
2 AvePool 96 2×2 - Square
3 Conv 256 3×3 1 -
4 BN 256 - - -
5 MaxPool 256 2×2 - ReLU
6 Conv 384 3×3 1 ReLU
7 Conv 384 3×3 1 ReLU
8 Conv 256 3×3 1 -
9 MaxPool 256 2×2 - ReLU
10 FC 512 - - -
11 Dropout 512 - - ReLU
12 FC 128 - - -
13 Dropout 128 - - ReLU
14 Softmax 27 - - -

such as automobile, bird, cat, etc. We adopt a more complex model,
VGG16 [75], for CIFAR10.
• Tiny-ImageNet. Tiny-ImageNet [59] is a modified subset of the
original ImageNet [17]. It contains 200 different classes of 64×64
colored images. We adopt ResNet18 [32] to classify it.

Next, we present the detailed architectures of the deep learn-
ing models used in the experiments: the two LeNet-5 networks
for MNIST and EMNIST, respectively, the AlexNet network for
GTSRB, the VGG16 network for CIFAR10, and the ResNet18 for
Tiny-ImageNet.

Table 13: The structure of the VGG16model used for CIFAR10

Layer Type Output Kernel Padding Activation
1 Conv 64 3×3 1 Square
2 Conv 64 3×3 1 -
3 BN 64 - - -
4 MaxPool 64 2×2 - ReLU
5 Conv 128 3×3 1 -
6 BN 128 - - ReLU
7 Conv 128 3×3 1 -
8 BN 128 - - -
9 MaxPool 128 2×2 - ReLU
10 Conv 256 3×3 1 -
11 BN 256 - - ReLU
12 Conv 256 3×3 1 -
13 BN 256 - - ReLU
14 Conv 256 3×3 1 -
15 BN 256 - - -
16 MaxPool 256 2×2 - ReLU
17 Conv 512 3×3 1 -
18 BN 512 - - ReLU
19 Conv 512 3×3 1 -
20 BN 512 - - ReLU
21 Conv 512 3×3 1 -
22 BN 512 - - -
23 MaxPool 512 2×2 - ReLU
24 Conv 512 3×3 1 -
25 BN 512 - - ReLU
26 Conv 512 3×3 1 -
27 BN 512 - - ReLU
28 Conv 512 3×3 1 -
29 BN 512 - - -
30 MaxPool 512 2×2 - ReLU
31 FC 512 - - -
32 Dropout 512 - - ReLU
33 FC 512 - - -
34 Dropout 512 - - ReLU
35 Softmax 10 - - -
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Table 14: The structure of the ResNet18 model used for Tiny-
ImageNet

Layer Type Output Kernel Padding Activation
1 Conv 64 3×3 1 -
2 BN 64 - - Square
3 Conv 64 3×3 1 -
4 BN 64 - - ReLU
5 Conv 64 3×3 1 -
6 BN 64 - - ReLU
7 Shortcut 64 - - -
8 Conv 128 3×3 1 -
9 BN 128 - - ReLU
10 Conv 128 3×3 1 -
11 BN 128 - -
12 Shortcut 128 - - -
13 Conv 128 3×3 1 -
14 BN 128 - - ReLU
15 Conv 128 3×3 1 -
16 BN 128 - -
17 Conv 256 3×3 1 -
18 BN 256 - - ReLU
19 Conv 256 3×3 1 -
20 BN 256 - -
21 Shortcut 256 - - -
22 Conv 256 3×3 1 -
23 BN 256 - - ReLU
24 Conv 256 3×3 1 -
25 BN 256 - -
26 Conv 512 3×3 1 -
27 BN 512 - - ReLU
28 Conv 512 3×3 1 -
29 BN 512 - -
30 Shortcut 512 - - -
31 Conv 512 3×3 1 -
32 BN 512 - - ReLU
33 Conv 512 3×3 1 -
34 BN 512 - -
35 Softmax 200 - - -
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