
FP-tracer: Fine-grained Browser Fingerprinting Detection via
Taint-tracking and Entropy-based Thresholds

Soumaya Boussaha
SAP Security Research / EURECOM

Lukas Hock
SAP Security Research

Miguel Bermejo
UC3M

Rubén Cuevas Rumin
UC3M

Angel Cuevas Rumin
UC3M

David Klein
Technische Universität Braunschweig

Martin Johns
Technische Universität Braunschweig

Luca Compagna
SAP Security Research

Daniele Antonioli
EURECOM

Thomas Barber
SAP Security Research

ABSTRACT
Browser fingerprinting is an effective technique to track web users
by building a fingerprint from their browser attributes. It is also
stealthy because the tracker uses legitimate JavaScript API calls
offered by the browser engine, which can be obfuscated before they
are sent to a (third-party) server. Current browser fingerprinting de-
tection methodologies employ limited collection and classification
techniques, such as binary classification of fingerprinters based
on the number of non-obfuscated exfiltrated attributes. As a re-
sult, they produce inconsistent findings. Meanwhile, the privacy of
millions of web users is at risk daily.

We address this gap by presenting FP-tracer, a novel methodol-
ogy to detect and classify browser fingerprinters based on dynamic
taint tracking and joint entropy classification. Our methodology
enables detecting first- and third-party fingerprinters even when
they use obfuscation by tainting attributes, propagating them, and
logging when they are leaked (via 62 sources and 25 sinks). More-
over, it discriminates the invasiveness of fingerprinting activities,
even from the same service, by measuring the joint entropy of the
collected attributes and clustering them.

We implement FP-tracer [3] by extending Foxhound, a privacy-
oriented Firefox fork with numeric type tainting, more taint track-
ing sources and sinks, support for multiple sources, and better
logging capabilities. We embed our implementation in our auto-
mated crawling infrastructure, which is capable of testing websites
in parallel using programmable and reproducible logic. We will
open-source our implementation [3].

We evaluate FP-tracer by performing a large-scale crawl over
the Tranco Top 100K, and detect, amongst others, audio, canvas,
and storage fingerprinting on the web. Among others, we find high
fingerprinting activities in 8% of domains, with more moderate
activity reaching 75%. Notably, fingerprinting is almost five times
more likely to be performed by third-party scripts for high activity
levels. In addition, we measure that the most severe category of

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(3), 540–560
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0092

fingerprinting obfuscates 46% of transmitted attributes, and 38%
of fingerprinters involve two or more domains. Finally, we find
that existing consent banners do not provide an effective defense
against browser fingerprinting.

KEYWORDS
Browser fingerprinting, Tainting, JavaScript, Privacy, Entropy, GDPR

1 INTRODUCTION
Browser fingerprinting is a stealthy technique used to uniquely
identify users across the web by crafting fingerprints from browser
attributes accessible through its JavaScript APIs. These APIs give
access to fingerprintable browsers’ configurations, plug-ins, screen
dimensions, and installed fonts. Browser fingerprinters are hard to
detect because they use legitimate JavaScript API calls, and they
generate web traffic that looks benign. On the other hand, they are
violating the privacy of millions of Internet users [10, 20, 54].

Several browser fingerprinting detection methodologies have
been developed. But their experimental results are inconsistent,
their collection strategy is coarse-grained, and their classification
methods are binary. For instance, the state of the art has varying
opinions on the amount of browser fingerprinting on popular web-
sites, with reported rates ranging from 10% [12, 28] to 70% [10, 39].
Course-grained techniques based on browser API monitoring or
code analysis [6, 7, 19, 44] cannot provide details on the destina-
tion of collected attributes. In addition, binary classification based
on attribute counting [39] or machine learning [28] are either too
restrictive or too liberal and only provide part of a broader picture.

We address these three relevant gaps by presenting FP-tracer, an
innovative browser fingerprinting analysis and detection methodol-
ogy based on fine-grained taint-tracking and joint entropy thresholds.
As shown in Figure 1, FP-tracer analyzes client-side JavaScript
code from first and third-party websites and instruments it to en-
able dynamic taint tracking. This allows for the detection of data
flows from sensitive browser attributes (sources), such as Navi-
gator.userAgent, into JavaScript APIs (sinks), such as img.src,
which are sent to first- and third-party domains. Then, FP-tracer
computes the joint entropy of all attributes sent to a particular do-
main and classifies its fingerprinting activity into six categories
ranging from no activity to very high activity to provide a privacy

540

https://orcid.org/0009-0008-4873-3234
https://orcid.org/0009-0000-7569-0307
https://orcid.org/0009-0004-2543-8743
https://orcid.org/0000-0002-1440-8360
https://orcid.org/0000-0002-5738-0820
https://orcid.org/0000-0001-8468-8516
https://orcid.org/0000-0003-2574-5060
https://orcid.org/0009-0003-1072-4352
https://orcid.org/0000-0002-9342-3920
https://orcid.org/0000-0002-1538-5033
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0092

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

Figure 1: FP-tracer’s high-level overview.

impact score. FP-tracer supports 62 sources, including canvas, audio,
and storage APIs, and 25 sinks, including XHR requests, element
attributes such as src and the sendBeacon API. See Tables 8 to 10
for the complete list.

We implemented our methodology by extending Foxhound [50],
an open-source Firefox fork developed for client-side web vulnera-
bility scanning. We enhanced its instrumented JavaScript engine to
support numeric data types. We added support for multiple sources
using set operations. We improved Foxhound’s list of supported
sinks and sources and automated their addition using Firefox’s We-
bIDL C++ code generator. Finally, we extended Foxhound’s logging
capabilities. We also implemented an automated crawling infras-
tructure based on Playwright[42] and integrated our Foxhound
extension into the crawler.Our crawler can automatically and re-
producibly visit multiple websites using parallel browser instances
and a programmable page visit logic. Each instance logs the finger-
printing activities and can be stopped, restarted, or restored in case
of a crash.

We built our multi-threshold joint entropy classification using a
real-world dataset of approximately 86k fingerprints. The dataset
was collected in [14] by running a large-scale experiment on con-
senting users. Each user browser was fingerprinted using ads con-
taining JavaScript code which accessed sensitive browser attributes.
We found that the choice of attributes is critical to the entropy and,
therefore, the extent to which users can be identified. For example,
while some sites collect up to 25 attributes, similar entropies can
be obtained with just 7 carefully chosen ones.

We evaluated FP-tracer with a large-scale fingerprinting experi-
ment visiting 80 618 domains from the Tranco Top 100K. Using our
fine-grained collection approach, we observed 269 784 fingerprint-
ing flows exfiltrating 15 239 unique browser attribute combinations.
With our joint entropy classification technique, we found five types
of fingerprinting activities that we label as Negligible, Low, Medium,
High, and Very High. We also extract the attribute vectors asso-
ciated with each activity (e.g., userAgent and storageEstimate
have very high joint entropy).

Our study revealed novel insights offering a consistent reading
of the inconsistent results published so far and demonstrating the
importance of our collection and classification approaches. For
example, we found 8% of domains perform fingerprinting in the
very high category. This is comparable to the lower rates presented
in prior studies [12, 28] at around 10%. Additionally, we observed

more moderate fingerprinting activity in 75% of the successfully
crawled domains, aligning with the approximate 70% prevalence
rates reported previously [10, 39].

Or, for a high level of activity, we find that fingerprinting is al-
most five times more likely to be performed by a third-party script
than a first-party one. By examining over 6 million string values
transmitted in our sample, we find that while up to 90% of finger-
printing attributes are transmitted in plain text, very high severity
scripts perform some form of obfuscation in 47% of the time. We
also find that in this very high category, 38% of fingerprinting is per-
formed by a collusion of two or more domains. In the extreme case,
we found two websites sending attributes to a single destination
with scripts from 7 different domains.

We validate FP-tracer against the popular Disconnect [1] and
EasyPrivacy [2] lists. If our high and very high grouping broadly
aligns with these lists, our results also identify intensive finger-
printing activities for domains that were only tagged as general
(not invasive) fingerprinters in Disconnect. We also show a good
agreement when comparing our findings with results from FP-
inspector [28]. Of the 911 domains crawled by both studies, we
find at least a moderate fingerprinting activity in 95% of cases.
Moreover, we measure whether fingerprinters respect user consent
banners using the Consent-O-Matic plugin [4, 5, 45]. While we
do find that fingerprinting activity tends to increase after a user
has agreed to data collection, there is still a worrying baseline of
activity, especially in the higher entropy groups.

We summarize our contribution as follows:

• We present FP-tracer [3], a novel methodology to analyze
and detect browser fingerprinting using fine-grained taint-
tracking and multi-threshold joint entropy. Our techniques,
among others, allow us to track different fingerprinting ac-
tivities from the same fingerprinter, discriminate first-party
and third-party trackers, track aggregated attributes, and
classify the severity of a fingerprinting activity in 5 groups
based on their privacy impact.

• We implement FP-tracer by extending Foxhound, an open-
source Firefox fork instrumented for taint analysis, and em-
bedding it in our automated crawling infrastructure. We
also built our joint entropy classification from a real-world
dataset of heterogeneous browsers fingerprinted on differ-
ent platforms using advertising JavaScript code. We will
open-source our implementation and submit it for artifact
evaluation [3].

• We conduct a large-scale crawl experiment on the Tranco
Top 100K and evaluate our results against real-world finger-
printers (e.g., Disconnect [1], FP-Inspector [28]). Our find-
ings provide a consistent reading of the inconsistent finger-
printing measurement results published so far. In addition,
we provide novel insights into third-party activity, collective
fingerprinting, and obfuscation techniques.

• We present the first analysis of the user consent implications
on browser fingerprinting by running a dedicated secondary
crawl, showing that fingerprinting scripts commonly ignore
user consent.

541

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

1 // Collection
2 let height = screen.height;
3 let width = screen.width;
4 let userAgent = navigator.userAgent;
5
6 // Aggregation
7 let resolution = width * height;
8 let fingerprint = userAgent + resolution.toString();
9 let userId = MD5hash(fingerprint);
10
11 // Exfiltration
12 let requestUrl = 'https://example.com?userId=' + userId;
13 fetch(requestUrl);

Listing 1: A simple browser fingerprinting script that collects,
aggregates, and exfiltrates three browser attributes.

2 BACKGROUND
Here, we discuss the paper’s preliminaries.

2.1 Browser Fingerprinting
A browser fingerprinter tracks users via their browser attributes,
such as user agent and keyboard layout [20, 41]. It begins when
a fingerprinting script is delivered to the client’s browser from a
remote server (upper part of fig. 1). This script collects browser
attributes, like screen size and width, via the browser JavaScript
APIs, constructs the fingerprint, and sends it to a remote server. The
collected fingerprinting attributes form the fingerprint. A finger-
print can contain attributes or their aggregate (e.g., a sum, a hash,
or an encoding). For instance, listing 1 shows a fingerprinting script
collecting three attributes, aggregating them using math operations
and hashing, and then exfiltrating the resulting fingerprint.

2.2 Normalized Shannon Entropy
For each fingerprinting attribute 𝑋 with 𝑛 distinct values A𝑋 =

{𝑥1, 𝑥2, . . . 𝑥𝑛} and a probability 𝑃 (𝑥𝑖) of each value occurring,
𝐻 (𝑋) (Shannon entropy) is defined as:

𝐻 (𝑋) = −
∑︁

𝑥 ∈A𝑥

𝑃 (𝑥) · log𝑏 𝑃 (𝑥) (1)

The Shannon entropy is measured in bits and employs a base-2
logarithm (𝑏 = 2).

To facilitate comparisons between attributes with different car-
dinalities (where cardinality |A𝑋 | = 𝑛), we use 𝐻𝑛 (normalized
Shannon entropy), which is computed by dividing Equation (1) by
the maximum entropy log𝑏 (𝑛):

𝐻𝑛 (𝑋) = 𝐻 (𝑋)
log𝑏 (𝑛)

(2)

𝐻𝑛 measures the uncertainty or information content within finger-
printing attributes in a dataset. It has been used extensively in the
past by studies that aimed at determining critical fingerprinting
attributes [11, 20, 26, 35].

2.3 Anonymity Sets
An Anonymity set quantifies the number of users with identi-
cal or similar fingerprinting attributes within a dataset. A larger
anonymity set implies a higher level of anonymity, as it indicates
that multiple users exhibit the same fingerprinting characteristics.

The anonymity set size 𝐴 of a particular fingerprinting attribute
value 𝑥 is defined as the number of times that value occurs in a
dataset of 𝑁 samples:

𝐴(𝑥) = 𝑃 (𝑥) · 𝑁 (3)

𝐴(𝑥) describes how many users share the same fingerprint and
hence gives ameasure of anonymity. High values imply high anonymity,
whereas a value of 𝐴(𝑥) = 1 means that the value 𝑥 is unique in
the dataset.

We also define the mean anonymity set size overall values in the
dataset as:

𝐴 =
∑︁

𝑥 ∈A𝑥

𝑃 (𝑥) · 𝑁
𝑛

=
𝑁

𝑛
(4)

𝐴 has the drawback that it depends on the total size of the dataset,
and hence difficult to compare between studies. However, it is a
more intuitive metric than entropy.

2.4 Dynamic Taint Tracking
Dynamic taint tracking (or tainting) is a dynamic analysis technique
that employs labels to monitor data flows during program execu-
tion [15, 17, 18, 21]. The term “runtime tainting” originates from
Perl’s taint mode [56]. Various programming environments have
integrated built-in tainting capabilities, such as Perl [56], PHP [55],
and Ruby [48]. Notable research has utilized taint tracking capabili-
ties: For example, TaintBochs [17] was one of the earliest tools to
track data at the byte level.

In theory, taint sources are any functions or variables that emit
relevant or significant data. The definition of relevance depends on
the context of the analysis. For instance, in a security-focused analy-
sis, taint sources might include data that an attacker canmanipulate,
like input fields on a webpage. In contrast, for a privacy-centered
analysis, taint sources typically involve sensitive information about
a user. Data originating from a taint source is labeled using a label-
ing strategy. Some systems use boolean flags, while others employ
named tags or dedicated objects. Taint propagation keeps track of
labeled data. For example, when tainted values are added to non-
tainted ones, the taint should be propagated to avoid a taint loss
event. The event is logged when tainted data reaches a taint sink.
In a privacy context, a sink is an API sending sensitive data to a
(third-party) server.

3 THREAT MODEL
In this section, we present our system and attacker models.

3.1 System model
Our system model includes a user employing a (web) browser, such
as Firefox or Chrome, to browse the Internet. The browser runs on
any compatible device, including desktop computers, laptops, smart-
phones, or tablets. The browser could run on any relevant operating
system like Linux, Windows, iOS, or Android. The user visits web
pages that can load first-party or third-party Javascript code into
the browser. The browser executes the code by its JavaScript engine,
such as V8 (Chrome) or SpiderMonkey (Firefox). The executed code
can call any supported JavaScript API to interact with the browser
and the device. For example, it can access the screen’s width and

542

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

height, the local storage, the audio and video setup, the user agent,
and so on.

3.2 Attacker model
We consider a remote attacker who wants to track a web user via
browser fingerprinting. The adversary either controls a first-party
website that sends Javascript code to the target browser or em-
ploys a third-party service from which a legitimate website loads
Javascript code. The attacker fingerprints the browser (and hence,
the user,) by using its Javascript APIs to collect one or more distin-
guishing browser attributes. For example, in a basic attack scenario,
the attacker can tell two browsers apart by looking at their user
agents, screen dimensions, and audio configurations.

The attacker has the capabilities of a commercial browser fin-
gerprinter, such as a service based on the FingerprintJS library. She
can obfuscate the Javascript API calls to get the attributes (e.g., via
minify), aggregate attributes on the browser side before collection
(e.g., hash or encrypt them), and fingerprint the browser using
scripts loaded from different and unrelated domains. Moreover, the
adversary can securely exfiltrate the collected attributes via a TLS
connection and conspire with other browser fingerprinters to cre-
ate more accurate fingerprints. The attacker is interested neither
in sending malicious JavaScript code to violate the browser’s se-
curity (e.g., remote code execution or privilege escalation) nor in
interacting with compiled code (e.g., WebAssembly).

4 DESIGN
In this section, we motivate (see Section 4.1) and describe the de-
sign of FP-tracer [3], which is based on fine-grained taint-tracking
(see Section 4.2) combined with multi-threshold joint entropy clas-
sification (see Section 4.3).

4.1 Motivation
While the occurrence of browser fingerprinting on the web at large
has been studied widely, the findings are inconsistent. Results from
the last five years have measured the prevalence of browser finger-
printing from as low as ≈ 10% [12, 28] to as high ≈ 70% [10, 39]. To
understand the cause of these inconsistencies, we need to examine
how fingerprinting is typically detected. Most studies perform a col-
lection stage, where website properties related to fingerprinting are
recorded. A classification stage follows, where those measurements
are used to decide whether fingerprinting activity is present.

Many studies detect fingerprinting activity via dynamic [6, 19,
22, 23, 36, 47, 54] or hybrid [7, 12, 28] analysis to collect the usage
of APIs related to fingerprinting. These techniques are limited as
there is no certainty that the attributes were sent to a remote server
to identify users. Other techniques monitor HTTP traffic (e.g., [10])
and match request content to known attribute values. But, this
method cannot identify encoded, encrypted, or hashed attributes.
Other techniques collect script domains [44] or function names [46]
and compare them to known fingerprinting scripts. While this
method helps to keep the false positive rate low, it struggles to detect
new domains or script variations (e.g., minimized or obfuscated).

To overcome these limitations, we propose a detection technique
based on fine-grained taint tracking (detailed in Section 4.2), which
allows accurate identification of fingerprinting attributes sent to

a remote server, regardless of the malicious Javascript code and
destination domains.

Another fundamental flaw with existing taint tracking detection
methods is that they lack robust classification techniques. That is,
they miss an effective technique to measure the impact of finger-
printing scripts on users’ privacy. A popular method (e.g., Li et al.
[39]) considers every website that collects at least one sensitive
browser attribute as a fingerprint. But this technique is too coarse-
grained. The same applied to other classification techniques relying
on heuristics [6, 7, 12, 22, 23, 36], such as the detection of canvas
fingerprinting by measuring the dimensions or content of HTML
canvas elements. To achieve more objective classification rules, two
studies [19, 28] use machine-learning-based approaches for clas-
sification, but even these are trained using known fingerprinting
scripts, which can lead to false negatives as the model would fail to
classify novel fingerprinting methods.

The lack of an adequate classification technique motivates the
need for a better way tomeasure how severe a browser fingerprinter
is. For instance, we must distinguish when a fingerprint has high or
low entropy (i.e., high or low distinguishing power). Previous stud-
ies collected fingerprints of web users employing either dedicated
websites [20, 35, 41] or by embedding fingerprinting code into real
websites [26]. These studies computed the entropy (see Section 2.2)
of individual fingerprinting attributes and provided a quantitative
measure of their privacy impact. However, they fail to address two
issues. First, they do not estimate how common those attributes
are in the wild. Second, individual entropy values are insufficient
to measure a fingerprinter’s privacy impact, which will tend to
collect multiple attributes. To measure the information content of
fingerprinters transmitting multiple attributes, we propose comput-
ing the joint entropy of all attributes (as described in Section 4.3)
and perform multi-threshold classification to group fingerprinting
behavior based on real-world patterns that we empirically observed
in our large-scale experiments.

4.2 Collection via Fine-Grained Taint Tracking
When designing FP-tracer, we need to consider which granularity
to apply over the tainted labels. Existing work [39] proposed a
single label per JavaScript object. While this is appropriate for
primitive objects (such as the Number type), it may lead to over-
tainting and, therefore, false positives when considering String
objects. For example, consider an array of strings, of which only
one is tainted. The array can be serialized to a single string (using
join) and then converted back to an array (using split). With
object-level tainting, all elements in the array will now be tainted.
Instead, we adopt a fine-grained approach that allows us to store
distinct taint labels for each character in a given string instance.
This also allows us to log which parts of a string entering a sink are
tainted and provide deeper insights into how the attributes were
manipulated or obfuscated before transmission (see section 6.6).

For instance, consider the code snippet presented in listing 1.
The script computes an MD5 hash derived from aggregating three
attributes: screen.height, screen.width, and Navigator
.useragent. Utilizing our methodology will successfully identify
the last 32 characters of the URL as tainted. Consequently, our

543

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

system can successfully log this transmission, explicitly recognizing
it as an aggregation of these three attributes.

Another novelty of FP-tracer is the structure of the tainted data
labels. We choose labels 𝑀 = {𝑠1, 𝑠2, . . . 𝑠𝑛} as a set of sources,
where 𝑠𝑖 is information about a source instance containing the
name of the API together with the location of the source (function
name, script URL, line and position). Unlike other studies based on
taint-tracking [39], which only track the attribute name, this allows
us to accurately pinpoint the code location where the attributes
were accessed.

The tainting labels are then propagated during JavaScript op-
erations, such as string concatenation or arithmetic operations.
For unary operations (e.g., incrementation), we simply copy the
label, while for arithmetic operations (e.g., addition), we propagate
a label containing the union of all sources (e.g., 𝑀 = 𝑀1 ∪ 𝑀2).
During string manipulation, we also ensure that the character level
granularity of labels is preserved during operations such as string
concatenation or splitting.

FP-tracer [3] utilizes 62 sources and 25 sinks that we carefully
selected. They are listed in Tables 8 and 9 and Table 10 respectively.
We define a sink as any JavaScript API that sends tainted data to
an external party. This includes, for example, the src attribute of
img, the script tag, the data sent via fetch, and XHR request URLs,
headers and bodies. When a sink is called with tainted data (i.e.,
data label sets are not empty) we log the value of the string flowing
into the sink, the locations of tainted characters in the string, and
the corresponding set of fingerprinting attributes.

In addition, we log information about the various scripts in-
volved in the fingerprinting process. First, we record the URLs of
scripts responsible for accessing the fingerprinting attribute APIs
(known as source scripts). Secondly, we register the script URL re-
sponsible for making the network API call (the sink script). Finally,
we extract the URL of the network request made by the sink to
save the fingerprinting attributes’ final destination. This granular
logging capability allows us to distinguish between first-party and
third-party fingerprinting activities.

4.3 Classification via Joint Entropy Thresholds
FP-tracer employs the joint Shannon entropy to accurately measure
fingerprint information content (see Section 2.2 for the relevant
background). Given a fingerprint composed by a set of attributes
𝑋1, . . . , 𝑋𝑛 sent to a particular destination domain. We compute the
joint Shannon entropy (i.e., total information transmitted to that
domain) as:

𝐻 (𝑋1, . . . , 𝑋𝑛) = (5)

−
∑︁

𝑥1∈A𝑥1

· · ·
∑︁

𝑥𝑛 ∈A𝑥𝑛

𝑃 (𝑥1, . . . , 𝑥𝑛) · log𝑏 𝑃 (𝑥1, . . . , 𝑥𝑛),

where 𝑃 (𝑥1, . . . 𝑥𝑛) is the joint probability of a particular combina-
tion of attribute values.

To calculate the joint entropy, we require the set of probabili-
ties 𝑃 (𝑥1, . . . 𝑥𝑛) for each set of attributes. This information must
be obtained by collecting per-attribute fingerprinting data from a
representative sample of real web users. Such a dataset is, there-
fore, an input for our methodology. While in section 5.3 we de-
scribe an implementation using a dataset collected by means of an

Fingerprint
Classification

Crawling Infrastructure
Supervising Script

Website

Crawler

Worker 0

Playwright Interface

Taint-Aware Browser
Project Foxhound

Consent-O-Matic

Browser Profile

Browser Profile
TemplatesDomain QueueResult StoreBackups

navigation
instructions

browser logs,
events,
website elements

Activity Logs

Domain List,
Crawl Mode

… Worker n

…

…

Browser

Website

Input Joint Entropy
Computation

Ad Campaign

Analysis

Clustering

Fingerprinting
attribute sets

Fi
ng

er
pr

in
t d

at
as

et

Entropy

Prevalence

Format

…

…

…

…

Figure 2: Crawler high-level architecture.

Ad-fingerprinting technique, other datasets collected with other
techniques could also be used (e.g., [20, 26, 35, 41]).

Our joint entropy approach considers the correlation between fin-
gerprinting attributes, unlike widespread classification techniques,
which treat each attribute in isolation or count them [10, 39]. As
shown in Section 5.3, a small set of attributes can have a larger
joint entropy (i.e., be more effective for fingerprinting) than a
big attribute set. For instance, an attribute vector, which com-
prises six aggregate attributes navigator.maxTouchPoints, nav-
igator.appName, navigator.doNotTrack, navigator.product,
navigator.platform, and navigator.vendor, does not exhibit
strong discriminatory power when compared to another attribute
vector composed solely of userAgent. In addition, certain attribute
combinations may have strong correlations. For instance, the at-
tributes screen.width and screen.height are correlated due to
physical computer monitor constraints. The joint entropy ensures
that all of these correlations are taken into account in a statistically
robust manner.

To take full advantage of joint entropy, FP-tracer classifies browser
fingerprinting using several thresholds, extracted from the data us-
ing a clustering algorithm, such as Jenks Natural Breaks [30] and
K-means clustering [40]. Each cluster groups attribute vectors by
the invasiveness of the fingerprinter. In Section 6, we show how
to use our classification technique to build a detailed picture of
fingerprinting activities of real-world fingerprints in the wild. For
instance, we measure that a first-party or third-party fingerprinter
can be included in multiple clusters.

5 IMPLEMENTATION
We implemented FP-tracer (presented in Section 4) following the
architecture shown in Figure 2. Specifically, we: (i) extended Fox-
hound, a taint-aware fork of Firefox, to collect data flows related to
fingerprinting attributes; (ii) integrated our instrumented browser
into a crawling infrastructure that we created to automate and scale
our browser fingerprinting experiments; (iii) developed the tools
to classify a fingerprinting activity based on the tainted attributes’
joint entropy and verify their uniqueness using a real-world dataset
from an advertising campaign. We now describe these three imple-
mentation aspects in more detail.

544

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

5.1 Foxhound Extensions
Our instrumented browser FP-tracer extends on a modified version
of Foxhound [50] (v96.0.3), a fork of Firefox that can perform taint
tracking of strings. Foxhound had been used to detect client-side
security vulnerabilities [32, 33] by tracking data flows from user-
controlled data sources to sinks, resulting in HTML parsing or code
execution. Foxhound implements taint tracking by instrumenting
string types in Firefox’s JavaScript engine (SpiderMonkey) and
Browser Engine (Gecko) to include taint information. To enable
fine-grained fingerprinting activity detection for Foxhound, we
extended its instrumentation engine with four features:

Numeric Type Support. One key contribution was the extension
of Foxhound to support taint tracking for number types. This is
essential to accurately track the usage of fingerprinting attributes,
many of which are numbers. For example, fingerprinting scripts
often collect and aggregate the user’s screen width and height as
seen in listing 1. In JavaScript, numbers are commonly represented
as primitive types, where the numeric value is stored directly on
the stack in a double-precision floating-point format. Alternatively,
JavaScript also allows the creation of Number objects1, which are
ordinary objects consisting of a single internal slot holding the
Number value.

We introduced the TaintableNumber built-in type, which ex-
tends the Number object with a second internal slot to store the taint
tracking information. We then ensured that any sources emitting
numbers would return TaintableNumber types with the appropriate
label. We enhanced the JavaScript interpreter to ensure the taint
information is propagated during arithmetic and binary operations
(e.g., +,-,*,/,+=). In addition, any built-in functions converting
between string and number types (e.g., toString and parseInt)
are also instrumented to pass the taint information during the con-
version.

Multiple Source Support. Foxhound stored information about the
source of tainted data as a pointer to an object. In other words,
a particular string character can only be associated with a single
source. This is insufficient after introducing support for number
tainting, as numbers can have multiple sources related to them.
This required us to extend Foxhound’s taint representation to en-
able storage of a set of associated sources, rather than a single one.
In addition, we also instrumented implementations of numerical
operations in the interpreter to compute the union of source sets
as required by section 4.2.

Source and Sink Extensions. As Foxhound was previously used
to detect client-side security vulnerabilities, we also adapted the
source and sink APIs for the fingerprinting use case. In total, we
label 62 sources associated with accessing fingerprinting attributes,
selected from relevant studies [39] and fingerprinting libraries [24].
We also identified 25 sinks, supporting any JavaScript API call en-
abling data transfer from the client to a remote server. A detailed
list and comparison with related work can be found in Table 8
and Table 10, respectively. To support such a large number of new
sources and sinks in a scalable manner, we adapted Firefox’s We-
bIDL2 code generator to automatically insert C++ code to set and
1https://tc39.es/ecma262/multipage/numbers-and-dates.html
2https://webidl.spec.whatwg.org

log taint instrumentation appropriately. This reduces the effort to
add new sources or sinks, which can now be done by simply adding
a custom Taint attribute to the appropriate property in theWebIDL
file.

Activity Logging. When a tainted value is detected entering a
sink API, Foxhound triggers a custom event with the following
information: the value of the data entering the sink and a list of
tainted character ranges.We extended the implementation to record
the associated sources (and hence fingerprinting attributes) for each
range, including the relevant source name, location (script URL,
line, and position), and function name. Finally, we record the sink
name, location, and function name, together with any additional
information required to reconstruct the destination URL of the
external request.

5.2 Crawling Infrastructure
To scale our fingerprinting collection technique to a large num-
ber of websites, we integrated our modified Foxhound browser
from section 5.1 into the Playwright browser automation frame-
work [42] (v1.21.1). We then created a node.js crawler application
for automated website browsing. As presented in Figure 2, our
crawler takes a list of target domains as input, which are added to
a queue. A scalable number of workers manage the queue, each
using a Playwright-controlled browser to visit websites and log
fingerprinting activity.

Our crawler implements an automatic and re-usable website vis-
iting logic. We visit each target website’s top-level (home) page,
followed by visits to three subpages chosen randomly from hy-
perlinks on the home page. The duration of the visits to a page is
carefully structured: the home page loads first, and the crawler waits
for 20 seconds with a mid-point scroll to the bottom. As shown by
previous work [12], fingerprinting scripts may first be active once
the user navigates to secondary pages. As such, we subsequently
revisit the home page, followed by the three randomly selected
secondary pages. The crawler waits 10 seconds on each page with
a mid-point scroll. A transition to about:blank and a 5-second
pause occurs between each page to ensure a clear separation of
measurement data.

The crawler aggregates activity logs from multiple workers into
a single output and allows backup and restoration of the crawling
state in the event of expected errors. We log all fingerprinting-
related dataflows for each web page visited during the crawl. We
then aggregate this information to build the attributes sent to a
particular destination domain from all data flows detected on the
crawled domain (referred to as a domain-destination pair). The
attributes are then used as input for the subsequent analysis stage.

5.3 Fingerprint Classification
To compute the joint entropy of each fingerprinting attribute set, we
calculate 𝑃 (𝑥1, . . . , 𝑥𝑛) from eq. (5) using values obtained from real
web users. In particular, we employ a dataset of user fingerprints
obtained from a related research study [14] utilizing a technique
known as Ad Fingerprinting, whereby dedicated JavaScript code is
embedded into online advertisements. The advertising campaigns
were executed within the Sonata Platform, a Demand Side Platform
(DSP) operated by TAPTAP Digital [53]. Sonata is a mid-sized DSP

545

https://tc39.es/ecma262/multipage/numbers-and-dates.html
https://webidl.spec.whatwg.org

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

Table 1: 𝐻𝑛 values of selected fingerprinting attributes.

Attribute [35] [26] FP-tracer

User Agent 0.580 0.341 0.565
Do Not Track 0.056 0.091 0.066
Content language 0.351 0.129 0.313
Screen Resolution 0.290 0.231 0.572
Canvas Drawing 0.491 0.407 0.654

that delivers millions of daily advertisements in 15 countries across
Europe, North America, South America, and Africa. On loading the
advert, the embedded JavaScript code will collect fingerprinting
attribute values from the browser and report them back to a dedi-
cated server. Furthermore, the device advertising ID provided by
the DSP was also collected as a feature. As a result, a fingerprint
is considered truly unique in the dataset if all the samples with
a specific device fingerprint value share the same Advertising ID.
This process enables the establishment of a ground-truth uniqueness
within the dataset and, thus, defines the probabilistic variance of
fingerprints based on different attribute values that make up each
fingerprint of the devices in the dataset.

The resulting dataset from these measurements comprises ap-
proximately 161k fingerprint samples collected at various time inter-
vals (February-June 2022, May 2023, and September 2023) and from
diverse browser instances across different device configurations.
Each fingerprint in this dataset is characterized by a combination
of device type (mobile or desktop), operating system (Android, iOS,
Windows, macOS, or Linux), and browser (Chrome, Safari, Firefox,
Edge, or MiuiBrowser). As FP-tracer is implemented as a desktop
browser, we filter the samples to remove fingerprints from mobile
browsers, which may bias our results. This leaves a total of 85 576
fingerprints from desktop browsers. In Table 1, we show the nor-
malized entropy values as measured by previous work [26, 35] and
us for five attributes typically collected by browser fingerprinting
scripts.

The collected fingerprint dataset is then used to calculate a (nor-
malized) joint entropy for each unique set of attributes collected
during the crawling stage described in section 5.2. In addition, we
also calculate the mean anonymity set size for each set to assess
how unique a particular set is within our dataset (cf. section 2.3).
The entropy values allowed us to perform a detailed analysis of the
state of fingerprinting on the web, as presented in section 6. Our fin-
gerprinting classification and analysis framework was implemented
in Python using a series of dedicated Jupyter notebooks.

5.4 Ethics Considerations
The paper’s experiments have obtained the approval of our in-
stitution’s Institutional Review Board (IRB) via the relevant Data
Protection Officer (DPO). Moreover, we made sure to have specific
considerations to protect users’ privacy. For example, we limit our
fingerprint collection to users with an existing advertising ID and
do not process data from devices with the do-not-track flag active
in their browsers.

We also made sure our experimental setup complies with best
practices for crawling. For instance, we added custom HTTP head-
ers to identify our crawl as an academic study and hosted an ex-
planatory website with contact and opt-out information on our
crawler’s IP address. In addition, all fingerprinting takes place in-
side the browser, with minimal disruption for visited sites.

6 EVALUATION
In this section, we present FP-tracer’s evaluation setup. Then we
discuss results related to its fine-grained collection capabilities in
Section 4.2 and multi-threshold joint-entropy classification ones in
Section 4.3.

6.1 Setup and Perfomance
We performed our evaluation using the 100k most popular websites
according to the Tranco List [37] (version N7QVW [38]). We tried
to visit each domain using HTTPS, and if it failed, we used HTTP
or prefixed the domain with www. Our crawling server is based in
Europe, and therefore, the websites we visit must comply with
the General Data Protection Regulation (GDPR). We started our
crawl on 31/03/23 and ran it for 18 days using up to 12 parallel
workers on a CentOS Linux server with 16 CPUs and 32GB of RAM.
To evaluate that additional overhead caused by FP-tracer, we ran
dedicated experiments as described in appendix A.1. We measured
an overhead of 11± 1% compared to an unmodified Firefox browser,
which is comparable to related work (e.g. 9% [39]). However, our
implementation is more advanced, as it can track taint labels at
character level, compared to object-level tracking of Li et al. [39].

Of the 100 000 domains, we were able to visit 80 618 of them. Of
the unsuccessful domains, we found around 15 000 were unreach-
able, with the remaining 4319 provoking crawler errors such as
timeouts.

6.2 Collection and Classification
We detected around 6.8 million tainted strings from 33 sources (see
table 11) and 15 sinks (see table 12). This corresponds to a collection
of 7.4 million transmitted attributes as a single string can be labeled
with multiple attributes. The collected flows comprise 15 239 com-
binations of fingerprinting attributes. For each set of attributes, we
computed the (normalized) joint entropy as described in section 5.
We find fingerprinting activity collecting up to 27 attributes, with
a maximum entropy of 15.9 bits and a maximum normalized joint
entropy of 0.989.

Figure 3 shows a 2-dimensional histogram presenting the rela-
tionship between the joint entropy and the number of attributes
collected in each case. The plot also shows the mean entropy per
attribute count and data points from known fingerprinting libraries.
Interestingly, the entropy starts to flatten off (i.e., reaches maximum
curvature) after collecting just seven attributes. Figure 3 also shows
that counting attributes is a poor metric for classifying fingerprint-
ing activity. For a given attribute count, there is an extensive range
of joint entropies depending on which attributes are collected.

Figure 4 shows the correlation between the joint entropy and the
mean anonymity set size (see eq. (4)) for each of the 15 239 attribute
combinations. As expected, increasing joint entropy corresponds
to a logarithmic decrease in the anonymity set size.

546

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

2

4

6

8

10

12

14
16

Jo
in

t E
nt

ro
py

0 5 10 15 20 25
Attribute Count

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Jo

in
t E

nt
ro

py

Mean
Max/Min
fingerprintjs
clientJS
AmIUnique

Figure 3: Normalized joint entropy vs. number of attributes.
The color scale indicates the number of attribute combina-
tions in each bin from low (blue) to high (yellow).

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Joint Entropy

100

101

102

103

104

M
ea

n
An

on
ym

ity
 S

et
 S

ize

Figure 4: Normalized joint entropy vs. anonymity set size.

Figure 5 shows the normalized joint entropy of the tainted at-
tributes we collected during our experiments. We calculated the
joint entropy for each domain-destination pair as described in Sec-
tion 5.2. After this aggregation step, we find a total of 269 784 trans-
missions between crawled and destination domains. We bin the
values using six intervals: No Activity, Negligible, Low, Medium,
High, and Very High. We set the thresholds using the Jenks natural
breaks algorithm. We also performed clustering using the K-means
algorithm and found onlyminimal differences between the intervals
obtained.

We find some activity below the normalized entropy (see eq. (5))
of 𝐻𝑛 < 0.5, with very distinct structure and peaks between 0.5 <

𝐻𝑛 < 0.8, followed by a tail up to 0.989. Note that there is some
activity with 𝐻𝑛 = 0, which, interestingly, is caused by scripts

0.0 0.2 0.4 0.6 0.8 1.0
Normalized_Joint_Entropy

0

20000

40000

60000

80000

100000

De
te

ct
ed

 A
ttr

ib
ut

e
Se

ts

No Activity
Negligible
Low
Medium
High
Very High

Figure 5: Detected tainted attribute sets per normalized joint
entropy cluster.

Table 2: Entropy ranges clustering.

Set Entropy Range 𝐴 Prevalence

Negligible (1) (0.000, 0.154) 1600 0.68%
Negligible (2) (0.154, 0.442) 2000 5.25%
Low (0.442, 0.596) 32 58.99%
Medium (0.597, 0.705) 15 30.94%
High (0.705, 0.832) 5.1 61.49%
Very High (0.832, 0.989) 2.6 8.08%

Table 3: Joint Entropy of selected attribute sets.

Attribute sets 𝐻𝑛 Label 𝐴

userAgent, storageEstimate 0.907 Very High 2.0
userAgent, canvas 0.743 High 12
canvas 0.654 Medium 34
userAgent 0.565 Low 350
maxTouchPoints 0.154 Negligible 2600

transmitting deprecated attributes such as Navigator.appName,
which will always return the string Netscape.

We find six classes of fingerprinting activity, as summarized in
table 2. Each class is assigned a descriptive label, from “Negligible”
to “Very High”. The groups are also shown as colored bands in fig. 5
and can be seen to select different distribution features successfully.
We also provide two additional metrics in table 2 to provide a more
intuitive measure of how well each class can distinguish users. The
mean anonymity set size 𝐴 shows that fingerprinting in the “Very
High” cluster will be shared between 2.6 users on average in our
dataset. On the other hand, “Negligible” fingerprints will be shared
with over one thousand different users.

Table 3 lists some examples of attribute sets in each cluster. For
example, “Low” fingerprinting can be achieved by collecting just

547

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

the userAgent attribute, whereas “Medium” requires the canvas
element. Collecting the two attributes together results in “High”
activity. Note that “Very High” classes can be achieved with as little
as three attributes. Notably, we also found that the fingerprinting
libraries Client-JS (entropy: 0.87) and FingerprintJs (entropy: 0.86)
both fall into the “Very High” cluster, together with the set of
attributes collected by the Am-I-Unique website (entropy: 0.93).

6.3 Prevalence on the Web
We also measured how often each class of fingerprinting activity
occurs on the web. To do this, we take each cluster and measure
the fraction of crawled domains where at least one transmission
occurs with entropy in that cluster. The results are shown in the
final column of table 2. Interestingly, we detect significant finger-
printing activity across all fingerprinting classes. The exception is
the “Negligible” cluster, which we will no longer consider in the
remainder of the analysis.

Our results show that almost 59% of websites perform finger-
printing activity within the “Low” cluster, with fewer domains (31%)
performing “Medium” fingerprinting. More concerning is the fact
that 61% of domains are found in the “High” cluster, indicating
they can uniquely identify users in populations of ≈ 17 000. In the
worst case, we find 8% of domains where “Very High” fingerprinting
occurs.

In fact, the results in table 2 may be able to explain the dis-
crepancy in previous results. Studies measuring very high rates of
≈ 70% [10, 39], do so by detecting the presence of at least one finger-
printing attribute. Considering the fraction of domains that perform
at least a “Low” level of activity yields a result of 75%, which is
broadly in agreement with previous work. On the other hand, lower
rates of ≈ 10% [12, 28] are measured when using stricter classifica-
tion techniques, which is in agreement with the 8% measurement
in the “Very High” cluster.

This observation leads to a more general insight that browser fin-
gerprinting cannot be considered as a binary property of websites;
rather, it encompasses a broad range of activities with different
privacy impacts. What is traditionally referred to as fingerprinting
would typically fall into the “Very High”. Lower entropy clusters
(e.g., “High”) may not be able to target a single user but could
distinguish groups of users for analytics and marketing purposes.

6.4 Destination Categories
In order to investigate this in more detail, we examine the categories
of domains in each of our fingerprinting clusters. To do this, we
first divide our results into two categories: first-party fingerprinting
(where the destination domain matches the crawled domain) and
third-party (otherwise). We then group each domain based on the
website category as reported by the Webshrinker service [57].

Table 4 presents the fractions of crawled domains performing
first-party and third-party fingerprinting, broken down into clusters.
For each cluster, we also list the top three categories, together with
the top three destination domains in the case of third-party activity.
The results show some interesting insights. For example, at the
“Low” activity level, first-party domains display a prevalence rate of
34%, while third-party domains show a notably higher rate of 50%.
The latter predominantly pertains to Business-related activities

(40%). In the “Medium” activity level, first-party domains exhibit a
low prevalence rate of 2.2%, mainly concentrated on Technology &
Computing destinations. Conversely, third-party domains show a
much higher prevalence rate of 30%, with a focus on Web Search
engines and marketing domains.

Moving to the “High” activity level, first-party activity manifests
a prevalence rate of 12%, emphasizing Technology & Computing.
On the other hand, third-party domains have a substantially higher
prevalence rate of 58%, majorly constituted by Marketing-labeled
domains (45%). Similarly, at the “Very High” activity level, first-
party domains demonstrate a prevalence rate of 2.8%, whereas
third-party domains exhibit a rate of 5.8%.

In summary, we find that fingerprinting is carried out by both
first and third-party domains across all of the clusters in our analy-
sis, with third-party activity more common overall. Fingerprinting
is overall pervasive, occurring across a wide range of website cate-
gories.

6.5 Common Sources and Sinks
Our analysis shows that attributes like audiocontext, audioN-
ode, and HTML canvas elements are strong contributors to high
joint entropy. Indeed, in the high entropy category, we found audio
context fingerprinting on 54 crawled domains and canvas finger-
printing on 6237. Our analysis found that the attribute storagees-
timate.quota collected as part of a high entropy vector has a
strong distinguishing power (i.e., high entropy). We detected stor-
age.quota in 148 domains. The detailed list of active sources that
we detected, together with the number of transmissions per entropy
level, is provided in table 11 within the Appendix.

On the other hand, the analysis of active sinks revealed that
medium entropy vectors were mainly transmitted via img.src,
navigator.sendBeacon APIs and XHR requests. Meanwhile, High
entropy collections mostly used XHR headers and URLs, as well as
iframe, img, and script src attributes. Details are in table 12.

6.6 Aggregation and Obfuscation
Our fine-grained tainting approach allows us to survey the types
of aggregation and obfuscation techniques performed by finger-
printing scripts in the wild. To do this, we examined the content
of the 6.8 million strings that are transmitted through sinks in
our dataset. We then extracted the tainted substrings and their
associated fingerprinting attribute labels.

We find that substrings are associated with a single fingerprint-
ing attribute in 95% of cases. In these cases, we were able to com-
pare the string content to the expected value given by our browser
implementation. For example, navigator.platform will have an
expected value of “Linux x86_64”. As shown in table 5, we found
that in 85% of these cases, the strings are transmitted in plain text,
either in their entirety or as a substring of the attribute. This frac-
tion drops to 47% when considering strings that are collected as part
of a “Very High” transmission. This indicates that more harmful
fingerprinting activity tends to employ obfuscation techniques such
as encoding or encryption. Notably, this implies that techniques
using network API or traffic monitoring will fail to detect over
half of fingerprinters. In cases where strings were not apparent as

548

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

Table 4: Category of first-party domains and third-party destinations performing fingerprinting.

First party Third party

Prevalence Top 3 Categories Prevalence Top 3 Destination Categories Top 3 Destinations

Low 34%
Technology & computing (24.8%)
News/weather/Information (15%)
Business (9.5%)

50%
Business (40%)
Technology & computing (30%)
Web Search (11%)

doubleclick.net (19346)
google.de (9266)
google.com (8311)

Medium 2.2%
Technology & computing (18%)
Education (15%)
News/weather/Information (12%)

30%
Web Search (25%)
Marketing (20%)
Technology & Computing (18%)

google.com (7525)
google-analytics.com (6230)
baidu.com (1908)

High 12%
Technology & Computing (22%)
News/weather/Information (20%)
Business (8.8%)

58%
Marketing (45%)
Business (29%)
Non-standard content (9.3%)

google-analytics.com (38294)
doubleclick.net (13614)
youtube.com (6746)

Very High 2.8%
Technology & computing (16%)
News/weather/Information (13%)
Business (9%)

5.8%
Technology & computing (34%)
Uncategorized (30%)
Business (9%)

webgains.io (767)
baidu.com (233)
datadome.co (233)

Table 5: Summary of fingerprinting encoding.

Format Low Medium High Very High All

Plain 77.5% 91.0% 87.6% 47.3% 84.5%
Encoded 1.0% 0.9% 0.9% 6.4% 1.2%
Hashed 0.0% 0.1% 0.5% 0.3% 0.4%
Other 21.4% 8.0% 11.1% 46.0% 14.0%

plaintext, we found that 1.2% strings were transformed using well-
known encoding techniques (e.g., Base64, Hex, or URL encoding).
In addition, we could identify 0.4% of strings that were hashed using
common algorithms (e.g., MD5, SHA1, or SH256). Of the remaining
cases, we performed a manual inspection of frequently occurring
scripts and found a wide range of custom hashing, encoding, and
combination techniques. Some examples of such algorithms can be
found in appendix A.2.

We also examined the 5% of strings that are tainted with two
or more attributes. A simple example is line 7 of listing 1, where
two numbers are multiplied so that the result will be tainted with
both the height and width attributes. We found that multiplication
and addition of the screen dimensions were responsible for almost
8% of these aggregated transmissions. For the remaining cases,
we assessed whether the string value obtained was constant for a
given combination of attributes and script domain. We found that
30% of values were unique, implying that these scripts could be
used to identify a user across multiple websites. The remaining
cases produced different values across crawled domains due to the
combination of additional variables such as random numbers or
the website URL.

6.7 Collaborative Fingerprinting
We discovered that multiple scripts loaded from various domains
can participate in the same browser fingerprinting activity. For
instance, if two scripts are loaded from two different domains, but
ultimately, they collect fingerprinting attributes and share them

with the same destination, then we refer to this as collaborative
fingerprinting. Our granular tracking methodology allows us to
detect such behavior.

This phenomenon is represented in fig. 6, which provides a
heatmap of the 269 784 attribute vectors per number of domains
serving scripts that transmit attributes to a single destination. The
heat map also shows activity split by entropy level, thus represent-
ing the privacy impact of the final constructed vector. While the
majority of activity is carried out by scripts loaded from a single
domain, we find significant activity from two or more domains, es-
pecially in the High entropy category where 38.34% of transmitted
vectors involved more than just 2 domains. Furthermore, in two
extreme instances, we found scripts loaded from 7 domains, all of
which transmitted attributes to the same destination.

For example, in 10 of the crawled domains, baidu.com received
a vector of seven attributes, namely: the screen colorDepth, width
and height, and the navigator language, hardwareConcurrency,
platform, and userAgent. This vector has a very high joint entropy
of 0.85 and is assembled from two vectors collected by different do-
mains. Specifically, a script from baidu.com gathers four attributes
with a joint entropy of 0.65, while the remaining three attributes
with a joint entropy of 0.66 are collected by a script loaded from
bdstatic.com.

Additionally, we observed that globo.com gathered a high joint
entropy (0.9) vector consisting of 8 attributes, namely: useragent,
platform, width, height, colordepth, canvas, language, and
hardwareconcurrency. Among these attributes, chartbeat.com
collected 5 attributes of 0.83 and insurads.com collected 4 at-
tributes of 0.76 joint entropy, while useragent was collected by
both. This observation suggests that globo.com may be utilizing
both domains as services to gather fingerprinting attributes.

We cannot comment on the intent behind every collection uti-
lizing multiple domains presented in fig. 6, as we lack visibility on
the remote server side. Nevertheless, we highlight the potential
for abuse of such capabilities by more sophisticated fingerprinting
actors. In the provided example, Baidu uses bdstatic.com as a
service to receive extra attributes. Other fingerprinting actors could

549

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

Low Medium High very high
Entropy Level

1
2

3
4

5
6

7
Nu

m
be

r o
f d

om
ai

ns
 in

vo
lv

ed
 in

 le
ak

in
g

th
e

at
tri

bu
te

s t
o

de
st

in
at

io
n

113692 30836 56634 4997

4057 3103 37559 1719

132 240 4774 684

29 19 582 156

1 2 51 29

0 5 3 6

0 0 0 2

100

101

102

103

104

105

Num
ber of transm

issions
Figure 6: Number of distinct detected involved domains in
fingerprint collection sent to the same common destination.

leverage multiple fingerprinting vendors to increase their finger-
printing capabilities such as presented in the example of globo.com.

6.8 Third-party Scripts
Weobserved that 1.26million scripts were sending attributes through
a sink-supported function, with approximately 1 million being
loaded from third-party domains. Our analysis focuses on identify-
ing the most commonly used ones that exhibit varying behaviors
across different domains, indicating a configurable collection of
attributes. In table 13, we present the most notable scripts in this
regard, as they were found to leak more than 20 different attribute
combinations across multiple domains. One notable example is
Google Analytics’ analytics.js, which was detected in a total of
38.6K domains and was found to leak 28 different attribute sets in
total.

7 DISCUSSION
In this section, we discuss further insights into the cross-validation
conducted against the state of the art, and the results of our sec-
ondary crawl evaluating user banner impact.

7.1 Disconnect and EasyPrivacy Lists Validation
We validate our findings using the Disconnect [1] and the EasyPri-
vacy [2] lists. These provide lists of domains that are suspected
of performing tracking activity and are commonly utilized by ad
blocker services and browser plugins. While EasyPrivacy only pro-
vides a list of tracking servers, Disconnect deserves more explana-
tion as it provides several interesting categories. Namely, it cate-
gorizes services conducting fingerprinting into two severity cate-
gories: FingerprintingInvasive (FI) and FingerprintingGeneral (FG).

Table 6: Validation against Disconnect and EasyPrivacy lists.

Disconnect [1] EasyPrivacy [2]

Level Invasive (FI) General (FG) Tracking servers
Low 10 35 187
Medium 6 42 134
High 20 473 100
Very high 26 17 131

Under FI, they individually assess each service’s fingerprinting ac-
tivity using various techniques. For instance, they use results from
API monitoring studies to identify access to sensitive fingerprinting
attributes, like canvas elements or audio context. In addition, they
identify the presence of specific fingerprinting libraries, such as
fingerprints. On the contrary, services labeled as FG are categorized
based on investigations into the privacy policies of these services.

In table 6, we list the number of domains found on the respective
lists, split by joint entropy level. If we find a domain performing
fingerprinting in multiple categories, we always choose the highest
level as input for the Table. Overall we find a good agreement with
our results and the two lists. For example, we can detect trackers
from the EasyPrivacy list across all entropy levels. Similarly, we
found 20 trackers from the Disconnect list in the High cluster and
26 in Very High. However, we also measured 10 trackers in the Low
entropy level, which were labeled as FI by Disconnect. We manually
inspected these domains and found that they were categorized as
invasive by Disconnect due to the presence of a FingerprintingJS
script or the detection of canvas fingerprinting. Cross-checking
with our results, we only collected lower entropy attributes such
as screen dimensions or userAgent.

This discrepancy may be due to the difference in methodology
used by our technique compared to the Disconnect list. For example,
our results will only provide a lower bound on the fingerprinting
activity of a given domain. This is due to the dynamic nature of our
detection technique: we only detect fingerprinting if the responsible
code is executed. Increasing the number of crawled domains as well
as the number of visited subpages could be an easy way to mitigate
this discrepancy.

More interestingly, our results detected the majority (473) of
domains in the High category that were only labeled as FG by
Disconnect. Furthermore, 17 domains labeled as FG by Disconnect
were found by our approach to conduct a “Very High" entropy level
of collection. For instance, we found doubleclick.net to conduct
both canvas or audio fingerprinting and googlesyndication.com to
conduct canvas fingerprinting. However, both of these domains
are listed by Disconnect (under Google) as General fingerprinting
domains based on the privacy policy of the services. Despite this, we
found them to both collect very high entropy attribute combinations.
We plan to share our results with Disconnect with the ultimate goal
of contributing to their classification.

7.2 Validation with FP Inspector
We also compared our results with the most recent study by Iqbal
et al. [28], which makes their crawling results publicly available.

550

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

They proposed FP-Inspector, a classification technique using ma-
chine learning to infer fingerprinting from JavaScript analysis. This
technique detected fingerprinting activity on 10.18% of the top
100,000 Alexa websites, with their data publicly available [29]. Out
of their results, we found a total of 911 domains, which we also
crawled during our study. Despite the volatile nature of the web
and a 2-years gap between the studies, we found a good agreement
with their findings. We found that 94.52% of the common domains
have fingerprinting activity in the Medium category or higher.

7.3 Consent Banner Impact
We investigated the impact of consent banners on fingerprinting
activity. A consent banner enables a website to let the user provide
consent regarding its data collection policies. To this end we per-
formed two additional crawls: (i) we performed a filter crawl to
detect the presence of consent banners by crawling the Tranco top
100K with the Consent-O-Matic plugin [4, 5, 45]. (ii) we crawled
the filtered domains using three profiles using the methodology
described in section 6.1. The first profile provides the baseline, as no
interaction with the consent banner is attempted. The second one
uses Consent-O-Matic to interact with the banner and consents to
all data collection. The third profile tries to reject as much data col-
lection as possible. For each profile, we collected a separate dataset
of dataflows, computing entropy computation, and clustering as in
section 6.

Table 7 summarizes our consent banner results. We visited 4860
domains, with the fraction of domains with various levels of finger-
printing activity shown in table 7. The baseline results agree with
those from the main crawl and show that websites with consent
banners in our sample are representative of the web at large. In ad-
dition, we find that accepting all data collection purposes produces
a surge in activity across the “Low”, “Medium”, and “High” clus-
ters, registering increases in domain activity of 18.50%, 13.04%, and
20.14%, respectively. Intriguingly, the “Very High” cluster displayed
only a slight rise of 1.05%, indicating a complete disregard for user
consent for this collection level. We also noticed slight increases in
activity even if data collection is rejected, specifically notable for
the “Low”, “Medium”, and “High” groups, which show increases in
activity of 4.61%, 2.3%, and 2.91%, respectively. This suggests that
despite the user rejecting data collection, some entities still conduct
fingerprinting disregarding the user’s consent. Our results demon-
strate that the baseline fingerprinting rate is high even before a
user conducts any interaction with a consent banner. As expected,
fingerprinting activity increases to almost 90% of domains after
accepting all data collection, interestingly the very high group is the
least likely to respect the user choice as its baseline prevalence is
almost identical before and after the user’s consent it given. Finally,
we also measure a slight increase in activity events if data collection
is explicitly rejected.

7.4 Limitations
Although our methodology is robust, it does have certain limita-
tions. For example, while FP-tracer can track explicit data flows,
implicit data flow tainting is not supported. Implicit data flows
occur when variable assignment is conditional on specific values of
tainted data. Tracking implicit flows introduce significant runtime

overhead, as demonstrated by Staicu et al. [52]. Additionally, the
same study argued that for detecting security vulnerabilities, sup-
porting implicit flows was not particularly useful. While we cannot
make the same claim for browser fingerprinting as the context is
different, we decided to make the trade off to only support explicit
flows.

Our implementation does not support tracking of dataflows
which involve execution of WebAssembly code. Future work could
enhance our implementation with the specific scope of measuring
the false negative impact of implicit-related flows or WebAssembly-
related flows.

Despite the broad coverage of instrumented sinks and sources
by FP-tracer, as detailed in the Appendix Tables 8 and 10, there are
APIs that either lack support in FP-tracer or are simply absent from
Firefox. Based on the limitations stated, we suggest that our results
should be viewed as a lower-bound estimation of the real browser
fingerprinting occurring on the web.

It’s also important to note that the choice of fingerprinting
dataset influences the entropy calculation in our methodology. We
attempt to reduce this bias by collecting a data from a representative
sample of real web users, as opposed to dedicated fingerprinting
collection sites [35] or a single site [26].

8 RELATEDWORK
Entropy-based classification. Several studies attempt to measure

the entropy of fingerprinting attributes based on populations of web
users [20, 26, 35, 41]. In general, they tend to compute the entropy of
single attributes in their dataset as a measure of how effective they
are at identifying users. These studies lack a meaningful evaluation
of the privacy impact of attribute combinations that are used by real
websites. We take this into account by accurately measuring the
combinations of attributes sent to a particular site and computing
the joint entropy for that particular combination. This also considers
any correlations between attributes in a statistically robust manner.

Dynamic API monitoring. Several studies rely on JavaScript API
monitoring using various techniques, including JavaScript injection,
browser debugging interfaces, or browser source code modifica-
tions. Many studies use this technique alone [6, 19, 22, 23, 36, 47, 54]
or as part of a hybrid approach [7, 12, 28] combining it with other
classification methods such as machine-learning-based ones. How-
ever, this technique has limitations. It can detect if an attribute is
accessed but not whether it is sent to a (third-party) server, poten-
tially leading to false positives.

Fingerprinting static analysis. Other works utilize static analysis
techniques to recognize fingerprinters from known characteristics,
like script names. For instance, Papadogiannakis et al. [46] use a
technique that queries the browser’s profile for running methods,
assuming fingerprinting activity if known fingerprinting script
method names are detected. However, static analysis can only detect
known elements and is vulnerable to obfuscation.

Fingerprinting traffic analysis. Other studies rely on traffic anal-
ysis to identify fingerprinting attributes from network packets, as
proposed by Al-Fannah et al. [10]. This technique analyzes website
traffic but faces limitations when attributes are encoded, encrypted,
or sent as a single visitor ID. Our results show that for the very high

551

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

Table 7: Prevalence Rates for Different Consent Modes and Fingerprinting Levels.

Consent Mode Negligible Low Medium High Very High

Baseline 7.8% 71.38% 27.3% 63.32% 9.55%
Accept All 9.68% +1.88% 89.88% +18.50% 40.34% +13.04% 83.46% +20.14% 10.60% +1.05%
Reject All 8.80% +1.00% 75.99% +4.61% 29.61% +2.31% 66.23% +2.91% 9.64% +0.09%

entropy collection, only 47.5% of the attributes were transmitted in
plain text, meaning that such techniques relying on traffic analysis
would have a false negative rate exceeding 50% when it comes to
detecting severe fingerprinting.

Dynamic flow analysis. Recent studies have embraced dynamic
flow analysis for browser fingerprinting. The work by Sjösten et al.
[51] introduced dynamic flow detection but faced challenges, crawl-
ing only 30 websites due to high overhead. They needed extensive
time on each site (up to 12 hours) to ensure script execution. Re-
cently, Li et al. [39] introduced FPFlow, a dynamic taint-tracking
solution based on Chromium browser instrumentation. FPFlow ad-
dressed prior performance issues, enabling the crawling of 10,000
websites, but it falls short on several points. For instance, it sup-
ports only seven sinks, while our results show that at least fifteen
sinks are used in the wild. Furthermore, FPFlow is not fine-grained
as it implements taint tracking at the object level, which leads to
over-tainting (i.e., false positives) and cannot track attribute aggre-
gates. Unfortunately, an experimental comparison is not possible
as FPFlow is, to the best of our knowledge, not available as an open-
source tool. Finally, our approach enhances flow classification by
leveraging joint-entropy analysis of detected vectors, distinguishing
our study from [51] and [39].

Consent Banner. Recent works have analyzed the effect of con-
sent banners on user privacy, focusing on areas such as analyt-
ics [31], tracking pixels [13], and security vulnerabilities [33]. Pa-
padogiannakis et al. [46] attempts to understand the influence of
user interaction with consent banners on web trackers, but only
considers fingerprinting in passing. To our knowledge, we pro-
vide the first systematic study into the effect of consent banner
interaction on fingerprinting activity.

Surveys. Recent applications of taint tracking to fingerprint de-
tection [39, 51] either lack the accuracy to gain deep insights into
fingerprinting [39] or suffer performance issues, which make them
unsuitable for large-scale studies [51]. Based on a survey from 2020
[34], browser fingerprinting serves many purposes beyond targeted
advertising or tracking. It encompasses diverse applications such
as identifying device vulnerabilities, preventing bot and fraud ac-
tivities, and facilitating augmented authentication. For instance,
it assists in identifying vulnerable devices and can be utilized to
inform and protect users with vulnerable systems. Moreover, finger-
printing’s ability to detect unusual compositions or sudden changes
aids in bot and fraud prevention. Lastly, it enhances authentication
by identifying logins from new devices, making it more challenging
for attackers to hijack active sessions. Other recent studies also
have shown that adversaries can use stolen browser fingerprints
to compromise security too, as they may allow to bypass security
checks for 2-factor authentication [9, 25, 43, 49].

9 CONCLUSION
We introduce FP-tracer, a new methodology utilizing fine-grained
taint tracking and multi-threshold joint-entropy classification to
detect browser fingerprinting. Implemented through an extension
of Foxhound, a privacy-centric Firefox fork, our approach is em-
beddable within our automated crawling infrastructure. We suc-
cessfully crawled 80K of the top 100K domains listed in Tranco.
Utilizing a representative dataset, we calculated joint entropy to
classify fingerprinting trends via K-means and Jenks natural breaks
clustering algorithms.

Our large-scale experiments unveiled four real-world fingerprint-
ing trends, i.e., Very high, High, Medium, and Low. Very high fin-
gerprinting was detected in 8.08% of domains, while Low, Medium,
and High in 58.99%, 30.94%, and 61.49% of domains. Very high is
the most severe category, which enables unique browser identi-
fication. High, Medium, and Low, while still invasive, may serve
other purposes, such as targeted advertising or analytics. Moreover,
we measure that third-party fingerprinting is more frequent than
first-party, regardless of the trend.

FP-tracer uncovered valuable insights into actual browser finger-
printing practices. It discovered that 5% of transmissions involved
attribute aggregation on the client side and exposed that as much
as 53% attributes in the very high fingerprinting category are obfus-
cated. It revealed that 38.34% of attribute vectors in the Very high
group loaded scripts from multiple domains and leaked vectors to
the same destination, i.e., collaborative fingerprinting. Moreover,
despite user consent, severe fingerprinting activity remained con-
stant, emphasizing the need for more robust privacy measures and
regulations. The prevalence of obfuscation techniques and the dom-
inance of third-party fingerprinting underscored the necessity of
refining detection methods.

ACKNOWLEDGMENTS
We thank our anonymous reviewers and shepherd for their con-
structive feedback. This work has been supported by the Apri-
cot/ENCOPIA ANR MESRI-BMBF project (ANR-20-CYAL-0001).
This work also received funding from the European Union’s Hori-
zon 2020 research and innovation programunder project TESTABLE,
grant agreement No 101019206 aswell as by theDeutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy – EXC 2092 CASA – 390 781 972. Angel Cuevas
acknowledges the funding for his contribution to the project EN-
TRUDIT (Grant TED2021-130118B-I00) funded by the MCIN/AEI/
10.13039/501100011033 and the European Union NextGenerationEU
/PRTR. Miguel Angel Bermejo’s contribution received funding from
Grant PRITIA-CLOUD from the UNICO-CLOUD program funded
by the Ministry for Digital Transformation and Civil Service and
the European Union NextGenerationEU/PRTR.

552

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

REFERENCES
[1] 2023. Diconnect Entities. https://github.com/disconnectme/disconnect-tracking-

protection/blob/master/entities.json
[2] 2023. EasyPrivacy. https://github.com/easylist/easylist/tree/master/easyprivacy
[3] 2023. FP-tracer Artifact Release. https://github.com/soumboussaha/FP-tracer

Accessed: March 11, 2024.
[4] Aarhus University Centre for Advanced Visualisation and Interaction. 2022.

Consent-O-Matic. https://consentomatic.au.dk/
[5] Aarhus University Centre for Advanced Visualisation and Interaction. 2022.

Consent-O-Matic GitHub Repository. https://github.com/cavi-au/Consent-O-
Matic

[6] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. 2014. The Web Never Forgets. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(New York, NY, USA), Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM,
674–689. https://doi.org/10.1145/2660267.2660347

[7] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. 2013. FPDetective. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security - CCS ’13 (New York,
New York, USA), Ahmad-Reza Sadeghi, Virgil Gligor, and Moti Yung (Eds.). ACM
Press, 1129–1140. https://doi.org/10.1145/2508859.2516674

[8] Adam Horvath. 2012. MurMurHash3, an ultra fast hash algorithm. https:
//blog.teamleadnet.com/2012/08/murmurhash3-ultra-fast-hash-algorithm.html

[9] Ariel Ainhoren. 2019. Digital Browser Identities: The Hottest New Black Market
Good. Technical Report. IntSights.

[10] Nasser Mohammed Al-Fannah, Wanpeng Li, and Chris J. Mitchell. 2018. Beyond
Cookie Monster Amnesia. In Developments in Language Theory, Mizuho Hoshi
and Shinnosuke Seki (Eds.). Lecture Notes in Computer Science, Vol. 11088.
Springer International Publishing, 481–501. https://doi.org/10.1007/978-3-319-
99136-8_26

[11] Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre
Garel. 2021. A large-scale empirical analysis of browser fingerprints properties
for web authentication. ACM Transactions on the Web (TWEB) 16, 1 (2021), 1–62.

[12] Mohammadreza Ashouri. 2019. A Large-Scale Analysis of Browser Finger-
printing via Chrome Instrumentation. In ICIMP 2019, The Fourteenth Interna-
tional Conference on Internet Monitoring and Protection (Nice, France). IARIA.
https://hal.archives-ouvertes.fr/hal-01811691

[13] Paschalis Bekos, Panagiotis Papadopoulos, Evangelos P. Markatos, and Nicolas
Kourtellis. 2022. The Hitchhiker’s Guide to FacebookWeb Tracking with Invisible
Pixels and Click IDs. https://doi.org/10.48550/arXiv.2208.00710

[14] Miguel A. Bermejo-Agueda, Patricia Callejo, Rubén Cuevas, and Ángel Cuevas.
2023. adF: A Novel System for Measuring Web Fingerprinting through Ads.
arXiv:2311.08769 [cs.CR]

[15] Kejun Chen, Xiaolong Guo, Qingxu Deng, and Yier Jin. 2021. Dynamic Infor-
mation Flow Tracking. 12, 8 (2021). https://doi.org/10.3390/mi12080898
arXiv:34442520 Journal Article.

[16] CHEQ AI Technologies Ltd. 2022. CHEQ. https://cheq.ai/
[17] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum.

n.d.. Understanding Data Lifetime via Whole System Simulation. Unpublished.
(n.d.).

[18] Dorothy E. Denning. 1976. A lattice model of secure information flow. 19, 5
(1976), 236–243. https://doi.org/10.1145/360051.360056

[19] Antonin Durey, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2021.
FP-Redemption. In Detection of Intrusions and Malware, and Vulnerability As-
sessment, Leyla Bilge, Lorenzo Cavallaro, Giancarlo Pellegrino, and Nuno Neves
(Eds.). Lecture Notes in Computer Science, Vol. 12756. Springer International
Publishing, 237–257. https://doi.org/10.1007/978-3-030-80825-9_12

[20] Peter Eckersley. 2010. How Unique Is Your Web Browser? In Privacy Enhancing
Technologies, Mikhail J. Atallah and Nicholas J. Hopper (Eds.). Lecture Notes in
Computer Science, Vol. 6205. Springer Berlin Heidelberg, 1–18. https://doi.org/
10.1007/978-3-642-14527-8_1

[21] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
2014. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. ACM Transactions on Computer Systems 32, 2 (June
2014), 1–29. https://doi.org/10.1145/2619091

[22] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(New York, NY, USA), Edgar Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew Myers, and Shai Halevi (Eds.). ACM, 1388–1401. https://doi.org/10.114
5/2976749.2978313

[23] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Weldemariam. 2015.
FPGuard. In Data and Applications Security and Privacy XXIX, Pierangela Sama-
rati (Ed.). Lecture Notes in Computer Science, Vol. 9149. Springer International
Publishing, 293–308. https://doi.org/10.1007/978-3-319-20810-7_21

[24] FingerprintJS Inc. 2022. FingerprintJS Inc. https://fingerprint.com/

[25] Global Research & Analysis Team. 2019. Digital Doppelgängers: Cybercriminals
cash out money using stolen digital identities. Technical Report. Kaspersky Lab.

[26] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in
the Crowd. In Proceedings of the 2018 World Wide Web Conference on World Wide
Web - WWW ’18 (New York, New York, USA), Pierre-Antoine Champin, Fabien
Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM Press, 309–318.
https://doi.org/10.1145/3178876.3186097

[27] Imperva, Inc. 2022. Imperva Advanced Bot Protection. https://www.imperva.co
m/products/advanced-bot-protection-management/

[28] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
Fingerprinters:. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 1143–
1161. https://doi.org/10.1109/SP40001.2021.00017

[29] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2023. FP-Inspector Dataset.
https://github.com/uiowa-irl/FP-Inspector

[30] George F. Jenks. 1967. The Data Model Concept in Statistical Mapping. In
International Yearbook of Cartography, Vol. 7. 186––190. https://api.sema
nticscholar.org/CorpusID:215850874

[31] Nikhil Jha, Martino Trevisan, Luca Vassio, and Marco Mellia. 2022. The Internet
with Privacy Policies: Measuring The Web Upon Consent. 16, 3 (2022), 1–24.
https://doi.org/10.1145/3555352

[32] David Klein, Thomas Barber, Souphiane Bensalim, Ben Stock, and Martin Johns.
2022. Hand Sanitizers in the Wild: A Large-scale Study of Custom JavaScript
Sanitizer Functions. In 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P). IEEE, 236–250. https://doi.org/10.1109/EuroSP53844.2022.00023

[33] David Klein, Marius Musch, Thomas Barber, Moritz Kopmann, and Martin Johns.
2022. Accept All Exploits.

[34] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. 2020.
Browser Fingerprinting. 14, 2 (2020), 1–33. https://doi.org/10.1145/3386040

[35] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints.
In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 878–894. https:
//doi.org/10.1109/SP.2016.57

[36] Hoan Le, Federico Fallace, and Pere Barlet-Ros. 2017. Towards accurate detection
of obfuscated web tracking. In 2017 IEEE International Workshop on Measurement
and Networking (M&N). IEEE, 1–6. https://doi.org/10.1109/IWMN.2017.8078365

[37] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyn-
ski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation. In Proceedings 2019 Network and Distributed
System Security Symposium (Reston, VA), Alina Oprea and Dongyan Xu (Eds.).
Internet Society. https://doi.org/10.14722/ndss.2019.23386

[38] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyn-
ski, and Wouter Joosen. 2022. Tranco List. https://tranco-list.eu/list/N7QVW/full

[39] Tianyi Li, Xiaofeng Zheng, Kaiwen Shen, and Xinhui Han. 2022. FPFlow: Detect
and Prevent Browser Fingerprinting with Dynamic Taint Analysis. In Cyber
Security, Wei Lu, Yuqing Zhang, Weiping Wen, Hanbing Yan, and Chao Li (Eds.).
Communications in Computer and Information Science, Vol. 1506. Springer
Nature Singapore, 51–67. https://doi.org/10.1007/978-981-16-9229-1_4

[40] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[41] Jonathan R. Mayer. 2009. "Any person. . . a pamphleteer" Internet Anonymity in
the Age of Web 2.0.

[42] Microsoft Inc. 2022. Playwright. https://playwright.dev/(visitedon2022-12-02) .
[43] NETACEA. 2021. Buying Bad Bots Wholesale: The Genesis Market. Technical

Report.
[44] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.

2013. Cookieless Monster. In 2013 IEEE Symposium on Security and Privacy. IEEE,
541–555. https://doi.org/10.1109/SP.2013.43

[45] Midas Nouwens, Rolf Bagge, Janus Bager Kristensen, and Clemens Nylandsted
Klokmose. 2022. Consent-O-Matic: Automatically Answering Consent Pop-
ups Using Adversarial Interoperability. In CHI Conference on Human Factors in
Computing Systems Extended Abstracts (New York, NY, USA), Simone Barbosa,
Cliff Lampe, Caroline Appert, and David A. Shamma (Eds.). ACM, 1–7. https:
//doi.org/10.1145/3491101.3519683

[46] Emmanouil Papadogiannakis, Panagiotis Papadopoulos, Nicolas Kourtellis, and
Evangelos P. Markatos. 2021. User Tracking in the Post-cookie Era: HowWebsites
Bypass GDPR Consent to Track Users. In Proceedings of the Web Conference 2021
(New York, NY, USA), Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang,
and Leila Zia (Eds.). ACM, 2130–2141. https://doi.org/10.1145/3442381.3450056

[47] Philip Raschke and Axel Küpper. 2018. Uncovering Canvas Fingerprinting in Real-
Time and Analyzing ist Usage for Web-Tracking. In GI Edition Proceedings Band
285 Workshops der INFORMATIK 2018, Christian Czarnecki, Carsten Brockmann,
Eldar Sultanow, Agnes Koschmider, Annika Selzer, andGesellschaft für Informatik
e. V. Gesellschaft für Informatik e. V. Bonn (Eds.). Number 285 in GI-Edition.
Proceedings. Köllen, 97–108.

[48] Ruby Documentation. YYYY. Taint and Untaint in Ruby. https://ruby-doc.com/
docs/ProgrammingRuby/html/taint.html

553

https://github.com/disconnectme/disconnect-tracking-protection/blob/master/entities.json
https://github.com/disconnectme/disconnect-tracking-protection/blob/master/entities.json
https://github.com/easylist/easylist/tree/master/easyprivacy
https://github.com/soumboussaha/FP-tracer
https://consentomatic.au.dk/
https://github.com/cavi-au/Consent-O-Matic
https://github.com/cavi-au/Consent-O-Matic
https://doi.org/10.1145/2660267.2660347
https://doi.org/10.1145/2508859.2516674
https://blog.teamleadnet.com/2012/08/murmurhash3-ultra-fast-hash-algorithm.html
https://blog.teamleadnet.com/2012/08/murmurhash3-ultra-fast-hash-algorithm.html
https://doi.org/10.1007/978-3-319-99136-8_26
https://doi.org/10.1007/978-3-319-99136-8_26
https://hal.archives-ouvertes.fr/hal-01811691
https://doi.org/10.48550/arXiv.2208.00710
https://arxiv.org/abs/2311.08769
https://doi.org/10.3390/mi12080898
https://arxiv.org/abs/34442520
https://cheq.ai/
https://doi.org/10.1145/360051.360056
https://doi.org/10.1007/978-3-030-80825-9_12
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1145/2619091
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1007/978-3-319-20810-7_21
https://fingerprint.com/
https://doi.org/10.1145/3178876.3186097
https://www.imperva.com/products/advanced-bot-protection-management/
https://www.imperva.com/products/advanced-bot-protection-management/
https://doi.org/10.1109/SP40001.2021.00017
https://github.com/uiowa-irl/FP-Inspector
https://api.semanticscholar.org/CorpusID:215850874
https://api.semanticscholar.org/CorpusID:215850874
https://doi.org/10.1145/3555352
https://doi.org/10.1109/EuroSP53844.2022.00023
https://doi.org/10.1145/3386040
https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1109/IWMN.2017.8078365
https://doi.org/10.14722/ndss.2019.23386
https://tranco-list.eu/list/N7QVW/full
https://doi.org/10.1007/978-981-16-9229-1_4
https://playwright.dev/ (visited on 2022-12-02).
https://doi.org/10.1109/SP.2013.43
https://doi.org/10.1145/3491101.3519683
https://doi.org/10.1145/3491101.3519683
https://doi.org/10.1145/3442381.3450056
https://ruby-doc.com/docs/ProgrammingRuby/html/taint.html
https://ruby-doc.com/docs/ProgrammingRuby/html/taint.html

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

[49] Iskander Sanchez-Rola, Leyla Bilge, Davide Balzarotti, Armin Buescher, and
Petros Efstathopoulos. 2018. Rods with Laser Beams: Understanding Browser
Fingerprinting on Phishing Pages. Norton Research Group (2018).

[50] SAP. 2022. Project Foxhound GitHub Repository. https://github.com/SAP/project-
foxhound

[51] Alexander Sjösten, Daniel Hedin, and Andrei Sabelfeld. 2021. EssentialFP: Ex-
posing the Essence of Browser Fingerprinting. In 2021 IEEE European Sympo-
sium on Security and Privacy Workshops (EuroS&PW). IEEE, 32–48. https:
//doi.org/10.1109/EuroSPW54576.2021.00011

[52] C. Staicu, D. Schoepe, M. Balliu, M. Pradel, and A. Sabelfeld. 2019. An Empirical
Study of Information Flows in Real-World JavaScript. CoRR abs/1906.11507 (2019).
http://arxiv.org/abs/1906.11507

[53] TAPTAP digital. 2023. TAPTAP digital - intelligence for marketing. http://www.
taptapdigital.com

[54] Pelayo Vallina, Álvaro Feal, Julien Gamba, Narseo Vallina-Rodriguez, and Anto-
nio Fernández Anta. 2019. Tales from the Porn. In Proceedings of the Inter-
net Measurement Conference (New York, NY, USA). ACM, 245–258. https:
//doi.org/10.1145/3355369.3355583

[55] Wietse Venema. 2008. Taint Support for PHP. https://wiki.php.net/rfc/taint
[56] Larry Wall. YYYY. Perl Security and Taint Mode. http://perldoc.perl.org/perlsec

.html
[57] Webshinker. 2023. Webshinker. https://www.webshrinker.com/

A APPENDIX
In this section, we provide supplementary assessments related to
our study. In Tables 8 ,9 and 10 we present the list of sources and
sinks supported by FP-tracer. We also present the count of the active
sources and sinks distributed by the entropy levels of the collection
in Tables 12 and 11.

A.1 Performance
To evaluate the performance of our modified browser, we follow
a similar method to that of Li et al. [39]. We use the browser win-
dow.performance.timing API to measure the time between the
start of navigation (navigationStart) until DOM loading is com-
plete (domComplete). We performed this measurement using our
modified Foxhound browser and an unmodified Firefox browser
for each of the top 1000 web domains according to Tranco [38].

The measured overheads are shown in fig. 7. We measure the
average overhead by fitting the distribution with the sum of two
Gaussians. The mean of this combined fit yields an overhead of
11 ± 1%. This result is comparable to the overhead of 9.2% mea-
sured by Li et al. [39], who use a similarly instrumented browser.
However, in comparison to that work, FP-traceradditionally pro-
vides fine-grained tainting information at character resolution and
more details on domains loading scripts and sending fingerprinting
attributes.

A.2 Aggregation Examples
In this section we provide some examples of the aggregation and
obfuscation techniques summarized in section 6.6. All code snippets
shown in this section have been edited for clarity and brevity.

Screen Resolution Encoding. We detected a number of fingerprint-
ing strings which encode a combination of screen parameters to
create a low-entropy aggregated identifier. In the simplest form,
we found the screen resolution (height × width) on 222 domains.
More common was the hex-encoded version (e1000) which was
sent by 284 sink hosts across 759 domains. We also found the sum
height+width+colorDepth on 836 domains. Another interesting
example is shown in listing 2, where the screen width and height

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Overhead (tfoxhound tfirefox)/tfirefox

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f D
om

ai
ns

Best Fit
= 0.11 ± 0.01

Data
Best Fit
Gaussian 1
Gaussian 2

Figure 7: Overhead performance measurement.

1 hash = function(e, g) {
2 g || (g = 0);
3 if (!e || 0 == e.length)
4 return g;
5 for (var h = 0; h < e.length; h++) {
6 var k = e.charCodeAt(h);
7 g = (g << 5) - g + k;
8 g &= g
9 }
10 return g
11 }
12
13 e = hash(screen.width + "x" + screen.height).toString()

Listing 2: Example of hashing function used by bizible.com.

1 function uuid(s) {
2 seed_prng(s);
3 var t = h("0123456789abcdef", "")
4 , r = []
5 , n = void 0;
6 r[8] = r[13] = r[18] = r[23] = "-",
7 r[14] = "4";
8 for (var e = 0; e < 36; e++)
9 r[e] || (n = 0 | 16 * rand(),
10 r[e] = t[19 === e ? 3 & n | 8 : n]);
11 return _(r, "")
12 }

Listing 3: Snapchat UUID using an attribute-seeded PRNG.

are first concatenated before being hashed into a number. We found
230 domains where this combination was collected by and sent to
the bizible.com domain.

Snapchat Pixel SDK. We detected a total of 941 domains that load
the Snapchat Pixel SDK from sc-static.net. The script collects a
number of attributes, including userAgent and language, to form a
medium entropy fingerprint. The concatenation of these attributes,
together with a list of browser plugins, is used to seed a PRNG.
The PRNG, which appears to resemble the Alea algorithm from

554

https://github.com/SAP/project-foxhound
https://github.com/SAP/project-foxhound
https://doi.org/10.1109/EuroSPW54576.2021.00011
https://doi.org/10.1109/EuroSPW54576.2021.00011
http://arxiv.org/abs/1906.11507
http://www.taptapdigital.com
http://www.taptapdigital.com
https://doi.org/10.1145/3355369.3355583
https://doi.org/10.1145/3355369.3355583
https://wiki.php.net/rfc/taint
http://perldoc.perl.org/perlsec.html
http://perldoc.perl.org/perlsec.html
https://www.webshrinker.com/

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

1 get: function() {
2 var t = [];
3 t.push(navigator.userAgent);
4 t.push(navigator.language);
5 t.push(screen.colorDepth);
6 if (this.screen_resolution) {
7 var e = this.getScreenResolution();
8 void 0 !== e && t.push(e.join("x"))
9 }
10 t.push((new Date).getTimezoneOffset());
11 t.push(this.hasSessionStorage());
12 t.push(this.hasLocalStorage());
13 t.push(!!window.indexedDB);
14 document && document.body ? t.push(typeof

document.body.addBehavior) : t.push("undefined");↩→
15 t.push(typeof window.openDatabase);
16 t.push(navigator.cpuClass);
17 t.push(navigator.platform);
18 t.push(navigator.doNotTrack);
19 return this.murmurhash3_32_gc(t.join("###"), 31)
20 }

Listing 4: Fingerprint created by Hubspot Analytics.

Johannes Baagøe3, is called repeatedly to create a UUID as shown
in listing 3. The resulting UUID is then sent via the iframe.src
attribute to snapchat.com.

Piano Analytics. We also found 322 domains sending a high-
entropy fingerprint to piano.io. This script creates a SHA1 hash
from five attributes (language, screen.height, screen.width,
screen.colorDepth, userAgent) which is sent as part of an XHR
request body.

Hubspot Analytics. Listing 4 shows a script snippet loaded from
hs-analytics.net. The script creates a high-entropy array of fin-
gerprinting attributes, which is then joined and hashed using a
variant of the MurMurHash3 algorithm [8] which produces a 32-
bit integer output. The fingerprint is finally sent to hubspot.com
via the src attribute of an img tag. We found this script on 2109
domains.

FingerprintJS. The FingerprintJS library also uses the MurMur
algorithm to create a hexadecimal encoded string. We discovered
FingerprintJS usage in a script loaded from webgains.io, which
creates a very high entropy fingerprint and sends it via a fetch
request body. This activity was found on 527 domains. An example
of first-party FingerprintJS usage was found on 427 domains, includ-
ing pinterest.com and zoom.us. In these cases, 10 attributes were
combined to create a very high entropy fingerprint. Interestingly,
the string value of the resulting fingerprint was the same across
each of the 427 domains.

Obfuscation Techniques. We also discovered a number of tech-
niques that attempt to obfuscate fingerprinting activities, mainly in
use by bot protection services. For example, scripts from Cheq [16]
send computed fingerprints to domains with seemingly unrelated
and random names (e.g., superpointlesshamsters.com or four-
timessmelly.com), making list-based blocking challenging. We
also discovered fingerprinting activity which could be traced to
Imperva Advanced Bot Protection [27]. These scripts were served
from the first-party domain using a randomized 48-character path
3https://github.com/coverslide/node-alea

consisting of English words separated by hyphens. In addition, the
scripts themselves were heavily obfuscated such that the attribute
values were not visible in plaintext.

A.3 Supporting Tables
In the following we present a number of tables which support
our implementation and results from this paper. In particular, we
provide lists of supported sources (table 8 and table 9) and sinks
(table 10) implemented in this and related work. In addition, we also
provide counts of attribute transmissions across all entropy levels,
broken down by source (table 11) and sink (table 12). Finally, some
examples of sink scripts leaking large numbers of unique attribute
combinations are given in table 13.

555

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

Table 8: FP-tracer supports 62 taint-tracking sources (part 1).

Source FP-tracer [51] [39] Remarks

AudioContext
baseLatency ✓ × ×
currentTime ✓ × × via BaseAudioContext
outputLatency ✓ × ×
sampleRate ✓ × × via BaseAudioContext

AudioNode
channelCount ✓ × ×
maxChannelCount ✓ × × via AudioDestinationNode
numberOfInputs ✓ × ×
numberOfOutputs ✓ × ×

BarProp
visible × × ✓ booleans currently not supported

BatteryManager
charging × × ✓ restricted use in Firefox
chargingTime × × ✓ restricted use in Firefox
dischargingTime × × ✓ restricted use in Firefox
level × × ✓ restricted use in Firefox

Document
cookie × ✓ ✓ Used as sink, not as source
referrer × × ✓ low significance for fingerprinting
Location × × ✓ low significance for fingerprinting

History
length ✓ × ✓

HTMLElement
offsetHeight ✓ × ×
offsetWidth ✓ × ×

M-AudioBuffer
getChannelData × ✓ ✓ unspported in foxhound

M-HTMLCanvasElement
toDataURL ✓ ✓ ✓

MediaDevices
enumerateDevices × ✓ × empty array returned in foxhound

Navigator
appCodeName ✓ × ✓
appName ✓ × ✓
appVersion ✓ × ✓
buildID ✓ × ✓
cookieEnabled × × ✓ bool, unsupported by Firefox
DeviceMemory × × ✓ unsupported by firefox
doNotTrack ✓ ✓ ✓
hardwareConcurrency ✓ ✓ ✓
language ✓ ✓ ✓
languages × ✓ ✓ unsupported as taint source
maxTouchPoints ✓ ✓ ✓
mimeTypes × × ✓ empty array returned
oscpu ✓ ✓ ✓
platform ✓ ✓ ✓
plugins × ✓ ✓ empty array returned
product ✓ × ✓
productSub ✓ × ✓
userAgent ✓ ✓ ✓
vendor ✓ × ✓
vendorSub ✓ × ✓

556

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

Table 9: FP-tracer supports 62 taint-tracking sources (part 2).

Source FP-tracer [51] [39] Remarks

Screen
availHeight ✓ ✓ ✓
availWidth ✓ ✓ ✓
colorDepth ✓ ✓ ✓
height ✓ ✓ ✓
pixelDepth ✓ × ✓
width ✓ ✓ ✓

VisuaLViewport
height ✓ × ✓
offsetLeft ✓ × ✓
offsetTop ✓ × ✓
PageLeft ✓ × ✓
pageTop ✓ × ✓
scale ✓ × ✓
width ✓ × ✓

WebGLRenderingContext
getParameter ✓ ✓ ×

WebGLShaderPrecisionFormat
precision ✓ ✓ ✓
rangeMax ✓ ✓ ✓
rangeMin ✓ ✓ ✓

Window
devicePixelRatio ✓ ✓ ✓
indexedDB × ✓ × Contained Information not known
innerHeight, innerWidth ✓ × ✓
localStorage × ✓ × Contained Information not known
locationbar × × ✓ requires BarProp:Visible
Menubar × × ✓ requires BarProp:Visible
outerHeight, outerWidth ✓ × ✓
pageXOffset, pageYOffset ✓ × ✓
personalbar × × ✓ requires BarProp:Visible
screenLeft ✓ × ✓
screenTop ✓ × ✓
screenX ✓ × ✓
screenY ✓ × ✓
scrollbars × × ✓ requires BarProp:Visible
scrollX ✓ × ✓
scrollY ✓ × ✓
sessionStroage × ✓ × Contained Information not known
statusbar × × ✓ requires BarProp:Visible
toolbar × × ✓ requires BarProp:Visible
top × × ✓ just another Window-object

WorkerNavigator
platform ✓ × ✓
userAgent ✓ × ✓

XMLDocument
location × × ✓ inherited from document

Storage
quota ✓ × ×
usage ✓ × ×
Permissions
state ✓ × ×

557

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

Table 10: FP-tracer supports 25 taint-tracking sinks..

Sink FP-tracer [51] [39] Remarks

FetchAPI
URL ✓ ✓ ✓
body ✓ ✓ ✓
headers x ✓ ✓

XHR
URL ✓ ✓ ✓
username ✓ ✓ ✓
password ✓ ✓ ✓
body ✓ ✓ ✓
headers ✓ ✓ ✓

src Attributes
audio ✓ ✓ ✓
embed ✓ ✓ ✓
iframe ✓ ✓ ✓
img ✓ ✓ ✓
input x ✓ ✓
script ✓ ✓ ✓
source ✓ ✓ ✓
track ✓ ✓ ✓
video ✓ ✓ ✓

data Attributes
object ✓ x x

Cookie
Set Cookie ✓ ✓ x Cookie as a source [39]

Navigator.sendBeacon()
URL ✓ ✓ ✓
body ✓ ✓ ✓

WebSockets
URL ✓ x ✓
Data ✓ x ✓

HTMLFormElement
setting attributes x ✓ x Not all forms result in requests

Window
postMessage() x ✓ x Comms between windows

558

FP-tracer: Fine-grained Browser Fingerprinting Detection Proceedings on Privacy Enhancing Technologies 2024(3)

Table 11: Count of transmitted attributes for different entropy levels.

Source Low entropy Medium Entropy High Entropy Very High Entropy
AudioContext.baseLatency 0 1 0 28
AudioContext.outputLatency 0 0 0 28
AudioDestinationNode.maxChannelCount 0 6 5 195
AudioNode.channelCount 0 1 5 187
AudioNode.numberOfInputs 0 1 5 187
AudioNode.numberOfOutputs 0 1 5 187
BaseAudioContext.sampleRate 0 6 5 234
HTMLCanvasElement.toDataURL 0 917 2707 21211
HTMLElement.offsetHeight 3028 547 3769 1839
HTMLElement.offsetWidth 5520 515 3406 1290
History.length 23616 1921 166972 4350
Navigator.appCodeName 1416 1251 15685 5732
Navigator.appName 1977 1255 54521 6729
Navigator.appVersion 1598 270 13885 3557
Navigator.buildID 1252 30 928 6240
Navigator.doNotTrack 2048 397 43078 7377
Navigator.hardwareConcurrency 432 5509 30293 19215
Navigator.language 25861 306458 904318 37234
Navigator.maxTouchPoints 1548 1570 27144 14837
Navigator.oscpu 1345 179 1560 11219
Navigator.platform 5747 12549 106961 24724
Navigator.product 1738 57 3407 7446
Navigator.productSub 1253 72 16143 8558
Navigator.userAgent 188358 55100 407462 46829
PermissionStatus.state 0 9 26 369
Screen.availHeight 42645 2956 189650 20407
Screen.availWidth 40180 2765 190649 21853
Screen.colorDepth 47706 57281 711702 30872
Screen.height 209790 249337 1180128 49163
Screen.pixelDepth 12634 4257 13656 6912
Screen.width 233107 249991 1184912 48304
StorageEstimate.quota 0 0 34 217
StorageEstimate.usage 0 0 34 29

Table 12: Count of vector transmitted per sink for different entropy levels.

Sink Low Medium High Very High
WebSocket 858 159 4424 21
WebSocket.send 6522 1361 3694 1613
XMLHttpRequest.open(url) 135021 27766 1066413 24169
XMLHttpRequest.send 106008 119767 379113 124922
XMLHttpRequest.setRequestHeader(value) 3409 892 636471 12224
document.cookie 71127 6888 166299 40061
fetch.body 20914 23979 21335 36430
fetch.url 6330 1178 9524 4490
iframe.src 82606 13641 264536 7261
img.src 263857 204190 1497281 76409
img.srcset 0 0 6 0
navigator.sendBeacon(body) 33446 17073 105593 27336
navigator.sendBeacon(url) 13629 496644 876524 5590
script.src 109072 41671 241840 47017
source.srcset 0 0 2 16

559

Proceedings on Privacy Enhancing Technologies 2024(3) Boussaha et al.

Table 13: Sink scripts leaking unique attribute combinations.

Script URL Domains Attr comb
https://www.google-analytics.com/analytics.js 38620 28
https://www.clarity.ms/eus-c-sc/s/0.7.6/clarity.js 1276 26
https://www.clarity.ms/s/0.7.6/clarity.js 1123 24
https://cdn.bizible.com/scripts/bizible.js 259 26
https://eum.instana.io/eum.min.js 230 25
https://az416426.vo.msecnd.net/scripts/a/ai.0.js 228 35
https://script.hotjar.com/modules.69d367ac7af64e17f043.js 176 21
https://www.datadoghq-browser-agent.com/datadog-rum-v4.js 141 33
https://script.hotjar.com/modules.f0ba8b655d2d90cf7a94.js 113 26
https://script.hotjar.com/modules.76304821fe35d593f0f4.js 84 27
https://cdn.noibu.com/collect.js 79 25
https://www.datadoghq-browser-agent.com/datadog-rum.js 33 22
https://cdn.appdynamics.com/adrum/adrum-latest.js 26 27
https://cdn.trackjs.com/agent/v3/latest/t.js 26 21
https://cdnjs.cloudflare.com/ajax/libs/rollbar.js/2.4.6/rollbar.min.js 17 22

560

https://www.google-analytics.com/analytics.js
https://www.clarity.ms/eus-c-sc/s/0.7.6/clarity.js
https://www.clarity.ms/s/0.7.6/clarity.js
https://cdn.bizible.com/scripts/bizible.js
https://eum.instana.io/eum.min.js
https://az416426.vo.msecnd.net/scripts/a/ai.0.js
https://script.hotjar.com/modules.69d367ac7af64e17f043.js
https://www.datadoghq-browser-agent.com/datadog-rum-v4.js
https://script.hotjar.com/modules.f0ba8b655d2d90cf7a94.js
https://script.hotjar.com/modules.76304821fe35d593f0f4.js
https://cdn.noibu.com/collect.js
https://www.datadoghq-browser-agent.com/datadog-rum.js
https://cdn.appdynamics.com/adrum/adrum-latest.js
https://cdn.trackjs.com/agent/v3/latest/t.js
https://cdnjs.cloudflare.com/ajax/libs/rollbar.js/2.4.6/rollbar.min.js

	Abstract
	1 Introduction
	2 Background
	2.1 Browser Fingerprinting
	2.2 Normalized Shannon Entropy
	2.3 Anonymity Sets
	2.4 Dynamic Taint Tracking

	3 Threat model
	3.1 System model
	3.2 Attacker model

	4 Design
	4.1 Motivation
	4.2 Collection via Fine-Grained Taint Tracking
	4.3 Classification via Joint Entropy Thresholds

	5 Implementation
	5.1 Foxhound Extensions
	5.2 Crawling Infrastructure
	5.3 Fingerprint Classification
	5.4 Ethics Considerations

	6 Evaluation
	6.1 Setup and Perfomance
	6.2 Collection and Classification
	6.3 Prevalence on the Web
	6.4 Destination Categories
	6.5 Common Sources and Sinks
	6.6 Aggregation and Obfuscation
	6.7 Collaborative Fingerprinting
	6.8 Third-party Scripts

	7 Discussion
	7.1 Disconnect and EasyPrivacy Lists Validation
	7.2 Validation with FP Inspector
	7.3 Consent Banner Impact
	7.4 Limitations

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Performance
	A.2 Aggregation Examples
	A.3 Supporting Tables

