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ABSTRACT
The source code of a program not only defines its semantics but also

contains subtle clues that can identify its author. Several studies

have shown that these clues can be automatically extracted using

machine learning and allow for determining a program’s author

among hundreds of programmers. This attribution poses a signifi-

cant threat to developers of anti-censorship and privacy-enhancing

technologies, as they become identifiable and may be prosecuted.

An ideal protection from this threat would be the anonymization of
source code. However, neither theoretical nor practical principles
of such an anonymization have been explored so far. In this paper,

we tackle this problem and develop a framework for reasoning

about code anonymization. We prove that the task of generating a

𝑘-anonymous program—a program that cannot be attributed to one

of 𝑘 authors—is not computable in the general case. As a remedy,

we introduce a relaxed concept called 𝑘-uncertainty, which enables

us to measure the protection of developers. Based on this concept,

we empirically study candidate techniques for anonymization, such

as code normalization, coding style imitation, and code obfuscation.

We find that none of the techniques provides sufficient protection

when the attacker is aware of the anonymization. While we observe

a notable reduction in attribution performance on real-world code,

a reliable protection is not achieved for all developers. We conclude

that code anonymization is a hard problem that requires further

attention from the research community.
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1 INTRODUCTION
The source code of a program provides a wealth of information for

analysis. It not only defines syntax and semantics, but also contains

clues suitable for identifying its author. These clues result from the

personal coding style and range from obvious programming habits,

such as the naming of variables and functions, to subtle preferences

in the usage of data types, control structures, and API [50]. Thus,

similar to writing style in literature, a source code unnoticeably

carries a fingerprint of its developer. Several studies have shown

that this coding style can be automatically extracted using machine

learning and allows for identifying the author of a program among

hundreds of other developers [e.g., 5, 8, 11, 30]. As an example,

Abuhamad et al. [2] report a detection accuracy of 96% on a dataset
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of source code from 1,600 developers participating in a coding

competition. Although these methods still struggle under realistic

conditions, some approaches reach up to 61% on only fragments of

real-world code from 104 programmers [18].

While authorship attribution of source code resembles a valuable

tool for digital forensics, it also poses a threat to developers of

anti-censorship and privacy-enhancing technologies. Anonymous

contributors to open-source projects, such as Tor [20] and I2P [45],

become identifiable through learning-based attribution and might

be prosecuted for their work in repressive countries. Unfortunately,

defenses against this threat have received little attention so far.

Even worse, prior work has shown that strong obfuscation of source

code is still not sufficient to prevent an attribution [see 2, 11, 12],

indicating the challenge of protecting developers.

In this paper, we tackle this problem and study the anonymization
of source code from a theoretical and practical perspective. To this

end, we propose a framework for reasoning about code anonymi-

zation and attribution. Based on this framework, we introduce the

concept of a 𝑘-anonymous program, that is, a program that can-

not be attributed to one of 𝑘 authors and hence is protected by an

anonymity set. We prove that changing a given source code, so that

it becomes 𝑘-anonymous in the general case is unfortunately not

computable and resembles an undecidable problem. Consequently,

a universal method for code anonymization cannot exist and so the

search of practical protection is a challenge for research.

As a remedy, we derive a relaxed concept that we denote as

𝑘-uncertainty. Instead of a program being perfectly indistinguish-

able between authors, we require that it is attributed to 𝑘 authors

with similar confidence. While this concept cannot overcome the

undecidability of 𝑘-anonymity, it provides a novel means for mea-
suring the protection of developers. By inspecting the confidence

range of the 𝑘 most similar authors in an attribution, we can evalu-

ate how well a developer is hidden in an anonymity set. Based on

this concept, we introduce a numerical measure called uncertainty
score that ranges from 0 (no protection) to 1 (𝑘-anonymity) and can

be used to empirically assess how well a source code is protected.

As a result, it becomes possible to empirically compare techniques

for protecting the identity of developers.

Based on this numerical measure, we conduct a series of exper-

iments to analyze candidate techniques for code anonymization.

In particular, we consider code normalization, coding style imita-
tion [47] and code obfuscation [16, 53] as defenses against popular

attribution methods [2, 11]. For our experiments, we work with two

datasets, one from a programming competition with 30 developers

and the other from open-source projects of 81 developers. At first,

all techniques hinder an attribution and lead to high uncertainty

scores. However, their performances diminishes once the attacker

becomes aware of the protection. For the strongest technique, the
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popular obfuscator Tigress [16], the attribution still reaches an ac-

curacy up to 24% and 8%, respectively. To understand this result,

we develop a method for explaining the attributions and uncover

clues in the source code that remain after anonymization. This ex-

planation method complements our uncertainty score by indicating

weak spots in the realized protection.

When iteratively removing clues with our method from the

competition dataset, we eventually bring the source code to an

uncertainty score close to 1. However, this result should not be

interpreted as a defeat of the attribution methods. Rather, it shows

that anonymization can be achieved in a limited and controlled

setup. The systematic removal of clues, however, cannot simply be

transferred to the real world, where neither the attribution method

nor the learning data is known to a developer. We thus argue that

there is a need for novel anonymization concepts and consider our

work as the first step towards formalizing and evaluating these

approaches. In summary, we make the following contributions:

• Theoretical view on code anonymization.We propose a frame-

work for reasoning about code anonymization. This enables

us to prove that universal 𝑘-anonymity cannot be reached.

• Practical view on code anonymization. We introduce a concept

for measuring anonymization. Based on this, we empirically

compare protection techniques under different adversaries.

• Insights on obstacles of code anonymization. Finally, we develop
an approach for explaining attribution methods and identify-

ing clues remaining after an anonymization attempt.

Roadmap. We review authorship attribution of source code in

Section 2 and discuss our threat model in Section 3. Our framework

for analyzing code anonymity is introduced in Section 4 and we

empirically evaluate different techniques with it in Section 5. We

analyze the deficits of the techniques in Section 6. Limitations and

related work are presented in Section 7 and Section 8, respectively.

Section 9 concludes the paper.

2 SOURCE CODE ATTRIBUTION
We start with a short primer on authorship attribution of source

code. The objective of this task is to automatically attribute a given

source code to its author based on individual properties of coding

style [30]. As these properties are hard to formally characterize, this

objective is typically achieved by extracting features from source

code and constructing an attribution method using machine learn-
ing. Existing approaches are hence best described based on the

considered features and the employed learning algorithms.

2.1 Features of Source Code
The features currently used in authorship attribution roughly fall

into three types: layout, lexical, and syntactic. Each of them relies

on a different representation and thus provides different types of

stylistic patterns. We briefly review these features in the following.

2.1.1 Layout Features. The first type of features are derived from

the layout of the source code. Developers often have specific pref-

erences to format their code, such as different forms of indentation.

Figure 1 shows a function, where different features are highlighted.

Even in this short snippet a variety of layout features is visible,

1 int gcd( int a, int b) {

2 if(b == 0)

3 return a;

4 return gcd(b, a % b );

5 }

# Token int = 3
(Lexical)

Indentation width is 4
(Layout)

Leaves in AST
(Syntactic)

Figure 1: Code snippet in C with highlighted feature types.

such as the indentation width of 4. Consequently, any attempt to

anonymize code needs to start by removing individual formatting.

2.1.2 Lexical Features. The second type of features is derived from
the lexical analysis of source code. The resulting features com-

prise identifiers, keywords, literals, operators, and other terminal

symbols of the underlying grammar [4]. These features implicitly

encode the syntax and semantics of the source code. For example,

Figure 1 shows a lexical feature that counts the occurrence of the

token int. This reflects a developer’s preference for this type in

relation to others, such as long or int32_t. Compared to the layout,

lexical features cannot be unified easily, as they are implicitly linked

to syntax and semantics.

2.1.3 Syntactic Features. Finally, the syntax of source code pro-

vides further features for characterizing the programming habits of

developers. In particular, the abstract syntax tree (AST) is a common

representation that allows extracting patterns in the types, arith-

metics, logic, and control flow used by developers [6, 8, 11]. These

features range from single language constructs to syntactic frag-

ments, such as tree-like structures in the AST. Figure 1 highlights

two code locations that correspond to leaves in the AST. Syntac-

tic features are hard to modify. Replacing a single keyword in the

source code may lead to several modifications in the AST. Similarly,

adapting one node of the tree may require multiple code modifica-

tions. The removal of coding style thus becomes challenging, as we

demonstrate in Section 5.

2.2 Attribution Using Machine Learning
The described features provide a complex view on source code that

is difficult to interpret by a human analyst. State-of-the-art attribu-

tion methods for source code therefore rely on machine learning to

recognize stylistic patterns for a particular author [e.g., 2, 6, 11, 46].

To this end, a supervised learning algorithm is applied to infer

characteristics for each author. The result is a multiclass classifier
that returns confidences for all authors from the training data. The

highest-ranked author is typically selected for attribution.

Previous work has studied several learning algorithms for this at-

tribution, such as support vector machines [46], random forests [11],

and deep neural networks [2, 6]. As we find in our evaluation, the

algorithm can have a considerable impact on anonymization. For

example, deep neural networks tend to overfit to particular authors,

while other algorithms provide a more generalized prediction.

3 MOTIVATION AND THREAT MODEL
Code authorship attribution is typically considered an instrument

of forensics, similar to stylometry [e.g., 3, 19, 56]. For example,

Caliskan et al. [12] show how binary code can be attributed to
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malware authors, aiding the prosecution of cybercrime. Unfortu-

nately, however, authorship attribution can become a malicious tool

itself when used by repressive countries to pursue the developers

of regime-critical software, such as anti-censorship and anonymiza-

tion tools. While there are no reports of automated attribution yet,

a recent incident in China underscores the pressure on developers:

On November 2, 2023, over 20 developers, some of which operate

under a pseudonym, simultaneously removed their anti-censorship

software from public repositories, likely indicating a concerted ac-

tion against them [44, 51]. Similar incidents have already occurred

in the past [9, 48], albeit not to this extent.

Any programmer contributing code to open-source code under

their real name runs the risk that software developed later under

a pseudonym will be linked to their identity. This risk increases if

the prosecutor can narrow down a group of individuals and thus

simplify the attribution task. In our evaluation in Section 5, we show

that this risk is fortunately lower than in the common benchmarks

for authorship attribution. Nevertheless, every third developer is

correctly identified in our main experiment, raising the question

of how such de-anonymization can be prevented, what techniques

are available, and whether they offer sufficient protection.

3.1 Defending against Attribution
At a first glance, the anonymization of software may seem like

a straightforward task: The developer needs to manipulate their

code such that the attribution method is tricked into predicting

the wrong author, similar to an adversarial example [40, 47, 50].

However, there is no reason for a repressive regime to focus only

on the most likely person indicated by an attribution method; other

highly ranked individuals can also be prosecuted. If we do not know

where the prosecutor stops their investigation of the attribution

ranking, defending becomes hard. In this case, protection is not

about deceiving the attribution but ensuring that one person’s

coding style is indistinguishable from that of others.

The two plots in Figure 2 illustrate this setting. While an adver-

sarial example can easily cause a misclassification by crossing the

decision boundary of an attribution method, it does not provide re-

liable protection. The true author is still identifiable due to the large

differences in the attribution confidences. By contrast, in the right

plot, the software is moved near to the intersection of the decision

boundary so that several of the developers become similarly likely.

The author is protected from identification by an anonymity set.

In this work, we set out to investigate this form of code anonymity
and analyze its technical feasibility.

3.2 Threat Model
To provide a basis for investigating code anonymity, we define a

threat model consisting of an attacker and a defender.

3.2.1 Attacker. The attacker analyzes software with unknown au-

thorship. Their goal is to determine whether some of the code has

been developed by the defender. The attacker knows a group of

suspected developers and thus operates in a closed-world setup. In

addition, the attacker has access to training data, that is, software

developed by the suspects under their real identity, for instance, in

open-source or work projects. This enables the attacker to apply

Author A Author C

Author B Author D

𝑝

𝑝

A B C D

𝑐

Confidences for 𝑝

(a) Misclassification

Author A Author C

Author B Author D

𝑝

Y �̃�

Anonymity Set

A B C D

𝑐

Confidences for �̃�

(b) Anonymization

Figure 2: Schematic comparison of misclassification and anonymiza-
tion in code authorship attribution.

machine learning and compute a ranking of likely suspects based

on the confidence of the learning model.

3.2.2 Defender. The defender aims to avoid being identified when

publishing specific software, such as anti-censorship tools. The

defender has no knowledge of the attribution method employed by

attacker. Similarly, the defender does not know the ranking or num-

ber of likely suspects. However, they can arbitrarily change their

code as long as its semantics are preserved. When modifying their

software, the defender prefers changes that preserve readability, so

strong obfuscation is only considered as a last resort.

4 CODE ANONYMITY
To the best of our knowledge, there exists no previous work ex-

ploring code anonymization. Hence, we first introduce a unified

notation for describing programs (software) and their semantics.

4.1 Unified Notation
We denote a program by 𝑝 ∈ 𝑃 where 𝑃 is the set of all valid

programs.We differentiate between the representation and semantics
of a program 𝑝 , where the former defines its code, such as the source

code, while the latter describes its behavior [4]. If two programs

𝑝𝑎 and 𝑝𝑏 have the same representation, that is, the source code

is identical, we write 𝑝𝑎 = 𝑝𝑏 . If two programs implement the

same semantics, that is, their behavior and output is identical for

all inputs, we write 𝑝𝑎 ≡ 𝑝𝑏 .

This differentiation enables us to investigate the relation of rep-

resentation and semantics: If we have 𝑝𝑎 = 𝑝𝑏 , it directly follows

that 𝑝𝑎 ≡ 𝑝𝑏 . The opposite, however, does not hold. Rich program-

ming languages, like C and C++, enable implementing the same

behavior in infinite many ways. For example, identifiers can be

changed and API functions can be substituted. Given a program 𝑝𝑎 ,

there typically exist many 𝑝𝑏 ∈ 𝑃 , such that 𝑝𝑎 ≡ 𝑝𝑏 but 𝑝𝑎 ≠ 𝑝𝑏 .

As an example, Figure 10 in the appendix shows four programs that

are semantically equivalent yet make use of different identifiers,

types, control flow and API functions. This asymmetry between
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representation and semantics fuels the hope that anonymizing code

might be a relatively simple task.

4.1.1 Anonymization and Attribution. We continue to introduce

notation for attribution and anonymization methods. In particular,

to identify the author of a given program, we define a generic

attribution method

A : 𝑃 → (0, 1)𝑛, 𝑝 ↦→ 𝑐 = (𝑐1, ..., 𝑐𝑛) (1)

that maps a program 𝑝 to a vector 𝑐 of 𝑛 values 𝑐1, ..., 𝑐𝑛 , each asso-

ciated with the confidence for one of 𝑛 possible authors. Without

loss of generality, we assume that A is deterministic and attains a

performance at least as good as random guessing.

In practice, attribution methods typically return the author as-

sociated with maximum confidence, that is, argmaxA(𝑝). How-
ever, all current approaches for learning-based attribution provide

a measure of confidence, such as the class probabilities returned

by a random forest or a neural network [2, 6, 11]. Consequently,

they all fit our generic definition of A. As an example, in Fig-

ure 2(a) the attribution method A returns the confidence vector

A(𝑝) = (0.6, 0.7, 0.1, 0.1).
As antagonist to the attribution method in our analysis, we

introduce a generic anonymization method

Y : 𝑃 → 𝑃, 𝑝 ↦→ 𝑝 with 𝑝 ≡ 𝑝 (2)

where the anonymized program 𝑝 is semantically equivalent to

𝑝 but possess properties that obstruct the attribution. Without

loss of generality, we assume that the anonymization remains in

the set 𝑃 of valid programs. For example, 𝑃 could be defined as

all programs that solve a particular task, and thus any semantic-

preserving transformation remains within this set. In Figure 2(b),

the anonymization method Y changes the attribution, so that we

have A(Y(𝑝)) = (0.25, 0.25, 0.25, 0.25).
Note that we do not explicitly model the feature types and learn-

ing algorithms within A or the code transformations performed

by Y at this point. In a our threat model, the defender is not aware

of the employed attribution method and thus an analysis of the

underlying feature space and the impact of code transformations

on the features cannot be anticipated.

4.2 Modeling Anonymity
Equipped with this notation, we are ready to formally model the

anonymity of source code. For this purpose, we build on the classic

concept of 𝑘-anonymity proposed by Sweeney [55] and expand it to

authorship attribution. As we see in the following, even this simple

concept with known weaknesses is hard to realize on programs.

Definition 1 (k-anonymity). Given an attribution method A,
a program 𝑝 is 𝑘-anonymous, if the attribution confidence 𝑐𝑡 of the
true author is identical to the confidence values of at least 𝑘 − 1 other
authors. That is, for A(𝑝) = 𝑐 holds 𝑐𝑡 = 𝑐𝑖 = . . . = 𝑐𝑖+𝑘−1

and
argmaxA(𝑝) is not unique.

For ease of presentation, we reference the 𝑘 − 1 authors in se-

quential order from 𝑖 to 𝑖 + 𝑘 − 1, although their indices may be

arbitrary distributed in the vector 𝑐 . This definition implies that

for a 𝑘-anonymous program, the true author is indistinguishable

from at least 𝑘 − 1 other authors and thus remains hidden in an

anonymity set of size 𝑘 . Hence, an anonymization method realizing

𝑘-anonymity transforms a given program, so that it resides at the

exact intersection of the classification function for 𝑘 authors in the

feature space, as shown in Figure 2.

The above definition is not directly applicable in our threatmodel,

as the defender has not knowledge of the attribution method A.

Hence, we introduce universal 𝑘-anonymity, an extended definition

which aims to protect against any possible attribution method, thus

compensating the missing knowledge of the defender.

Definition 2 (Universal k-anonymity). A program 𝑝 is uni-
versal 𝑘-anonymous, if it is 𝑘-anonymous for any possible attribution
method A.

Although Definition 2 may seem like a good start for reasoning

about attribution and designing methods for code anonymization,

it already reaches the general limits of computability.

Theorem 1. Given a program 𝑝 , the problem of transforming
𝑝 using an anonymization method Y so that Y(𝑝) is universal
𝑘-anonymous is incomputable (undecidable).

Proof. We reduce the problem of program equivalence, which
is known to be undecidable [24], to the task of creating universal

𝑘-anonymity. Let 𝑝𝑎 and 𝑝𝑏 be two programs written by developers

𝑎 and 𝑏 with 𝑝𝑎 ≠ 𝑝𝑏 . Furthermore, let Y be an anonymization

method whose output is universal 𝑘-anonymous. Then, the pro-

grams are semantically equivalent if and only if their anonymization

yields the same representation, that is,

Y(𝑝𝑎) = Y(𝑝𝑏 ) ⇐⇒ 𝑝𝑎 ≡ 𝑝𝑏 . (3)

To understand this reduction, let us suppose the programs are

semantically equivalent. Then, as long asY(𝑝𝑎) andY(𝑝𝑏 ) are not
identical, there always exists an attribution method A𝛿 that can

differentiate the developers. ThisA𝛿 can be constructed as follows:

We describe the difference between the anonymized programs as

𝛿 = Y(𝑝𝑎) \Y(𝑝𝑏 ), where we assume that 𝛿 ≠ ∅. As the programs

are semantically equivalent, the difference 𝛿 can only result from

the coding style of the developers. Thus, we can define A𝛿 as

A𝛿 (𝑝) =
{
(1, 0) if 𝛿 is in 𝑝,

(0, 1) otherwise.
(4)

Since A𝛿 can be constructed for any difference 𝛿 , the method Y is

forced to normalize the programs to the same representation, such

that we have Y(𝑝𝑎) = Y(𝑝𝑏 ). If the programs are not semantically

equivalent, their anonymized representation can never be identical

and we always get Y(𝑝𝑎) ≠ Y(𝑝𝑏 ). As a result, a method Y creat-

ing universal 𝑘-anonymous programs would solve the undecidable

problem of program equivalence and thus is incomputable. □

Theorem 1 fundamentally limits our ability to anonymize code.

Although 𝑘-anonymity is a rather weak concept that suffers from

well-known shortcomings [32, 36], we are not even able to establish

it on source code when the attribution method is unknown. In view

of the great flexibility of expressing semantics in code, this is a

surprising, negative result that unveils the challenges of protecting

developers from identification.
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Takeaway message. The problem of creating universal

𝑘-anonymity on source code is incomputable. Although

theoretically appealing, the development of approaches

to solve this problem for Turing-complete programming

languages is a dead end for research.

4.3 Relaxing Anonymity
As a consequence of this situation, we lift our requirements and

seek a weaker definition of code anonymity. To this end, we propose

a relaxed form of an anonymity set: Instead of requiring 𝑘 authors

to receive an identical attribution, we demand that their confi-

dence values lie close to each other, that is, within an interval of a

small value 𝜖 . An anonymization method now needs to transform

a program so that it is close to the intersection of the classification

function, yet it is not forced to create identical programs. This re-

laxation is illustrated in the right plot of Figure 2 where the vicinity

of the intersection is indicated by a circle.

To model this concept, we consider the 𝑘-nearest neighbors of

an author 𝑡 in the confidence vector 𝑐 . In particular, we define a

permutation 𝜋 of 𝑐 that sorts the confidences according to their

distance from 𝑐𝑡 in ascending order. The 𝑘-nearest neighbors can

then be defined as a sequence 𝑁𝑡,𝑘 as follows

𝑁𝑡,𝑘 = (𝑐𝜋 [1] , 𝑐𝜋 [2] , . . . , 𝑐𝜋 [𝑘 ] ) (5)

where the true author’s confidence is the first element and we

always have |𝑐𝜋 [𝑖 ] − 𝑐𝑡 | ≤ |𝑐𝜋 [ 𝑗 ] − 𝑐𝑡 | for any 𝑖 < 𝑗 . Based on this

relaxed form of an anonymity set, we introduce a new concept

for anonymity that we denote as 𝑘-uncertainty. This concept is a
generalization of 𝑘-anonymity from Definition 1, where for 𝜖 = 0,

both concepts are equivalent.

Definition 3 (k-Uncertainty). Given an attribution methodA,
a program 𝑝 is 𝑘-uncertain, if there exist at least 𝑘 − 1 other authors
whose confidence values are 𝜖-close to the true author. That is, for
A(𝑝) = 𝑐 holds max(𝑁𝑡,𝑘 ) −min(𝑁𝑡,𝑘 ) ≤ 𝜖 .

Since 𝑘-uncertainty is a generalization of 𝑘-anonymity, it inher-

its undecidability and is also incomputable when the attribution

method is unknown. However, instead of enforcing a binary notion

of anonymization (𝑘-anonymous or not), this concept introduces

a continuous level of anonymity (0 ≤ 𝜖 ≤ 1). As we see in the

following, this representation enables us to construct a measure for

assessing the protection of developers in practice.

4.4 Measuring 𝑘-Uncertainty
The concept of 𝑘-uncertainty gives rise to a quantitative measure
of code anonymization. Instead of fixing 𝜖 , we can determine the

size of the interval around an author’s 𝑘-nearest neighbors and

thus gauge how well a program can be attributed to that author. To

achieve this goal, we define a corresponding uncertainty score

𝑢𝑘 (𝑡, 𝑐) = 1 − (max(𝑁𝑡,𝑘 ) −min(𝑁𝑡,𝑘 )) (6)

that takes a normalized confidence vector 𝑐 as input and returns

the attribution uncertainty for the author 𝑡 based on Definition 3.

If the author is clearly identifiable, this score returns 0, whereas

if she is perfectly hidden in an anonymity set, we obtain 1. As an

example, let us consider the confidence vector 𝑐 = (0.8, 0.1, 0.1, 0.0)
with 𝑘 = 3. We immediately see that the first author stands out

from the rest. This exposure is also reflected in the uncertainty

score 𝑢3 (1, 𝑐) = 0.3. The second author cannot be clearly separated

from the nearest neighbors, yielding 𝑢3 (2, 𝑐) = 0.9.

Note that this use of a threshold 𝜖 deviates from typical privacy

research, where 𝜖 is fixed in advance. By contrast, we fill the other

variables in Definition 3 and use 𝜖 as the output. This unusual

inversion allows for empirical analysis of existing protection and

attribution methods. Since theoretical guarantees are currently

not in reach, we argue that this is the next feasible step towards

understanding and limiting the identification of developers.

4.5 Interpreting 𝑘-Uncertainty
The uncertainty score provides us with a numerical measure for

anonymity, yet its interpretation is not straightforward. The score

depends on the particular type of confidence values. If these values

correspond to class probabilities, as in many learning algorithms,

we have

∑𝑛
𝑖=1

𝑐𝑖 = 1 and can thus define a heuristic for determining

a threshold 𝑡𝜖 on the value of 𝜖 .

For class probabilities, the maximum confidence of an author

needs to be above
1

𝑛 to make a reliable attribution, as otherwise the

method would not be better than random guessing. Consequently,

we define 𝑡𝜖 = 1

𝑛 . This ensures that the 𝑘 authors of the anonymity

set lie within an interval that is smaller or equal to the confidence

of random guessing. With this heuristic, we can also interpret

the uncertainty score and reason that scores above 1 − 𝑡𝜖 provide

practical 𝑘-uncertainty on class probabilities. We must emphasize,

however, that this heuristic is not generally applicable and must be

carefully considered for each type of confidence values.

4.6 Alternative Measures
As with any new measure, it is essential to question its necessity

and explore the use of existing measures instead. While we do

not claim that the proposed uncertainty score is the only way to

quantitatively assess anonymity, we argue that it offers advantages

over other performance measures. To understand these differences,

recall that we focus on an attacker who is not limited to identifying

the first predicted author of a software. Instead, they can analyze

confidence values and use all information therein to find suspects

to pursue, such as the top-𝑘 predicted authors or developers with

suspicious gaps in confidence.

As a result, classic measures for attribution performance, such as

the accuracy and the F-measure, are not suitable. They only reflect

whether a prediction is correct and ignore the remaining informa-

tion in the ranking and confidence. Whether the actual author is

right next to the top prediction or in the middle of the ranking does

not make a difference. Consequently, these measures overestimate

the protection and may flag an anonymization approach as secure,

although the defender is identifiable with little extra effort.

Performance measures from information retrieval partially ad-

dress this problem [38]. For example, measures such as mean recip-
rocal rank and top-𝑘-accuracy are specifically designed to take into

account the order of predictions and thus where the true author

ranks. Nonetheless, examining the ranking alone does not provide
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sufficient protection: First, the defender cannot anticipate the num-

ber of top 𝑘 entries investigated by the attacker. Second, unusual

gaps in the confidence values may still indicate suspicious authors,

regardless of their ranking. Even worse, if the attacker knew the

defender hides below rank 𝑘 , they could adapt their strategy ac-

cordingly, weakening the protection again.

We argue that a quantitative measure of protection must include

a notion of privacy and not only attribution performance. That is,

the actual author should not only be ranked low but also protected

within an anonymity set of developers with similar confidence,

making identification much more difficult. It is precisely this idea

that forms the concept of our uncertainty score. We demonstrate in

Section 5 that this notion of privacy pays off and helps to evaluate

protection techniques more accurately.

5 ANONYMIZATION UNDER TEST
Prepared with a practical definition of anonymity, we can now

take a look at different approaches for protecting developers. Our

goal is to put these approaches to the test and assess how well

they can realize 𝑘-uncertainty in different scenarios. In particular,

we study a static scenario, where the adversary is unaware of the

anonymization, and an adaptive scenario, where she adapts the

attribution to it. Before presenting these tests, we introduce the

candidate techniques for anonymization and our evaluation setup.

5.1 Candidate Techniques
As there exist no approaches explicitly designed for anonymizing

source code, we focus on techniques that reduce the presence of

coding style. Specifically, we examine three candidate techniques:

code normalization, coding style imitation, and code obfuscation. All
three differ in the amount and precision of their modifications.

5.1.1 Code Normalization. The goal of normalization is to modify

code so that it conforms to a given policy or style guide. Normaliza-

tion is regularly employed in collaborative software development,

and larger projects typically define detailed guidelines for the lay-

out and structure of code [e.g., 14, 22, 33]. Inspired by the available

style guidelines, we develop a strong code normalization and make

it available to the research community. Our normalization builds

on 13 transformation rules for C code that unify the code layout,

replace the names of variables and functions, reduce the variety

of data types, and simplify control structures. All rules preserve

the program semantics, so that the normalization complies with

our definition of an anonymization method. Table 4 in Appendix D

provides a detailed listing of the implemented rules.

Note that code normalization can be applied without access to

an attribution method and thus provides a generic approach for

reducing the presence of stylistic patterns in source code.

5.1.2 Coding Style Imitation. As second candidate, we consider

techniques that can imitate the coding style of developers. In par-

ticular, we focus on approaches for creating adversarial examples

of source code [34, 47]. In contrast to normalization, these attacks

require access to an attribution method and allow more target-

oriented code modifications. Typically, adversarial examples of

source code are realized in a two-stage procedure: First, a set of

code transformations is defined, each imitating a stylistic pattern,

such as adding or removing preferences for particular data types

or control structures. Second, these transformations are chained to-

gether using a search strategy until a target classification is reached.

This procedures also preserves the semantics of the code.

There exist different variants for creating adversarial examples

on source code. For our tests, we focus on the method by Quiring

et al. [47], as it does not only induce misclassifications of the attri-

bution method, but also enables lowering its confidence. While the

objective of the method technically remains misclassification, we

conjecture that the low confidence better protects the author and

thus might serve as a suitable anonymization approach.

5.1.3 Code Obfuscation. As third technique, we consider the ob-

fuscation of source code. This candidate aims to make code in-

comprehensible to humans while preserving its semantics. Techni-

cally, this can be achieved by, for example, encrypting constants

or obscuring control flow. We refer the reader to the book by

Nagra and Collberg [42] for an introduction to this topic. Obfusca-

tion is agnostic to the attribution method and can be employed to

any available code. For our experiments, we make use of two com-

mon obfuscators, Stunnix [53] and Tigress [16]. Stunnix obfuscates
identifiers, constants and literals. Still, the overall structure of the

program remains unchanged. Tigress is a more sophisticated tool

and considered state of the art in obfuscation. It supports several

advanced obfuscation techniques, such as function merging and

code virtualization [see 16, for details].

Note that obfuscation is intended to prevent an understanding

of code and not its attribution. Hence, obfuscators only implicitly

destroy the coding style of developers.

5.2 Evaluation Setup
Before testing the different candidate techniques, we introduce our

evaluation setup, which follows the common design of experiments

with code attribution [30].

5.2.1 Evaluation Datasets. As basis for our evaluation, we consider
two datasets of source code in the language C. We restrict our

dataset to plain C and do not consider C++, since the obfuscator

Tigress only works with this language and several features of C++

hinder code transformations, such as dynamic bindings.

GCJ Dataset. The first dataset called GCJ contains code written
by 30 authors as part of the Google Code Jam [26] competition

between 2012 and 2014. All authors solved the same 8 tasks, so the

differences in their solutions are caused by their individual coding

style. In total, our dataset contains 240 source files. Similar datasets

are commonly used to evaluate attribution methods [see 2, 11]. For

our experiments, we use a grouped k-fold split to select seven of

the eight problems for training and reserve the last one for testing.

Since the source code of this dataset comes from a competition, it

is not fully representative of real-world programming.

GHDataset. The second dataset called GH has been crawled from

GitHub. It contains source code in the C language written by 81

developers. The code has been collected according to the procedure

described in Appendix B and contains 391 repositories with a total

of 1,284 source files. To simulate the threat model described in

Section 3.2, we split the data along the repositories into training

and test sets. That is, one repository for each author is considered
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unknown and used for testing, while the others serve as training

data. In contrast to the GCJ dataset, the collected code comes from

actual software projects and exhibits a wide variety of functionality,

complicating the task of inferring coding style.

Before extracting features from both datasets, we expand all

macros, remove comments and use clang-format [15] to eliminate

trivial layout differences. While this process requires little effort for

the GCJ dataset, we need to establish functional build environments

for several of the GitHub repositories, which is a labor-intensive

task, consuming about one person month of work.

5.2.2 Attribution Methods. We employ two state-of-the-art attri-

bution methods to evaluate the effectiveness of the candidate tech-

niques: the method by Caliskan et al. [11] based on a random forest

and the method by Abuhamad et al. [2] which primarily uses a

recurrent neural network. The approaches differ in the extracted

features, where Caliskan et al. employ a mixture of lexical and

syntactic features, while Abuhamad et al. use lexical tokens only.

As a result, we gain insights on how the learning algorithms and

the features impact an anonymization. Technically, we build on

the framework of Quiring et al. [47] and the corresponding imple-

mentations. As a coherence check, we compare the performance of

our setup with the original C++ dataset used by Quiring et al. The

results are shown in Table 1 and differ only slightly, indicating a

valid experimental setup.

Table 1: Attribution performance (accuracy) as reported by Quiring
et al. [47] and reproduced by us on C++ source code.

Attribution Quiring et al. Our implementation

Caliskan et al. 0.904 ± 0.02 0.901 ± 0.02

Abuhamad et al. 0.884 ± 0.04 0.879 ± 0.05

When applying the methods of Caliskan et al. and Abuhamad

et al. to the two datasets of C source code considered for our evalu-

ation, the performance changes significantly, as shown in Table 2.

The accuracy decreases by up to 22% points for the GCJ dataset

and 62% points for the GH dataset. We identify three factors con-

tributing to this drop: First, we remove all comments and layout

features during pre-processing, which eliminates trivial clues for

discriminating developers. Second, we focus only on C code, which

is less diverse in comparison to C++. Third, the GH dataset consists

of real-world code, which is characterized by a large variety of

functionalities. Consequently, less information about the coding

style is accessible for attribution. Nevertheless, roughly one out of

three authors is correctly attributed by the two methods for both

datasets, demonstrating the need for code anonymization.

In addition, Table 2 shows our new uncertainty score for the

two attribution methods for 𝑘 = 5. Despite their similar perfor-

mance, the uncertainty scores differ considerably. The approach of

Caliskan et al. yields 0.84 on the GCJ dataset, whereas the method

of Abuhamad et al. reaches only 0.26, indicating large differences

in confidence between the authors. We examine these disparities

later in Sections 5.3 and 5.4. For different values of 𝑘 , the uncer-

tainty score changes only slightly and thus we keep 𝑘 = 5 for the

remaining experiments.
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Figure 3: Attribution performance (accuracy) of candidate techniques
in the static attribution scenario (regular training).

5.2.3 Candidate Techniques. We implement the code normaliza-

tion using LibTooling, a versatile library of the LLVM infrastruc-

ture [15]. For the coding style imitation, we again build on the

framework by Quiring et al. [47] and fit it to our setup. For the

code obfuscation, we employ Stunnix in version 4.7 and Tigress in

version 3.1. For Stunnix, we enable all options, while for Tigress we

focus on advanced features, such as virtualizing functions, inserting

random code, and obscuring API calls. Table 5 in Appendix E lists

the used features. We ensure that both tools are given random seeds

so that randomized elements are different in each run.

5.3 Static Attribution Scenario
In our first scenario, we consider a static attribution, where the

adversary is unaware of the employed anonymization techniques

and treats the modified code as regular programs. For this purpose,

we apply the considered techniques for anonymization to the test set
only and investigate their impact on the accuracy and uncertainty

of the attribution methods. This setup reflects situations where the

attacker overlooks the presence of manipulated code, for example,

when the coding style is imitated.

5.3.1 Attribution Performance. Figure 3 shows the performance of

the attribution methods when the four candidate techniques are

employed. We observe a huge drop in accuracy compared to the

original results in Table 2. Obfuscation I (Tigress) has the largest

impact and changes the code so that the accuracy decreases dramat-

ically on both datasets. The attained attribution of developers is no

better than random guessing. In contrast, Obfuscation II (Stunnix)

shows a weaker protection and reduces the accuracy by only a few

percentage points on the GH dataset. The code normalization and

coding style imitation reduce the accuracy on the GCJ dataset. For

the GH dataset, however, only a minor reduction is observable for

Table 2: Attribution performance without any protection on the GCJ
and GH datasets of C source code.

Data Attribution Accuracy Uncertainty Score

GCJ Caliskan et al. 0.688 0.840

GCJ Abuhamad et al. 0.754 0.261

GH Caliskan et al. 0.284 0.900

GH Abuhamad et al. 0.346 0.686
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Figure 4: Anonymization performance (uncertainty score) in the
static attribution scenario (regular training).

the normalization. The imitation provides no protection, since it has

been tailored towards GCJ-style code [see 47] and lacks sufficient

transformations to effectively manipulate the real-world code from

the open-source projects of the GH dataset.

5.3.2 Anonymization Performance. We continue to investigate the

anonymization performance of the candidate techniques. Figure 4

shows the average uncertainty score with 𝑘 = 5 for both datasets,

that is, an anonymity set of 5 authors. Compared to the original

results, there is a significant increase of this measure, indicating

better protection of the developers. For themethod byCaliskan et al.,

all values are now above 0.91, while for the approach by Abuhamad

et al. all but three scores reach over 0.79. The best performance is

obtained for Tigress, reaching an uncertainty score of over 0.97 for

both attribution methods on both datasets.

To interpret these values, we apply the heuristic proposed in

Section 4.5. Since there are 30 authors in the GCJ dataset and 81 au-

thors in the GH dataset, we can compute the thresholds
1

30
≈ 0.03

and
1

81
≈ 0.01, respectively. As a result, Tigress attains practical

𝑘-uncertainty in this experiment, since its uncertainty score reaches

above 0.97 for the GCJ dataset and 0.99 for the GH dataset.

Another interesting result of this experiment is that even with

a higher remaining accuracy, the uncertainty score for the code

normalization is better than for the imitation. While the imitation

of coding style more consistently causes misclassifications, the

confidence values often remain indicative of the authors. In contrast,

the normalization unifies the same stylistic patterns regardless of

the original author, thus creating a tighter anonymity set. In view

of the complex construction of adversarial examples for imitation,

normalizing the source code is a reasonable defense that preserves

a good level of readability and reduces stylistic patterns.

Takeaway message. In the static attribution scenario, all

techniques reduce the accuracy of the attribution meth-

ods. The achieved protection, however, varies between the

techniques, with the obfuscator Tigress providing the best

performance and achieving practical 𝑘-uncertainty when

the adversary does not adapt to the anonymization.

5.4 Adaptive Attribution Scenario
In our second scenario, we consider an adaptive attribution, in which
the adversary is aware of the anonymization. As developing coun-

termeasures for each of the considered techniques is tedious, we

use a common trick from the area of adversarial machine learning:

We employ two simple variants of adversarial training [25] that

enable the learning algorithms to extract clues from the modified

source code of any possible anonymization strategy.

For code normalization and coding style imitation, we simply

augment the training data with modified samples. That is, we pro-

vide the original source code and a normalized or imitated version

of it. Since both candidate techniques are easily overlooked by an

attacker in practice, this augmentation ensures that the attribution

methods can capture stylistic patterns from both, the original and
the modified code. As a result, the methods are applicable regard-

less of whether the candidate techniques are used or not. To also

account for this situation in the performance evaluation, we extend

the test data by providing both versions of the source code.

For obfuscation, we pursue a different variant of adversarial

training. In this case, the attacker can easily spot whether a source

code has been modified and hence we train the attribution methods

on obfuscated code only. This strategy forces the attributionmethod

to hunt for subtle clues in the modified code, despite randomized

names, virtualized functions, and obscured control flow.

5.4.1 Attribution Performance. Figure 5 presents the attribution
performance for the different techniques in the adaptive scenario

on both datasets. A notable drop in performance is not observable

anymore. The accuracy of all techniques remains over 50% for

the GCJ dataset and 30% for the GH dataset, except for Tigress.

The obfuscator reduces the accuracy to at most 25% on the GCJ

dataset and 8% on the GH dataset. Still, the remaining accuracy is

significantly better than random guessing, which would correspond

to 3% for the GCJ dataset and 1% for the GH dataset. Consequently,

the attribution methods are capable of identifying some developers

despite strong obfuscation. While the real-world code in the GH

dataset increases the efficacy of Tigress, there is room for improving

the protection of the 8% remaining developers.

Moreover, the impact of the adaptive attribution is particularly

strong for normalization and imitations of code. While for the

static scenario both techniques provide some protection, we now
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Figure 5: Attribution performance (accuracy) of candidate techniques
in the adaptive attribution scenario (adversarial training).
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observe no defense and in some cases even an improved perfor-

mance. The weakness of the techniques is that they aim to modify

specific aspects of the source code, but do not conduct broader

transformations. These minor modifications are compensated by

the adversarial training, so that the learning model can even better

generalize the remaining coding style.

5.4.2 Anonymization Performance. The weak protection in the

adaptive attribution is also reflected in the uncertainty scores shown

in Figure 6 for both datasets. Compared to the static scenario, there

is no clear tendency for the values to increase. In several cases, the

scores even decrease, suggesting that the authors are now better

identified than before anonymization. Based on our heuristic, none

of the approaches provides adequate protection except for one con-
figuration. The obfuscator Tigress achieves practical uncertainty

for the method of Caliskan et al. on the GH dataset, as its uncer-

tainty value is above 0.99. For Abuhamad et al.’s method, however,

only a value of 0.97 is achieved. Consequently, our simple variants

of adversarial training are already sufficient to largely remove the

protection of the candidate methods.

We observe another phenomenon: In several cases, the uncer-

tainty score increases for the method of Abuhamad et al. while it

decreases for the approach of Caliskan et al. To investigate this, we

analyze the distribution of uncertainty scores. The corresponding

histograms for the GCJ dataset are shown in Figure 7. The method

of Caliskan et al. leads to a one-sided distribution. Between 40% to

60% of the authors cannot be identified well. In contrast, the ap-

proach of Abuhamad et al. induces a two-sided distribution. Some

authors are well protected while others are perfectly identifiable.

We attribute this observation to the tendency of neural networks,

as used by Abuhamad et al., to not generalize in all cases.

While adversarial training does not completely eliminate the

effect of the four candidate techniques, it weakens the attained

protection considerably. Given that this approach is a simple coun-

termeasure and more advanced strategies can be conceived, we

have to conclude that none of the techniques is a reliable solution
for code anonymization if an adversary is aware of their applica-

tion. Still, we note that strong obfuscation eliminates several clues

from the code despite adversarial learning and thus closing the

remaining gap is a promising direction for future research.

Takeawaymessage. In the adaptive attribution scenario, the
attribution methods are weakly affected by the considered

techniques, and themajority of authors remains identifiable.

The obfuscator Tigress provides the best protection, yet it

fails to reach practical 𝑘-uncertainty in all cases, indicating

a need for improved protection.

5.5 Alternative Measures
In Section 4.6, we argue that the proposed uncertainty score consid-

ers different information than existing performance measures and

thus provides a better view on the anonymization of developers.

To investigate this claim, we conduct an additional experiment in

which we measure the correlation between the uncertainty score

and alternative performance measures.
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Figure 6: Anonymization performance (uncertainty score) in the
adaptive attribution scenario (adversarial training).

For this experiment, we consider the accuracy as a traditional

measure of performance. Furthermore, we consider the top-5 accu-
racy, the mean reciprocal rank (MRR) and the normalized discounted
cumulative gain (nDCG) as three measures from the field of infor-

mation retrieval suitable for evaluating rankings. We focus on the

top 5 prediction, as our uncertainty score is also calculated over

the 5 neighboring confidence values. To determine the correlation

between these measures, we examine the attribution results on

the GCJ dataset. Since we apply 2 attribution methods, 2 scenar-

ios, 4 candidate techniques and a grouped cross-validation over

8 source files, as well as the results of the unmodified source code,

we obtain a total of 144 performance values (2× 2× 4× 8+ 2× 8) for

each measure. Based on these values, we calculate the correlation

coefficient for each pair of the measures.
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The results of this experiment are shown in Figure 8. A clear

trend can be seen in the resulting correlationmatrix. The ranked and

unranked performance measures are more strongly correlated with

each other than with the uncertainty score. That is, the correlation

coefficients between the accuracy, the top-5 accuracy the, the MRR

and the nDCG range between 0.757 and 0.999. In contrast, the

uncertainty score correlates less with these measures. The highest

values are observed for the accuracy at 0.644. The measures derived

from information retrieval, which are attractive due to their ability

to take rankings into account, only achieve correlation coefficients

between 0.496 and 0.62.

These results are not sufficient to demonstrate that the proposed

uncertainty score is the only suitable measure for anonymization,

yet they show that existing approaches from machine learning and

information retrieval rely on other information and cannot be used

as a simple alternative. Following our reasoning from Section 4.6

on the role of an anonymity set in this measurement, we therefore

argue that the proposed uncertainty score is better suited to describe

how a developer is protected from identification than classical

performance measures.

6 ANONYMIZATION DEFICITS
Our empirical analysis demonstrates that the four candidate tech-

niques offer only limited protection in practice. In this section, we

take a closer look on this problem and introduce two methods for

explaining the decisions of attribution. Based on these explanations,

we then uncover clues left by the techniques in the source code. This

analysis enables us to finally improve Tigress, as the best approach

in our experiments, and iteratively remove remaining clues.

6.1 Understanding Attribution
We introduce two strategies to understand why an attribution is still

possible after a candidate technique has been applied to a program:

feature highlighting and occlusion analysis.

6.1.1 Feature Highlighting. A simple yet effective way to explain

an attribution is to trace back the decision of the learning algorithm

to individual features of the code. To this end, we adjust the feature

extractions to collect the code regions associated with each feature.

For AST-based features, these regions can be easily determined

using the Clang frontend. Only a few features, such as the depth of

the AST, have no specific code region and are thus omitted.

Algorithm 1 Explaining attributions with occlusions

Require: Program 𝑝 , attribution A, anonymization Y, author 𝑡
1: 𝑐∗𝑡 ← A(Y(𝑝))
2: 𝑆 ← segmentCode(𝑝) ⊲ Line splitting / program slicing

3: 𝑅 ← (0, . . . , 0) ∈ R|𝑆 | ⊲ Initialize relevance vector

4: for all 𝑠 ∈ 𝑆 do
5: 𝑝𝑠 ← occludeSegment(𝑝, 𝑠)
6: 𝑐𝑠 ← A(Y(𝑝𝑠 )) ⊲ Attribution w/o segment 𝑠

7: 𝑅𝑠 ← (𝑐∗𝑡 − 𝑐𝑠𝑡 ) ⊲ Relevance of segment 𝑠

8: end for

Based on this mapping, we apply explanation methods to trace
back the attributions to code regions [59]. For example, for the

random forest classifier employed by Caliskan et al., we use the

method TreeInterpreter [49], which returns the contribution of every
tree node to the prediction. We then color the code regions based

on this relevance. Figure 9 exemplifies the explanation for a code

snippet after applying Stunnix. The includes, declarations, and API

usages are shaded in darker color, indicating that they still provide

clues for authorship attribution. In fact, these patterns consistently

occur for the respective author in our evaluation.

6.1.2 Occlusion Analysis. Feature highlighting is particularly ef-

fective for explaining the attribution of mildly modified code. For

strong obfuscation, however, it reaches its limits. While we can

highlight areas in the obfuscated code generated by Tigress, these

are incomprehensible by design and impede further analysis. To

address this problem, we introduce occlusion analysis. Similarly

to the field of computer vision, where classifications are often ex-

plained by occluding regions of an image [61], we occlude areas of

the source code and observe the resulting attribution.

Algorithm 1 provides an overview of this approach. First, we

partition the unobfuscated code into segments 𝑆 (line 2). Then, we

iteratively remove each segment 𝑠 ∈ 𝑆 from the code, apply the

obfuscationY and perform the attributionA (lines 4–8). After this

step, the relevance 𝑅𝑠 of the segment 𝑠 is given by the confidence

difference to the original attribution (line 7). We repeat this process,

so that we obtain a relevance map over all segments.

While the method can be applied to every anonymization tech-

niques, we cannot remove arbitrary parts of a program without

affecting its syntax. To address this problem, we introduce two

strategies: As the first strategy, we split the source code along the

textual lines. This approach naturally leads to incorrect syntax, yet

often the remaining code is still valid and we can narrow down

relevant code lines. As the second strategy, we employ backward

1 #include <stdio.h>

2 #include <stdlib.h>

3 (...)

4 int main() {

5 int zf6b4214bfd, zfad4c462ea ;

6 (...)

7 scanf("\x25\x64", &zfad4c462ea);

Figure 9: Example of feature highlighting for explaining an attribu-
tion. Darker shading indicates more relevance.

753



Proceedings on Privacy Enhancing Technologies 2024(3) Micha Horlboge, ErwinQuiring, Roland Meyer, and Konrad Rieck

program slicing. That is, we use the framework Frama-C [17] which

enables creating syntactically correct program slices on C code.

This strategy preserves the syntax, yet the segments often become

large, making an identification of relevant regions difficult.

6.2 Identified Code Clues
With the help of the explanationmethods, we investigate the deficits

of the candidate techniques on the GCJ dataset. After manually

analyzing the highlighted code regions with both strategies, we

identify four recurring groups of patterns that remain in the code.

6.2.1 String Literals. The first group of patterns corresponds to

string literals. Code normalization and coding style imitation do not

modify these, Stunnix just replaces strings with their hexadecimal

representations. Therefore, a learning algorithm can use them to

find clues about the developers. In contrast, Tigress takes care to

not reveal literals by dynamically generating strings at runtime.

While the characters themselves are not present, the code necessary

for their generation still leaves telltale signs, e. g. the length of the

strings is implicitly reflected in the size of the generation routine.

As a result, some subtle hints remain in the obfuscated code.

6.2.2 Include Directives. Another group is formed by #include

directives, which reveal a developer’s preferences for certain func-

tions and libraries. Neither code normalization nor the obfuscator

Stunnix touch these directives and thus expose these patterns to

the attribution methods, as also highlighted in Figure 9. The coding

style imitation by Quiring et al. [47] inserts and removes include di-

rectives to match other developers. Nevertheless, headers required

for the implementation always remain in the code. Finally, Tigress

“inlines” the headers by copying their content into the source code.

While this makes the resulting code hard to understand for a hu-

man, the included content is no different from the directive for a

learning algorithm and thus still serves as a valuable hint.

6.2.3 API Usage. API usage provides another set of patterns that
remains after anonymization. Automatically changing it is a chal-

lenging task, since one must ensure that the replacement is equiva-

lent in functionality. Although the coding style imitation contains

some transformations to exchange equivalent C functions, the ma-

jority of API calls remains unchanged. The code normalization and

Stunnix provide no transformations for this. Tigress calls the API

functions by their addresses, so that it can hide function names. Nev-

ertheless, an attribution method can use the types and number of

call parameters to narrow down the particular API. In Appendix C,

we provide a more detailed analysis of this remaining feature.

6.2.4 Code Structure. Finally, the program structure is often pre-

served. With the exception of Tigress, the other techniques retain

the general organization of the source code. Although the coding

style imitation is able to rearrange C statements locally, the over-

all structure stays unchanged. As a result, personal preferences to

structure the program are available to the attribution methods.

6.3 Eliminating Code Clues
Equipped with knowledge of indicative patterns in the modified

code, we are ready to refine the anonymization of source code. For

Table 3: Performance of Tigress with eliminated clues in the adaptive
attribution scenario on the GCJ dataset. The numbers in brackets
show the difference to the results on unmodified code.

Attribution Accuracy Uncertainty score

Caliskan et al. 0.071 (–0.617) 0.969 (+0.128)

Abuhamad et al. 0.058 (–0.696) 0.938 (+0.677)

this improvement, we focus on the obfuscator Tigress, as it provides

the best protection in our experiments.

6.3.1 Code Transformations. To eliminate the identified patterns,

we design a set of code transformations that addresses the weak

spots. We iteratively apply new transformations and then observe

their impact on the attribution using the methods from Section 6.1.

This feedback loop enables us to systematically identify and elimi-

nate clues left in the code, increasing the attained 𝑘-uncertainty.

In particular, we devise the following transformations: To hide

string literals, we remove empty function stubs inserted by Tigress

and pad all strings to a minimum length. Furthermore, we include

all headers from the C standard by default and add at least one call

to every API function used in the dataset. For function pointers, we

remove all information, except for necessary argument and return

types. This makes it complicated to identify the called functions.

6.3.2 Results. Table 3 shows the attribution performance after

applying these improvements and conducting another run of ad-

versarial training on the GCJ dataset. We observe a significant

decrease in accuracy compared to Table 2 and Figure 5. The values

are close to guessing and the uncertainty scores are comparable to

the static scenario (see Table 2). For the method of Caliskan et al.,

the score reaches the threshold of 0.96, so that we attain practical 𝑘-

uncertainty also for the GCJ dataset. For the method of Abuhamad

et al., we come close to this with an uncertainty value of 0.94, but a

minor gap still remains.

This positive outcome may seem like the final defeat of the two

attributionmethods. Unfortunately, this is amisinterpretation of the

conducted experiments. We only show that it is possible to achieve

𝑘-uncertainty in a controlled environment where the defender can

systematically explore the attacker’s capabilities for attribution. In

practice, however, this is rarely the case, and so we demonstrate

the technical feasibility of attaining 𝑘-uncertainty in an adaptive

scenario but unfortunately not its general realization.

Takeaway message. It is possible to attain 𝑘-uncertainty by
systematically identifying and eliminating indicative clues

in source code. However, this approach is only tractable if

the defender operates in a controlled setup and has access to

the attribution method, which is rarely the case in practice.

7 LIMITATIONS
With our theoretical and practical analysis, we shed light on chal-

lenges of anonymizing code. Naturally, our approach to tackle this

problem comes with limitations that we discuss in the following.
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7.1 Selection of Techniques
For our experiments, we select two attribution methods and four

anonymization techniques. Consequently, our results are based

on this particular choice. Nonetheless, we argue that the obtained

results are unlikely to be completely different for other selections

due to the following reasons:

Attribution Methods.We consider two state-of-the-art methods

for authorship attribution. While other approaches would also be

applicable [e.g., 8, 18, 19], none of these is fundamentally different

in design. All methods extract layout, lexical, and syntactic features.

Since the two considered methods already substantially weaken

the anonymization, evaluating more attribution methods without

new strategies would not provide further insights.

Anonymization Techniques. For code anonymization, we consider

common approaches for reducing the impact of coding style. With

Tigress, we employ one of the most powerful obfuscators avail-

able for C code [7, 16, 42]. Our analysis in Section 6 demonstrates

how this obfuscation can be improved to realize 𝑘-uncertainty in

a controlled setting. The four selected techniques thus provide

a broad view on current defenses against authorship attribution.

However, we concede that more advanced anonymization strategies

are clearly conceivable and hope to encourage more work in this

direction with our theoretical and practical analysis.

As a promising candidate for further improvements, we have

started experimenting with large language models. These models

allow the generation and transformation of source code in different

contexts. Due to their probabilistic sampling process, they may

serve as an alternative approach to manipulating and obfuscating

coding style. In a first experiment, we therefore instructed the

OpenAI model GPT-3.5 to change the coding style of the source

files from our GCJ dataset. While the model returned modified code

for all examples, we found that 11% of them were syntactically

incorrect and another 37% unfortunately had different semantics or

crashed. For this reason, we have not taken any further steps here

and will leave this exploration to future work.

7.2 Size and Type of Code
Compared to prior work, we focus on two small datasets with only

30 and 81 authors, respectively. The reason for this limitation is

that we restrict our experiments to plain C code, since advanced

transformations on C++ are challenging and not supported by Ti-

gress. Previous work has demonstrated that the performance of

learning-based attributions methods decreases gradually with the

number of considered authors [see 2, 11]. Hence, the lack of protec-

tion observed in our experiments may disappear once the attacker

has to consider a large set of authors. However, this set is chosen

by the attacker during training and cannot be controlled by the

defender directly. A reliable protection should thus be also effective

for a small number of authors.

Finally, we focus on C code because it is widely used in soft-

ware development. Still, we note that interpreted languages, such

as Python and JavaScript, offer further strategies for anonymi-

zation, including encrypting code and unpacking it at runtime.

Although there exists a large series of research on unpacking mali-

cious code [31, 57] that would reveal the original code, investigating

other types of protecting code—compilation vs. interpretation—may

provide further strategies for improving protection in practice.

7.3 Undecidability
The concept of 𝑘-uncertainty inherits the undecidability from 𝑘-

anonymity. It is unfortunately impossible to create an anonymiza-

tion method that can guarantee 𝑘-uncertainty for any possible

attribution method and value of 𝜖 . We argue, however, that 𝑘-

uncertainty provides an advantage over 𝑘-anonymity: It involves a

tunable confidence range 𝜖 . By making this a measurable quantity,

we create the uncertainty score that allows us to compare existing

methods, which would not be possible with 𝑘-anonymity.

While guaranteed anonymity of source code would be preferable

and might be attainable in controlled environments, our main result

is negative. Nonetheless, we believe that this negative outcome is a

central insight that advances research on protecting developers in

practice by shaping directions for future research.

7.4 Confidence Values
The uncertainty score builds on the concept of confidence to assess

how well a developer is protected. Unfortunately, not all learning

algorithms implement this concept to the same extent. While some

algorithms return proper confidence values, others only provide

output normalized to a range between 0 and 1. In these cases, the un-

certainty score only measures the relative proximity of the authors,

without an appropriate interpretation of confidence. Similarly, our

heuristic for determining practical uncertainty only provides a good

estimate if suitable confidence values are provided.

In our experiments, we employ the confidence values returned

by a random forest, which correspond to the mean predicted class

probabilities of the trees in the forest. These values are based on

a reasonable notion of confidence and therefore do not invalidate

our analysis. However, when conducting experiments with other

learning models, we recommend carefully examining the concept

of confidence to avoid misinterpreting the uncertainty score.

8 RELATEDWORK
Our work is the first to explore the problem of anonymizing source

code. However, we naturally build on previous research from differ-

ent areas, such as code authorship attribution and data anonymiza-

tion. In the following, we briefly discuss these related branches.

8.1 Code Authorship Attribution
The starting point for our work has been the remarkable progress

in code stylometry, that is, the authorship attribution of code.

8.1.1 Code Stylometry. Several methods have been developed that

are able to almost perfectly attribute single-author code to develop-

ers using different concepts of machine learning [e.g., 2, 6, 11, 58].

These methods have been further extended to attribute code frag-

ments written by multiple authors [e.g., 8, 18, 56]. This partial at-

tribution, however, proves challenging and therefore leads to lower

detection rates. For this reason, we focus our empirical analysis

on methods analyzing single-author code. In this way, we evaluate

techniques for protecting code under a stronger adversary model.
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8.1.2 Coding Style Imitation. Another branch of research has ex-

plored the robustness of learning-based attribution methods. In the

first study by Simko et al. [50], manual modifications have been

used to mimic the style of developers. Following work has then

developed concepts for automatically creating adversarial examples

of source code [34, 40, 47]. These attacks differ in the employed code

transformations and search strategy. For example, Quiring et al. [47]

and Liu et al. [34] develop several code transformations that mod-

ify lexical and syntactic features, whereas Matyukhina et al. [40]

apply rather simple modifications such as changing the layout or

copying comments. For our evaluation, we focus on the attack by

Quiring et al. [47], as it has a higher evasion rate than the method

of Liu et al. [34] and allows changing various lexical and syntactic

features in C code.

8.1.3 Text Stylometry. Finally, there is extensive work on attribut-

ing authorship of natural language texts and imitating the style of

writing. Examples of this research include techniques for detecting

patterns in writing style [e.g., 3, 19, 52] as well as approaches for

misleading an attribution through writing style obfuscation [e.g.,

10, 37, 41]. Our work shares inspiration from this. Due to the funda-

mentally different properties of natural language and source code,

however, these approaches are not directly applicable in our setting.

8.2 Data Anonymization
Another related area is the anonymization and de-anonymization

of data [e.g., 27, 36, 43, 55]. Early ideas of this area originate from

general data processing and tackle the challenges of analyzing and

exchanging privacy-sensitive data, such as medical records.

8.2.1 Anonymity Concepts. One of the first ideas from this area is

the concept of k-anonymity by Sweeney [55]. In a dataset, every

quasi-identifier needs to be hidden in a group of at least 𝑘 persons

with the same identifier, called the anonymity set. This set ensures

that no individual can be isolated through personal properties.

The concept of 𝑘-anonymity, however, is insufficient when ad-

ditional data is correlated with the anonymity set. This has led to

the development of ℓ-diversity [36]. This concept requires for every

group of equal quasi-identifiers that at least ℓ different sensitive

attributes are also included. In this case, even if an individual can

be assigned to a certain equivalence class, the attacker is not able to

deduce further sensitive data. This concept was further improved by

t-closeness [32], which tackles the problem of information disclosure

through the different distributions of attributes in an equivalence

class and the overall data. This concept requires a similar distribu-

tion in both. Hence, an attacker is not able to learn more about a

specific individual than about the dataset.

Unfortunately, we conclude from our theoretical analysis that

ℓ-diversity and 𝑡-closeness are not helpful for protecting code, since

𝑘-anonymity is incomputable for an unknown attribution method.

8.2.2 Differential Privacy. Finally, our work also relates to the pow-
erful concept of differential privacy [21]. In this concept, privacy-

sensitive data is not directly available to users but provided through

an interface (or post-processing step). By adding carefully chosen

noise to the answers of this interface, it becomes impossible to tell

whether an individual is present in the data or not. This concept has

recently gained popularity as a strategy for improving the privacy

of data in learning models [e.g., 1, 13, 28, 29, 54] and also in the

field of natural language processing [e.g., 23, 35, 39, 60].

In natural language processing, the noise is usually not added to

the text itself, but to a vector representation of it [23, 35, 60]. While

this is an elegant approach, in our setting, this requires knowledge

and access to the feature representation used by the attacker. As

this is typically unknown to the defender, these approaches are not

directly applicable to protect developers from identification.

9 CONCLUSION
Methods for authorship attribution of source code have substan-

tially improved in recent years.While first approaches have suffered

from low accuracy, recent techniques can precisely pinpoint a sin-

gle developer among hundreds of others. Defenses against this

progress have received little attention so far and hence we provide

the first analysis of code anonymization. Theoretically, we reveal

a strong asymmetry between attackers and defenders, where the

universal 𝑘-anonymity of programs is generally undecidable. Prac-

tically, however, we provide a framework for reasoning about and

measuring anonymity using the concept of 𝑘-uncertainty.

Although we can generate 𝑘-uncertainty in a controlled setup,

the main conclusion of our empirical analysis is negative: We find

that effective techniques for protecting the identity of develop-

ers in practice are still lacking. Research on such techniques is

challenging, as the defender is naturally not aware of all possible

strategies for attribution, while the attacker can easily compensate

new anonymization methods through adversarial training, as we

demonstrate in our experiments.

In summary, we conclude that entirely new approaches to anony-

mization are needed, possibly starting already in program language

design and software development. For example, new program lan-

guages and environments could be designed with anonymity in

mind, so that stylistic patterns and telltale clues are reduced dur-

ing development, potentially creating a unified mapping between

semantically equivalent code and its representation. Our work is a

first step in this direction and provides concepts for defining and

measuring code anonymity in such future settings.

PUBLIC CODE AND DATA
To encourage further research on code anonymity, we make the

implementation of our methods publicly available. In addition, we

provide the collected source code so that all experiments can be

reproduced and serve as basis for evaluating new approaches.

https://github.com/horlabs/anonymizer
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A EXAMPLES OF EQUIVALENT CODE
Figure 10 shows four implementations of the Euclidean algorithm

in C. The programs are semantically equivalent but make use of

different identifiers, types, arithmetics, and control flow. They serve

as a simplified example for the variety of coding styles and possible

program representations.

/* Vanilla version */

int gcd(int a, int b) {

while (b != 0) {
int tmp = b;
b = a % b;
a = tmp;

}

return a;
}

(a) Variant 1

typedef int num;

num gcd(num n, num m) {
loop:

if (n > m)
n = n - m;

else if (n < m)
m = m - n;

else
return n;

goto loop;
}

(b) Variant 2

#include <stdint.h>

int32_t gcd(int32_t x,
int32_t y) {

if (y == 0)
return x;

int32_t z =
x - x / y * y;

return gcd(y, z);
}

(c) Variant 3

#include <math.h>

int gcd(int a, int b) {
long c;

for(c = 0; b > 0;
c = !(a = c)) {
c = c + b;
b = fmodl(a,b);

}
return a;

}

(d) Variant 4

Figure 10: Semantically equivalent programs implementing the Eu-
clidean algorithm.

B GITHUB DATASET
For our experiments, we assemble a dataset of source code from

GitHub. Our collection procedure consists of three steps, where we

first crawl repositories with source code (Section B.1), then filter

them to match our experimental setup (Section B.2), and finally

configure proper build environments (Section B.3).

B.1 Crawling Step
To obtain a wide range of repositories, we implement a recur-

sive crawl of Github. The crawl starts with the curated software

list awesome-c1, which contains a collection of popular software

projects written in C and hosted on Github. From this list, we re-

trieve metadata from all repositories and extract developers who

have contributed to them. We then recursively visit the repositories

of these developers. To avoid an explosion of the recursion, we limit

the crawling using the following criteria:

(1) We ignore all repositories not marked as C code.

(2) We ignore all forked repositories to avoid duplicates.

(3) We ignore large repositories with over 100 authors.

(4) We ignore large repositories with over 10Mb codebase.

We terminate the crawl after a period of 24 hours. While this strat-

egy results in a large list of potential source code, most of the

retrieved repositories do not satisfy the requirements of our experi-

mental setup. For instance, the majority of C projects are developed

collaboratively, so source files can rarely be attributed to individual

authors. This mix of authorship poses a problem for attribution,

and we refer the reader to the work of Dauber et al. [18] for a cor-

responding discussion.

B.2 Filtering Step
Next, we employ a filtering step to remove repositories and source

code unsuitable for our experimental setup. In particular, this step

filters the repositories based on the following criteria:

(1) We remove all source files with less than 50 lines of code, as

they are too short for inferring coding style.

(2) We remove all source files with more than 5,000 lines of code,

as many of these contain large chunks of constant data or

automatically generated code.

(3) We remove all source files whose commit messages contain

the words “signed off” or “copied”, which indicates that the

commit user may not be the author.

(4) We remove all source files with less than 5 commits. Several

projects copy code from other repositories, which is indicated

by a lack of active development.

(5) We remove all source files where less than 90% of the lines

of code are not developed by a single author. We allow a gap

of 10% to compensate for editorial changes.

After the data has been filtered at file level, we remove all empty

repositories and the corresponding authors. Finally, to allow split-

ting the data into training and test partitions, as described in Sec-

tion 5.2, we keep only those authors who contributed to at least 2

repositories, so that we can use one repository for testing and the

others for training. We also require that the training repositories

contain at least 7 files. This ensures that the split into training and

testing is similar to the GCJ dataset and therefore the performance

results are comparable.

B.3 Configuration Step
In the last step, we try to configure the build environment for each

repository. For this purpose, we execute supplied configuration

scripts, such as cmake and configure. To obtain a large number of

correctly configured projects, we manually install dependencies

and set configuration options where possible. We then test the re-

sulting code against the anonymization techniques under test and

1
https://github.com/oz123/awesome-c
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remove those files that cannot be processed correctly, for example,

because they require complicated dependencies or use unusual pro-

gramming features. Overall, this step is the most time-consuming

and takes about a whole person-month. As a result, the available

source code for our experiments is drastically reduced. In the end,

we have 81 authors, 391 repositories and 1,284 files of source code

that successfully passes all stages of our experimental setup.

While we aim to provide a more realistic picture of source code

than the common GCJ dataset, we have to acknowledge that our

restrictive filtering limits its representativeness. However, we con-

sider this filtering a necessary compromise: While we could select

a larger proportion from the crawl for our evaluation, we would

risk its ground truth being wrong due to mislabeled authors and

corrupted source code. These defects could invalidate our experi-

ments, which depend on accurate analysis of identified developers.

Therefore, we strive for a balance between valid ground truth and

representativeness by starting from a large crawl and then succes-

sively removing error sources in the underlying data.

C API HIDING OF TIGRESS
Tigress hides the usage of an API by determining the addresses of

the API functions at runtime. Still, the types and number of param-

eters are specified, because the function pointers must be typed

according to the passed parameters for every call. This is achieved

by casting the pointers using function declarations from the header

files. Some declarations include argument names and thus these

are copied into the corresponding casts. This makes it possible to

differentiate functions with the same types of parameters.

As an example, the functions abs and close require a single

parameter of type int and return the same data type. This leads

to a function pointer of type int (*)(int). In the header files,

however, the parameter of abs is named __x, while for close it is

filedes. The corresponding casts in the obfuscated file are there-

fore (int (*)(int __x)) and (int (*)(int filedes)) and thus are easily

distinguishable. As a result, even for Tigress, an attribution method

can identify used library functions in this case.

D NORMALIZATION RULES
Table 4 provides a detailed listing of the implemented normalization

rules for anonymization.

Table 4: Overview of implemented normalization rules

Rule name Description

Renaming All variables, functions, and structures are

renamed to a generic version. For exam-

ple, all variables are numbered as var_x
with x being a number starting at 0.

Types The used data types are mapped to a

specified subset to eliminate redundant

type names, such as long and int_32.
Note that this transformation is platform-

specific.

Switch2If switch statements are transformed to a

chain of if-else statements.

Comma Comma operators are largely eliminated

and replaced with a sequence of state-

ments containing the expressions.

CompoundAssign Compound assignments are replaced with

normal assignments and the specified

binary operator, e. g. a += 2 is trans-

formed into a = a + 2.

IfElse If the last statement inside the body of an

if statement is for example a return or

break, the following code is moved into

an else to this if.

MainParams This rule enforces the use of two parame-

ters for the main function and a return
statement at its end.

Multidecl If multiple declarations are in a single

statement, the statement is split into sep-

arate declaration statements.

Braces Braces around every body are enforced,

for example, for the bodies of all if and

for statements.

UnnecessaryReturn This rule removes return statements in

if bodies if all following code is in the

else clause and the function has no re-

turn value.

VoidReturn This rule adds a return statement at the

end of every void function.

FlattenIf For nested if statements, this rule re-

moves inner clauses by combining the

conditions of the inner and outer if. It
inserts an additional if for every else.

Paren This rule removes unnecessary paren-

theses like in a = (b + c), simplifying

arithmetic expressions
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E USED TRANSFORMATIONS FOR TIGRESS
Table 5 lists the used transformations and arguments for obfuscation

with Tigress in detail.

Table 5: Overview of used transformations and arguments for source
code obfuscation with Tigress

Transformation Arguments

InitEncodeExternal Functions=main

InitEncodeExternalSymbols=

<ext. functions>

InitEntropy InitEntropyKinds=vars

Functions=init_tigress

InitOpaque Functions=init_tigress

InitOpaqueStructs=env

RandomFuns RandomFunsName=SECRET

RandomFunsFunctionCount=3

RandomFunsCodeSize=20

RandomFunsLoopSize=5

EncodeLiterals Functions=

<all in file>,main_0,

/SECRET.*/

EncodeLiteralsKinds=string

EncodeLiteralsEncoderName=

stringEncoder

Merge MergeFlatten=false

MergeName=MERGED

Functions=

<w/o main>,main_0,

/SECRET.*/

Virtualize VirtualizeDispatch=switch

VirtualizeStackSize=48

VirtualizeOperands=mixed

VirtualizeMaxDuplicateOps=2

VirtualizeSuperOpsRatio=0.1

VirtualizeMaxMergeLength=3

Functions=MERGED,stringEncoder

EncodeLiterals Functions=

main,MERGED,stringEncoder

EncodeLiteralsKinds=integer

EncodeExternal Functions=MERGED

EncodeExternalSymbols=

<ext. functions>

CleanUp CleanUpKinds=*
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