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ABSTRACT
Smart home devices are constantly exchanging data with a variety
of remote endpoints. This data encompasses diverse information,
from device operation and status to sensitive user information like
behavioral usage patterns. However, there is a lack of transparency
regarding where such data goes and with whom it is potentially
shared. This paper investigates the diverse endpoints that smart
home Internet-of-Things (IoT) devices contact to better understand
and reason about the IoT backend infrastructure, thereby providing
insights into potential data privacy risks. We analyze data from
5,413 users and 25,123 IoT devices using the IoT Inspector, an open-
source application allowing users to monitor traffic from smart
home devices on their networks. First, we develop semi-automated
techniques to map remote endpoints to organizations and their
business types to shed light on their potential relationships with
IoT end products. We discover that IoT devices contact more third
or support-party domains than first-party domains. We also see
that the distribution of contacted endpoints varies based on the
user’s location and across vendors manufacturing similar functional
devices, where some devices are more exposed to third parties than
others. Our analysis also reveals the major organizations providing
backend support for IoT smart devices and provides insights into
the temporal evolution of cross-border data-sharing practices.
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1 INTRODUCTION
Internet of Things (IoT) devices have seen widespread adoption
across the globe. The global IoT market is $662 billion today and is
anticipated to increase to $3,353 billion in 2030 [36]. People world-
wide use a wide range of IoT devices in their daily lives, including
security cameras, voice assistants, smart home appliances, smart
TVs, etc. These devices typically collect and share user data with
different computing infrastructures for operational and analytic
purposes [47, 61]. The data varies from users’ personal information
(e.g., email address, location) to users’ activities (e.g., what a user is
doing, whether the user is awake or not, what food the user prefers,
what the user is watching). This data can readily be employed to
create user fingerprints, raising security and privacy concerns for
users (e.g., determining whether anyone resides at home or serving
targeted advertisements). While for typical devices such as desk-
tops and smartphones, there are controls to opt out of data sharing;

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(3), 495–522
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0090

such options are very limited for IoT devices other than installing
firewalls on the gateway routers of the home network.

In recent years, researchers characterized IoT traffic in terms of
the relationship between traffic generators and receivers. However,
existing works collected and characterized traffic from a few dozen
of devices in controlled lab settings [5, 13, 24, 26, 27, 49, 54, 56, 61,
67, 68, 80] that may not represent organic user traffic in the wild.
Whether these existing techniques would still apply to a larger IoT
traffic dataset is unclear. Work like Kumar et al. examined millions
of IoT devices, although their dataset is proprietary, and the results
are difficult to reproduce [39]. Crowdsourced datasets have also
been used to characterize IoT traffic [30, 48]; however, such analyses
have primarily focused on security aspects such as the use of TLS
versions and the prevalence of unencrypted traffic. Little research
has been done to identify the thousands of Internet endpoints that
millions of IoT devices contact and their role in the overall IoT
ecosystem. Previous works have categorized remote endpoints into
three categories [47, 61]: first-party, support-party, and third-party.
Such categorizations are based on whether a device manufacturer
owns a remote endpoint, whether the endpoint provides CDN or
cloud-based services, or none of the above. Mandalari et al. sug-
gested that all third-party destinations are non-essential and can
potentially be filtered/blocked [47].

Existing works have recognized different endpoint types, but
their approach is manual and unscalable for a large number of IoT
devices [47, 61]. To resolve this issue, we first develop techniques
to augment the identification and categorization of smart home
devices using a large language model (LLM). Next, we develop a
semi-automated system to categorize endpoints into first, support,
or third party with minimal human input. We collect device manu-
facturer and remote endpoint information from open data sources
like WHOIS database, web scraping, SERP scraping, etc. We incor-
porate spaCy [75], an NLP technique to determine the organization
names from unstructured streams of text. We also consider the
parent-subsidiary relationship among various device vendors and
manufacturers. With the information collected about the device
vendors and the remote endpoints, we then map the relationship
between IoT devices and remote endpoints. Using our approach, we
conduct an analysis of the IoT Inspector [30] dataset with respect
to the contacted endpoints. Our proposed methodology can also
be applied to other independent datasets (as shown in §4.2). Such
generalizability arises from the fact that the LLM model used for
device identification is not fine-tuned, and the sources we used for
endpoint classification are independent of the IoT Inspector dataset.

There is a lack of transparency regarding where sensitive user
data goes and with whom it is potentially shared. Furthermore,
little is known about how cross-border data-sharing practices in
the smart-home IoT ecosystem vary over time. To address these
gaps, we answer the following four research questions using our
proposed endpoint detection system.RQ1:How does the distribution
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of different types of endpoints vary across different categories of IoT
devices? We want to determine which devices contact more third
parties than compatible devices. With such insights, consumers
might be able to determine which devices are more dependent on
support parties and more likely to share or sell user data to third
parties. RQ2: Do the contacted endpoints significantly change based
on the user’s location? We want to see if the distribution of first,
support, and third parties changes based on the user’s location.
More specifically, we want to determine which regions are more
exposed to third parties. RQ3: How frequently does user data cross
borders? We want to investigate cross-border data exchanges that
take place. Such analysis can help shed light on potential violations
of privacy regulations. RQ4: Does the distribution of different types
of contacted endpoints vary over time? We want to investigate if the
contacted first, support, and third parties for a given device change
over time. We focus on smart home devices in our analysis, and
throughout the paper, we use “IoT device" and “smart home device"
interchangeably. In summary, we make the following contributions:
• First, we identify and categorize smart home devices.We examine
54,950 devices, exclude devices that are not typical IoT devices
(such as PCs, phones, routes, etc.), and end up with 25,123 IoT
devices across eight categories.

• We develop a semi-automated method to classify endpoints into
first, support, or third party with minimal user input. Through
manual validation, we show that our approach can achieve an
average of 97% accuracy in identifying different endpoints.

• We apply our semi-automated endpoint categorization technique
to traffic generated by 25,123 IoT devices used by real-world users
worldwide and determine the distribution of first, support, and
third parties for each device.

• Our analysis identifies the dominant back-end infrastructure for
the IoT ecosystem, which can foster data transparency research
for IoT devices, something existing literature needs to include.

• Lastly, we showcase how the distribution of contacted support
and third parties varies based on the user’s location and to what
extent user data cross borders. We also perform the first temporal
large-scale analysis of smart home IoT traffic.
Interested readers can find all the relevant code and anonymized

data here: https://github.com/jakariamd/IoT-Measurement.git.

2 RELATEDWORK

Characterization of Real-world IoT Traffic. Recent works in
IoT measurement have leveraged active and passive measurement
data to characterize IoT device traffic. In particular, Kumar et al.
leveraged a corporate dataset of 83M devices from around the
world and characterized their device properties as well as their
security profiles [39]. This data was primarily collected through
active probing of devices on the network. In contrast, Mazhar et
al. instrumented the gateway software in 220 homes to collect
passive data and investigate similar device properties [48]. Most
recently, IoT Inspector [30] crowdsourced IoT network traffic from
more than 5,500 real IoT users around the world to allow individual
participants to identify potential security risks, such as the use of
TLS versions and the prevalence of unencrypted traffic.
Fingerprinting IoT Traffic. In recent years, researchers have
started analyzing the network traffic generated by IoT devices to

uniquely identify IoT devices on the network. Researchers have
shown that it is possible to infer not only IoT devices [6–9, 12, 21, 50,
63, 65, 66], but also certain device-level activities [1, 15, 55, 61, 72]
from encrypted traffic. However, most of these works focus on
building and evaluating models that work well on a relatively small
dataset (typically less than 50 devices) and lack any analysis of how
such models generalize to other datasets, often collected under dif-
ferent settings. Moreover, they lack any comprehensive open-world
analysis — something that an adversary is bound to face in any real-
world setting. Dilawer et al. looked at the generalizability of such
fingerprinting techniques across independent datasets collected
across different settings [2] and analyzed how device fingerprints
evolve over time and generalize across different geolocations.
Security and Privacy Awareness for IoT Devices. Numer-
ous previous works have demonstrated that the rapidly evolv-
ing IoT ecosystem is a significant source of privacy and security
risks [4, 11, 71, 73]. Alasdair revealed that when plug-and-play
IoT devices evolve, two groups of users emerge: aware and un-
aware. Many consumers blindly follow gadget prompts without
reading terms [23]. Koohang et al. showed that IoT awareness could
positively influence users’ IoT privacy and security knowledge, as
well as their trust and continued intention to use IoT devices [37].
Emami-Naeini et al. [18, 19] have showcased how security and pri-
vacy labels can influence users’ purchase behavior for IoT products.
Babun et al. demonstrated that IoT platforms are not generic, so
most IoT users struggle to configure IoT devices correctly [10]. Also,
IoT devices are vulnerable to information leakage, which exposes a
user’s private data, and most IoT platforms still lack effective pri-
vacy protections [10]. Saidi et al. analyzed backend infrastructures
and revealed that 35% of IoT traffic is exchanged with IoT backend
servers in other continents [62].
Distinction with Existing Work. We analyze traffic from IoT
devices under real-world settings from smart homes worldwide, in
contrast to lab studies such as Ren et al. [61]. Therefore, our work
is closely related to the existing works listed in Table 1. Compared
to Mazhar et al. [48], our work covers both a larger diversity of
devices (1,103 distinct IoT products compared to 66) and geographic
regions (globally compared to one US city). Furthermore, we cover
a longer duration of time (3 years compared to 19 days). When
comparing our work with Kumar et al. [39], we see that while
Kumar et al. cover more devices globally, the data was collected
only for one month, based on active scans, and did not include
passive network traffic, which would be useful in understanding
activities of devices. Moreover, their dataset is proprietary, as Avast
collected it. Lastly, although we use a similar dataset as Huang et
al. [30], we are different from the original paper in the following
aspects: 1) longer duration (3-year period compared to 9 months),
2) more diverse devices (original paper analyzed only 25.8% of all
devices in our current dataset), and 3) performs a more holistic
analysis of contacted endpoints in terms of first, support, and third
parties where existing work relies on blocklists primarily for the
web. Moreover, none of the existing works have performed tem-
poral analysis of IoT traffic. About the classification of endpoints,
Varmarken et al. [74] and Razaghpanah et al. [60] have employed
semi-automated methods as well. Their approach relied on propri-
etary databases (Crunchbase or D&B) for endpoint-to-organization
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Table 1: Comparison with existing work on IoT traffic from real-world users and not from a lab setup.

Work No. of Unique Collection Geographic Temporal Analyzes passive Data
IoT devices IoT products duration regions analysis network traffic proprietary

Kumar et al. [39] 83 M 14K 1 month global ✗ ✗ ✓

Mazhar et al. [48] 240 66 19 days one US city ✗ ✓ ✗

Huang et al. [30] 6,776 81 9 months global ✗ ✓ ✗ †

This paper 25,123 1,103 3 years global ✓ ✓ ✗ †

† subject to IRB approval

mapping, which becomes problematic when organizational infor-
mation is absent or the organization is newly established. Instead,
our approach leverages multiple open-source data sources to map
even more domains to organizations. Also, their datasets lack the
diversity present in our dataset. Lastly, Saidi et al. [62] examined a
limited set of backend providers over a short period (2 weeks). In
contrast, our analysis identifies backend providers through organic
communications spanning a longer duration (3 years).

3 DATASET

Background on IoT Inspector. IoT Inspector is an open-source
tool that anyone in public can download on their computers to
collect, analyze, and visualize the network traffic of their IoT devices.
The tool also sends anonymous data to the IoT Inspector server.
This data includes (i) information that suggests possible identities
of devices, such as the Organizationally Unique Identifier or OUI
(i.e., the first 3 bytes of a MAC address), the HTTP User Agent,
mDNS [14] responses, and UPnP [51] announcements, along with
any annotations that users voluntarily provide, including the names
and manufacturers of devices; and (ii) statistics of network traffic,
aggregated every five seconds, including the remote hostnames,
remote IP addresses, remote ports, and the number of bytes sent and
received. It collects statistics on the network traffic with ARP [77]
spoofing, effectively man-in-the-middling all connections between
the smart home devices and the gateway. IoT Inspector collects
these data from the home networks of organic users.
Overview of Dataset. IoT Inspector was launched in April 2019
and has been in operation since. For this paper, we have requested
a subset of the data from the IoT Inspector team for the time period
between April 08, 2019, and July 20, 2022. The entire IoT Inspector
dataset includes 216,671 devices across 11,787 global users.

4 DEVICE IDENTIFICATION
Device identification (product name and manufacturer names) is
a crucial challenge for our dataset. Several potential metadata for
identifying the devices are included in the dataset. Below, we detail
the strengths and weaknesses of each metadata:

User Annotation. The users of IoT Inspector have voluntarily
annotated 19,210 out of the 216,671 devices (8.87%) with product
information (device and manufacturer names). User labels, while
useful for device identification, can be inaccurate and unreliable,
raising concerns about their authenticity.

OUI. The OUI represents the device manufacturers. For example,
given an OUI c8:3a:6b, we can infer the manufacturer as Roku.
One limitation with OUI is that many IoT manufacturers outsource
the microprocessor unit/WiFi chips from third parties (e.g., Texas
Instruments, AzureWave Technology, Espressif Systems). Devices
with outsourced microprocessor units/WiFi chips broadcast their

MAC addresses with third-party OUIs. Again, some manufactur-
ers share the same OUI with others, and for those cases, IEEE
REGISTRATION AUTHORITY is presented as the manufacturer name.

HTTP User Agent. HTTP User Agent can also be used to identify
devices. For example, user agent HbbTV/1.4.1 (+DRM+MEDIA360;
Samsung; SmartTV2017; T-KTMAKUC-1262.0) tells that the given
device is a ‘Samsung Smart TV’. Nonetheless, the shortcoming is
that User Agent is not available for all devices.

mDNS & UPnP. The most substantial metadata for device identi-
fication is the outputs of Netdisco API, which resolves device iden-
tification from mDNS responses and UPnP announcements [38].
Several attributes of Netdisco result such as name, device_type,
upnp_device_type, properties, model_number, manufacturer
are used to confirm the device identity. For example, the following
“netdisco" information for a device confirms that the device is a
smart TV manufactured by LG.

{ name: 'LG webOS TV [REDACTED]', upnp_device_type:
'urn:schemas-upnp-org:device:Basic:1',
device_type: 'webos_tv', model_number: 'OLED65B6P-U',
model_name:'LG Smart TV',manufacturer:'LG Electronics'}

The problem with this source is that mDNS or UPnP information
is very sparse and insufficient for identifying all devices.

FingerBank. To supplement the crowd-sourced annotations, IoT
Inspector uses an external proprietary API, FingerBank [22], to
infer the product names for every device. This proprietary API
takes the OUI, User Agent, and remote hostnames as the input; it
outputs the possible name of the product. For example, given the
OUI c8:3a:6b of a device, FingerBank infers the product name as
Audio, Imaging or Video Equipment/Television/Roku TV.

We employ two techniques to identify devices: manual identifi-
cation and identification using Large Language Model (LLM). These
techniques complement each other and help to identify a mutually
exclusive subset of devices (detailed in §4.3). These techniques are
explained in the following subsections.

4.1 Inferring Device Identities Manually
Since each metadata for a device mentioned above has a different
level of strength and weakness, we use a combination of them and
follow a vetting process to identify the device manually. Identify-
ing a device means inferring the device vendor or manufacturer
and the device type. For example, Amazon-Fire-TV is identified
as Device-vendor: Amazon, Device-type: TV. The step-by-step
device identification process is described below. For a given device:
(1) If HTTP User Agents or the Netdisco information contains

the product name and manufacturer name, we record it as the
ground truth label of the device. OR

(2) If the model_number is present in Netdisco information, we
search on the Internet with the model number and record the
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device identity from the search result (example: the first search
result for ‘OLED65B6P-U’ says the device is a “LG Smart TV").
OR

(3) If the product name and the manufacturer name from the user
annotation are consistent with FingerBank and/or OUI, we also
record those as the device identity.
One of our researchers manually inspected the device identi-

fication metadata of a subset of the dataset (54,950 devices) and
identified 21,653 devices. We also inferred vendor names and device
types of 13,954 other devices. We say “inferred” because we only
have user annotation or Fingerbank labels, but we do not have
any ground truth metadata for those devices. Thus, we have 35,607
(21,653+13,954) devices with manual device identification.

4.2 Inferring Device Identities with LLM
As explained in the original paper [30], IoT Inspector collects meta-
data of network traffic (e.g., source/destination IP addresses and
ports), some payloads (e.g., DNS), and crowdsourced user labels.
The dataset does not explicitly identify vendors, models, products of
devices. This section discusses howwe infer identities of devices, in-
cluding the vendor and category information, based on this dataset.
We say “infer” because we do not have the ground truth due to
the crowdsourced nature; we can only validate our findings across
different internal data sources and/or through manual inspection.
Overview. We obtained a subset of IoT network traffic from IoT
Inspector’s authors. For each device, we make sure that at least
two pieces of the following metadata are available: OUI, DHCP
hostname, mDNS/SSDP responses, hostnames contacted, and the
user labels. The entire IoT Inspector dataset includes 216,671 devices,
of which 25,033 have at least two pieces of the metadata. In the
next few steps, we will infer the identities, including the vendor
and categories, for these 25,033 devices.
Inferences with ChatGP.T Using OpenAI’s Text Completion
API [34], we develop prompts to infer device vendors and cate-
gories based on a device’s DHCP hostname, mDNS/SSDP responses,
and user labels. We use this API (base model, GPT 3.5 DaVinci,
no fine-tuning) because it is trained on Internet-scale data, which
likely includes public knowledge on various IoT devices. Also, we
pick these three pieces of metadata because, based on our man-
ual sampling, they are likely to contain identifying information
(albeit imperfect), explicitly (i.e., substring) or implicitly. For exam-
ple, user labels are crowdsourced and sometimes include incorrect
spellings [30]; mDNS/SSDP responses often include the vendor and
product information, although the exact formats could differ across
vendors; and DHCP hostnames may be indicative of the product
identity (e.g., the string “cast” often appears in the DHCP hostnames
of Google Chromecast devices). We treat all these metadata as un-
structured natural languages — especially given the diversity of IoT
devices — and feed them into the Text Completion API. We develop
the following prompts by iteratively testing different prompts on a
small subset of known devices: (i) To infer the vendor names, we ask:
“I have an IoT device named ‘[metadata]’. What is the company
that makes this IoT device? Output the company’s name only.” (ii)
For device type, we use this prompt instead: “I have an IoT device
named ‘[metadata]’. What type of IoT device is this? Output the
name of the device type only.” We replace [metadata] with user

labels, DHCP hostnames, or mDNS/SSDP responses, separately,
extracted from the IoT Inspector dataset.

We apply these prompts to the 25,033 devices with the Text
Completion API. After removing empty or unknown responses, we
have the API responses for 24,998 devices. At the time of writing,
the API cost was approximately $70 USD in total.
Validating Vendor Inferences To evaluate the API’s vendor in-
ferences without ground truth knowledge, we check the consistency
across the API’s outputs based on different metadata inputs. Two
outputs are considered consistent if they share a common substring
or word that has at least length 3 and is not a stop word (e.g., “the”
or “smart”), case insensitive and ignoring punctuations. For each de-
vice, we have at least two (out of three) independent metadata: user
labels, DHCP hostnames, and mDNS/SSDP responses. We feed the
prompt into the API separately for every metadata. If the outputs
for at least two pieces of metadata are consistent, then we assume
that the API output is correct. Furthermore, it is also possible that
we cannot find consistent API outputs using the method above.
To supplement the above, we also check the Text Completion API
output against the IEEE OUI vendor names (based on the MAC
addresses) and the domain names to see if the Text Completion
inferred vendor is consistent with the OUI and/or domain names.

To illustrate our method, let us examine one actual device from
the dataset. This device has the DHCP hostname Google-Home and
the following mDNS/SSDP information:
{"host": "[REDACTED]", "hostname": "[REDACTED].local.",
"port" : 8009, "device_type" : "google_cast",
"properties": {"md": "Google Home", ... }}

From both the DHCP hostname and mDNS/SSDP information,
the Text Completion API consistently returns “Google”; we thus
label this device’s vendor as “Google.”

There are cases where the vendor’s name is not explicitly in the
user label, DHCP hostname, or mDNS/SSDP response. For exam-
ple, one of the devices in the dataset has Onelink as the DHCP
hostname; the Text Completion API, given this information and
our prompt, outputs “First Alert” as the vendor. The device also
includes the string “Onelink Safe Sound E380” in the mDNS/SSDP
response; the Text Completion API also outputs “First Alert” as the
vendor. Because in both cases the API returns consistent responses,
we infer the vendor as “First Alert” (even though “First Alert” never
appears anywhere in our dataset for this device).

We conduct this consistency check across all possible combina-
tions of user labels, DHCP hostnames, andmDNS/SSDP information
for all the 24,998 devices. We find consistent vendor information
across 19,096 (76.4%) of these devices. We then sampled 50 random
devices from the 19,096 devices to manually check if the inferred
vendors and categories are consistent with the device metadata,
referring to Google search results when necessary. In all 50 cases,
we find that the Text Completion output vendors and categories
are consistent with the device metadata.
Validation with Auxiliary Datasets. We validate our proposed
method of identifying devices using LLM with 2 auxiliary datasets:
the UNSW IoT Analytics [66] and the YourThings IoTFinder [58]
datasets. We extracted the same device metadata from the PCAP
files of these two datasets: OUI, DHCP hostname, mDNS/SSDP
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responses, and the hostnames contacted. The sole difference here
is that in the IoT-Inspector dataset, we have user annotations for
many devices (19k), which we use in device identification using
LLM. We refrain from using user labels this time since we use them
as ground truths.

A device can be identified if all the following three conditions are
met. For a given device, (a) at least 2 out of 5 metadata mentioned
above are present; (b) metadata contains identifying information
explicitly (i.e., substring) or implicitly (model number or alterna-
tive name). Metadata may contain generic information (such as
"Mozilla/5.0" as user_agent), which is not useful in identifying a
given device. (c) Prompt response for at least two metadata matches.
The outcome of our analysis of these two auxiliary datasets is as fol-
lows: (i) For the UNSW dataset, among 30 devices, 18 were correctly
identified, and 12 were not identified. “Not identified" does not nec-
essarily mean incorrectly identified; instead, the above-mentioned
device identification conditions are unmet. Table 8 in Appendix A.2
shows the presence of metadata for the 12 unidentified devices.
We see that most unidentified devices have less than two meta-
data, and/or the metadata does not contain identifying information.
We experienced a similar aspect for the IoT-Inspect dataset, i.e.,
our method could not identify many devices because of missing
metadata. (ii) For the IoTFInder dataset, among 66 devices, 35 were
correctly identified, and 29 devices were not identified (missing
metadata for 14 devices ~ see Table 8 in Appendix A.2; and for the
remaining 15 devices, no network packet was seen in PCAPs), and
2 devices were incorrectly identified. Regarding the 2 incorrectly
identified devices, we argue that our method correctly identified the
devices, but there were some mislabeled ground truths (an Apple
device labeled as Android Tablet, and a Samsung device labeled as
iPhone). We confirm this information by manually inspecting the
OUI and user agents. A summary is shown in Table 2.

Our proposed LLM-based device identification method is in-
dependent of datasets as it was able to discover different unique
devices across the datasets. For example, this method correctly iden-
tified a Belkin Crockpot device from the YoutThings dataset, which
we did not see in the IoT-Inspect dataset.

4.3 Device Selection and Categorization
We infer 35,607 devices manually and 19,096 with LLM separately,
and these two device sets are non-disjoint. We check all manually
identified devices against LLM-inferred devices. The resilience of
LLM inference over manual vetting is that the former process also
considers the hostnames contacted.We retrieve three sets of devices
by combining manually vetted and ChatGPT-inferred devices. The
number of devices in each set is shown in Table 2. The total number
of unique devices we identified in the dataset is 29,212 which is
around 47% of devices for which we have the network traffic statis-
tics. We see 216 cases where LLM produces different results (e.g.,
TCL/Insignia TV labeled as Roku TV). These labels are not entirely
incorrect as many devices are being built on firmware provided by
other companies. However, manual identification provides more
robust labeling in such cases. For the analysis of the IoT Inspector
dataset, we combine both approaches to obtain higher device cov-
erage. We present a sample list describing mismatch between LLM
and manual device identification in Table 7 of Appendix A.1.

Table 2: Device Identification Statistics
Dataset Description # Device

IoT- Identified by ChatGPT & manually 13,007
Inspector Identified manually, not by ChatGPT 10,683

Inferred by ChatGPT, not manually 5,522
Total Identified 29,212
Non IoT 4,089
IoT 25,123

UNSW Identified by ChatGPT 18
IoT Not Identified by ChatGPT 12
Analytics Total 30

YourThings Identified by ChatGPT 37
IoTFinder Not Identified by ChatGPT 29

Total 66

Table 3: Device Categorization Statistics
Device Category # Device

Media/TV 10,695
Home Automation 7,396
Voice Assistant 4,076
Surveillance 1,376
Game Console 720
Work Appliance 637
Home Appliance 162
Generic IoT 61
ToTal 25,123

The IoT inspector dataset consists of data of various smart home
devices, as well as other devices such as PCs, phones, WiFi ex-
tenders/boosters, etc. To understand device characteristics better,
we categorize the device types into 15 categories used in previous
work [39] showed in Table 5 of Appendix A. A sample device type
to category mapping is shown in the Table 6 of Appendix A. For
further analysis, we only consider IoT devices (shown in the lower
portion of the Table 5) and exclude the non-IoT devices. The number
of IoT and non-IoT devices are shown in Table 2. For the rest of the
analysis, we will focus on the 25,123 IoT devices. The number of
devices in each category is shown in Table 3. Among these 25,123
IoT devices, we find 1,103 (listed in Table 1) unique IoT products.
We define an IoT product as device_vendor:device_type.

5 ENDPOINT CATEGORIZATION
This section will explain our mapping process of contacted end-
points into first, support, and third parties. Our process is semi-
automated, requiring minimal human intervention.

5.1 Finding First Parties
Given a device vendor and contacted hostname, we resolve the ven-
dor organization names and server organization names separately.
Since a device can be manufactured by a subsidiary organization
and then re-branded as parent brand or vice-versa, we also collect
the parent brand, all the sub-brands, and subsidiaries of the given
brand throughGoogle Search. Therefore, for a given brand, we come
up with a list of organizations that represent this brand. We name
this as “device-org” list. After constructing the “device-org” list,
we find the organization names for the hostname the given device
communicates. We first find the effective domain name (eTLD) from
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Figure 1: Step-by-step process of first-party detection. 1○ Identify
device vendors and their organization name; 2○ Fetch parent and sub-
sidiary organizations from vendor organizations in publicly avail-
able sources; 3○ Leverage a script to automatically mine domain
hosting organization information from several sources including
WHOIS, TLS certificate, domain based web-scarping, etc.; 4○ Map
device vendor organization and the remote server organization. If
they match, we say the remote server is the first party for the given
device. * represents the output from the previous step.

the hostname. Then we collect the organization names that pos-
sess this eTLD. We collect organizational information from several
complementary sources shown in Figure 1. These sources include:
1 WHOIS Databases. WHOIS [78] is a protocol to retrieve in-
formation from databases containing data about registered domain
names, IP addresses, autonomous systems, etc. We make WHOIS
queries to look for registrant information. The registrant field of a
WHOIS response typically represents the organization owning a
given domain. The registrant field in the WHOIS response can be
missing or be privacy-protected. Many registrars offer privacy or
proxy services that hide the registrant’s information. We generate a
list of privacy masks from the WHOIS query results. Our approach
for collecting domain owner names from the WHOIS database is
as follows: a) we make a WHOIS query with a domain name and
retrieve the registrant organization name from the query result,
and b) if the registrant’s name is protected with the privacy mask,
we filter out that registrant’s name.
2 TLS Certificate. Another interesting source of information
about the organization of a server is the TLS certificate. The root
of a certificate chain contains the organization name. The caveat
is that many servers lack HTTPS service, resulting in the absence
of a TLS certificate for organization name lookup. Additionally,
even if a remote server provides HTTPS service, the organization
name field might be absent in the leaf certificate. Our experimental
results show that we found organization names in only one-third of
server URLs. Using a TLS certificate for organizational information
is promising because the results are trustworthy and devoid of
privacy masks, unlike WHOIS queries.
3 Web Scraping. We complement the company information data
collection through web scraping. First, we crawl the landing web
page and see if there is copyright information within that page. We
take the organization names from the copyright information of the

landing page. We also extend our quest for organizational informa-
tion in the contact information, privacy policy, and terms and ser-
vices pages. We incorporate Named Entity Recognition (NER) [41],
a cutting-edge NLP technique to extract organization names from
unstructured text streams. Specifically, we use spaCy [75] language
model, which has an F-1 score of 0.86.

We also utilize the Netify1 network lookup tool to find the
domain-level information. This information can supplement the
other resources mentioned above. We say supplement because
Netify only has information for some of the domains in the dataset.
We also noticed that some domains are exclusive to a specific ven-
dor, which means that devices of a particular vendor exchange
traffic with the given remote endpoint. We call those domains to be
exclusive domains. To identify the exclusive domain, we examine
whether over three devices from a specific vendor communicate
with a domain, and no devices from other vendors communicate
with the same domain. We then check if the exclusive domains are
the first party of the particular vendors. Since only several hundred
of them exist, we just manually check them. We found some first-
party relationships that are not possible via other approaches. One
example is xbcs.net, the first-party endpoint for Belkin devices.

After obtaining organization names for a device vendor and the
related hostname, we map these two sets of names. Direct string
matching does not work as organization names for a given IoT
vendor and the organization names for a server may not match
exactly, although they represent the same company. For example, a
device made by “Samsung Group Inc." communicates to the follow-
ing domain “samsungcloud.com" which is registered by “Samsung
Electronics Co., Ltd.". These names do not match directly but their
base names represent the same company. We follow a simple but
effective process for organization name matching. We first replace
the non-ASCII characters, remove punctuation and common legal
business suffixes, and finally remove the common suffix in the orga-
nization names. In this process, the full organization names “Sam-
sung Electronics Co., Ltd." and “Samsung Group Inc." are reduced
to “Samsung". Even after getting the base names, in some cases,
the organization names do not match perfectly. To increase the
probability of matching, we leverage some fuzzy string matching
algorithms, including Discounted Levenshtein [43], String Subse-
quence Kernel Similarity [45], and Token Set Ratio [64]. If a device
manufacturer’s name and the domain’s organization name match
at least a certain threshold (set to 90% empirically), then we say
that the connected domain is a first party for the device.

To evaluate the performance of this approach, we sample 100
first-party domains and manually vet the relationships. We check
whois.com2, netify.ai3, and the target domain’s web server, to deter-
mine the owner of the domain. We find that 96 first-party relations
are correctly predicted. The remaining four domains are third-party;
however, the relationships are incorrectly determined since the re-
mote endpoints explicitly mention the corresponding vendor name
on their web pages. For example, Stan [46] is a third-party stream-
ing media but is classified as a first-party endpoint for Samsung
since the scrapper found “Samsung” on the landing page of Stan.

1Example: https://www.netify.ai/resources/domains/nest.com
2https://www.whois.com/whois/<domain>
3https://www.netify.ai/resources/domains/<domain>
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Figure 2: Step-by-step process of support parties detection. Data
Collection collects textual information about a server from SERP.
Data Pre-processing filters unnecessary words from the text and
produces tokens. Then the stream of tokens is fed into the TF-IDF
feature extraction module to produce useful features. Topic Model
use NMF to find the topic clusters. From these clusters, we extract
only those clusters that represent support parties.

5.2 Finding Support Parties
We define support parties as non-first-party providers that offer a
computing platform as a service. This category includes IoT back-
end providers like Tuya, SmartThings, HomeKit, etc.; OS vendors
like Roku4 and Fire TV; cloud platforms like Amazon Web Ser-
vices (AWS), Google Cloud Platform, and IBM Cloud Computing;
as well as content delivery network (CDN) services like Akamai,
Fastly, Egdecast, CDN77, etc. Knowing the services a remote server
offers is necessary to determine support parties. Some tools like
WebXray [28] provide this information; however, WebXray targets
web servers and only includes a few of the support party infor-
mation for IoT devices. Therefore, we adopt a different strategy.
Search engines are alternative sources for this type of information.
We search Google and Bing with the query “What is + $domain”,
which returns a list of results related to the specified domain. We
then scrape the Search Engine Results Page (SERP) for organic
search results. We only focus on the text under each result, as it
best reflects the type of service a remote domain offers. At this
point, we require an automated tool to comprehend the outcome
and identify the type of service being described in this text. An
apparent choice is employing Natural Language Processing (NLP).
We utilize a topic model to determine the topics the SERP displays
for a given query (for a given domain). Such topics include advertis-
ing, tracking, CDN, and hosting information. We use those topics
to identify the type of service a domain offers and then determine
the relationship between a given domain and a smart home device.
Figure 2 depicts the overall process for identifying support parties.
Dataset. We construct a text dataset utilizing Search Engine Result
Pages (SERP). For each domain, we pull a SERP from Google and
one from BING. We notice variations in organic search results for
the same query on different search engines; therefore, we utilize
both. We aggregate all the texts from all the search results. This
creates a stream of text for each of the domains. We retrieve data
for over 5,090 IoT-specific domains.
Data Pre-processing. At this stage, we clean the text stream from
the SERP. We remove irrelevant words and retain only the essential
keywords or tokens. Our target tokens are primarily nouns, pro-
nouns, and adjectives. To retain target tokens, we utilize spaCy [75],
a popular lemmatization tool used to identify the parts of speech
(POS) of each word in a given text stream.
4We consider Roku a support party because it provides the operating system and
network infrastructure for many non-Roku-branded TVs, such as TCL, Hisense, and
Philips. See https://www.roku.com/products/roku-tv

Feature Extraction. The topic model cannot accept the token
stream directly, as most NLP models prefer numeric input over
strings. Therefore, we need a method for converting text input to
meaningful numerical features. This conversion can be done in
various ways, including word counting, term frequency — inverse
document frequency (TF-IDF), binary encoding, etc. In all the above
methods, a vocabulary is first made by looking at each unique token
in the entire dataset (i.e., corpus). If the token in the given token
stream exists in the vocabulary, the corresponding vector element in
binary encoding is set to 1. In the counting approach, in addition to
determining whether a word exists, it examines the frequency with
which it appears. This method assigns weights to words based on
frequency, and words that occur more frequently will have greater
weights. Contrarily, TF-IDF assigns greater weight to infrequent
words than frequent words [3]. It is based on the assumption that
less common words are more significant. Counting and TF-IDF
represent two extremes; we need something in between for our
dataset. In our feature extraction phase, we employ both counting
and TF-IDF and feed to the topic model separately.
Topic Modeling. We employ the topic model to determine the
topic of a domain’s search result. A topic is simply a group of words
that describe the overall theme. BERT [16] and Non-Negative Ma-
trix Factorization (NMF) [42] are popular topic modeling methods.
NMF has been widely used as a clustering method, particularly
for document data, because it produces semantically meaningful
results easily interpretable in clustering applications. We build two
separate NMF topic models with different feature extraction tech-
niques: Counting and TF-IDF. We set the number of components in
each topic model, n_components, to 30 empirically. A lower value
of n_components combines two or more different types of clusters
into one, while a higher n_components splits a cluster into many.
We set n_components in a way so that the model starts splitting
the same category cluster into multiple groups. As NMF is an un-
supervised technique yielding unlabeled clusters, manual effort is
required to label the clusters. However, this is a one-time offline
process, and once the labels are determined, this model can be
used to infer the topic for future input. After obtaining labels for
topic clusters, we identify clusters that align with the definition of
support parties mentioned earlier. We extract two sets of support
parties from these two topic models and take the intersection of
these two sets. The rationale for this is that overlapping domains
more accurately represent support parties. A complete list of cluster
labels is shown in Table 10 and 11 of Appendix B.1.

We manually vet 100 support party domains determined by this
framework and find that 97 are True support parties. The remaining
3 domains are actually third parties misclassified as support parties.
One such example is YaleHome <yalehomesystem.co.uk>, a home
security system company. The SERP for this domain includes many
IoT product keywords (such as ‘smart door locks’, ‘smart home
alarms’, ‘CCTV systems’), leading tomisclassification.We discuss
the limitations of this approach in the discussion section.

5.3 Finding Third Parties
Contacted domains that are neither classified as first nor support
parties are categorized as third parties. Many high-end IoT devices
like smart TVs come with internet browsers, and users may browse
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domains that are not in the first-party or support-party list. Addi-
tionally, third parties may represent any third-party app or skill for
high-end gadgets such as voice assistance or smart TV. The most
interesting third parties are advertising and tracking companies.
We randomly choose 100 third-party domains and manually vet
the relationship with the corresponding vendors. 98 of them were
categorized correctly. The remaining two domains were support
parties misclassified as third parties. These misclassifications are
due to the limitations of the tools used to identify support parties.
The limitations are described in the discussion section.

5.4 Design Choices

LLM vs SERP. One alternative approach to classifying remote
endpoints into first, support, and third parties is employing LLM,
such as ChatGPT. We prefer using SERP over LLM for endpoint
categorization due to SERP’s superior performance. To compare
the performance of the LLM approach with the SERP approach, we
randomly sample 100 vendor-endpoint pairs (33 ~34 samples per
endpoint type) and use OpenAI-GPT-3.5 API to classify the end-
points. We find that LLM correctly categorizes only 57 out of 100
samples. In contrast, we found that SERP can categorize 97 domains
out of 100, shown in §5.2. For example, OpenAI-GPT-3.5 categorizes
sbixby.com as a support party for a given Samsung device (with ex-
planation: The domain sbixby.com does not match the company name
Samsung. It appears to be related to Samsung’s virtual assistant Bixby,
indicating a support party relationship), whereas it should have been
the first party (by looking into Whois). Contrarily, regarding de-
vice identification, SERP typically fails to identify devices, whereas
LLM understands context and offers better results. For example,
DHCP hostnames can be used to identify devices. Google searches
with full DHCP hostnames typically yielded useless or blog-based
network traffic analysis websites. However, OpenAI-GPT-3.5 often
tokenizes DHCP hostnames and infers vendor names correctly.
Manual Efforts Required for Incorporating New Data. We
claim that our endpoint categorization is automated if we have
device identity (vendor name/type). However, we manually iden-
tified some devices because the dataset is overly sparse. When a
device has more than two metadata entries, language models such
as ChatGPT can consistently recognize the device in most cases.
Manual device identification will no longer be needed if users vol-
untarily provide device information in their home network or use
IoT Inspector for sufficient time to let it collect necessary meta-
information. Again, the endpoint categorization method can be
applied at the user end of IoT Inspector once the device information
is identified. About constructing the "device-org" list (§5.1), we can
create the list scalably using SERP. We utilize a script for scraping
parent and subsidiary company names based on a vendor name. As
for cluster labeling (§5.2), it’s a one-time process, and we can reuse
the cluster model for new endpoints.

6 RESULTS ANALYSIS
Using the recent IoT inspector dataset, we analyze the network
traffic statistics of IoT devices shown in Table 3 to answer the
research question mentioned in section 1. The following subsection
highlights the analysis results of each of the research questions.

6.1 Distribution of Endpoint Type
In this section, we address the research question RQ1: How does
the distribution of different types of contacted endpoints vary across
various categories of IoT devices? To shed light on the backend in-
frastructure for IoT products, we analyze the different domains IoT
devices communicate with and group them into first, support, and
third-party endpoints. This analysis will help us understand how
information could flow between IoT devices and various endpoints,
and provide an upper bound on potential privacy risks. This is an
upper bound because IoT Inspector does not capture the traffic pay-
load, and we have no knowledge of whether/which sensitive data
is shared between IoT devices and remote endpoints. Figure 3 high-
lights the distribution of first, support, and third-party endpoints
for IoT devices of various categories. We present the normalized
numbers across device categories in Table 17 in Appendix F.1.

In Figure 3, we see that the total and the average number of
third-party domains communicated by devices in the Media/TV
category is higher compared to other categories. This is reason-
able, considering that smart TV users access various streaming
services. However, this number also indicates that TV devices are
the most susceptible to exposure to third parties. Smart voice assis-
tant devices rank top in terms of the average number of first-party
domains contacted by each device. Popular voice assistant devices
(e.g., Amazon Alexa and Google Assistant) include third-party ap-
plications, often requiring them to communicate with third-party
remote endpoints. Among those third-party endpoints, we notice
139 advertising domains (based on Disconnect list [31], Easylist [52],
and DuckDuckGo tracker radar [17]). Wireless speakers are becom-
ing popular, and many also support voice assistant services. This
type of device also communicates with third-party domains, includ-
ing tracking-based analytic services like google-analytics.com.

Figure 3c reveals that Surveillance devices, such as IP Cam-
eras, smart doorbells, and indoor cameras, rank top in terms of
upstream data volume per second. This is reasonable as these cam-
era devices transmit video data to servers. However, the concerning
aspect is that surveillance devices also transmit a considerable
amount of data to third parties, potentially including private video
records [20]. We observe that Surveillance devices communicate
with third parties, including advertising and analytic service parties
like doubleclick.net, pubmatic.com, etc. Devices across vari-
ous categories (namely Home Automation, Voice Assistant, Game
console, Work Appliance, and Generic) tend to send more data to
support parties than the first party. This suggests that devices in
these categories rely more on support parties for functionalities
than on the first parties, potentially making support parties more
significant in terms of data harvesting. Notably, Media/TV devices
stand out for uploading more data to third parties than to either
first or support parties. Most smart TVs can collect audio (via voice
activation features) and Usage Data, which involves monitoring
how users interact with the TV for advertising and marketing pur-
poses. There is a suspicion that this information is shared with
third parties, posing a significant threat to individual privacy [74].

Furthermore, we see a lot of third-party domains being contacted
by Game Console devices. As many as 158 third-party advertising
/tracking domains are particularly interested in gaming devices.
These include advertisers like doubleclick.net, adsrvr.org,
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Figure 3: The distribution of contacted endpoints and upstream data volume. (a) shows the number of domains accessed by all the devices in
each category. (b) presents the average and standard deviation of the number of domains contacted by each device. (c) presents the average and
standard deviation (shown as whiskers) of the volume of upstream data a device sends in a second (byte/sec).

googleadservices.com, ad-delivery.net, advertising.com,
amazon-adsystem.com, etc. Interestingly, many simple IoT devices
(smart plugs, bulbs, etc.) also communicate with third-party ser-
vices. These services include advertising services like segment.io,
newrelic.com, adzerk.net, hotjar.com, etc.

Given that the dataset is imbalanced regarding the number of
devices across categories, it can potentially introduce biases in the
outcome shown in Figure 3 (e.g., more domains for media TV, home
automation, voice assistance). We, therefore, present the average
number of domains a device communicates with and the average
volume of upstream data to alleviate that issue. To demonstrate the
generalizability of our analysis, we also randomly sample an equal
number of devices from each category and conduct a comparable
analysis on this balanced dataset. We observe nearly identical distri-
butions for both the balanced set and the entire set of devices. These
results are shown in Figure 10 and Figure 11 in the Appendix F.1.
Also, some device categories exhibit a high standard deviation in
the number of domains contacted and upstream data volume. This
is due to the voluntary nature of participation of organic users.

We also see that the distribution of contacted endpoints varies
across devices that belong to the same category but are produced
by different vendors. For example, Google Chromecast, Samsung,
Sony, and Apple TV devices communicate with multiple first-party
domains, whereas TCL, Hisense, Onn, and Sharp TV devices com-
municate with no first-party domains. Instead, they rely on support
and third-party domains to function. Similarly, the Samsung camera
sends data to support and third parties, whereas SimpliSafe camera
only shares data with the first-party domains.
Common Infrastructure Across Vendors. We would like to
understand common infrastructure across IoT vendors such that
the infrastructure does not appear to be vendor specific. This would
allow us to understand how this common infrastructure may have
amassed data from various IoT vendors and also potentially impose
software supply chain risks. The software supply chain is likely at
play here because if devices from two different vendors communi-
cate with the same infrastructure, these devices potentially share
the same (third-party) libraries to achieve similar functionalities,
although we cannot verify as we lack access to the raw firmware.

We use a subset of IoT Inspector’s hostname dataset, which
shows the remote hostnames (FQDNs) that each device commu-
nicated with. According to the IoT Inspector paper [30], these
hostnames were extracted from DNS queries, SNI fields within
ClientHellos, and Host fields within HTTP requests; they were also
inferred based on reverse DNS (i.e., PTR records) and passive DNS
(i.e., based on FarSight’s data) records. In this way, we obtain a
list of hostnames and domains, along with the device IDs and the
associated user IDs.

We restrict our analysis to devices labeled and validated per the
method described in Section 3. We further restrict our analysis to
remote domains contacted by at least three distinct users (based on
the user IDs) to reduce the probability of mislabeled devices and of
looking at short-lived or temporary connections. To map out the
common infrastructure across vendors, we also restrict to domains
that were contacted to by devices from at least two vendors. Finally,
we remove domains that are exclusively contacted by media-related
devices, such as TVs and speakers. We remove these cases because
the domains are likely a result of the users’ interaction with third-
party content rather than built into the devices themselves. All the
above restrictions further narrow us down to 19,470 devices from
159 products across 129 vendors. We manually assign a label to
each domain. These labels are mutually exclusive, including the
following:
• Company-specific, such as Heroku, Facebook, Apple, Microsoft,
Google, and Amazon. These correspond to generic hostnames
hosted by the said companies’ infrastructure, which could be
first-party (Apple’s iCloud) or third-party (AWS).

• Functionality-specific, including (i) analytics, for logging and
performance measurement; (ii) IoT, for infrastructure related to
controlling IoT devices; and (iii) time servers, for infrastructure
for devices to ask for the time (e.g., through the Network Time
Protocol).

• Network: Domains related to DNS and CDNs.
• Others: All other cases.

After applying the above method, we show the result of our
analysis in Table 4.We highlight a few cases of shared infrastructure
and likely shared functionalities across vendors. First, we examine
domains with the “IoT” label.
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Table 4: Infrastructure shared across IoT devices of various vendors

Label Vendor Product Device User Hostname Domain
count count count count count Count

Amazon 79 97 8705 3052 32928 16
Google 72 92 9187 3486 9317 17
Others 71 88 9213 3580 293253 351
Time Server 64 72 3411 1447 211 3
Network 46 56 4261 2103 111444 18
IoT 21 28 2854 1855 1957 13
Microsoft 16 20 302 253 1175 7
Apple 15 19 735 541 1738 3
Analytics 12 13 303 236 17 2
Facebook 12 17 445 362 85 2
Heroku 5 5 30 28 88 1

• meethue.com is shared across 1,143 Philips hubs, 241 Amazon
voice assistants, 15 Amazon TV. Apparently, these devices all
support capabilities for interacting with Philips Hue lights [29].

• pubnub.com is shared across 351 Logitech hubs and 21Wink hubs.
This service allows the control of IoT devices through various
messaging services, such as MQTT [53]. Similarly, pndsn.com
is shared across the above devices as well; this is a Data Stream
Network for PubNub [35].

• dropcam.com is shared across 169 Nest cameras and 14 Google
Home voice assistants. Interestingly, DropCam was acquired by
Google; this evidence potentially shows some of Google’s Nest
Cameras still use DropCam’s infrastructure [40].

• netgear.com is shared across 20 Netgear cameras, 9 Netgear
hubs, and 3 Arlo cameras. Arlo was a spin-off company of Net-
Gear [33]. Similarly, arlo.com is shared across 23 Netgear hubs,
6 Arlo cameras, and 19 Netgear cameras, while arloxcld.com
(Arlo Cloud) is shared across 31 Netgear hubs, 32 Netgear cam-
eras, and 6 Arlo cameras.
For domains labeled as “Analytics”, we see domotz.com, a net-

work monitoring service, being shared across 216 Roku TVs, 21
TCL TVs, 8 Amcrest cameras, 5 Insignia TVs, and 3 Sharp TVs.
Additionally, mixpanel.com, another analytics company, is shared
across 13 Sony TVs, 7 Wink hubs, 8 Amazon TVs, 5 Nvidia TVs,
and 3 Vizio TVs. A comprehensive list of common infrastructures
shared across IoT vendors is presented in Table 12 in Appendix C.
Summary. Our analysis shows that streaming devices like Smart
TVs, AVR/DRV, STBs, and game console devices aremore exposed to
third-party domains as the average number of domains connected
by devices in these categories are higher, and as much as 23% of
the third-party domains are advertiser or tracker. Users need to
pay close attention while using such devices, as information could
potentially be flowing from these devices to the said third parties.
In addition, low-end smart home devices like plugs, switches, and
IP cameras are also exposed to third-party domains. Regarding
support parties, we see many devices sharing similar back-end
infrastructure. Knowing the distribution of back-end can help gauge
the impact of service disruption or even denial-of-service attacks. It
also paves the way for future work looking into potentially shared
software supply chains for some of these devices.

6.2 Impact of User Location
In this section, address the following research question. RQ2: Do
the contacted endpoints significantly change based on the user’s loca-
tion? We investigate if the contacted first, support, and third parties

vary based on the user’s location. This analysis will help us mea-
sure how users’ privacy risks (e.g., exposure to third parties) are
potentially varied depending on the geographical location. It would
be intriguing to understand how often user data crosses national
borders and how this affects varying privacy regulations and expec-
tations. However, the IoT-inspector dataset lacks country-specific
information but contains users’ time zones. Therefore, we use time
zone as a more coarse-grained resolution of users’ locations.

We first divide smart home devices into three groups to answer
this question based on the users’ time zone. The first group con-
sists of IoT devices discovered in either North or South America.
The second group includes devices from Europe and Africa. The
final group comprises devices tracked down in the Asia Pacific
and Australia. In the dataset, there is an imbalance in the number
of devices (76%, 20%, and 4%) across various regions ( Table 9 in
Appendix A.3 highlights the number of users and devices across dif-
ferent regions). Most of the IoT devices in the dataset come from the
North American region. European and African regions are second
regarding the total number of devices. There could be two possible
reasons behind this imbalance. First, consumers use more smart
home devices in the American region. Second, more users from the
American region used the IoT Inspector software. This imbalance
in the number of devices across various regions makes it difficult
to compare the number of different parties contacted by the same
number of devices across various regions. The number of different
parties positively varies with the number of devices in each region.
In Figure 4, we, therefore, show the average number of different
parties communicated by each device in various regions. We see a
mixed variation in the average number of domains communicated
by each device across various regions. For example, the average
number of third party domain communicated by Home Appliance
devices is much higher in Asia Pacific region than other two re-
gions. Media/TV devices communicate with more different types of
remote endpoints in American regions, whereas Voice Assistant
devices communicate more in the European and African regions.
Additionally, across Europe and Africa, devices from 4 out of 8
categories show the highest average communication with third-
party domains. Conversely, devices in American regions generally
engage more with first-party and support entities on average.

We also look at RQ3: How frequently does user data cross bor-
ders? Here, we want to shed light on how frequently data from IoT
devices cross regulated borders, which is an interesting question
to investigate given that different cross-border data transfer regu-
lations (e.g., GDPR [76], CBPR [70], CCPA [57], VCDPA [25], etc.)
impose particular requirements about data transfer across borders.
Furthermore, we found that IoT devices often transmit data with
remote hosts in other countries. We used country-level information
of remote endpoints from the IoT-Inspector dataset for this analysis.
The IoT-Inspector team used the Maxmind geolocation (99.8% accu-
racy) database [32] to locate remote endpoints. Since we clustered
users into three regions, we also analyzed to what extent data cross
these three regions. Figure 5 represents a heatmap of the outgoing
data flow (i.e., considering only upstream traffic) percentage go-
ing to different regions. In each subfigure, the rows refer to where
the users are located, and the columns indicate where the remote
endpoints are located. The diagonal indicates how much data stays
inside the respective regional boundary. Here, we see that the first
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column stands out for almost all the device categories. This means
that these devices sendmost of their payload to the North and South
American regions, no matter where they are located. Such analysis
can potentially shed light on non-compliance with privacy regu-
lations. For example, GDPR mandates companies to follow strict
data transfer policies (e.g., the privacy shield program [44]) from
the European Union region. The data flow distribution to different
types of endpoints across regions is shown in Figure 8 of Appen-
dix D. There, we observe that most data payload crossing borders
go to first parties, with a substantial portion going to third parties.
Moreover, the significant volume of payload crossing the border
from American regions mostly goes to third-party endpoints.

We also investigated if the privacy policies of remote endpoints
address cross-border data transfer regulations. We run MAPS [81]
crawler to crawl privacy policies from the effective domains (eTLD)
of remote endpoints. This crawler utilize a logistic regression clas-
sifier (99.0% accuracy and a 99.2% F1 score) to detect if a given
document is privacy policy or not. With this crawler, we find 59% of
the domains in the dataset has at least one privacy document in the
web. Thereafter, we want to see if those privacy policies talks about
international audience. We use PrivBERT [69], a pre-trained pri-
vacy policy language model to build a binary classifier that classify
each sentence of a privacy policy document whether it addresses

data practice of ‘International & Specific Audiences’ or not. In this
context, we are referring to a case where a privacy policy includes
guidelines that apply exclusively to a particular set of users, such as
children, individuals from Europe, or residents of California [79].

We train the classifier model with OPP-115 dataset of privacy
policy annotations [79] and achieve 99% accuracy. By using this
classifier, we found that among the domains which has at least one
privacy policy document in the web, only 46% of them talks about
international audience. Please be aware that merely examining pri-
vacy policies to find mentions of international audience does not
constitute a rigorous compliance assessment. Instead, it represents
a preliminary effort to determine whether remote endpoints recog-
nize the data transfer across international borders. The assessment
of privacy compliance with regulations requires specialised subject
expertise; therefore, we exclude it from the scope of this paper.
Summary. We see that based on the users’ location, IoT devices
contact not only different types of endpoints but also the average
number of contacted endpoints varies. As such, the level of privacy
risks could potentially depend on the users’ geographical location.
Moreover, data from the IoT devices cross borders where most
endpoints end up in North and South American regions. This has
an interesting privacy implication from regulations such as GDPR
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Figure 6: Fine-grained temporal variation in (a) the avg. number of endpoints and (b) the volume of upstream data over a three-month window.

and CBPR. Our data shows that about 59% of remote endpoints have
online privacy policies, but just 46% of them address data practice
of international and specific audiences. This finding paves the way
for future research into whether this pervasive transnational data
traffic violates regional data privacy regulations.

6.3 Longitudinal Analysis
This section dives deep into RQ4: Does the distribution of different
types of contacted endpoints vary over time? We want to understand
if the endpoints associated with a device shift temporarily. This
analysis will help us grasp the fluctuations in privacy risks for a
device category over time and identify potential influencing factors.

The dataset includes network traffic from smart home devices
between April 2019 and July 2022. We analyze the fine-grained
changes in terms of the average number of endpoints IoT devices
communicate and the volume of upstream data per second. We
analyze these changes over a three-monthwindow, and the outcome
is shown in Figure 6. From the figure, it becomes evident that
fluctuations occur over the temporal durations. Additionally, a
plausible correlation between the utilization of IoT devices and
the occurrence of the COVID-19 waves comes to light. The data
indicates an escalation in both the average number of endpoints
communicated with by IoT devices and the corresponding volume
of upstream data from the pre-COVID period (prior to February
’20) to the first wave of the COVID-19 outbreak (between March
’20 and August ’20). We also observe a comparable shift within the
timeframe of the second surge of the COVID-19 outbreak, spanning
from September ’20 to April ’21. However, our speculations are
hypothetical as we lack ground truth (the IoT inspector team did
not consult end-users on device usage changes).

Fine-grained temporal variation in the average number of end-
points across various regions is shown in Figure 9 of Appendix E.
A temporal analysis using a more coarse-grained time interval is
outlined in Appendix E. The findings indicate a progressive growth
in the support-party back-end infrastructure for IoT devices, with
North America and Europe taking the lead in this development.

We also wanted to understand how the data flow across borders
has evolved over time. To analyze this, we split the dataset into
two intervals to gain a broader perspective on these changes. The
first segment of the dataset includes network flow data collected
between April 2019 and December 2020. The second portion of
the dataset contains data collected between January 2021 and July
2022. We then separately repeat our analysis for RQ3 on these two
subsets. In Figure 7, we show the temporal shift of remote endpoints’
locations. The cross-border statistics shown here exhibit a changing
trend both before (the row on top) and after (the row on the bottom)
January 2021. We present statistics for categories for which we have
at least three devices in both periods. From Figure 7, it is evident
that the data transmission practice has shifted towards the North
and South American regions for most of the device categories,
which means that in the latter period, devices are sending more
data payload to the western region than other regions.
Summary. We see a significant change in the communication
pattern over time. Our analysis reveals that the average number of
support parties contacted by each device has grown, suggesting that
the supporting back-end infrastructure for IoT devices is expanding
over time. Also, IoT infrastructure evolves faster in the American
and European regions than Asia Pacific region. We also observe a
gradual shift of data towards western regions. This transition has
implications for cross-border data privacy regulations such as the
EU-US Privacy Shield, CCPA, VCDPA, etc.

7 DISCUSSION

Ethical Considerations. Our institution’s IRB approved our use
of IoT Inspector’s dataset through a reliance agreement. We follow
industry-standard security and privacy practices to safeguard the
data and limit access only to the co-authors. Crowdsourcing IoT
traffic is covered by the original IoT-Inspector paper [30].
Limitations. (i) Although the dataset comprises real-world data
from April 2019 to July 2022, the data population at the former
timespan is larger than that at the later timespan. This is because
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Figure 7: Temporal change in percentage of outgoing data flow crossing borders. Row: User Location, Column: Destination location. NSA:
North & South America, EA: Europe & Asia, APA: Asia Pacific & Australia

users adopted IoT Inspector software more widely at the start of its
release, but its popularity faded with time [30], hence presenting
challenges (e.g., more recent sample sizes are smaller) for our longi-
tudinal analysis. (ii) The network traffic we observe in the dataset
is a result of user interactions (or the lack thereof) with individual
devices. The amount and duration of traffic a device generates could
vary depending on the user’s interaction with that device. Also,
the sample sizes for less popular devices are naturally smaller. This
makes it difficult to gather more controlled information from this
analysis (unlike in-lab experiments). (iii) The device information is
not well-organized; some devices do not have user annotations or
mDNS/UPnP information, which are essential for product identifi-
cation. Even if a device provides mDNS/UPnP or User Agent, the
information may not be indicative of the actual product [59]. As
such, we have been unable to catalog more than 9,000 gadgets. We
exclude such a large number of devices from our research because
we lack the means to identify them properly. This privacy analysis
can be expanded once we are able to identify more smart devices in
the wild. (iv) In the methodology, we employ non-domain-specific,
generic topic modeling to identify support parties. For feature ex-
traction, we employ spaCy tagger, which has a 97.8% accuracy rate.
With a domain-specific tagger and a domain-specific topic model,
the performance of our method can be enhanced. (v)We analyze
the endpoints that IoT devices communicated with, although we
have no knowledge what data is shared between IoT devices and
these endpoints, because the IoT Inspector dataset does not capture
the traffic payload. We keep these as our future works.
Recommendations. According to our findings, home IoT devices
communicate with a variety of remote endpoints located in vari-
ous locations. Consumers should choose an IoT device carefully,
possibly preferring one that shares data with a small number of
tracking endpoints. Users should pay closer attention to a home
device’s data-sharing practices. Furthermore, as previously demon-
strated in research, users can block all third-party domains without
interfering with device functionality [47]. We recommend that
users examine the settings of smart home device apps to determine

whether they have any control over data sharing. Furthermore, de-
vice manufacturers should highlight what information is collected
and where it is sent. Arlo, for example, defines a list of external
services or providers that their devices use explicitly. In addition,
data protection regulatory organizations should investigate the IoT
ecosystem’s data-sharing practices more closely. Consumer privacy
laws (GDPR, CCPA, etc) can be revised to focus on the IoT ecosys-
tem, which will benefit users’ privacy the most. We plan to release
a comprehensive report summarizing our analysis for public use.

8 CONCLUSION
Smart home devices collect user data and transmit it to various
remote endpoints. There is little understanding of where the infor-
mation of the users is going. In this paper, we conducted a compre-
hensive study of network traffic generated by a considerable sample
of smart home devices belonging to users in different parts of the
world.We analyzed where data from home devices ended up and the
relationship between device manufacturers and remote endpoints.
First, we identified and depicted organizations corresponding to the
device manufacturer and the remote endpoints. We discovered that
most remote endpoints corresponded to third parties or support
parties, with only a few domains representing the device manufac-
turer. We categorized IoT devices based on the functionality these
devices provide and then compared the communication patterns
across these categories. Then, we identified the major players in
the IoT ecosystem support parties group and determined which
portion of the ecosystem system will be impacted if one of these
major players is compromised. We also investigated cross-border
data-sharing practices and how they evolved over time.
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APPENDIX
A DATASET
A.1 Device Selection and Categorization

Table 5: Device categorization

Generic Category Example
Computer Laptop/computer
Router Any networking device for e.g. router, access point, extender, mesh router, internet gateway
Mobile Device Phone, Tablet, E-readers
Storage NAS, or anything that could store media which could be streamed somewhere over the network, DLNA DMS

(Digital Media Server)
Wearable Smartwatch, hand ring, or band
Other Can’t say if it’s IoT
Home Automation Anything related to smart lights, switches, plugs, strips, window sensors, weather sensor, thermostat, garage

door opener, lock, air purifier, vacuum etc.
Surveillance Any smart/IP camera, or smart doorbell
Work Appliance Printer, fax, VoIP etc.
Voice Assistant Any speaker based voice assistant, Nest Hub and Echo show
Vehicle Cars, and other vehicles
Media/TV Streamers, smart TVs, and voice assistant with display for e.g. DLNA DMR (Digital Media Renderer), also the

case of both DMS and DMR, and any Receiver, smart speakers, and audio streamers, Internet radio device
Home Appliance Smart refrigerator, coffee maker, AC, Purifier, etc.
Generic IoT toothbrush, medical devices, and anything that doesn’t fit in the above categories but it’s and IoT.
Game Console Xbox, Play station

Table 6: Generic category mapping. Source category: category identified by ChatGPT or manual labeling, Generic category:mapped category
according to Table 5, Example vendor: some examples within that category.

Source Category Generic Category Example Vendor
Laptop Computer microsoft, lenovo, google, dell, apple, intel, samsung, toshiba
Video Game Console Game Console sony, microsoft, apple
Smart Clock Generic IoT lenovo, insignia, lametric
Washing Machine Home Appliance samsung, lg
Smart Home Controller Home Automation brilliant, philips, amazon, lutron, logitech, wink, samsung
AV Receiver Media/TV denon, onkyo, yamaha, marantz, pioneer, apple, tivo, sony
HDMI Switch Other caavo
Wireless Access Point Router dlink, netgear, ubiquiti, tplink, devolo
Network Storage Device Storage western digital, synology, buffalo, plex
Doorbell Surveillance skybell, ring, wyze, nest, hikvision
Vehicle IoT Device Vehicle subaru, tesla
Echo Dot Voice Assistant amazon
Smartwatch Wearable apple, samsung, xiaomi
Printer and Scanner Work Appliance hp, brother
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Table 7: A sample list describing mismatch between chatgpt and manual device identification.

GPT Vendor Name GPT Category Manual Vendor Name Manual Category Device Count
roku Media/TV tcl Media/TV 38
google Media/TV vizio Media/TV 22
sensi Home Automation emerson Home Automation 11
spotify Media/TV roku Media/TV 7
connect Home Automation connectsense Home Automation 5
vocol Home Automation vocolinc Home Automation 5
google Media/TV nvidia Media/TV 4
microsoft Storage intel Computer 4
google Media/TV xiaomi Media/TV 4
amc Surveillance amcrest Surveillance 4
roku Media/TV insignia Media/TV 4
roku Media/TV sharp Media/TV 3
wyze Surveillance ismart Surveillance 3
pioneer Media/TV onkyo Media/TV 3
asus Computer asustek Computer 3
devolo Router ubiquiti Router 3
naimaudio Media/TV naim Media/TV 3
echostar Media/TV dish Media/TV 3
plex Media/TV synology Storage 3
microsoft Storage asustek Computer 3
linksys Router belkin Router 3
.. .. .. .. ..
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A.2 Validation of Device Identification Method
Table 8: A list showcasing the presence of metadata for unidentified devices in the auxiliary datasets.

Mac/IP Ground dhcp mdns ssdp upnp user hostnamesAddress Truth response response response response agent
UNSW IoT Analytics [66] dataset

00:62:6e:51:27:2e Insteon Camera ✗ ✗ ✗ ✗ ✓ ✗

14:cc:20:51:33:ea TPLink Router ✓ ✗ ✓ ✗ ✓ ✗

18:b4:30:25:be:e4 Nest Protect Smoke Alarm ✗ ✗ ✗ ✗ ✗ ✗

30:8c:fb:2f:e4:b2 Dropcam ✗ ✗ ✗ ✗ ✗ ✗

30:8c:fb:b6:ea:45 Dropcam ✗ ✗ ✗ ✗ ✗ ✗

70:ee:50:03:b8:ac Netatmo weather station ✗ ✗ ✗ ✗ ✗ ✗

74:6a:89:00:2e:25 Blipcare Blood Pressure meter ✗ ✗ ✗ ✗ ✗ ✗

74:c6:3b:29:d7:1d iHome ✓ ✓ ✗ ✗ ✓ ✗

d0:52:a8:00:67:5e Smart Things ✓ ✗ ✗ ✗ ✗ ✗

d0:73:d5:01:83:08 LiFX Smart Bulb ✓ ✗ ✗ ✗ ✗ ✗

e0:76:d0:33:bb:85 PIX-STAR Photo-frame ✗ ✗ ✗ ✗ ✓ ✓

f4:f2:6d:93:51:f1 TP-Link Camera ✓ ✓ ✗ ✗ ✓ ✗

YourThings IoTFinder [58] datasets
192.168.0.1 Gateway ✓ ✗ ✗ ✗ ✓ ✗

192.168.0.10 NestCamera ✗ ✓ ✓ ✗ ✗ ✗

192.168.0.13 LIFXVirtualBulb ✓ ✓ ✗ ✗ ✗ ✗

192.168.0.16 WinkHub ✗ ✗ ✗ ✗ ✗ ✗

192.168.0.17 NestProtect ✗ ✗ ✗ ✗ ✗ ✗

192.168.0.19 RingDoorbell ✗ ✗ ✗ ✗ ✗ ✗

192.168.0.2 GoogleOnHub ✗ ✓ ✗ ✗ ✗ ✓

192.168.0.30 Canary ✓ ✓ ✓ ✗ ✓ ✓

192.168.0.35 ChineseWebcam ✗ ✓ ✓ ✗ ✗ ✗

192.168.0.4 SamsungSmartThingsHub ✓ ✗ ✓ ✗ ✓ ✗

192.168.0.45 HarmonKardonInvoke ✓ ✓ ✓ ✗ ✗ ✓

192.168.0.6 InsteonHub ✓ ✓ ✓ ✗ ✗ ✗

192.168.0.8 SecurifiAlmond ✗ ✓ ✓ ✗ ✗ ✗
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A.3 Distribution of users and devices across various region

Table 9: Distribution of number of devices and participants across various regions

Category
North & South Europe Asia Pacific Unknown

America & Africa & Australia Location
#Device #User #Device #User #Device #User #Device #User

Media/TV 6179 2401 1937 908 392 188 190 72
Voice Assistant 2808 1376 716 438 154 94 90 49

Surveillance 978 552 186 123 41 24 37 20
Home Automation 4976 1818 1181 692 260 105 149 51
Home Appliance 124 112 21 19 8 8 2 1
Game Console 499 443 133 120 35 27 20 14

Generic IoT 39 36 10 10 0 0 2 2
Work Appliance 375 339 81 78 14 12 6 5

Vehicle 14 13 0 0 0 0 1 1
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B ENDPOINTS MAPPING
B.1 Support Party Mapping
In this section, we add cluster labeling described in subsection 5.2. In NMF model with TF-IDF approach (Table 10), we consider cluster ID 8,
12, 14 to be the support party. In NMF model with counting approach (Table 11), we consider cluster ID 4, 5, 15 to be the support party.

Table 10: Labeling clusters from NMF with TF-IDF approach. Topic: most influencing words of a cluster, Label:Manual labels representing the
clusters

ID Topic Label
0 domain whois registrar dns lookup price information registration url registry miscellaneous
1 tv channel television live streaming iptv cable content service app tv/streaming services
2 movie free streaming series site movies tv website netflix online video streaming services
3 cookie tracker directory betters script netifys directories cookiepedias site confection ad/tracker
4 app mobile android user developer application device platform ios analytic mobile apps services
5 radio music station france public fm audio stream npr streaming radio/music
6 google search engine image webpage googlecom googles special llc world search engines
7 browser adware firefox ad popup virus hijacker web website unwanted adware/popup services
8 cdn delivery content network akamai edge server distribution cdns user cdn/cloud
9 certificate ssl authority security ca comodo sectigo digital secure certificates ssl service
10 ip address ovh dns sas nsipnet lookup ipv location country dns service
11 email account mail imap webmail password smtp address desktop program web-mail service
12 cloud storage service computing iot aws infrastructure device solution application iot/cloud service
13 game games xbox gaming solitaire player developer playstation epic minecraft gaming services
14 home smart device wifi camera control automation product security light iot platforms
15 amazon aws prime amazoncom services alexa service music amazons customer e-commerce service
16 samsung galaxy bixby electronics samsungs pihole blocklist device assistant smartphone samsung services
17 company customer business platform datum software product management solution marketing business/it
18 advertising ad publisher platform programmatic advertiser technology monetization digital mobile advertising
19 podcast audio podcaster listener podcasting episode platform libsyn distribution spotify audio/music
20 video streaming live content platform youtube medium player stream camera video streaming
21 weather forecast radar api hyperlocal datum national local temperature station weather forcast
22 server dedicated hosting minecraft provider servers dns client colocation seedbox web
23 website visitor traffic rank scam site web unique day link miscellaneous
24 news channel sport live television entertainment nbc cbs story fox news/sports/social
25 torrent file bittorrent download eztv site seedbox search music pirate torrent/file server
26 net api open aspnet framework foundation source development visual network miscellaneous
27 proxy vpn hotspot luminati telegram xyz privacy internet private ip vpn/proxy
28 internet broadband service speed cable provider phone network connection fiber tv/internet/broadband
29 microsoft windows office azure file microsofts service onedrive msn version microsoft services
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Table 11: Labeling clusters from NMF with counting approach. Topic: most influencing words of a cluster, Label: Manual labels representing the
clusters

ID Topic Label
0 service provider streaming streaming service customer service provider business subscription available streaming service
1 tv channel television live content streaming smart tv android smart device streaming service
2 network device world datum wifi large private security wireless access miscellaneous
3 website web site user visitor link online browser traffic page miscellaneous/web
4 home smart smart home device control automation product home automation security assistant smart home/IoT
5 content cdn delivery network content delivery delivery network network cdn user cdn content server cdn/cloud
6 ip address ip address ovh dns country sas ovh sas location nsipnet dns
7 radio station music france radio station public podcast fm new public radio radio/music
8 app mobile user android device mobile app application developer store ios mobile app
9 video content platform streaming player software wistia video content medium prime video streaming
10 google search engine search engine world image information feature google search web search engines
11 email account mail imap address password access email address program desktop web-mail service
12 domain whois information domain domain registrar dns lookup price url registration miscellaneous
13 game solitaire card xbox video game mahjong games card game online gaming gaming services
14 news channel live television sport entertainment cbs story world newsy news/sports/social
15 cloud storage solution cloud storage datum cloud service service device computing cloud computing cloud service/iot
16 microsoft file windows software office browser web device application computer microsoft services
17 cookie tracker directory site business application script betters betters site site tracker ad/tracker
18 platform customer datum business software product management user tool analytic business/it
19 amazon aws web services music prime web services amazon web customer amazoncom e-commerce service
20 server proxy dedicated provider vpn minecraft dedicated server web client datum proxy/vpn
21 ad advertising platform mobile publisher technology digital advertiser solution marketing ad/tracker
22 torrent site proxy file torrent site search download eztv website bittorrent torrent/file server
23 movie free streaming movie tv series tv site online popular streaming service miscellaneous
24 company technology business product world entertainment medium group large new business/IT
25 samsung health device samsung cloud galaxy print samsung health cloud print phone bixby samsung services
26 weather forecast datum information api weather forecast location local time national weather service
27 internet broadband speed provider internet service connection cable phone service provider mobile internet/cable
28 digital certificate ssl security authority solution certificate authority ssl certificate provider ca proxy/vpn
29 sky new sport box york new york sky sky good sky box dark miscellaneous
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C BACK-END INFRASTRUCTURE FOR IOT ECOSYSTEMS
Table 12: Infrastructure shared across IoT devices of various vendors

Infrastructure Example
Amazon amazon, elasticbeanstalk, amcs-tachyon, awsglobalaccelerator
Google google, gstatic, android, nest, gmail
Apple apple.com, icloud
Heroku heroku
Time Server ntp, nist, hshh
Network one.one, comcast, cloudfront, akamai, opendns, rr.com, proxygo, hotspotproxy, apple-dns, hotspotproxy, proxy4
Facebook facebook
Microsoft microsoft, windows, azure
Analytics domotz, mixpanel
IoT meethue, pubnub, pndsn, smartthings, dropcam, ecobee, enphaseenergy, netgear, philips, arlo, arloxcld, aylanetworks, wink, telephony

Table 13: List of top vendors that exchange data with multiple support parties. The first column represents the vendor name; the second column
represents a list of support parties with the number of devices communicating that support party domain in parenthesis. This table includes
vendors with at least four support parties.

Vendor Name List of Support Parties
sonos Amazon(1699), Akamai(131), Google(36), Pandora(19), Facebook(9), Microsoft(7)
belkin Amazon(1163), Google(12), Akamai(10), mtpfast.pw(7), alienvault.cloud(6), Facebook(5)
roku Amazon(618), Akamai(119), Google(41), AMP(26), Lumen(15), TowerData(12), WordPress(9), Fastly(7), Limelight(7),

Pandora(5)
amazon Philips(257), Akamai(254), Google(39), Fastly(33), Roku(26), Samsung(22), Pandora(20), Limelight(13), Facebook(12),

Lumen(11), TowerData(10), SiliconDust(8), Adobe(8), Snapchat(7), Cdk global(7), Microsoft(6), Heroku(6), TP-Link(6)
samsung Amazon(382), Akamai(138), SmartThings(82), Google(70), Apple(60), Facebook(45), Roku(16), Microsoft(14), Lumen(11),

Fastly(10), Limelight(9), AMP(9), Ring(7), CloudFlare(5), Edgecast(5), Synology(5)
google Akamai(169), Amazon(128), Facebook(83), Fastly(39), CloudFlare(17), Samsung(8), Philips(8), Roku(6), Pandora(6),

Xiongmai(5), Microsoft(5)
sony Google(204), Akamai(160), Amazon(85), Limelight(28), Facebook(17), Fastly(10), Heroku(7), Vultr(5)
wyze Amazon(287), homeassurednow.com(8), Akamai(6), tutk.com(6)
apple Akamai(228), Amazon(26), Google(12), Lumen(9), Limelight(7), Fastly(6)
vizio Amazon(139), Google(113), Apple(21), Akamai(17), CloudFlare(9), Limelight(7)
nvidia Google(128), Akamai(39), Amazon(35), Facebook(15), Fastly(8), Heroku(8), SiliconDust(6), Edgecast(6), Roku(5)
lg Amazon(73), Google(61), Akamai(39), Apple(6), TowerData(5), Philips(5)
logitech Amazon(84), SmartThings(27), Nest(14), Heroku(8)
insignia Ayla networks(66), Google(43), Amazon(10), Akamai(9), Roku(7)
wink Amazon(109)
bose Amazon(92), Google(8), Akamai(5)
microsoft Akamai(71), Amazon(25), Google(11), GoDaddy(9)
tcl Amazon(61), Roku(56), Akamai(8)
nintendo Amazon(38), Akamai(36)
philips Amazon(30), Akamai(25), Google(20)
mysa Amazon(67)
lutron Amazon(57), Nest(15)
amcrest Amazon(56)
onkyo Google(42), Streamunlimited engineering(24), Amazon(17)
xiaomi Amazon(23), Google(19), Akamai(5)
irobot Amazon(44)
netgear Arlo(40), Amazon(20)
denon Amazon(32), Akamai(5)
tivo Limelight(23), Amazon(12), Akamai(9), Google(6)
directv Lumen(16), Akamai(11), Amazon(11)
home Amazon(10), nabu.casa(9)
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Table 14: List of top support parties and their clients.The number of devices of a given vendor exchanging data with a given support organization
is shown in the parenthesis. We exclude device vendors Vendors with only one device were excluded from the table.

Support Org List of Clients
Amazon AWS sonos(1699), belkin(1163), roku(618), samsung(382), wyze(287), vizio(139), google(128), wink(109), bose(92),

sony(85), logitech(84), lg(73), mysa(67), tcl(61), lutron(57), amcrest(56), irobot(44), nintendo(38), ikea(37),
nvidia(35), denon(32), tplink(30), philips(30), koogeek(29), yamaha(27), aurora(26), apple(26), microsoft(25),
xiaomi(23), skybell(20), netgear(20), obihai(18), broadlink(18), onkyo(17), spotify(16), hikvision(14),
ecobee(13), axis(13), august(13), rachio(12), leviton(12), tivo(12), directv(11), tesla(11), insignia(10), arris(10),
osram(10), hp(10), home(10), sleep number(10), sharp(10), sense(10), nest(9), hunter douglas(8), canon(8),
sky(8), aqara(8), first alert(7), neato(7), vocolinc(7), plex(6), sunpower(6), sleepnumber(6), enphase(6),
dyson(6), humax(5), dish(4), eufy(4), nokia(4), polycom(4), wifiplug(4), insteon(4), panasonic(4), tablo(3),
tado(3), vivint(3), reolink(3), lifx(3), epson(3), homey(3), caavo(3), bluesound(3), foscam(3), hubitat(3), car-
rier(3), grandstream(3), tuya(2), hdtv(2), rach(2), hikam(2), texas instruments(2), silicondust(2), freebox(2),
firstalert(2), fdt(2), dlink(2), bryant(2), dahua(2), jbl(2), kuna(2), hunter(2), idevices(2), ihaper(2), lorex(2),
phyn(2), wilife(2)

Akamai amazon(254), apple(228), google(169), sony(160), samsung(138), sonos(131), roku(119), microsoft(71),
nvidia(39), lg(39), nintendo(36), philips(25), vizio(17), directv(11), belkin(10), tivo(9), insignia(9), tcl(8),
humax(7), wyze(6), sky(6), denon(5), bose(5), xiaomi(5), rainmachine(3), hikvision(3), panasonic(3), lifx(3),
spotify(3), tplink(3), logitech(3), plex(2), netgear(2), onkyo(2), wink(2), tesla(2), yamaha(2), hdtv(2), cisco(2),
lenovo(2), dish(2), ecobee(2)

Google sony(204), nvidia(128), vizio(113), samsung(70), lg(61), insignia(43), onkyo(42), roku(41), amazon(39),
sonos(36), philips(20), xiaomi(19), lenovo(18), jbl(17), apple(12), belkin(12), microsoft(11), bose(8), bang &
olufsen(10), tivo(6), toshiba(4), panasonic(4), airtv(4), freebox(4), dlink(3), spotify(3), hikvision(3), voda-
fone(2), homeseer(2), tcl(2), telus(2)

Philips amazon(257), google(8), homey(6), lg(5), hikvision(3), samsung(3), nvidia(2)
Roku tcl(56), amazon(26), samsung(16), sharp(7), insignia(7), google(6), nvidia(5), nintendo(4), lg(2), denon(2),

sony(2), spotify(2)
Fastly google(39), amazon(33), samsung(10), sony(10), nvidia(8), roku(7), apple(6), lg(4), microsoft(4), sonos(3),

belkin(2)
SmartThings samsung(82), logitech(27), amazon(4), nvidia(4)
Limelight sony(28), tivo(23), amazon(13), samsung(9), apple(7), roku(7), vizio(7), lg(4), sonos(4), hikvision(3),

google(3), microsoft(3), nvidia(2)
Apple HomeKi samsung(60), vizio(21), lg(6), amazon(2), roku(2)
Ayla Networks insignia(66), hunter(20), shark(2)
Microsoft Azure honeywell(27), samsung(14), sonos(7), amazon(6), panasonic(5), google(5), netgem(4), bang & olufsen(3),

lennox(2), sony(2)
Lumen directv(16), roku(15), amazon(11), samsung(11), apple(9), sony(4), microsoft(3), google(2), hikvision(2)
Pandora amazon(20), sonos(19), google(6), roku(5), denon(2), logitech(2), samsung(2), sony(2)
AMP roku(26), samsung(9), sony(4), apple(3), lg(3), nvidia(3), xiaomi(3), tivo(2), vizio(2)
Samsung amazon(22), google(8), sony(4), roku(4), hikvision(3), lg(3), nintendo(2), philips(2), tplink(2)
CloudFlare google(17), vizio(9), samsung(5), nvidia(4), sony(4), amazon(4), apple(2), home(2), philips(2)
Nest lutron(15), logitech(14), apple(4), sony(4), amazon(3), lenovo(2), nvidia(2), samsung(2), sonos(2)
Heroku logitech(8), nvidia(8), sony(7), amazon(6), samsung(3), apple(2), august(2)
Arlo netgear(40)
TowerData roku(12), amazon(10), lg(5), samsung(4), sony(4), tcl(2)
Synology samsung(5), amazon(4), nintendo(3), hikvision(3), sonos(2), philips(2), nvidia(2)
StreamUnlimited onkyo(24), bang & olufsen(2)
Tuya belkin(4), google(4), amazon(3), shelly(3), tplink(3), xiaomi(3), samsung(2)
Ring samsung(7), belkin(2), google(2), home(2), texas instruments(2)
Edgecast nvidia(6), samsung(5), amazon(3), google(2)
QNAP amazon(4), philips(3), google(2), nintendo(2), plex(2), roku(2)
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D CROSS-BORDER DATA SHARING
In Figure 8, we presents the detailed cross-border data sharing statistics. Here we further split the remote endpoints within a region into first,
support and third parties.
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Figure 8: Percentage of outgoing data flow to ANY party crossing borders. Row: User Location, Column: Destination location. NSA: North &
South America, EA: Europe & Asia, APA: Asia Pacific and Australia, F: First party, S: Support party, T: Third party
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E LONGITUDINAL ANALYSIS
The dataset includes network traffic from smart home devices between April 2019 and July 2022. We divide the dataset into two-time intervals
and see if any previous distributions differ between these two intervals. The first segment of the dataset includes network flow data collected
between April 2019 and December 2020. The second portion of the dataset contains data collected between January 2021 and July 2022. We
then repeat our analysis on each of these two subsets separately.

Table 15 shows the temporal evolution of the distribution of various types of domains connected by different categories of smart home
devices. The terms ‘Avg.’ and ‘SD’ refer to the average and standard deviation of the total number of domains contacted by each device
during the given time frames. The top row of each category indicates distribution before January 2021, while the bottom row indicates
inclusive distribution that occurs after January 2021. Different categories of devices exhibit a variety of behaviors. For instance, the average
number of contacted first, support, and third-party domains increases in the Media/TV, Home Automation, and Work Appliance categories.
This indicates a growing practice of exchanging more data with more third parties. Another aspect could be that smart home devices have
expanded services over time, requiring them to contact more third parties. The average number of first-party domains for Surveillance
devices has decreased over time, while the average number of support-party and third-party domains has grown. This indicates that camera
device users use more third-party applications to operate their cameras. For instance, several camera manufacturers (such as Google Nest,
Samsung, Sony, Vizio, Blink, LIFX, Logitech, Amcrest) manufacture cameras that are compatible with Apple HomeKit. Tuya Smart is another
popular application that can be used to control a variety of popular home devices. In general, across most categories, the average number of
support parties contacted by each device has grown, as seen in the Table 15. This suggests that the supporting back-end infrastructure for
IoT devices is expanding over time. A detailed breakdown of temporal variation in the number of endpoints of various parties across various
region is shown in Table 16 in Appendix E.

The average number of distant endpoints reached by each device varies by area, as seen in Table 16. The average number of third-party
domains contacted drops for most device categories when the device is placed in the Asia Pacific and Australia region, whereas it rises
when the device is located in any of the other two regions. We also see a rise in the average number of support-party domains contacted by
each device over time for several types of devices when the device is located in North and South America, as well as European and African
regions. This suggests that North America and Europe are leading the way in the development of the infrastructure necessary to support the
rapid growth of IoT devices.

Table 15: Temporal variation in the number of endpoints. Avg. and SD stand for the average and standard deviation of the number of domains
each device contacted. The top row in each category reflects the number of connections formed before January 2021, while the bottom row
shows the number of connections made after January 2021.

Category
First Support Third
party party party

Avg. (SD) Avg. (SD) Avg. (SD)

Media/TV 1.98(2.47) 0.85(1.26) 3.21(7.01)
2.20(2.85) ↑ 1.14(1.76) ↑ 4.01(8.25) ↑

Voice Assistant 4.45(2.19) 0.22(0.62) 1.00(2.37)
4.31(2.25) ↓ 0.28(1.08) ↑ 0.87(2.22) ↓

Surveillance 1.05(0.63) 0.51(0.74) 0.81(1.66)
0.98(0.71) ↓ 0.74(1.01) ↑ 1.49(1.76) ↑

Home Automation 0.91(0.68) 0.39(0.73) 0.47(2.53)
0.97(1.12) ↑ 0.67(1.16) ↑ 0.76(3.05) ↑

Home Appliance 1.23(1.44) 0.62(1.12) 0.95(6.28)
0.83(0.58) ↓ 0.50(0.67) ↓ 0.75(1.48) ↓

Game Console 1.82(3.15) 0.97(1.83) 3.15(7.18)
1.72(2.92) ↓ 0.68(1.20) ↓ 1.23(2.27) ↓

Generic IoT 0.78(1.76) 0.83(0.85) 0.93(2.69)
0.60(0.89) ↓ 0.60(0.55) ↓ 0.40(0.89) ↓

Work Appliance 0.97(0.63) 0.12(0.37) 0.55(1.10)
1.00(0.62) ↑ 0.67(1.73) ↑ 0.96(2.36) ↑
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Table 16: Temporal change in the average number of different type of domains communicated by a single device. First: Average number of first
party domains, Support: Average number of support party domains, Third: Average number of first party domains, ‘-’ Not applicable (no device
seen).

Category North & South America Europe & Africa Asia Pacific & Australia
First Support Third First Support Third First Support Third

Media/TV 1.99 0.85 3.28 1.85 0.80 2.63 2.01 0.87 3.00
2.03 ↑ 1.17 ↑ 4.00 ↑ 2.73 ↑ 1.25 ↑ 4.73 ↑ 1.93 ↓ 0.57 ↓ 1.90 ↓

Voice Assistant 4.43 0.19 0.93 4.48 0.29 1.12 3.96 0.11 0.92
4.23 ↓ 0.23 ↑ 0.82 ↓ 4.64 ↑ 0.48 ↑ 1.13 ↑ 3.73 ↓ 0.07 ↓ 0.13 ↓

Surveillance 1.08 0.50 0.81 0.94 0.52 0.88 0.94 0.41 0.53
0.91 ↓ 0.66 ↑ 1.49 ↑ 1.32 ↑ 1.14 ↑ 1.68 ↑ 1.57 ↑ 1.14 ↑ 0.86 ↑

Home Automation 0.84 0.43 0.46 1.11 0.28 0.53 1.12 0.21 0.35
0.97 ↑ 0.67 ↑ 0.76 ↑ 0.96 ↓ 0.78 ↑ 0.96 ↑ 1.00 ↓ 0.30 ↑ 0.09 ↓

Home Appliance 1.21 0.61 0.88 0.88 0.47 0.06 1.12 0.50 2.00
0.88 ↓ 0.38 ↓ 0.50 ↓ 0.75 ↓ 0.75 ↑ 1.25 ↑ - - -

Game Console 1.83 0.89 3.15 1.48 1.07 3.24 2.46 1.11 2.26
1.94 ↑ 0.75 ↓ 1.44 ↓ 1.00 ↓ 0.45 ↓ 0.55 ↓ - - -

Generic IoT 0.86 0.80 0.80 0.44 0.78 0.78 - - -
0.25 ↓ 0.75 ↓ 0.00 ↓ 2.00 ↑ 0.00 ↓ 2.00 ↑ - - -

Work Appliance 0.97 0.12 0.56 0.96 0.10 0.42 0.91 0.00 0.55
1.05 ↑ 0.75 ↑ 1.20 ↑ 0.75 ↓ 0.50 ↑ 0.50 ↑ 1.00 ↑ 0.33 ↑ 0.00 ↓
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Figure 9: Fine-grained temporal variation in the average number of endpoints across various geographic regions. Here, we only presents the
analysis results for top three categories.
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F DISTRIBUTION OF ENDPOINTS TYPE
F.1 Addressing the issue of the imbalanced device dataset
Here in Table 17, we present the analysis result of subsection 6.1 in tabular form. In this table, we add the normalized value for each outcome
to better compare the distribution across categories.

Table 17: The distribution of endpoints contacted by smart devices. ‘#Dom’ column shows the number of domains accessed by all the devices in
each category. ‘#Avg.’ represent the average of the number of domains contacted by each device. ‘↑Avg.’ represent the average of the volume of
upstream data shared by devices per second. The ‘Nor’ value represents the normalized values between 0 and 1 across all devices.

Category First party Support party Third party
#Domain(Nor) #Avg.(Nor) ↑Avg.(Nor) #Domain(Nor) #Avg.(Nor) ↑Avg.(Nor) #Domain(Nor) #Avg.(Nor) ↑Avg.(Nor)

Media/TV 268(0.36) 1.99(0.15) 449(0.01) 187(0.31) 0.86(0.19) 491(0.01) 1865(0.44) 3.26(0.29) 652(0.02)
Home Automation 170(0.23) 0.91(0.07) 2355(0.03) 137(0.23) 0.41(0.09) 11055(0.15) 758(0.18) 0.49(0.04) 559(0.01)

Voice Assistant 117(0.16) 4.45(0.34) 211(0.00) 97(0.16) 0.22(0.05) 494(0.01) 642(0.15) 0.99(0.09) 283(0.01)
Surveillance 70(0.09) 1.04(0.08) 64293(0.88) 61(0.10) 0.54(0.12) 53696(0.73) 255(0.06) 0.92(0.08) 34172(0.91)

Game Console 54(0.07) 1.82(0.14) 901(0.01) 63(0.10) 0.96(0.21) 3293(0.04) 531(0.12) 3.03(0.27) 558(0.01)
Work Appliance 18(0.02) 0.97(0.07) 394(0.01) 19(0.03) 0.15(0.03) 867(0.01) 87(0.02) 0.57(0.05) 778(0.02)
Home Appliance 32(0.04) 1.20(0.09) 3769(0.05) 26(0.04) 0.61(0.13) 844(0.01) 116(0.03) 0.94(0.08) 241(0.01)

Generic IoT 24(0.03) 0.76(0.06) 637(0.01) 14(0.02) 0.80(0.18) 2527(0.03) 33(0.01) 0.88(0.08) 412(0.01)

We concur with the notion that the dataset is imbalanced regarding the number of devices across categories. This problem appears to have
the potential to introduce biases into the outcome shown in Figure 3 (e.g., more domains for media TV, home automation, voice assistance).
We present the average number of domains a device communicates with and average volume of up-stream data to alleviate that issue. To
illustrate that our analysis is bias-free, we first randomly sample 3,000 devices from the top 3 categories (in terms of number of devices) and
do the same analysis. We do the same thing three times (with three different seeds) and take the mean of analysis results. Then we compare
the mean of sampled analysis result with the results for all the devices in Figure 10. We see similar distribution in both the cases.
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Figure 10: The distribution of contacted endpoints and upstream data volume. First row presents analysis mean outcomes on sampled devices
with N = 3,000. Last row shows the distributions on all devices. Here we only show analysis results for top 3 categories.

We apply the same comparison methodology across all device categories. However, due to the limited number of devices in certain
categories, we utilize a smaller sample size (N=50). Upon examination, we observe a nearly identical distribution with a slight variance. The
findings are illustrated in Figure 11.
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Figure 11: The distribution of contacted endpoints and upstream data volume. First row presents analysis mean outcomes on sampled devices
with N = 50. Last row shows the distributions on all devices.

Table 6: Average number of different type of domains communicated by each device. ‘First’: Average number of first-party domains, ‘Support’:
Average number of support-party domains, ‘Third’: Average number of third-party domains, ‘–’: No device seen within that region. Numbers
inside the parenthesis represent the normalized values between 0 and 1 across all devices.

Category North & South America Europe & Africa Asia Pacific & Australia
First Support Third First Support Third First Support Third

Media/TV 2.00(0.05) 0.87(0.07) 3.32(0.07) 1.91(0.05) 0.82(0.07) 2.78(0.07) 1.98(0.05) 0.85(0.07) 2.91(0.07)
Home Automation 0.85(0.02) 0.44(0.04) 0.48(0.04) 1.11(0.03) 0.30(0.02) 0.55(0.02) 1.11(0.03) 0.22(0.02) 0.33(0.02)
Voice Assistant 4.42(0.12) 0.20(0.02) 0.92(0.02) 4.51(0.12) 0.31(0.03) 1.13(0.03) 3.97(0.10) 0.11(0.01) 0.86(0.01)
Surveillance 1.05(0.03) 0.53(0.04) 0.93(0.04) 0.98(0.03) 0.56(0.05) 0.98(0.05) 1.05(0.03) 0.54(0.04) 0.59(0.04)
Game Console 1.84(0.05) 0.89(0.07) 3.04(0.07) 1.44(0.04) 1.02(0.08) 3.02(0.08) 2.46(0.06) 1.11(0.09) 2.26(0.09)
Work Appliance 0.97(0.03) 0.15(0.01) 0.60(0.01) 0.95(0.02) 0.12(0.01) 0.42(0.01) 0.93(0.02) 0.07(0.01) 0.43(0.01)
Home Appliance 1.19(0.03) 0.60(0.05) 0.85(0.05) 0.86(0.02) 0.52(0.04) 0.29(0.04) 1.12(0.03) 0.50(0.04) 2.00(0.04)
Generic IoT 0.79(0.02) 0.79(0.06) 0.72(0.06) 0.60(0.02) 0.70(0.06) 0.90(0.06) — — —
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